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Abstract 

Purpose: Mutations in the genes coding for subunits of ion channels have been associated 

with epilepsy. Of these known epilepsy genes SCN1A, coding for the α subunit of the 

sodium channel, is currently the most clinically relevant gene. The majority of SCN1A 

mutations lead to severe myoclonic epilepsy of infancy (SMEI) including borderline SMEI 

(SMEB) and to generalized epilepsy with febrile seizures plus (GEFS+). Both syndromes 

have febrile seizures (FS) as a common clinical feature. The aim of this study was to 

achieve a better definition of the spectrum of phenotypes that might be associated with 

SCN1A mutations. We aimed to performing phenotype-genotype correlations of SCN1A 

mutations with specific epilepsy syndromes.  

Methods: We selected 132 patients in whom most seizures occurred during febrile 

episodes. A clinical and genetic study focussing on SCN1A screening was performed.  

Results: Patients were classified as follow: SMEI/ SMEB = 55; GEFS+ spectrum= 25; 

sporadic myoclonic astatic epilepsy= 3; classical FS= 10; other phenotypes= 25. We 

identified 40 SCN1A mutations. Of the 40 mutations 37 were found in patients with SMEI 

in whom mutations were missense in 16 probands (2 familial) and truncating in 21 (2 

familial). The remaining 3 missense mutations were associated with GEFS+. Missense 

mutations in the pore forming parts (S5-S6) of the Na+ channel occurred in 10 out of the 16 

SMEI (62,5%) and only in one of the three GEFS+ patients. Mutations in the pore forming 

region seem to correlate in 70% with the classical SMEI type and only with 30% of the 

SMEB phenotype. Analysis of the age of seizures onset between SMEI patients with: a) 

SCN1A truncating mutations, b) SCN1A missense mutations and c) no SCN1A mutations 

showed that the differences of the age of FS onset was extremely significant between the 

three groups (p=0,0007, ANOVA test). Patients with truncating mutations had the earlier 
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onset of FS, patients with missense mutations had an intermediate onset, and individuals 

without SCN1A mutations had the latest age of FS onset.  

Conclusion: We obtained a prevalence of about 70% of SCN1A mutations in SMEI and 

SMEB patients and of 12% in GEFS+ probands confirming the predominant and important 

role of SCN1A in patients with SMEI. None of the other patients with fever-provoked 

seizures carried mutations in SCN1A gene. The high correlation between SMEI and SCN1A 

mutations suggests a phenotypical specificity of SCN1A rather than a dysfunction of 

neurons exacerbated by high body temperature 
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Introduction 

Voltage-gated sodium channels are essential for the generation and propagation of 

action potentials in the brain as well as in other excitable tissues. Mutations in the genes 

coding for the α1 and β1subunits of the neuronal sodium channel (SCN1A and SCN1B 

respectively) have been associated with epilepsy. The overwhelming majority of SCN1A 

known mutations lead to severe myoclonic epilepsy of infancy (SMEI) and to generalized 

epilepsy with febrile seizures plus (GEFS+) (Mulley et al., 2005). 

GEFS+ is a complex and heterogeneous familial syndrome with autosomal 

dominant inheritance in some families in which febrile seizures (FS) and febrile seizures 

plus (FS+) are the predominant phenotypes (Scheffer and Berkovic, 1997; Singh et al., 

1999a). SCN1A and SCN1B mutations have been found in about 10% of GEFS+ families 

(Bonanni et al., 2004; Escayg et al., 2001; Escayg et al., 2000; Scheffer et al., 2000; 

Wallace et al., 2001; Wallace et al., 2002; Wallace et al., 1998). 

Severe myoclonic epilepsy of infancy (SMEI) or Dravet’s Syndrome is an epileptic 

encephalopathy presenting with prolonged febrile or afebrile generalized or unilateral 

clonic seizures in the first year of life in an otherwise normal infant (Dravet, 2002). 

Between 1 to 4 years other seizure types occur including myoclonic, absences and partial 

seizures, developmental delay becomes also apparent within the second year of life. Several 

authors described group of patients sharing most but not all the characteristic clinical 

features of SMEI patients and designated them as ‘borderline SMEI (SMEB)’ (Fukuma et 

al., 2004; Oguni et al., 2001). A family history of epilepsy is often found in SMEI patients 

and affected relatives have epilepsy phenotypes consistent with GEFS+ (Scheffer and 

Berkovic, 1997; Singh et al., 1999a; Singh et al., 1999b). Mutations of SCN1A have been 

found in 40 to 100% of SMEI patients and are de novo in the majority of individuals (Claes 

et al., 2001; Nabbout et al., 2003; Sugawara et al., 2002; Wallace et al., 2003).  
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Clinical analysis of the phenotypes shows clearly that the first clinical sing of 

mutations in SCN1A is recurrent, often prolonged, seizures provoked by fever in infancy. 

This evidence suggests that, in clinical practice, mutations in SCN1A could be suspected in 

every child with fever-provoked seizures. Febrile seizures are the most common convulsive 

event in humans and about 13% of patients with epilepsy have a history of FS (Frucht et al., 

2000). The largest percentage of FS (25%) is observed in temporal lobe epilepsy, often 

characterized by the sequence of prolonged FS in childhood, hippocampal sclerosis (HS) 

and refractory temporal lobe seizures (Baulac et al., 2004). Sporadic patients with TLE and 

HS have been described in GEFS+ families with SCN1A and SCN1B mutations (Abou-

Khalil et al., 2001; Wallace et al., 2002). These data, thus confirm the role of sodium 

channel genes in decreasing seizures threshold causing fever-provoked seizures in infancy 

and more specific seizure types later in the course of the syndrome. Modifier genes and 

environmental factors might be also involved to determine the phenotype specificity and 

the epilepsy outcome.  

Following these considerations, we performed a clinical and genetic study focussing 

on SCN1A screening of a large series of patients with various epilepsy phenotypes whose 

common clinical feature was represented by the occurrence of fever-provoked seizures. The 

present study aimed to achieve a better definition of the spectrum of phenotypes that might 

be associated with SCN1A mutations. We also aimed to performing phenotype-genotype 

correlations of SCN1A mutations with specific epilepsy syndromes and possibly describe 

the clinical characteristics of fever-provoked seizures associated with SCN1A mutations.  
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Methods 

Patients recruitment 

We recruited subjects with either focal or generalized idiopathic epilepsies whose 

seizures were particularly increased during febrile episodes. Patients were collected from 

child neurologists and epileptologists around Italy and other European countries. Informed 

consent was obtained from parents or guardians.  

Clinical classification 

A detailed clinical history including pre and perinatal antecedents, seizures age of 

onset and semiology, occurrence of fever-provoked seizures, cognitive functions, EEG 

recordings and MRI were directly collected from the parents and/or other relatives for 

patients seen at the Epilepsy, Neurophysiology and Neurogenetic Unit of the Department of 

Child Neurology and Psychiatry of the Stella Maris Foundation, Pisa, Italy. For patients 

referred from other centres around Italy or Europe, medical records from child neurologists, 

paediatricians, hospitals and other treating doctors were collected and reviewed whenever 

possible. Genealogical information and family trees were also collected when available.  

Epileptic seizures and epilepsy syndrome diagnoses were performed according to 

the International League Against Epilepsy classifications (Engel, 2001; ILAE, 1981; ILAE, 

1989). Seizures lasting longer than 30 minutes were classified as status epilepticus, whereas 

seizures lasting at least several minutes but definitely less than 30 where considered as 

‘prolonged seizures’. Classical SMEI was diagnosed when all of the following features 

were present: onset in the first year with hemiclonic or generalized febrile or afebrile 

seizures, evolution of myoclonic seizures, atypical absences and partial seizures, and 

progressive cognitive impairment (Dravet, 2002). The term “borderline” severe myoclonic 

epilepsy of infancy (SMEB) was used for cases without a number of the key features of 
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SMEI (e.g. lack of generalized spike wave discharges, lack of myoclonus, limited number 

or atypical seizure types) (Dravet, 2002; Fukuma et al., 2004; Oguni et al., 2001). Patients 

with febrile seizures beyond age 6 years and/or with afebrile seizures in early or mid 

childhood were classified as febrile seizure plus (FS+) (Scheffer and Berkovic, 1997; Singh 

et al., 1999a).  

When classical FS, FS+ with or without other seizure types, occurred in families we 

considered them as part of the GEFS+ spectrum (Scheffer and Berkovic, 1997; Singh et al., 

1999a).  Myoclonic astatic epilepsy (MAE) was considered as sporadic if no other family 

members had had seizures or it was included in the GEFS+ spectrum when it presented in 

families (Scheffer and Berkovic, 1997; Singh et al., 1999a). Patients in whom despite 

clinical information a diagnosis could not be made were designated as ‘unclassified 

epilepsy’. 

Molecular analysis 

Peripheral blood samples were obtained from patients and from almost all of their 

parents, genomic DNA was extracted using standard protocol. The 26 coding exons of the 

SCN1A gene were amplified by PCR reaction with primers designed to amplify each exon 

and the flanking intron splice site. PCR products were then analyzed by denaturing high 

performance liquid chromatography (dHPLC) on a Wave automated instrument 

(Transgenomic Inc., Cheshire). Primers sequences and dHPLC condition are available upon 

request. Abnormal profiles observed on dHPLC screening were subsequently analyzed by 

direct sequencing. Sequencing analysis on both DNA strands was performed on a ABI3100 

avant sequencer (Applied Biosystems, CA, U.S.A.) using the BigDyes v1.1 terminator 

Cycle Sequencing Kit following the manufacturer's protocol. Sequences were analyzed 

using as reference for the Seqscape program (Applied Biosystems, CA, U.S.A.) the 

genomic region of the Genbank sequence NC_000002 encompassing the SCN1A gene. 
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Available parents’ DNA was checked for the mutation identified in their child by direct 

sequencing.  

Sequence changes were interpreted as mutations when they resulted in: a) truncating 

mutation (frameshift, stop or splice site mutation; b) missense mutations when the change 

lead to an amino-acid substitution that was not previously reported as polymorphism, was 

not present in 200 control alleles and/or it arose de novo. The coding synonymous and 

intron nucleotide changes were investigated in silico using the Neural Network Splice Site 

Prediction software (http://www.fruitfly.org/seq_tools/splice.html) in order to identify 

alteration in the mRNA splicing process. The mutations found were coded using the DNA 

mutation checker (http://www.ebi.ac.uk/cgi-bin/mutations/check.cgi) and the protein 

P35498 of the Swiss-Prot Database reference. 

Genotype-phenotype correlations  

Based on epilepsy syndrome diagnosis, the 132 patients were divided in: 1) SMEI, 

2) GEFS+, and 3) other phenotypes. A clinical analysis focussed on seizure types and age 

of seizures onset, with particular attention to seizures provoked by fever, was performed in 

the three groups. Based on previous studies of genotype-phenotype correlations of SMEI 

patients (Ceulemans et al., 2004; Fukuma et al., 2004; Ohmori et al., 2003) we further 

subdivided our SMEI probands in three groups according to the SCN1A analysis: a) 

truncating, b) missense and c) no mutations. ANOVA test was used for statistical analysis 

to evaluate differences of age of seizures onset between the three groups of SMEI patients. 

To evaluate the existence of hot spots regions, where mutations of SCN1A are more 

likely to be found, we compared the number of the identified mutations in each exon 

(including 10 nucleotides up and down stream the exon) to the number of expected 

mutations using Fisher’s exact test. We also performed a Fisher’s exact test to evaluate the 

location of SCN1A mutations grouping the exons according to their coding protein domain: 

http://www.fruitfly.org/seq_tools/splice.html
http://www.ebi.ac.uk/cgi-bin/mutations/check.cgi
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N-terminal + DI; Loop 1; DII; Loop 2; DIII; Loop 3 and DIV + C-term.  
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Results 

A total of 132 probands, 74 females and 59 males, with idiopathic epilepsies 

including febrile seizures (FS) were studied. Patients were collected from various European 

countries including: Italy (82), United Kingdom (24), Portugal (23), Spain (1), Denmark (1) 

and  Israel (1). The mean age at the time of the study was 9 years (median 6,5 ranging from 

1 to 38 years). Epilepsy phenotypes of the 132 probands are shown on Table 1. 

  

Epilepsy syndromes 

1. Severe myoclonic epilepsy of infancy (SMEI) 

We studied 55 patients (27 females and 28 males) with a clinical diagnosis of SMEI 

(39) and SMEB (16 patients). Mean age at the time of the study was 9,5 years (median 8,6 

± 5,1, ranging from 2,5 to 20,8). Patients were divided in 3 groups according the SCN1A 

mutational screening result: 1) truncating, 2) missense and 3) no mutations. Detailed 

clinical information of patients with truncating and missense mutations are presented on 

Table 2 and 3 respectively. 

a) Group 1: patients with SCN1A truncating mutations  

Truncating mutations were identified in 21 patients with SMEI (18) and SMEB (3) 

(see Table 2 and Figure 1a). All patients had recurrent FS and in the majority of patients FS 

were the first clinical expression occurring between the 4th to 5th months of life (mean 4,6 

months; median 4; ranging from 2 to 9). Status epilepticus, either febrile (14 patients; 

66%), afebrile (13 patients; 62%) or both (7 patients; 33%), was reported in all patients. 

Febrile status epilepticus had a mean age at onset of 9,6 months (median 7, ranging from 3 

to 40), afebrile status epilepticus had a mean age at onset of 12,5 months (median 9, 

ranging from 3 to 48). Afebrile tonic-clonic, tonic or hemiclonic seizures, often prolonged, 

occurred in 19 (90%) patients, mean age at onset was 13 months (median 10, ranging from 
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3 to 42).  Symmetric or asymmetric bilateral myoclonic seizures occurred in 14 (67%) 

patients and in the majority of them began during the second year of life (mean age of onset 

19 months; median 13; ranging from 4 to 38). Complex partial seizures were seen in 16 

(76%) patients with a mean age of onset at 23 months (median 18; ranging from 3 to 72). 

Atypical absences occurred in 13 (62%) patients with mean age of onset at 34 months 

(median 36; ranging from 10 to 72). All patients had cognitive impairment ranging from 

mild to severe. A family history for seizures including FS was present in 11 (52%) patients. 

The sister of a SMEI patient (see Table 2, mutation IVS4+1 G>A splicing) had a clinical 

history also consistent with SMEI with prolonged febrile seizures beginning around 6 

months of age and followed by the later appearance of myoclonic seizures. Their father had 

had FS from infancy to childhood. Detailed clinical information of each patient and further 

data regarding EEG, photosensitivity and therapy are reported on Table 2.  

b) Group 2: patients with SCN1A missense mutations 

Missense mutations were found in 16 patients, 8 males and 8 females with SMEI 

(11) and SMEB (5) (see Table 3 and Figure 1b). Recurrent, often prolonged, FS were seen 

in all patients with mean age at onset of 6,7 months (median 7; ranging from 3 to12). Status 

epileptics was present in 12 patients (75%) either febrile (9 patients; 56%), afebrile (8 

patients; 50%) or both (5 patients; 35.5%). Febrile status epilepticus had a mean age at 

onset of 11 months (median 10; ranging from 4 to 28); afebrile status had a similar mean 

age at onset (median 5; ranging from 4 to 42). All but one patient had afebrile tonic-clonic, 

tonic or hemiclonic seizures, often prolonged, beginning during the first year of life (mean 

age of onset 10 months; median 7,5; ranging from 3 to 30). Clusters of symmetric or 

asymmetric myoclonic seizures occurred in 11 (69%) patients, age at onset was known in 

10 of them, with a mean of 25 months (median 24; ranging from 7 to 60). Atypical absence 

seizures beginning around the third year of life (mean 38 months; median 40; ranging from 
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7 to 72) were seen in 7 (44%) of the 16 patients. Complex partial seizures were documented 

in 13 (81%) patients with a mean age at onset of 17 months (median 12; ranging from 3 to 

42). All patients had cognitive impairment ranging from mild to severe. A family history of 

seizures including FS, was present in 9 of the 16 patients (56%) and in two of them 

relatives with seizures were found in both paternal and maternal branches of the family. 

Detailed clinical information of each single patient and further data regarding EEG, 

photosensitivity and therapy are reported on Table 3. 

c) Group 3: patients without SCN1A mutations 

Molecular analysis did not reveal SCN1A mutations in 18 patients (7 females and 11 

males), 8 with SMEB and 10 with SMEI. FS beginning around age 10 months (median 8,5; 

ranging from 4 to 24 months) occurred in all patients. Status epileptics was documented in 

12 patients (67%) either febrile (10 patients; 55.5%), afebrile (7 patients; 39%) or both (5 

patients 28%). Febrile status epilepticus began around the age of 12 months in most 

patients with the exception of one in whom status appeared at the age of 7,5 years (median 

12; ranging from 4 months to 7,5 years). Afebrile status had a mean age at onset of 10 

months (median 9; ranging from 4,5 to 18). Afebrile seizures occurred in 13 (72%) patients 

with mean age of onset at 13 months (median 10; ranging from 2 to 14). Myoclonic 

seizures with mean age at onset of 26 months (median 22,5, ranging from 13 to 60) were 

present in 8 (44%) patients. Absence seizures were reported in 9 patients (50%), age of 

onset was known in 7 of them and had a mean of 24 months (median 24; ranging from 5 to 

51). Partial seizures occurred in 11 (61%) patients with mean age of onset of 26 months 

(median 24; ranging from 8 to 60). Borderline cognitive functions were seen in 5 patients 

the remaining had from mild to severe cognitive impairment. A family history of seizures 

including febrile seizures was present in 10 probands (55,5%). 
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2. Generalized epilepsy with febrile seizure plus (GEFS+) 

A diagnosis of generalized epilepsy with febrile seizures plus was made in 24 patients 

(13 females and 11 males) aged from 1 to 26 years (mean 8; median 6,5 years). Febrile 

seizures occurred in all patients and had a mean age at onset of 17 months (median 12, 

ranging from 5 to 60). Only two patients had, at 10 and 35 months respectively, a single 

episode of febrile and afebrile status epilepticus. Afebrile tonic-clonic seizures were seen in 

19 patients with mean age at onset of 43 months (mean 19; ranging from 3 to 108). Other 

seizure types included: myoclonic (seven patients), absences (two patients), myoclonic-

astatic (six patients) and partial seizures (nine patients).  

Of the 24 patients with GEFS+ spectrum three patients (12,5%) were found to 

harbour SCN1A mutations (see Figure 1b). Clinical details of the 3 patients are reported on 

Table 4. 

3. Other phenotypes 

Classical febrile seizures (see Table 1) were diagnosed in 10 patients, mean age of 

FS onset was 15 months (median 12,5; ranging from 8 to 31). All 10 patients had had not 

other seizure types. One patient had right HS on MRI and a mild deficit of the cognitive 

functions. A positive family history of epilepsy was detected in 9 probands and in one of 

them there was a bilinear occurrence of seizures. None of them had SCN1A mutations.  

Idiopathic generalized epilepsy of various subtypes (see Table 1) with antecedents 

of FS was documented in 14 patients and none of them carried SCN1A mutations. Three 

patients had sporadic myoclonic astatic epilepsy and SCN1A screening was also negative.  

The remaining 25 patients had various epilepsy phenotypes (see Table 1); the 

majority of them (18), despite the analysis of EEG and clinical information, could not be 

classified. As described in the methods (selection criteria), all patients had, either focal or 

generalized seizures, or both, which increased in frequency during febrile episodes. Mean 
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age of seizures onset was 20 months (median 17, ranging from neonatal period to 84 

months). None of them had SCN1A mutations.  

SCN1A molecular analysis  

dHPLC analysis of SCN1A in the 132 patients included in the study showed 64 

different abnormal chromatograms.  Direct sequencing revealed that 39 out of the 64 

dHPLC abnormal profiles corresponded to 40 mutations: 19 missense, 5 nonsense, 10 

frameshift, 4 splice site mutations and 2 silent nucleotide substitution that in silico seemed 

to modify the mRNA splicing process (see Figure 1a and b). Molecular analysis of the 34 

available parent’s showed that 28 mutations were de novo and 6 were inherited (2 

truncating and 4 missense mutations) (see Tables 2, 3 and 5). Of the 40 SCN1A mutations 

identified in our study, 33 had not been previously reported. The position of the missense 

mutations within the SCN1A protein is shown in the graphic (see Figure 2). The direct 

sequencing of the remaining 25 dHPLC abnormal chromatograms showed that they were 

polymorphisms (12 not been previously reported, data not shown).  

Genotype-phenotype correlations 

The analysis of the age of seizures onset between the three groups of SMEI patients 

with: a) SCN1A truncating mutations, b) SCN1A missense mutations and c) no SCN1A 

mutations showed that the differences of the age of FS onset was extremely significant 

between the three groups (p=0,0007, ANOVA test). Patients with truncating mutations had 

an earlier seizures onset, around the 5th month of age, patients with missense mutations had 

a later FS onset, around the 7th month and finally individuals without SCN1A mutations had 

an age of onset around the 10th month of life.  For the remaining seizure types − febrile and 

afebrile status afebrile tonic-clonic or hemiclonic, myoclonic, absence and partial seizures 

− there were not statistically significant differences in age of seizures onset amongst the 3 

groups of patients.   
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The statistical analysis comparing the number of the identified mutations in each 

exon to the number of expected mutations did not find statistically significant differences 

between exons (p>0,05) (Fisher’s exact test). The highest number of mutations (10 out 40) 

was found in exon 26. This data however, did not reach a statistically significant p-value 

because this is the biggest exon, therefore carrying a higher chance of being hit by a 

mutation. A similar analysis was performed grouping the exons according to their coding 

protein domain (N-terminal + DI; Loop 1; DII; Loop 2; DIII; Loop 3 and DIV + C-term) 

and similarly there were not statistically significant differences in the domains (p> 0,05). 
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Discussion 

Mutation rates 

In our cohort of 132 patients with idiopathic epilepsies with fever-provoked seizures 

in infancy and early childhood, classical SMEI was diagnosed in 39 (30%) and SMEB in 

16 (12%) patients. Mutations of SCN1A were identified in 29 classical SMEI (74%) and 8 

SMEB patients (22%). We obtained a prevalence of about 70% of SCN1A mutations in 

SMEI and SMEB patients, which is intermediate between the lowest percentage of 35% 

(Nabbout et al., 2003; Wallace et al., 2003) and the highest reported by the Belgium 

(100%) (Claes et al., 2001) and Japanese groups (78%) (Fujiwara et al., 2003; Ohmori et 

al., 2002; Sugawara et al., 2002). Ascertainment bias is likely to influence the proportion of 

patients carrying SCN1A mutations identified by the different authors. Although SMEI is a 

well-defined epilepsy syndrome clinicians are still debating whether myoclonic seizures are 

an essential feature of SMEI. Supported by the definition endorsed by the International 

League Against Epilepsy, in this study myoclonic seizures were not regarded as an 

essential diagnostic criteria for classical SMEI. We, instead, based our clinical 

classification predominantly on age of onset and on the occurrence of prolonged febrile 

hemiclonic or generalized seizures often evolving into status epilepticus. The results of 

SCN1A analysis supported our diagnostic criteria; the 29 SMEI patients carrying mutations 

manifested febrile seizures at onset, followed by febrile or afebrile seizures evolving into 

status epilepticus in most of them, whereas myoclonic seizures were noted only in 25 out of 

the 37 (67.5%) patients with mutations.  

Clinical criteria for SMEB are even less defined, therefore easily over-or 

underestimated. Due to these nosological issues the correlation of SMEB with SCN1A 

mutations in our patients decreased to 50%. Furthermore, in our study, the milder SMEB 

phenotype correlated with a higher proportion of missense (70%) rather than truncating 
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mutations (30%). Electroclinical and genetic molecular findings suggest that SMEI and 

SMEB are closely related, representing a spectrum of phenotypes that could be categorized 

under the term of Dravet’s syndrome. Clinical differences in some patients seem to be 

related to the type and location of SCN1A mutations whereas in other patients there might 

be some yet-undiscovered molecular genetic mechanisms. 

Is SMEI an inherited disorder?  

The majority of SCN1A mutations (89%) were de novo, whereas only 4 (11%) were 

inherited (2 truncating and 2 missense mutations). One of the two inherited truncating 

mutations was transmitted from a father who had a single seizure (Table 2, 

D1293delX1299 mutation). The second familial SCN1A truncating mutation (Table 2 

IVS4+1 G>A splicing) was found in the probands’ sister whose phenotype was also 

consistent with SMEI. The two siblings inherited the mutation from a mildly affected father 

with only FS from infancy to childhood. A literature review showed only one other family 

described in which SCN1A truncating mutation was inherited from a mildly affected mother 

(Nabbout et al., 2003). 

In our cohort of SMEI probands, similarly to previous studies (Nabbout et al., 2003; 

Wallace et al., 2003), 56% had close relatives with seizures including febrile seizures, 

favouring the hypothesis that SMEI might be an inherited disorder. This hypothesis is 

confirmed by several observations including the family here reported in which both sisters 

had SMEI and SCN1A mutation, as well as the reports of additional families in which at 

least two affected members had SMEI, (Fujiwara et al., 1990; Gennaro et al., 2003; Kimura 

et al., 2005; Singh et al., 2001) including two families with SCN1A missense and truncating 

mutations (Gennaro et al., 2003; Kimura et al., 2005). High rates of family history of 

epilepsy and familial occurrence of SMEI are however, hard to reconcile with the finding 

that the majority of SCN1A mutations in SMEI patients are de novo.  
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Genotype−phenotype correlations 

We observed a mild predominance of truncating (52,5%) over missense (47,5%) 

mutations. Patients with SMEB (8) where more likely to have missense (5/16; 31%) than 

truncating mutations (3/21; 14%), whereas patients with classical SMEI (29) had both 

truncating (18/21, 86%) and missense mutations (11/16, 69%).  

Similarly to previous studies, we found that missense mutations in the pore forming 

parts S5-S6 of the channel occurred in 10 out of the 16 SMEI/SMEB patients (62,5%) and 

only in one of the three GEFS+ patients (see Figure 2). Mutations in the pore forming 

region seem to correlate in 70% with the classical SMEI type and only with 30% of the 

SMEB phenotype. Unlike previous studies, we did not find missense mutations in the 

voltage sensor part S4. The remaining six patients with SMEI/SMEB and two with GEFS+ 

carried missense mutations outside the important pore S4-S6 region (see Figure 2).  

Statistical analysis of the mean age of onset of FS showed that patients with 

truncating mutations have the earliest onset followed by patients with missense mutations 

having an intermediate onset and individuals without SCN1A mutations showing the latest 

age of onset around the 10th month of life. The difference between the three groups was 

statistically very significant (p=0,0007).  

Several recurrent mutations are emerging as the number of published studies 

increases (Mulley et al., 2005). In our patients only six of the 39 mutations identified, had 

been previously described (see Tables 2 and 3). In four unrelated SMEI patients we found a 

truncating mutation (IVS4+1  G>A, Table 2 and Figure 1a) recurring twice and two 

missense mutations affecting the same aminoacid (Arg393Cys and Arg393His, see Table 3 

and Figure 1b).  

The SCN1A mutations so far identified seem to be scattered across SCN1A protein 

with some clustering occurring in the C-terminus, to some extent in the N-terminus and in 



SCN1A: phenotype-genotype correlations  19 

the loops between the segments 5 and 6 of the first three domains (Mulley et al., 2005). The 

statistical analysis (Fisher’s exact test) of the position of the mutations did not uncover hot 

spot regions in our patients. The highest number of mutations (10 out 40) was found in 

exon 26. This data however, did not reach a statistically significant p-value because this is 

the biggest exon, therefore carrying a higher chance of being hit by a mutation.  

GEFS+ and SCN1A mutations  

Amongst GEFS+ phenotypes the rate of SCN1A mutations was around 12%. The 

W1204R mutation identified in a child with FS+ and his father had previously been 

reported in a GEFS+ family (Escayg et al., 2001). The proband of this small GEFS+ family 

had a left hippocampal sclerosis (HS) on MRI scan. Spampanato et al. (2003) performed 

some functional studies of the W1204R mutation and showed it to cause an alteration of the 

voltage-dependent channel gating that could result in neuronal hyperexcitability 

(Spampanato et al., 2003). The remaining two SCN1A mutations have not previously been 

reported.  

We identified two aminoacid substitutions: Arg604His and Ala1161Thr in a patient 

with myoclonic astatic epilepsy within a GEFS+ family. The same substitutions were 

previously described in three patients with JME (Escayg et al., 2001). These changes did 

not co segregate with seizure disorder in the JME families but were not identified in 

controls either (Escayg et al., 2001). In our patient the two changes, although not identified 

in 200 control alleles, were both inherited from the unaffected father thus suggesting that 

they are most likely to be rare polymorphisms. 

How much genetic overlapping is there between SMEI and GEFS+? 

The clinical similarities between SMEI and GEFS+, including the frequent 

occurrence of febrile seizures, the family history and the shared molecular genetic 

aetiology, have prompted the hypothesis that these disorders represent two extremes in 
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clinical presentation of the same condition (Claes et al., 2003; Singh et al., 2001). 

Molecular evidences of a shared aetiology include the finding that a mutation in the same 

aminoacid can give rise to both conditions: the mutation R1648C caused GEFS+ in a 

family (Escayg et al., 2000) whereas the mutation R1648H caused SMEI in another patient 

(Ohmori et al., 2002). More than one hundred SCN1A mutations have been defined to date 

and a mutational diversity between SMEI and GEFS+ has been observed. SCN1A 

truncating mutations occur only in SMEI patients whereas missense mutations are found in 

both SMEI and GEFS+. Furthermore, missense mutations causing SMEI are predominantly 

found in the pore-forming region of SCN1A whereas mutations associated with GEFS+ are 

spread throughout the gene. A SMEI patient within a GEFS+ family carrying a mutation of 

the GABAA receptor γ2 subunit gene is also on record (Harkin et al., 2002).  

SCN1A and MRI abnormalities 

Usually, neuroimaging studies in SMEI do not demonstrate brain lesions (Dravet, 

2002; Nabbout et al., 2003) but studies designed to evaluate MRI abnormalities with 

special attention on the temporomesial structures, have not been performed. Only a 

retrospective study is on record, reporting that 10 of the 14 patients with SMEI had HS 

although none of the patients had temporal lobe epilepsy (Siegler et al., 2005). None of the 

14 patients was tested for SCN1A mutations.  

In our cohort of patients we identified three patients with SCN1A mutations and 

clearcut focal MRI brain abnormalities. In these patients MRI abnormalities did not seem to 

be an epiphenomenon but they contributed to the patient’s epileptogenesis. The MRI study 

of one patient with SMEB and with complex partial seizures arising from the right temporal 

region, showed high signal intensity in the right temporal lobe with hippocampus volume 

reduction (Table 2, Figure 3A). The second patient with FS+ and focal seizures showed left 

HS on MRI (Table 3, patient 1 and Figure 3B) and the third patient with FS+ had left 
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temporal lobe hypoplasia on MRI (Table 3, patient 2). The true incidence of focal MRI 

brain abnormalities in SMEI patients needs to be further studied with properly designed 

studies. However, the apparently low rate of structural abnormalities raises the possibility 

that the occurrence of congenital or secondary MRI abnormalities requires further factors, 

either genetic or aquired, in addition to SCN1A mutations and prolonged FS.  

Phenotypes other than SMEI and GEFS+ 

None of the patients with idiopathic epilepsies with fever-provoked seizures besides 

SMEI and GEFS+ carried mutations in the SCN1A gene. Recently, a large Italian family 

with simple FS cosegregating in affected family members was reported to carry a SCN1A 

missense mutation (Mantegazza et al., 2005). We did not identify SCN1A mutations in the 

10 patients with simple FS and with a family history of FS (data not shown) included in this 

study, suggesting that SCN1A causes familial simple FS only in rare families.   

 

In conclusion, SCN1A is the most relevant epilepsy gene with the largest number of 

epilepsy-related mutations so far identified. The high correlation between SMEI and 

SCN1A mutations suggests a phenotypical specificity of SCN1A rather than a dysfunction 

of neurons exacerbated by high body temperature. What causes SMEI when there is no 

detectable SCN1A mutation remains to be identified.  
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Table 1: epilepsy phenotypes of the 132 patients screened for SCN1A  
 
Syndromic phenotypes No of patients  SCN1A mutations  

1) Severe myoclonic epilepsy of infancy   

(SMEI / SMEB) 

 

55 37 (67%) 

 

2) GEFS+ spectrum  

 

25 3 (12%) 

3) Other phenotypes 

Sporadic MAE 

 

3 

 

0 

FS 10 0 

CAE 

CAE>JME 

JAE  

JME 

IGE-TCS 

7 

2 

2 

1 

2 

0 

0 

0 

0 

0 

Uncl epilepsy with fever-sensitive sz 

Infantile convulsions 

Atypical BRE 

Idiopathic fever-sensitive focal epilepsy 

18 

2 

1 

3 

0 

0 

0 

0 

 

Total  

 

132 

 

40 (30%) 

 

BRE= benign rolandic epilepsy; CAE= childhood absence epilepsy; FS= febrile seizures; 

IGE-TCS= idiopathic generalized epilepsy with tonic-clonic seizures; GEFS+= generalized 

epilepsy with febrile seizures plus; JME= juvenile myoclonic epilepsy; JAE= juvenile 

absence epilepsy; MAE= myoclonic astatic epilepsy; SMEB= borderline severe myoclonic 

epilepsy of infancy; sz= seizures; Uncl= unclassified
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Table 2: clinical information of the 21 SMEI/SMEB patients with SCN1A truncating mutations 
 

Gender Age 
(yrs) 

FS onset* FS status 
onset* 

Afeb status 
onset* 

Afeb sz 
onset* 

Myo sz 
onset* 

Abs sz 
onset* 

Partial sz 
onset* 

EEG IPS  AEDs Efficacy  Family 
history 

Syndrome 
Phenotype 

SCN1A screening                           

M 10.5 3 3 3 _ Unk Unk 3 GSW Y VPA+ TPM 
+CLB+STP 

Partial sz 
reduction 

 N SMEI c.1702 C>T  
Arg568X (Ohmori et al., 

2002) 

Parents not 
available 

F 3.2 9 14 _ 12 12 24 14  multiF SW  N VPA+ PB+CLB N  Y SMEI c.570 G>A  
Trp190X 

De novo 

F 12,4 3 _ 9 7 12 _ _ bifrontal SW N VPA+ TPM Partial sz 
reduction 

 Y SMEB c.1857_1858insGCAAC 
S620ins624X 

De novo 

F 17,7 5 _ _ 11 20 36 37 GSW & 
multiF 

N VPA+TPM+LT
G+CZP 

N  Y SMEI IVS1 -3  C>A De novo 

F 14 3 _ 24 10 38 36 12 GSW N  VPA+STP Partial sz 
reduction 

 N SMEI  c.249 C>G  
Tyr83X (Nabbout et al., 

2003) 

De novo 

F 9.5 6 40 _ 18 30 42 38 GSW & 
multiF 

Y VPA+TPM Partial sz 
reduction 

 bilineal  SMEI c.2586 A>G Arg862Arg 
De novo 

F 16.3 4 4 Uncertain 5 Yes Yes _ GSW Y VPA+TPM Y  N SMEI c.731_732delGT  
V244delX275 De novo 

M 6.2 3 9 _ 20 7 _ 20 Right T S Y VPA 
+TPM+CLB 

Partial sz 
reduction 

 N SMEI IVS16 -1 G>A acceptor 
splice site De novo 

F 6.4 5 _ 12 12 14,5 24 12 GSW & Focal Y VPA 
+TPM+CZP 

Partial sz 
reduction 

 N SMEI 
c.1624 C>T  Arg542X De novo 

F 4.8 3 _ 11 3 12 _ 3 MultiF SW Y VPA+ TPM+ 
CZP 

Y  N SMEI c.2608_2614delGCAAAAT  
A870delX874 De novo 

M 6 2 _ 48 36 36 72 72 GSW Y VPA+ TPM+ 
CZP 

Partial sz 
reduction 

 N SMEI c.5367_5368delCA 
F1789delX1793 

Parents not 
available 

M 8 3 13 13,5 6 10 10 6 GSW Y VPA + PB+ ETS 
+ GVG 

N  Y SMEI c.3347delC  
P1116delX1119 De novo 

M 12.1 9 9 _ 9 24 48 48 Unkown Y VPA+TPM+CL
B+STP 

Partial sz 
reduction 

 Y SMEI c.3878delA 
D1293delX1299 Familial 

M 4.8 6 6 6 4 _ _ 6 T SW > R N VPA+CZP+CL
B + STP 

Partial sz 
reduction 

 N SMEB IVS4+1  
G>A splicing (Fujiwara et 

al., 2003) 

De novo 

F 17 2.5 3 _ 4 _ 36 unk MultiF SW Y VPA+PB+ CLN N  Y SMEI c.3276insAT 
I1242ins1270X 

De novo 

M 14,4 4 5 8 6 32 30 24 Focal SW N CBZ+TPM Partial sz 
reduction 

 Y SMEI c.5620delCGGGTTCT 
R1874delX1941 

De novo 
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M 8,8 5 6 6 4 4 24 24 GSW N TPM+Acetaz Partial sz 
reduction 

 Y SMEI c.5295delTTTT  
F1765delX1777 

De novo 

F 7 6 _ 6 _ Y Y _ Slow backgr N VPA+ 
TPM+STP 

Partial sz 
reduction 

 Y SMEI IVS4+1  
G>A splicing (Fujiwara et 

al., 2003) 

Familial 

F 5 7 7 _ 42 _ _ - GSW N PB+VPA+ 
TPM+CLP 

N  N SMEB c.4933 C>T   Arg1645X Parents not 
available 

M 17,5 3 3 10 24 12 24 36 GSW & 
multiF SW 

Y VPA+TPM + 
CZP 

N  Y SMEI c.4589insA      
K1517ins1536X  

De novo 

F 4,1 7 8 6 16 _ 36 16 GSW Y VPA+CLB+STP Partial sz 
reduction 

 N SMEI c.2415 G>A Leu805Leu  de novo 

Legend:  
Abs= absence seizures; Acetaz= acetazolamide;  Backgr= background; CLB= clobazam; CLN= clonazepam; F= female; FS= febrile convulsions; GWS= generalized spike-wave; IPS: Photosensitivity; M= male; MR= mental retardation; 
Myo= myoclonic seizures; MultiF= multifocal; N= negative; PB= phenobarbital; R= right; S= spikes; SMEB= severe myoclonic epilepsy of infancy borderline; SMEI= severe myoclonic epilepsy of infancy; SW= spike-waves; T= temporal;  
TPM= topiramate, STP= stiripentol;  VPA= valproic acid; Y= Yes;    absent; * age of seizures onset in months 
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Table 3: clinical information of the 16 SMEI/SMEB patients with SCN1A missense mutations 
 

Gender Age 
(yrs) 

FS                                              
onset* 

FS status                                    
onset* 

Afeb status                                      
onset* 

Afeb Sz                      
onset* 

Myo sz                        
onset* 

Abs sz                     
onset* 

Partial sz      
onset* 

EEG IPS AEDs Efficacy Family 
history 

Syndrome 
Phenotype 

SCN1A screening                           

F 15 7 10 13 9 36 48 9 GSW & 
multiF 

N VPA+LTG+CL
B 

N Y SMEI c.4888 G>A 
Val1630Met  

Familial  

M 5.7 10 _ _ 10 24 24 24 GSW & 
multiF 

N Unk Unk Y SMEI c.4822 G>T 
Asp1608Tyr  

De novo 

M 8.6 10 _ 42 30 Unk Unk 36 GSW & 
multiF 

N VPA+TPM+PB N Y SMEI c.5359 
Glu1787Lys  

Parents not available 

M 9.4 7 7 _ 24 40 40 40 GSW N VPA+CBZ+CL
B 

N Bilineal  SMEI c.2870 G>T  
Trp957Leu 

Parents not available 

M 5.6 7 _ 5 4,5 _ _ 42 GSW Y VPA + TPM + 
CLN 

Partial sz 
reduction 

Bilineal  SMEB c302G>A 
Arg101Gln 

(Fukuma et al., 
2004) 

De novo 

F 6.1 4 4 4 _ _ 48 24 GSW N LTG+TMP+CL
B+STP 

N Y SMEI c.4762 T>C 
Cys1588Arg 

De novo 

F 4.6 10 12 _ 8 _ _ _ MultiF N TPM+PB Partial sz 
reduction 

Y SMEB c.1066 A>G 
Arg356Gly 

Familial  

F 3,9 4 _ 4 4 _ _ 14 GSW N TPM+PB Partial sz 
reduction 

N SMEB c.4973 C>G 
Thr1658Arg 

Parents not available 

M 20.8 4 4 5 5 _ _ _ GSW N Unk Unk N SMEB c.1072 C>A 
Pro358Thr 

Parents not available 

F 10.7 3 14 12 11 24 _ Unk GSW & 
multiF 

Y VPA+ CLN + 
acetaloz 

N Y SMEI c.4408 G>T 
Gly1470Trp De novo 

F 9.7 3 _ _ 3 7 7 3 multiF Y VPA+ TPM + 
CLN 

N N SMEI c.4240 A>T  
Asn1414Tyr De novo 

F 8.6 3 _ _ 20 _ _ 3 GSW N VPA+TPM Unk Y SMEB c.5146 T>C 
Cys1716Arg De novo 

F 11.9 4 28 _ 5 60 28 5 GSW & 
multiF 

N VPA + CLN + 
CLB 

N N SMEI c.1178 G>A 
Arg393His (Claes 

et al., 2003) 
De novo 

M            4,8 12 _ _ 14 20 _ 12 GSW & 
multiF 

 LTG+CLB N N SMEI c.965 G>T 
Arg322Ile 

Parents not available 

M 13,1 12 12 _ 7 7 72 7 GSW & 
MultiF 

Y PB+CZP+ CBZ N N SMEI c.1177 C>T 
Arg393Cys 

De novo 

M 4,7 8 8 4 4 12 _ 4 GSW & 
Focal 

N PB+VPA N N SMEI c.5348 C>T 
Ala1783Val 

De novo 
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Legend:  
Abs= absence seizures; Acetaz= acetazolamide;  Afeb= afebrile;  Backgr= background; CBZ= carbamazepine;  CLB= clobazam; CLN= clonazepam; F= female; FS= febrile convulsions; GWS= generalized spike-wave;  IPS: 
Photosensitivity;  LTG= lamotrigine;  M= male;  MR= mental retardation;  Myo= myoclonic seizures;  MultiF= multifocal; N= negative; PB= phenobarbital; TPM= topiramate; S= spikes;  SMEB= severe myoclonic epilepsy of infancy 
borderline;  SMEI= severe myoclonic epilepsy of infancy;  Sz= seizures;, STP= stiripentol;  Unk: unkown; VPA= valproic acid; Y= Yes;   Yrs= years    absent; * age of seizures onset in months. 
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Table 4: clinical details of 3 patients with GEFS+ and SCN1A mutations 
 

 Gender Age (y) FS onset* Afeb sz                     
onset* 

Myo sz                   
onset* 

Abs  onset* Partial sz 
onset* 

EEG AEDs Cognitive Family Syndrome 
Phenotype 

MRI SCN1A screening 

1 M 4.9 8 40 _ _ 48 L T slowing TPM Language 
delay 

Y FS+ L HS  c3610 T>C 
Trp1204Arg 

(Escayg et al., 
2000) 

Familial 

2 M 2,2 6 7 _ _ _ N VPA N Neg FS+ L T 
hypoplasia 

c.220 T>C 
Ser74Pro 

De novo 

3 M 14 24 108 36 36 8 GSW LEV +VPA mild MR Y MAE/GEFS+ N c.5060 T>C                  
Phe1687Ser  

Familial 

 
Legend 
Abs= absences; AEDs= antiepileptic drugs; Afeb= afebrile; FS= ferbile seizures; GSW= generalized spike-waves; HS= hippocampal sclerosis; L= left; LEV= levetiracetam; M=male; Myocl= myoclonic; MR= 
mental retardation; N= normal; Neg= negative; T= temporal; TPM= topiramate; VPA= valproic acid; *= months; Y=yes; y=years               
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Figures legend 

Figure 1 

a) Graphic representation of the SCN1A protein showing the location of the truncating 

mutations. In the upper part of the figure are reported mutations leading to truncated SCN1A 

protein and to mRNA splicing alteration (underlined) associated with classical severe 

myoclonic epilepsy of infancy; in the lower part are reported the truncating mutations 

associated with borderline severe myoclonic epilepsy of infancy (SMEB).  

b) Graphic representation of the SCN1A protein showing the location of the missense 

mutations. In the upper part of the figure are reported missense mutations associated with 

classical severe myoclonic epilepsy of infancy (SMEI); in the lower part are reported the 

missense mutations associated with borderline severe myoclonic epilepsy of infancy 

(SMEB) and with generalized epilepsy with febrile seizures plus (GEFS+).  

Figure 2 

Graphic representation showing the location of the missense mutation according to the  

protein domains: N or C terminal; pore region; insulating region; voltage sensor; 

interdomain and other regions. Within the protein domains mutations have also been 

subdivided according to the phenotype: white for GEFS+, grey for SMEB and black for 

SMEI  

Figure 3 

A) Brain MRI scan of a patient with SMEI and SCN1A truncating mutation showing high 

signal intensity in the right temporal lobe with hippocampus volume reduction (arrows).  

B) Brain MRI scan of a patient with GEFS+ spectrum and SCN1A missense mutation 

showing left hippocampal sclerosis (arrows)  
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