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Abstract

This work focuses on the development of computational methods for the simulation of the prop-
agation of the electrical potential in the heart and of the resulting mechanical contraction. The
interaction of these two physical phenomena is described by an electromechanical model which
consists of the monodomain system, which describes the propagation of the action potential in
the cardiac tissue, and the equations of incompressible elasticity, which describe its mechanical
response. In fully-coupled electromechanical simulations, two main computational challenges
are usually identified in literature: the time integration of the monodomain system and the effi-
cient solution of the equations of incompressible elasticity. These two are the actual bottlenecks
in the realization of accurate and efficient fully-coupled electromechanical simulations.

The first computational challenge arises from the discretization in time of the equations that
describe the electrical activation of cardiac tissue. The monodomain system should be discretized
employing both fine spatial grids and small time-steps, to capture the spatial steep gradients
typical of the action potential and the behavior of the stiff gating variables, respectively. To
obtain an accurate and computationally-cheap numerical solution, we propose a novel method
based on coupling high-order backward differentiation formulae with high-order exponential
time stepping schemes for the time integration of the monodomain system. We propose a novel
quasi-Newton approach for the implicit discretization of the monodomain equation. We also
compare this latter approach against a complex step differentiation-based approach.

As a result, we show by means of numerical tests the accuracy of the developed strategies
and how the use of high-order time integration schemes affects the simulation of post-processed
quantities of clinical relevance such as the conduction velocity.

The second computational challenge is due to the structure the discretization of the equations
of incompressible elasticity. Due to the incompressibility constraint, the arising linear system has
a saddle point structure for which standard solution methods such as multigrid or domain de-
composition do not provide optimal convergence if not properly adapted. In order to overcome
this problematic, we propose a segregated multigrid preconditioned solution method. The seg-
regated approach allows to recast the saddle-point problem into two elliptic problems for which
multigrid methods are shown to provide optimal convergence.

The electromechanical model is employed to evaluate the effects of geometrical changes due
to the contraction of the heart on simulated electrocardiograms. Finally, the effect of different
electrical activations on the resulting pressure-volume loops is investigated by coupling the elec-
tromechanical model with a lumped model of the circulatory system.
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Introduction and motivation

Electromechanical models of the whole heart have been extensively used to investigate heart
failure, including arrhythmia and ischemia, and ventricular pacing. The simulation of the heart-
beat is one of the "Grand Challenges" in computational science, in that it requires the analysis of
various coupled single-physics fields. The modeling of the mechanical and of the electrophysio-
logical behavior of the tissue is an essential tool to describe the leading mechanisms underlying
every single heartbeat. The multiscale nature of the problem represents the prominent hurdle in
coupled electromechanical simulations. From the mechanical point of view, the cardiac muscle
behaves as an hyperelastic, incompressible, orthotropic material and its functionalities occur at
the macroscale level. The propagation of the electrical signal throughout the cardiac tissue is
described through the bidomain model (or its reduced forms). Ionic models describe, through
the representation of the behavior of the gating variables, the interaction of the ionic channels
responsible of the electrical activation of the cells. Cardiac electrophysiology involves function-
alities occurring at the microscales. A fine spatial grid is required to capture the gradient of the
action potential and a fine temporal grid is required to capture the behavior of the gating vari-
ables. This peculiarity implies an high number of degrees of freedom involved in simulations and
the need of an high-performance scalable setup.

This thesis is concerned with fully coupled electromechanical models of cardiac behavior. We ex-
ploited solution methods constructed ad hoc for single-physics problems. The aim of this work
was to design novel segregated solution techniques for the electromechanical coupled model. Ap-
propriate solution strategies for the underlying electrophysiological and mechanical problems were
proposed and investigated.

We proposed novel high-order numerical schemes for the time integration of the equations that
describe cardiac electrophysiology. Starting from exponential integrators theory, we generalized
the Rush-Larsen approach presenting high-order exponential time differencing and integrating
factor schemes for the time integration of the gating variables. These exponential schemes were
coupled to implicit-explicit and backward differentiation formula for the solution of the mon-
odomain equation. Considering high-order backward differentiation formulae, we introduced of
a novel quasi-Newton approach for the solution of the algebraic problem arising from the implicit
discretization of the monodomain equation. As an alternative, we proposed the evaluation of the
complex dependence of the ionic currents on the action potential considering the complex step
derivative approximation. We showed how accurate methodologies for the numerical integration
of cardiac electrophysiology represents a key point for accurate and low-cost simulations of the
propagation of the electrical signal in the cardiac tissue.
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We presented an efficient segregated multigrid preconditioned strategy for the solution of the sys-
tem of equations describing incompressible nonlinear elasticity for anisotropic materials with an
additional active stress component. The elasticity operator in the tangent problem is not posi-
tive definite and may exhibit a non-trivial kernel. This prevents a straight-forward application
of segregated solution methods for saddle point problems, which are usually based on the Schur
complement of the system. In order to overcome the hurdle associated to the elasticity operator,
we considered a linear and a nonlinear augmenting strategies, which ensure that the elasticity
operator is invertible. In a mixed finite element framework, the system is written as a general-
ized nonlinear saddle point problem and solved by means of Newton’s method. For the solution
of the Schur complement system, we employed a strategy based on a two multigrid of V-cycle
type: one for a mass matrix, preconditioner of the Schur complement matrix, and one for the
elasticity operator. Numerical results showed the convergence rate of the proposed strategy to
be independent of the grid size.

Various electromechanical coupling strategies were introduced, implemented, and compared in
terms of the outcome of numerical simulations. Numerical experiments are presented to assess
the performance of the proposed strategies. To study the impact of the mechanical deforma-
tion on the morphology of the simulated electrocardiograms, different coupling strategies were
compared. The numerical experiments showed an impact of mechanics on the T-wave and, un-
der specific circumstances, on the QRS complex as well. To study the impact of synchronous
and asynchronous electrical activation of the tissue on simulated pseudo-ECGs, a finite element
model of cardiac electromechanics was additionally coupled to a lumped model of circulation.

The collaboration with the Cardio Centro Ticino (CCT) inside the Center for Computational Medicine
in Cardiology (CCMC) at the Institute of Computational Science (ICS) gave us the opportunity
to discuss the outcomes of numerical simulations with the medical community. Moreover, this
collaboration provided a cardiac anatomy represented with high geometric fidelity electrome-
chanical parameters involved.

These models and strategies were implemented inside the novel framework HART, developed at
CCMC/ICS. HART is based on the open source general purpose C++ finite element framework
MOOSE, Multiphysics Object Oriented Simulation Environment. Mainly developed at Idaho Na-
tional Lab, where the author has worked for three months, MOOSE is specifically designed to
simplify development of multi-physics tools. Making use of the very modular formulation of
MOOSE, HART is easily extendible to incorporate additional mechanical material laws and cell
membrane models. The code relies on the widely used and well developed solver library PETSc.
To perform coupled electromechanical simulation of interest required the transfer of discrete
fields such as stresses, pressure, displacement and action potential. For this purpose, the Multi-
purpose Object Oriented Numerics Library MOONOLITH is integrated into the HART suite. We
present and discuss scaling benchmark problems for the coupled problem on both a Linux cluster
and a state-of-the-art Cray supercomputer.



Chapter 1

Governing equations in
electromechanics

1.1 Mathematical modeling of passive mechanics

The human heart is a muscle which main function is to pump the blood throughout the body.
During the last decades, many efforts have been done in order to model the cardiac activity. The
heart has been described as a mechanical pump for the first time in 1628 by William Harvey.
The heart consists of four chambers, namely the left atrium (LA) and right atrium (RA) and the
left ventricle (LV) and right ventricle (RV). The periodic contractions, generated by biochemical
processes, determine the so called heartbeat. Each heartbeat lasts approximately 800ms. Two
distinct phases regulate each chamber during the cardiac cycle: the systole (contraction phase),
and the diastole (dilatation phase). During the different phases of the cardiac cycle, the four
chambers undergo different workloads. After the ejection of the blood from the ventricles, the
aortic and pulmonic valves close. This closure represents the beginning of the diastolic phase,
which lasts approximately 400 ms. A steep drop of blood pressure of about 80 to 100 mmHg
occurs in conjunction with an isovolumetric relaxation. The volume relaxation is due to the
deactivation of the myofibrils of the myocytes. The mitral and tricuspid valves open when atrial
pressures are higher than ventricular ones. This results in a rapid blood flows into the ventricles.
In this filling phase no mechanical activation is involved. The last point of the filling stage is
just before the mitral and tricuspid valves closure. At this point the ventricles reaches their
maximum volumes, also called end-diastolic volumes, and the systolic phase starts. During systole
the left and right ventricles contract and eject blood into the aorta and the pulmonary artery,
respectively. In this phase an external work is performed by the muscle. Atrioventricular valves
close and therefore no blood is entering in the ventricles. However, the atria are filled though
the vena cavae and pulmonary veins. The closure of the aortic and pulmonic valves indicate the
beginning of a new cardiac cycle. The heart wall is composed by three layers which are namely the
endocardium (inner layer), the myocardium (middle layer) and the epicardium (outmost layer).
The heart wall not only exhibits different thickness along the apicobasal direction (being thinnest
at the apex and thickest at base), but the wall thickness changes also according to the different
(in space and time) workloads that the tissues have to sustain. From a mechanical point of view,
the myocardial fiber architecture plays a crucial role (quantitatively investigated in e.g. [LeGrice
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et al., 1997, 2001b]). LeGrice and co-workers have shown that myocardial fibers are oriented
and arranged into laminar sheets. Transmural specimen of the left and of the right ventricles,
traversed from the outer side to the inner side, contain fibers that rotate approximately from
π/3 to −π/3 and from π/4 to −π/4, respectively. Recent histological studies of the myocardium
show that the fibers are organized into laminar sheets. Each sheet is composed by an ensemble of
cells tightly bounded together by endomysial collagen [LeGrice et al., 1995; Gilbert et al., 2007].
Through the myocardium the orientation of these sheets varies, but this effect is negligible if
compared with the change of the fibers orientation; therefore in this work we consider the normal
direction of the sheets parallel to the longitudinal direction of the ventricles. In the last decades,
several models for the passive mechanics of the ventricle have been proposed. The first proposed
model was isotropic [Demiray, 1976]. To account for the microstructure of the myocardium,
more realistic transversely isotropic models have been proposed [Chadwick, 1982; Humphrey
et al., 1990; Taber, 1991; Guccione et al., 1995]. In more recent works the myocardium was
considered to be an inhomogeneous orthotropic body [Hunter et al., 1997; Costa et al., 2001;
Schmid et al., 2006]. Holzapfel and Ogden [Holzapfel and Ogden, 2009] summarized many
of them. Moreover, they proposed a model in which the strain-energy is defined in terms of
generalized invariants.

In the present section, we investigate the passive mechanical properties of cardiac tissue.
We focus on continuum mechanics theory, which aim is the mathematical description of media
as a continuous body. It is basically a review of classical framework of continuum mechanics.
The Piola transformation and the equations related to the balance principles are deduced. The
two main approaches to incompressibility in cardiac mechanics, the Lagrange multiplier method
and the penalty method, are presented. Moreover we introduce the Guccione-Costa and the
Holzapfel-Odgen constitutive models of cardiac tissue.

1.1.1 Kinematics

This section deals with the kinematics of finite deformation, which is the study of motion and
deformation without reference to their cause. Let Br be an open set of R3 called body. The ele-
ments thereof are called particles. Considering a orthonormal basis {Ei }

3
i=1, particles are labelled

by the coordinates X. These coordinates are known as material coordinates. We consider Br to
be the reference configuration, a fixed domain in space employed to define physical quantities
in the course of motion. Following [Bonet, 2008], the current position of these particles (at time
t) is described with respect to the same basis.
A deformation of Br is a mapping χ

χ : R3 7→ R3, x= χ(X). (1.1)

Defined T = [t0, tfin], a motionM , is a collection of time-dependent deformations

M = {χt : x= χ(X, t) }t∈T . (1.2)

For a fixed time, it represents a mapping between the undeformed and deformed body con-
figuration. The image Bt of the reference configuration through the deformation χ t is called
deformed configuration at time t. The reference configuration is used in solid mechanics to rein-
terpret physical quantities usually defined in the current configuration of the body. We define
the displacement vector u as

u(X, t) := χ(X, t)−X= x−X. (1.3)
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Fig. 1.1 sketches the plot of the configuration and of the deformation. We refer to the gradient
of the motion with respect to the material coordinates as deformation gradient and we denote it
with F . We have

F(X, t) :=∇χ(X, t) = I +∇u(X, t). (1.4)

We consider only tensors defined in the Euclidean space. Formally F is a two-point tensor with
components

F i j =
∂ χi

∂ X j
. (1.5)

Its determinant J(X, t) = det F(X, t) is called deformation determinant. For d = 3, consider an
infinitesimal rectilinear parallelepiped in Br with edges {dYi }

3
i=1. The elemental volume defined

by this vectors is
dV = (dY1 × dY2) · dY3. (1.6)

In the current configuration, the volume of the parallelepiped is

dv = ((FdY1)× (FdY2)) · (FdY3) = J (dY1 × dY2) · dY3. (1.7)

The substitution of Eq. (1.6) into Eq. (1.7) yields

dv = JdV. (1.8)

Therefore J accounts for local volume changes between the reference and the current configu-
ration. Local invertibility of χ requires the Jacobian determinant to be non-zero. We define the
trajectory as

Tχ := { (x, t) ∈ R3 ×T | x= χ(X, t), X ∈Br , t ∈ T } . (1.9)

If, for each t, the map χ is invertible, we define the inverse of motion

X= χ−1(x, t), (1.10)

which domain is Tχ . The following properties hold

x= χ(χ−1(x, t), t), and X= χ−1(χ(X, t), t). (1.11)

Denoting by Lin(R3) the vector space of all linear transformation from R3 to R3, we define its
the subset

Lin+(R3) = { L ∈ Lin(R3): J > 0 } . (1.12)

A configuration F is said to be admissible if F ∈ Lin+(R3). Let ∂Br be the boundary of Br , and
two distinct subsets of it, namely ΓD , on which Dirichlet boundary conditions are considered,
and ΓN , for the natural one. We require that the intersection of this two subset is an empty set
and moreover that ∂Br corresponds to the closure of the union of the two subsets.

Under the regularity assumption that χ is C2 with respect to time, it is defined the material
velocity

ẋ(X, t) =
∂ χ(X, t)
∂ t

, (1.13)

and the material acceleration as

ẍ(X, t) =
∂ 2χ(X, t)
∂ t2

. (1.14)
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Composing the material velocity and acceleration with the inverse motion we define the spatial
velocity and acceleration as

v(x, t) := ẋ(π(x, t), t), (1.15)

and the material acceleration as
a(x, t) := ẍ(π(x, t), t). (1.16)

X x

χ(X, t)

B0 Bt

Figure 1.1. Deformation map between reference and current configurations using coordinates.

1.1.2 Material and spatial description

In finite deformation analysis an important distinction has to be made in the description of fields
and quantities of interest. A material description refers to the behavior of a material particle. In
this case the quantity of interest is described with respect to the initial coordinate X obtained at
time t = t0. Formally, a material field is a tensorial function defined as

Br ×T 3 (X, t)→ Υ (X, t), (1.17)

where Υ is a tensor of Linn for n ∈ N. Materials fields are also referred to as Lagrangian fields.
A spatial description refers to the behavior of a spatial position. In this case the description is
performed in terms of the coordinate x, obtained during the deformation. A spatial field is a
tensorial function defined as

Tχ 3 (x, t)→ Ψ(x, t), (1.18)

where Ψ is a tensor. To obtain a material description, we can compose its spatial field Ψ with the
motion as follows

Ψm(X, t) = Ψ(χ(X, t), t). (1.19)

Vice versa, to obtain a spatial description, we compose its material field Υ with the inverse of the
motion as follows

Υs(x, t) = Υ (χ−1(x, t), t). (1.20)

With respect to the material coordinates we define the operators

∇Υ = DXΥ and DivΥ = tr (∇Υ ), (1.21)

while with respect to the spatial ones we define

gradΨ = DxΨ and divΨ = tr (gradΨ). (1.22)
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Here we are supposing the order of the tensors to be greater than or equal to 1. We define the
convective derivative Dt of a spatial field Ψ to be

DtΨ =
�

d
d t
Ψm

�

s
. (1.23)

1.1.3 Piola transformation

Piola transformations allow to map balance laws written considering spatial coordinates to bal-
ance laws written using material coordinates. Let P denotes a subset of the reference configura-
tion Br and Pt = χ(P , t) be its image at time t through the motion. Hereafter we describe the
Piola transformations of gradient of scalar and vector functions and of the divergence of vector
and tensor functions. Let φ be a spatial scalar field. The integral of its gradient can be written
in material coordinates as

∫

Pt

∇φdx=

∫

P

(∇φ)mJdX. (1.24)

Applying the chain rule to the right hand side of Eq. (1.24), we get

∫

Pt

∇φdx=

∫

P

F−T∇φmJdX. (1.25)

Let ψ ∈ Lin1 be a spatial vector field. Exploiting Eq. (1.25), we obtain

∫

Pt

∇ψdx=

∫

P

∇ψmF−1JdX. (1.26)

The transformation of the divergence of ψ can derived using the Piola identity Div (JF−T ) = 0
[Marsden and Hughes, 1994b] and the fact that

div ψ= tr (∇ψ). (1.27)

We obtain the Piola transformation

(div φ)mJ = Div (JF−1φm). (1.28)

Let us now consider the divergence of T ∈ Lin2. Exploiting Eq. (1.28), we obtain

(div T)mJ = Div (JTmF−T ). (1.29)

1.1.4 Balance principles

Balance of mass

We consider a density function to compute the mass of a body. Let ρr(X, t) indicate the mass
density in material coordinates and ρ(x, t) indicate the same quantity in spatial coordinates.
Conservation of mass reads

∫

P

ρrdX=

∫

Pt

ρdx. (1.30)
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Changing the variable of integration in the right hand side of Eq. (1.30), we obtain
∫

P

ρrdX=

∫

P

ρmJdX. (1.31)

The arbitrariness of P allows to convert the integral relation (1.31) into the pointwise equality

ρr(X, t) = ρm(X, t) J(X, t), (1.32)

which represents the Piola transformation of a scalar field. The density ρ obeys the mass conser-
vation law which states that the mass of each subpart Pt ⊂ Bt is constant during the motion.
This is expressed as

d
dt

∫

Pt

ρdx= 0. (1.33)

The independence of the integral (1.33) on time can be obtained writing the integral in material
coordinates. Exploiting again the arbitrariness of P , we obtain

d
dt
(ρm J) = 0. (1.34)

From Eq. (1.32) and Eq. (1.34) we obtain that density in material coordinates cannot be time
depend. Time derivative (1.34) can be computed exploiting Eq. (1.23) as

(ρ′)mJ + (gradρ)m_x J +ρm J̇ = 0. (1.35)

Balance of linear and angular momentum

Momentum balance principle are essential postulates in continuum mechanics. Balance of linear
and angular momentum are assumed to hold each subpart Pt of the body. We define the total
linear momentum L as

L(t) =

∫

Pt

ρvdx. (1.36)

We define the total angular momentum J as

J(t) =

∫

Pt

x×ρvdx. (1.37)

Sometimes in the literature L and J are also referred-to as translational momentum and rotational
momentum, respectively. Let b= b(x, t) be a spatial vector field called the body force. It represent
the contribution of external volumetric forces. The conservation of linear momentum reads

L̇(t) =
d
dt

∫

Pt

ρvdx=

∫

∂Pt

t(x, t,n)da+

∫

Pt

bdx, (1.38)

i.e. the rate of change of the linear momentum of Pt equals the force acting on it. The exis-
tence of the Cauchy traction vector t = t(x, t,n) is postulated [Marsden and Hughes, 1994a]. It
represents the force per unit current surface area of ∂Pt . Here n is the outward normal to an
infinitesimal surface element of ∂Pt . As proved by Cauchy, the dependence of t on n is linear,
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i.e. we can write t(x, t,n) = σ(x, t)n. Here σ is a second-order tensor called Cauchy stress ten-
sor. The existence and uniqueness of this tensor is given by the Cauchy’s fundamental theorem,
also called Cauchy stress theorem We apply the divergence theorem to the right hand side of
Eq. (1.38) to obtain

∫

∂Pt

σnda=

∫

Pt

div σdx. (1.39)

Exploiting the time-independence of ρr , the time derivative in(1.38) can be written as

d
dt

∫

Pt

ρvdx=

∫

Pt

ρadx. (1.40)

Eq. (1.38) can be reformulated using the divergence theorem (1.39) and the formulae (1.40).
Hence, we deduce the Cauchy’ first equation of motion in local form, i.e.

ρa= div σ + b, (1.41)

for each x and for all times t. Assuming ρa� div σ + b, Eq. (1.41) becomes

div σ + b= 0, (1.42)

which is referred to as Cauchy’s equation of equilibrium. The conservation of angular momentum
reduces to σ = σT . This result is often referred to as Cauchy’s second equation of motion.

Balance of momentum in material coordinates

The first Piola-Kirchhoff (or nominal) stress tensor is defined as

P(X, t) = J(X, t)σ(χ(X , t), t)F−T (X, t)

The tensor P relates an area in the reference configuration to the corresponding force in the
current configuration and so it is typically interpreted as the current force for unit of deformed
area. In material coordinates, we define the passive symmetric second Piola- Kirchhoff stress tensor
as

S(X, t) = F−1(X, t)P(X, t). (1.43)

Let b = b(x, t) denote a spatial vector field called the body force. It represents an external bulk
force per unit volume. We introduce B = B(X, t), the reference body force expressed in local
form as B(X, t) = J(X, t)b(x, t). Conservation of linear momentum for an elastic body reads

−Div P(X, t) + B(X, t) = ρr
∂ 2χ(X, t)
∂ t2

(X, t), (1.44)

where ρr is the mass density in the reference configuration. In [Tallarida et al., 1970] it is
shown that the inertial terms represents negligible contributions in the linear momentum. For
this reason a quasi-static approximation is considered. This approach leads to

−Div P(X, t) + B(X, t) = 0. (1.45)

We define the left Cauchy-Green deformation tensor and the Green-Lagrange strain tensor as

C := F T F E :=
(C − I)

2

, where I denotes the second-order unit tensor.
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1.1.5 Incompressible materials

For incompressible material we assume the material density to be constant. This means that
Eq. (1.34) in material coordinates reduces to the constraint equation J̇ = 0. Consistently with
the literature we impose

J(X, t) = 1. (1.46)

For incompressible materials, the Cauchy stress tensor is usually written as

σp = σdev + pI, (1.47)

where σdev is a deviatoric tensor and p is the pressure, which, as discussed in [Holzapfel, 2000],
represents the workless reaction to the kinematic constraint on the deformation field. Eq. (1.47)
represents the elastic response of the material to external loads. Since no active contraction is
involved, this response is said to be passive. This is denoted in Eq. (1.47) by the subscript p. The
first Piola-Kirchhoff tensor can hence be written as

P= JσpF−T = Pdev + J pF−T , (1.48)

where Pdev is the Piola transformation of σdev. We define Pvol := J pF−T . For hyperelastic mate-
rials, we postulate the existence of an Helmholtz free-energy function

Ψ :Br × Lin+→ R, Ψ = Ψ(F), (1.49)

such that

P=
∂Ψ

∂ F
. (1.50)

The fact that Ψ is a function of C, is referred to as objectivity property of Ψ. In particular we con-
sider homogeneous materials, i.e. materials in which the distributions of the internal constituents
are assumed to be uniform on the continuum scale. For this particular class of ideal materials
Ψ does not depend on the material point. We consider the following multiplicative split of the
deformation gradient

F = Fvol · Fdev, where Fvol = J1/3 I , and Fdev = J1/3 F . (1.51)

We define

Cdev := F T
dev Fdev Edev :=

(Cdev − I)
2

. (1.52)

Any function of Fdev alone is independent of the volumetric deformation since det (Fdev) = 1.
For incompressible hyperelastic materials, the energy is assumed not to depend on the on the
third invariant J and hence on volumetric changes. For this reason, the energy is usually defined
as Ψ̄ = Ψ̄(F) := Ψ(Fdev). The energy Ψ̄ does not depend on the volumetric changes. We observe
that

∂ Ψ̄

∂ F
=
∂ Ψ̄

∂ F̄

∂ F̄
∂ F
= J−1/3

�

∂ Ψ̄

∂ Fdev
−

1
3

�

∂ Ψ̄

∂ Fdev
: F
�

F−T
�

= J−1/3
�

P−
1
3
(P : F)F−T

�

= Pdev. (1.53)

Considering Eq. (1.53) and noticing that

tr(P F T ) =
1
3

tr (I)P : F , (1.54)
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it follows that

tr(σdev) = 0. (1.55)

For incompressible hyperelastic materials, it is postulated the strain-energy function

Ψp = Ψ̄ + p(J − 1). (1.56)

The scalar p is an indeterminate Lagrange multiplier and, if Ψ̄ does not depend on p, it can be
identified as a pressure. This scalar may only be determined from equilibrium equations and
boundary conditions.

1.1.6 Nearly-incompressible materials

For nearly-incompressible hyperelastic materials, it is postulated the strain-energy function

Ψn = Ψ̄ +Ψvol(J). (1.57)

The term Ψvol is the volumetric energy. Several form for Ψvol can be found in literature. Usually
Ψvol is a convex function of the variable J and bounded from below, increasing when J 6= 1 and
with null derivative for J = 1. In the upcoming chapters we consider

Ψvol(J) =
k
2
(J − 1)2. (1.58)

The scalar k, referred to as bulk modulus, is determined. The requirement of finite energy for
k→∞ implies J → 1. In order to approach an incompressible behavior of the material the bulk
modulus is therefore required to be very large. In the literature, nearly-incompressible materials
are also referred to as quasi-incompressible.

1.1.7 Anisotropy and fibers

LeGrice et al. [LeGrice et al., 1995] have shown that the myocardial fibers are organized in lam-
inar sheets and oriented. Proceeding through the wall thickness from the epicardium to the
endocardium of the left (resp. right) ventricle, the muscle fiber orientation changes following
a cubic function, with an angle varying from about π3 to −π3 (resp. from about π4 to −π4 ) with
respect to the transmural direction. For the description of the microstructure of the cardiac tis-
sue, a coordinate system is usually adopted. Bayer et al. [Bayer et al., 2018] proposed a universal
ventricular coordinate system for describing position within the heart and transferring data. Lo-
cally, at every point it is possible to define an orthogonal set of material axes. Distinct material
responses are associated to the planes identified by this mutually orthogonal directions. In this
thesis the model for the distribution of fiber directions is deduced from the approach presented
in [M. Potse et al., 2006]. A slight modification accounting for the distinction among LV and RV
is proposed. The local fiber orientation is denoted by the orthonormal coordinate system

~en, ~e f , ~es, (1.59)

that define the sheet normal, fiber, and sheet directions, respectively. For every point X in the bi-
ventricular geometry Br are computed the distances depi, d L

endo, and dR
endo from the epicardium,
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BRV BLVBRS BLS

Figure 1.2. Sections of ventricular BRV,BLV and septal BRS,BLS regions in the biventricular
meshed geometry.

from the left ventricle and from the right endocardium respectively. We consider the ventricular
BRV,BLV and septalBRS,BLS regions depicted in Fig. 1.2. These subdomains are defined as

BLV = {X ∈Br s.t. dR
endo(X)> d L

endo(X) and dR
endo(X)> depi(X) } ,

BRV = {X ∈Br s.t. d L
endo(X)≥ dR

endo(X) and d L
endo(X)> depi(X) } ,

BLS = {X ∈Br s.t. dR
endo(X)> d L

endo(X) and depi(X)≥ dR
endo(X) } ,

BRS = {X ∈Br s.t. d L
endo(X)> dR

endo(X) and depi(X)≥ d L
endo(X) } .

(1.60)

We define the transmural coordinate as

ρ(X) =























































depi

depi + d L
endo

inBLV,

−
depi

depi + dR
endo

inBRV,

dR
endo(X) + d L

endo(X)

2
�

2−1
�

dR
endo(X) + d L

endo(X)
�

+ d L
endo(X)

� inBLS,

−
dR

endo(X) + d L
endo(X)

2
�

2−1
�

dR
endo(X) + d L

endo(X)
�

+ dR
endo(X)

� inBRS.

(1.61)

It is a normalized coordinate null for points on the epicardium, equal to one for points on the en-
docardium of the left ventricle, to minus one for points on the endocardium of the right ventricle
and varies linearly in between. If a single ventricle is considered, for every point in the domain
we define dR

endo(X) = +∞. The proposed method ensures the alignment of the fibers with the
cardiac surfaces together with angles that vary smoothly. As an alternative, the transmural co-
ordinate can be computed as the solution of the Laplace’s equation. In this case, as boundary
conditions, the abovementioned values of ρ at the endocardium and epicardium are assigned as
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boundary conditions. A similar approach to this latter alternative is discussed in [Bayer et al.,
2018], in which the Laplace’s equation is solved separately for the LV and for the RV and the
additional variable is used to distinguish if a point belongs to the LV or to the RV. In this thesis
the construction of the local fiber basis is currently performed as follows (where ew is the unit
vector of the w-axis). The sheet normal direction is chosen to be the gradient of the transmural
coordinate ρ:

~en = sgn(ρ(X))
∇ρ
|∇ρ|

.

In the definition of ~en the factor sgn(ρ(X)) is considered to obtain ~en pointing from the endo-
cardium to the epicardium. We construct ~ew lying in the plane spanned by ~en and ~ez:

~ew = wz~ez +wn~en, wz = −
1

p

1− (~ez · ~en)
, wn = −wz(~ez · ~en). (1.62)

We construct ~ev lying in the plane spanned by ~en and ~ew:

~ev =
ew × en

|ew × en|
(1.63)

The fiber direction ~e f lies in the plane spanned by ~ew and ~ev and Ý(~e f ,~ev) = α as

~e f = sinα~ew + cosα~ev (1.64)

We consider the helix angle α = R (2e− 1)3. Here R is the inclination angle at the endocardium
and it is defined as described in [M. Potse et al., 2006]

R(X) =

¨

π
4 if e(X)< 0,
π
3 if e(X)≥ 0.

(1.65)

The sheet direction ~es is defined as
~es = ~e f × ~en. (1.66)

1.1.8 Constitutive models

Constitutive theory describes the physical behavior of materials by means of appropriately fitted
mathematical models. A priori cardiac tissue constitutive models assume the deformation of the
muscle to be volume preserving. In this section we report two models that we will use in the
upcoming proposed numerical tests.

Guccione-Costa constitutive model

Guccione-Costa [Guccione et al., 1995] constitutive law is characterized by the exponential trans-
versely isotropic, strain energy function

Ψ(Fdev) =
a1

2

�

eQ − 1
�

, (1.67)

where
Q = a2E2

dev, f f + a3(E
2
dev,ss + E2

dev,nn + 2E2
dev,sn) + 2a4(E

2
dev, f s + E2

dev, f n). (1.68)

The strain components Edev,i j (expressed as functions of Fdev) are referred to the system of local
coordinates

�

~en, ~e f , ~es

�

.
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Holzapfel-Odgen constitutive model

The strain-energy function Ψ̄ of an hyperelastic material can be expressed in invariant based
formulation. Given two orthogonal versors a and b, we define the following scalar functions of
the right Cauchy-Green strain tensor Cdev:

I1(Cdev) = trCdev,

I4,a(Cdev) = a ·Cdeva,

I8,ab(Cdev) = a ·Cdevb.

The first invariant I1 is purely isotropic, while I4,a measures the stretching in direction a. The
relative shear between the directions a and b is accounted for through the anisotropic invariant
I8,ab. The incompressible Holzapfel-Ogden [Holzapfel and Ogden, 2009] law is characterized
by the following strain energy function

Ψ(C̄) =
a

2b
eb(I1−3) +

∑

i=f,s

ai

2bi
eb(max{I4,i−1,0 }2−1) +

afs

2bfs
eb(I 2

8,fs)
2−1. (1.69)

The parameters a, b, af, bf, as, bs, afs, bfs are positive material constants with identification is
based on shear tests on pig myocardium [Dokos et al., 2002].

1.2 Mathematical modeling of electrophysiology

In this section we introduce the governing equations used to simulate the electrical activation of
the human heart. This introduction is largely based on [Keener and Sneyd, 2008b,a]. During the
cardiac cycle, an electrical stimulus spreads actively throughout the cardiac tissue causing the
mechanical contraction of the muscle. A coordinate active propagation of the electrical signal is
essential for a physiological heartbeat. The electrical activation of the heart involves processes
occurring at the microscopic and macroscopic levels. The biochemical processes responsible for
cells activation occur at the microscale. Ionic models describe the reaction of the cellular mem-
brane to an external stimulus. The electrical macroscopic behavior of the cardiac tissue is usually
described by means of the bidomain equation [Tung, 1978]. This homogenized partial differen-
tial equation is generally accepted as the governing equation for the electrical propagation in
cardiac tissue [Keener and Sneyd, 2008b]. Monodomain equation is derived assuming linearly
dependent intra- and extra-cellular conductivity tensors [Colli Franzone et al., 2015]. In sev-
eral circumstances, for large-scale models monodomain simulations can approximate bidomain
simulations well [M. Potse et al., 2006; Bordas et al., 2009].

1.2.1 Modeling electrical properties of cardiac cells

The electrical activity of cardiac cells is usually mathematically formalized by dynamic cell mem-
brane equations, also known as ionic models. Ionic concentration balance between the intra-
and the extra- cellular spaces of cardiac cells is governed by ionic channels, such as Na+-channel,
K+-channel, and ionic pumps. The imbalance of ionic concentrations between intra- and extra-
cellular spaces causes a difference between the intra-cellular potential ϕi and the extra-cellular
potential ϕe. Due to its role of ions separator, the cell membrane can be compared to a capacitor.
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We define V = ϕi −ϕe, the potential difference between the internal and the external of the cell
(usually measured in mV). It holds

CmV =∆Q, (1.70)

where Cm represents the membrane capacitance and Q the charge difference between the intra-
and the extra- cellular domain. Removing/adding charges to any side of the membrane a purely
capacitive current

Ic = Cm
dV
dt

(1.71)

arises. Because of the passage of ions through the membrane a current Iion arises. In a isolated
cell the membrane current balances the capacitive one. Highlighting the balance between the
two currents we obtain

Cm
dV
dt
+ Iion(V ) = 0. (1.72)

In Eq. (1.72) we underline the dependence of the ionic channels on the action potential (AP)
V . If case an external stimulus Iapp is applied to the cell, this contribution as to be added in
Eq. (1.72). In this case we obtain

Cm
dV
dt
+ Iion(V ) = Iapp. (1.73)

1.2.2 Fitz-Hugh Nagumo model

The Fitz-Hugh Nagumo (FHN) model is a simplified model useful for testing numerical methods.
This phenomenological model contains a single slow gating variable ω, called the recovery vari-
able. We consider the variant proposed in [Rogers and McCulloch, 1994], in which Iion and ω
are defined as

�

Iion = η1(V − Vr)(V − Vunst)(V − Vp) +η2ω(V − Vr),
∂ w
∂ t = η3(Vn −η4ω).

(1.74)

Here Vn = (V − Vr)/(Vp − Vr), where Vr and Vp represent the model dependent resting and peak
values. The model parameters η1,η2 and Vunst define the shape of the propagation wave while
η3,η4 control the recovery potential evolution. The trivial dependence of the ionic current on the
action potential allows for a straightforward analytic computation of the linearized problem. In
case the contribution of the recovery variableω in (1.74.1) is neglected, Eq. 1.72 is also known as
bistable or Nagumo equation. Considered parameters, partially taken from [Pezzuto et al., 2016],
are reported in Tab. (5.1) of Chpt. 3.

1.2.3 Hodgkin-Huxley formalism

In 1952 Hodgkin and Huxley [Hodgkin and Huxley, 1952] proposed a model for Iion for squid gi-
ant axon. The profound impact of their work earn them a Nobel prize in Physiology and Medicine
in 1963. They introduced the concept of dimensionless vector of gating variables s: Br×T →Rng .
Following the Hodgkin-Huxley formalism the ionic current can be expressed as sum of N currents
as

Iion(V, s) =
N
∑

n=1

In(V, s,c), (1.75)
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where

In(V, s,c) = gn(V, s,c)(V − Vn), (1.76)

and gn : Br × T → R. Each gating variable si for i = 1, . . . , ng obeys to the first-order rate
equation

dsi

dt
= αi(V )(1− si)− βi(V ). (1.77)

In Eq. (1.77) the likelihood that a closed ionic channel i opens and vice versa are described by the
functions αi(V ), βi(V ). We define the vectors α,β such that (α)i = αi and (β)i = βi Eq. (1.77)
can be reformulated as

dsi

dt
=

1
θi(V )

(si,∞(V )− si(V )), (1.78)

with

si,∞(V ) =
αi(V )

αi(V ) + βi(V )
and θi(V ) =

1
αi(V ) + βi(V )

. (1.79)

Here si,∞ and θi represent the voltage dependent steady state and the channel inactivation time
constant, respectively. For fixed membrane voltage V on the time interval (0, t), this equation is
solved by

si(t) = si,∞(V )− (si,∞(V )− si(0))e
−t
θi (V ) . (1.80)

We focus our attention on ionic models based on the Hodgkin-Huxley formalism, but we re-
call that those models are sometimes not sufficient to capture some features of channels be-
havior [Armstrong and Bezanilla, 1977]. For this reason, Markov-type kinetic models, which
represent each ionic channel as a collection of states and a set of transition between them, have
been proposed, see e.g. [Balbi et al., 2017].

1.2.4 Membrane models for human ventricular cells

Several membrane equations have been proposed to reproduce the extremely complex behavior
of cardiac cells. A generic model for mammalian ventricular cells was proposed in [Beeler and
Reuter, 1977 Jun]. Luo and Rudy published membrane models based on experimental informa-
tion from guinea pigs. Those membrane models are known as phase-1 and phase-2 Luo Rudy
models [Luo and Rudy, 1991 Jun, 1994]. Priebe and Beuckelmann [Priebe and Beuckelmann,
1998] adapted phase-2 Luo Rudy model using human data. In 2002, Bernus at al. [Bernus and
et al., 2002] proposed a reduced version of Priebe and Beuckelmann model in which five gat-
ing variables and fixed ionic concentration are considered. Ten Tusscher [ten Tusscher et al.,
2004] et al. proposed a different model for human ventricular cells in 2004 (with an update
in 2006 [Ten Tusscher and Panfilov, 2006]). In 2008 Bueno-Orovio et al. [Bueno-Orovio et al.,
2008] proposed a minimal model for human ventricular APs in tissue. The works by O’Hara et
al. [O’Hara et al., 2011] and Grandi et al. [Grandi et al., 2010] represent the most recent works
in the modeling of diseased human cardiac ventricular action potential. The early developed
models considered the ionic concentrations as parameters of the problem. The need for time
dependent ionic concentrations led to second generation models [Rasmusson et al., 1990; Noble
et al., 1998; Arce et al., 2000; Endresen and Skarland, 2000]. For mc ∈ N, we define the vector
of the ionic concentrations c :Br×T →Rmc (expressed in millimole). Second generation models
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read















Cm
dV
dt + Iion(V, s,c) = Iapp,

dsi
d t = αi(V )(1− si)− βi(V )si , i = 1, . . . , ng ,

dc
d t = Z(V, s).

(1.81)

Here the functions Iion,Z,α,β , and c depends on the choice of the ionic model. Second generation
models may be numerically unstable and show degeneracy associated with non-uniqueness of
the equilibrium solutions. Moreover, some of the ionic concentrations usually present slow long-
term trends that require several milliseconds to reproduce the complete cell dynamic [Bernus
and et al., 2002]. For these reasons first generation models [Beeler and Reuter, 1977 Jun;
Luo and Rudy, 1991 Jun] are still widely used. In our numerical tests, we mainly consider
the Bernus-Wilders-Zemlin-Verschelde-Panfilov first generation model, the ten Tusscher-Noble-
Noble-Panfilov second generation model, and the Bueno Orovio-Cherry-Fenton minimal model.

1.2.5 Bernus-Wilders-Zemlin-Verschelde-Panfilov model

As first generation model we consider the Bernus-Wilders-Zemlin-Verschelde-Panfilov (BWZVP)
model [Bernus and et al., 2002]. This model of a single human ventricular cell was developed
to improve large scale computation of reentrant arrhythmias. It is a stable reformulation of
the second generation Priebe and Beuckelmann (PB) model. The PB model (and consequently
the BWZVP model) successfully reproduces basic properties of APs of normal and failing human
ventricular cells. Incorporating data on human cardiac cells, it is largely based on animal data.
The BWZVP model features five gating variables: while v and X are introduced for the first
time in [Bernus and et al., 2002], the gating variables m, f , to are inherited from the original PB
model. The variables m and v regulate the fast Na+ current, the variable f the slow Ca2+ current,
to the transient outward current, and X the inward delayed rectifier K+ current. The model has
three extra variables: d∞, r∞, K∞1 . These gating variables, for which Eq. (1.77) does not apply,
are characterized by steady-states which are independent on V . The model involves nine ionic
currents. The equilibrium value for the AP for this model is Vr = −90.2 mV.
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Figure 1.3. Simulated single cell action potential for the BWZVP model (a), associated
solutions (b) and steady states of the gating variables (c).
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1.2.6 ten Tusscher-Noble-Noble-Panfilov model

The ten Tusscher-Noble-Noble-Panfilov (TNNP) model [ten Tusscher et al., 2004] is based on
experimental data concerning major ionic currents. In detail, the fast sodium, L-type calcium,
transient outward, rapid and slow delayed rectifier, and inward rectifier currents are considered.
This second generation model includes a basic calcium dynamics, allowing for the realistic mod-
eling of calcium transients, calcium current inactivation, and the contraction staircase. Consid-
ering the differences in transient outward and slow delayed rectifier currents, human epicardial,
endocardial, and M cell action potentials are reproduced. Approximating accurately the action
potential duration restitution curve, the model is able to simulate the characteristic for reentrant
arrhythmias. The model was extended in 2006 [Ten Tusscher and Panfilov, 2006]. The TNNP
2006 model features fourteen gating variables and twelve ionic currents. In the updated model
a more extensive description of intracellular calcium handling is included. Moreover a subspace
calcium variable that controls the dynamics of the L-type calcium current and the Ryanodine re-
ceptor current is included. Finally, some minor changes to parameter values and to slow delayed
rectifier time dynamics are considered.

1.2.7 Bueno Orovio-Cherry-Fenton model

The Bueno Orovio-Cherry-Fenton (BOCF) model is a minimal model that reproduces in detail
experimentally measured characteristics of human ventricular APs in in isolated cells and in tis-
sue [Bueno-Orovio et al., 2008]. This minimal model differs from the previously described ionic
models in that instead of reproducing a wide range of ion channel currents, it represents fast in-
ward, slow inward, and outward currents as sum of the related transmembrane currents. Based
on the three-variables model proposed by Fenton and Karma [Fenton and Karma, 1998], the
model involves an additional variable [Fenton, 1999]. This variable reproduces the experimen-
tally measured characteristics of human ventricular APs, which important role in dynamics, espe-
cially during alternans, is underlined in the works by Fenton, Bueno-Orovio and colleagues [Fen-
ton et al., 2002] and by ten Tusscher and colleagues [Ten Tusscher and Panfilov, 2006].

1.2.8 Modeling electrical properties of cardiac tissue

In physiological conditions, the AP originates at the sinoatrial node. From here it spread via cell-
to-cell conduction as described in [Klabunde, 2011]. The AP enters the ventricles through the
atrioventricular node which is connected to the bundle of His and to the Purkinje system. The con-
duction velocity in the Purkinje system is about eight times higher than the conduction velocity in
the surrounding ventricular myocyte tissue. In order to accurately model the electrophysiology
of the heart it is therefore important to study the propagation of the AP through excitable tissue.

1.2.9 The bidomain equation

The bidomain equation [Tung, 1978] describes the cardiac tissue as consisting of an intra-cellular
and an extra-cellular domain characterized by the conductivity tensors Gi and Ge, respectively.
It is generally accepted as the governing equation for the electrical propagation in cardiac tis-
sue [Keener and Sneyd, 2008a] and it is based on the description of two overlapping interpen-
etrating domains representing the intra-cellular and extra-cellular space. In absence of external
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current and assuming Ohmic materials, conservation of the total current reads

∇ · (Gi∇ϕi) +∇ · (Ge∇ϕe) = 0. (1.82)

The membrane current is the sum of the capacitive and ionic current. Up to the surface-to-volume
ratio β multiplicative factor, it equals the current of intra-cellular space, i.e.

β

�

Cm
dV
dt
+ Iion(V, s,c)

�

=∇ · (Gi∇ϕi). (1.83)

Substituting V = ϕi −ϕe in Eq. (1.82) the following relation between AP and extracellular po-
tential arises

∇ · (Gi∇V ) +∇ · ((Gi +Ge)∇ϕe) = 0. (1.84)

Considering ϕi = V + ϕe in Eq. (1.83) and the application of an external stimulus Iapp in the
intra-cellular space we obtain

β

�

Cm
dV
dt
+ Iion(V, s,c)

�

=∇ · (Gi∇(V +ϕe)) + Iapp. (1.85)

The coupled system constituted by Eq. (1.84) and Eq.(1.85) is known as the parabolic-elliptic
formulation of the bidomain equation. Coupling this formulation with a set of ng + mc ODEs
describing the gating variables behavior and the ionic concentration dynamics and imposing
boundary conditions we obtain



































































∇ · (Gi∇V ) +∇ · ((Gi +Ge)∇ϕe) = 0 inBr ×T ,

β

�

Cm
dV
dt
+ Iion(V, s,c)

�

= ∇ · (Gi∇(V +ϕe)) + Iapp inBr ×T ,

ds
d t

= S(V,c) inBr ×T ,

dc
d t

= Z(V, s) inBr ×T ,

n(Gi∇(V +ϕe)) = 0 in ∂Br ×T ,

n · (Gi∇V + (Gi +Ge)∇ϕe) = 0 in ∂Br ×T ,

V (Br, t0) = V0, s(Br, t0) = s0, c(Br, t0) = c0.
(1.86)

In the system above, the unknowns are the intra- and extra-cellular potential ϕi,ϕe :Br ×T →R
(expressed in mV), the vector of the gating variables s :Br ×T →Rng (dimensionless), and the
vector of the ionic concentrations c : Br × T →Rmc (expressed in mmol). The function Iion is
the ionic current and Iapp is the applied current stimulus (both expressed in µAcm−1). The func-
tions Iion,S,Z depend on the choice of the ionic model. The parameters are the transmembrane
capacitance Cm (in µFcm−2), the conductivity tensors G i, Ge (both in µS cm−1), and the surface
to volume ratio β (in cm−1). Representative values for these constants can be found in [Clayton,
2011]. Suitable initial conditions depend on the ionic model and of the performed simulation.
Using mathematical homogenization techniques, it is possible to obtain a more rigorous deriva-
tion of the bidomain equation [Keener and Sneyd, 2008a].



20 1.2 Mathematical modeling of electrophysiology

1.2.10 Conductivity tensors

The conductivity tensors G i, Ge in fiber-aligned coordinates are usually expressed as

G i =
∑

j= f , s,n

Gi,j(~e j ⊗ ~e j), (1.87)

Ge =
∑

j= f , s,n

Ge,j(~e j ⊗ ~e j), (1.88)

in units of mScm−1. Here, ~e j with j ∈ { f , s, n} are the previously described unit vectors in the
coordinate system align with the fibers. The scalars Gi,j, Ge,j represent scalar diffusion coefficients.

1.2.11 Activation time, wavefront, action potential duration

The duration of the electrical excitation is an important indicator of a physiological cardiac func-
tionality. Following the book by Colli Franzone, Pavarino and Scacchi [Colli Franzone et al.,
2014], we define the activation time (AT) as the first-hitting-time for the AP to assume the value
(Vr+Vp)/2. Here Vr and Vp represent the model dependent resting and peak values, respectively.
Formally we define ψ:Br → R+ ∪ 0 as

ψ(x) = inf{t ∈ (0, Tfin] s.t. V (x, t) = (Vr + Vp)/2}.

The AT represents the depolarization time at the point x. It can be correlated with the local peak
conductance of the sodium channel. We define the excitation wavefront as the level surface of
the AP. Formally S : R+ ∪ 0→Br ,

S (t) = {x ∈Br s.t. ψ(x) = t}.

We define the repolarization time at 90% as the first time at which, after the activation phase,
the action potential V reaches the value Vp − 0.9(Vp − Vr). Formally we define % :Br → R+ ∪ 0
as

%(x) = inf{t ∈ (ψ(x), Tfin] s.t. V (x, t) = Vp − 0.9(Vp − Vr)}.

Finally we define the action potential duration APD90 :Br → R+ ∪ 0 as

APD90(x) = %(x)−ψ(x). (1.89)

The physiological simulation of the excitation wavefront requires the numerical solution of the
bidomain equation with space and time steps of the order of 0.1 mm and 0.01 ms, respectively.
Reduced macroscopic approximations of the bidomain equation, less demanding in terms of re-
quired computational resources, can be considered for large scale simulations involving the whole
ventricles. The monodomain equation and the Eikonal-diffusion model presented in the next sec-
tion are widespread approximations of the bidomain equation.
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1.2.12 The reduced monodomain equation

The monodomain equation system an important simplification of the bidomain system which can
be written as a parabolic PDE coupled with a set of ng +mc ODEs:











































β(Cm
dV
dt
+ Iion(V, s,c)) = ∇ · Gm∇V + Iapp, inBr ×T ,

ds
d t

= S(V,c) inBr ×T ,

dc
d t

= Z(V, s) inBr ×T ,

n · Gm∇V = 0 in ∂Br ×T ,

V (Br, t0) = V0, s(Br, t0) = s0, c(Br, t0) = c0.

(1.90)

When Ge = λG i for λ ∈ R, the Eq. (1.84) simplifies to

∇ · (Gi(1+λ)∇ϕe) = −∇ · (Gi∇V ). (1.91)

Substituting Eq. (1.84) into Eq. (1.86.1) we get the so called monodomain equation Eq. (1.90.1).
Practically this condition is never verified, but it offers a convenient way to significantly reduce
the computational complexity. In fact, in this case, Eq. (1.86.1) and Eq. (1.86.2) are decoupled.
We consider

Gm = G i(G i + Ge)
−1 Ge (1.92)

In the system above, the unknowns are the action potential V :Br ×T →R (expressed in mV),
the vector of the gating variables s : Br × T →Rng (dimensionless), and the vector of the ionic
concentrations c :Br ×T →Rmc (expressed in mmol). The parameters are the transmembrane
capacitance Cm (in µFcm−2), the monodomain conductivity tensor Gm (in µS cm−1), and the
surface to volume ratio β (in cm−1). The PDE (1.90.1) describes the propagation of AP in the
myocardial tissue. The first set of ODEs (1.90.2) represents the opening and closing of the ion
channels which are responsible for cardiac excitability. The second set of ODEs (1.90.3) de-
scribes the cellular dynamics of ionic concentrations. Eq. (1.90.4) represents the homogeneous
Neumann boundary conditions imposed on ΓN . The assumption of linearly dependent intra- and
extra-cellular conductivities tensors is usually inaccurate. Moreover, it is not valid for torso-
coupled human heart models because outside the heart G i = 0. However the very small differ-
ences between the bidomain and the monodomain models for large-scale simulations make the
use of monodomain equation warranted [M. Potse et al., 2006].

1.2.13 The reduced Eikonal-diffusion model

Another possible way to reduce the computational complexity of the bidomain model is to con-
sider simplified kinematic models, called Eikonal equations [Keener, 1991; Colli Franzone and
Guerri, 1993; Keener and Panfilov, 1995; Colli Franzone et al., 1998]. In physiological condi-
tions, Eikonal models can be used to computed the AT at which the excitation wavefront reaches
a given point of the myocardium. Formally, the Eikonal equation can be derived by a perturbation
argument applied to the bidomain equations [Colli Franzone and Guerri, 1993]. The bidomain
equation and its reduced Eikonal approximation have been compared in [Pullan et al., 2002; Pez-
zuto et al., 2017]. Focusing only on the propagation of the electrical wavefront, Eikonal models
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cannot accurately describe the AP and ionic dynamics. We compute the activation sequence of
the heart considering the solution of the following Eikonal-diffusion system: find ψ such that

�

c0∇ · (Gm∇ψ) +
θp
χ

p

∇ψ ·Gm∇ψ = 1, in Br \Ωin,
ψ = η in Ωin,

(1.93)

for c0, θ ∈ R. The scaling parameter θ is the velocity that the front would have if χ and the
conductivity tensor were set to one and c0 to zero. Here Ωin represents the part of the domain
subjected to prescribed early activation. Accounting for more realistic effects of diffusion of the
fronts itself or based on different metrics [Colli Franzone et al., 2014], more advanced Eikonal
models are also described in literature.

1.2.14 ECGs signals

The spatio-temporal morphology of the electrocardiogram (ECG) is the result of the motion of the
cardiac extracellular APs with respect to the position of the electrodes. In the computation of the
ECG, often a fixed geometry of the heart in the torso is assumed. Based on this approximation,
patient-tailored ECGs can be simulated in a few minutes on HPC architectures with anatomically
detailed cardiac electrophysiology models [M. Potse et al., 2006; Villongco et al., 2014]. We
follow the lead-field approach presented in [Plonsey, 1964; Pezzuto et al., 2017], on which
this section is mainly based. The body surface map can be simulated considering the bidomain
equation

(1.94)

Each ECG lead potential Z at X′ is computed as

Z(X′) =

∫

Br

G i∇V (X) · ∇ϕ(X;X′)dX (1.95)

Here ϕ is the lead field [Mcfee and Johnston, 1953] on the specific ECG lead. The lead field is
the potential field created by a positive unit current applied at the positive electrode location and
by a negative unit current applied at the negative electrode location [Geselowitz, 1989] for the
torso problem. The lead field ϕ is the analytical solution to

∇ · (G∇ϕ) =











−1 at the positive electrode,

1 at the negative electrode,

0 elsewhere,

(1.96)

where G = G i + Ge is the bulk conductivity. Pseudo-ECGs assumes infinite torso with constant
bulk conductivity G = σ0 I . In such case, for r = ‖X − X ′‖, the lead field reads

ϕ(X ; X ′) =
1

4πσ0r
. (1.97)

1.3 The multiscale electromechanical coupled problem

The mechanical activation of the cardiac muscle is triggered by an electric signal. The electri-
cal potential propagates along the conduction fibers, and dictates the release of calcium from
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the sarcoplasmic reticulum. This induces the contraction of the cardiac muscle by means of the
shortening of cardiomyocytes. The contraction is responsible for a change in pressure inside the
cardiac chambers and of the consequent lilting opening and closure of heart valves. Through
the arteries the RV pumps deoxygenated blood into the pulmonary circulation and the LV pumps
oxygenated blood in the systemic circulation. The description of the synergetic interaction of me-
chanical and electrophysiological processes is essential for physiological simulations of cardiac
functions. In the following, we analyze in detail the mathematical models that we use to capture
the basic fields coupling processes. In Sec. (1.3.1) we discuss the electro-mechanical feedbacks
(EMFs). In detail, in Sec. (1.3.1) we discuss possible strategies to incorporate the active con-
tribution in the mechanical model. In Sec. (1.3.2) we describe geometrical mechano-electrical
feedbacks (MEFs), direct consequences of the cardiac muscle contraction and relaxation. Making
an example, the monodomain system should be evaluated in the coordinate system determined
from the deformation tensor. In Sec. (1.3.2) and (1.3.2) we discuss how we take into the de-
formation of the domain in the monodomain system (1.90) and in the computation of the ECGs
signals (1.95). The mechanical deformation of the heart also influences its electrical excitation
via stretch-activated channels (SAC). These channels can change the shape of AP in response to
stretch [Kohl et al., 1999]. Another interesting effect is described by the Frank-Starling law. The
law states that the greater is the blood volume entering the ventricles, the more powerful is the
contraction exerted by the muscle. However, since in this thesis we focused on the geometrical
mechano-electrical feedbacks, these latter effects are not considered in the model.
Blood flow dynamics of the human heart is usually modelled by the Navier-Stokes model [Mittal
et al., 2016; Tagliabue et al., 2017a]. To examine the effect of heart dyssynchrony and failure on
LV hemodynamics, Navier-Stokes equations for the hemodynamics are coupled with a detailed
model of electromechanical cardiac functionality [Choi et al., 2015]. The need of the description
of the fluid behavior during each phase of the heartbeat results in the requirement of mixed time
varying boundary conditions for the treatment of the aortic and of the mitral valves. Usually, the
involved parameters are tuned to obtain a realistic inflow velocity profile and a regularization
term for the description of mitral valve is introduced to prevent numerical instabilities [Tagliabue
et al., 2017a]. As an additional feature, cardiac flows present relatively high Reynolds number.
In case the solution of the complete valve plane is examined, the interaction of the fluid flow with
flexible structures can be solved considering immersed boundary methods [Zheng et al., 2012;
Seo and Mittal, 2013]. The contact among the different valve leaflets results in the additional re-
quirement of the fulfillment of nonpenetration constraints. For all the above-mentioned reasons,
the coupling between FE electromechanical and circulatory model represents a challenge from a
computational modeling and simulation point of view. In contrast to this approach, FE models
of ventricular mechanics can be coupled with lumped models of blood dynamics[Eriksson et al.,
2013; Watanabe et al., 2004; Kerckhoffs et al., 2007]. In Sec. (1.3.5), equations for coupling the
electromechanical model with the lumped model of circulation proposed in [Kerckhoffs et al.,
2007] are presented.

1.3.1 Electro-mechanical feedbacks

In this section we describe the active strain and active stress electro-mechanical feedbacks (EMF).
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Figure 1.4. Coupling of electrophysiology, solid mechanics and lumped circulatory model.
The FE mechanical model is bidirectionally coupled to FE electrophysiological model. The
transfer of the displacement from the mechanical model to the electrophysiology model is re-
quired. The AP is transferred from the electrophysiological model to the mechanical model.
In addition, accounting for a simplified description of the blood flow, the FE mechanical
model is coupled with a lumped circulatory model. Target endocardial volumes are trans-
ferred from the circulatory model to the mechanical model. The mechanical model is then
responsible for the FE description of the associated endocardial pressure which are computed
and then transferred back to circulatory model.

Active strain

To include the description of the active contraction of the tissue in the balance equations, two dif-
ferent approaches are available in the literature. The first alternative to describe the excitation-
contraction model is the active strain formulation. In this case the deformations arising from
chemical reactions are taken into account inside a multiplicative decomposition of the deforma-
tion gradient tensor, i.e. F = Fe Fa. A key assumption in this active strain approach is that the
distortion induced by Fa does not store energy. The passive deformation Fe accommodates the
material in order to preserve the compatibility of the deformation. This approach has been intro-
duced by Taber and Perucchio in 2000 [Taber and Perucchio, 2000] and afterward investigated
by others [Nardinocchi and Teresi, 2007; Cherubini et al., 2008; Rossi et al., 2012]. The sec-
ond alternative is represented by the most popular active stress approach. In this case an active
contribution is added to the stress of the material. To reproduce the contraction and torsion of
the muscle, this additional contribution typically dependent on fibre orientation. As in [Smith
et al., 2004; Panfilov et al., 2005; Göktepe and Kuhl, 2010], in our work we consider this latter
approach which description follows.

Active stress component

The Cauchy stress tensor can be decomposed by [Lin and Yin, 1998; Wakatsuki et al., 2000]

σ = σp +σa, (1.98)

where, for incompressible materials, σp = σdev+ p I is the passive stress representing the elastic
response of the material to external loads, and σa is the active stress generated at the microscale
by the contraction of the myocytes. The active component depends on a variable which rep-
resents the internal state of the cell. This state depends on multiple factors such as, i.e., the
intracellular concentration of calcium ions, the history of sarcomere length changes, and the
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crossbridge dynamics inside the sarcomeres [Nash and Panfilov, 2004]. Geometrical reasons
suggest a dependence of the stress σa on F. The second Piola-Kirchhoff tensor associated to σa

reads
Sa = JF−1σaF

−T . (1.99)

The associated active contribution in the first Piola-Kirchhoff tensor is expressed as Pa = FSa.
We consider ~e f̄ to be the isochoric representation of ~e f in Eulerian coordinates. It holds that
~e f̄ = F̄~e f . Following the simplified model proposed by Nash and Panfilov in 2004 [Nash and
Panfilov, 2004], we consider an active stress exerted only along the fibers direction and defined
as

σa = J−1Ta (f⊗ f) (1.100)

where f=
~e f̄

|~e f̄ |
. The first Piola-Kirchhoff associated to σa is

Pa = Ta F (f⊗ f), (1.101)

and hence the Piola-Kirchhoff associated to σ is

P= Pp + Pa (1.102)

where, for incompressible materials, Pp = Pdev + Pvol. The scalar value Ta represents the active
component along a fiber direction f. In the modeling of cardiac tissue, it represents the stress
generated by the contraction of the myocytes at the microscale. It depends on the internal state
of the cell, see e.g. [Nash and Panfilov, 2004]. The definition of Ta is established by a single ODE
directly dependent on the AP deviation from the myocyte resting AP Vr:

∂ Ta

∂ t
= ε (V )

�

kTa
(V − Vr)− Ta

�

, (1.103)

where kTa
= 47.9 kPa and

ε(V ) =

¨

ε0 for V < 0.05,

ε∞ for V ≥ 0.05.
(1.104)

Here function ε controls the delay for the activation and relaxation of Ta. A smoother delay
function has been proposed in [Göktepe and Kuhl, 2010]:

ε(V ) = ε0 + (ε∞ − ε0)exp {−exp [−ξr (V − Vs)]} . (1.105)

Here Vs represents a given phase shift and ξr a transition rate. We consider Vs = −80 mV , and
ξr = 0.3 mV −1. As discussed in [Göktepe and Kuhl, 2010; Eriksson et al., 2013], the choice
of ε0 ≤ ε∞ (as proposed in the original paper) results in a non-physiological short electro-
mechanical delay [Panfilov et al., 2005]. For this reason, we consider the parameters ε0 = 1
ms−1 and ε∞ = 0.01 ms−1.

1.3.2 Geometric mechano-electrical feedbacks

In this section we describe the mechano-electrical geometrical feedbacks (MEF) considered in
this thesis. Additional MEFs [Colli Franzone et al., 2016, 2017] are not considered in this work,
except for the ones associated to the evolution in time of the cardiac configuration. For this
reason, although their importance is well known, stretch-activated channels are not considered.
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Figure 1.5. Left: Nash Panfilov (NP) and Göktepe and Kuhl (GK) active stress functions
for ε0=1 ms−1,ε∞ = 0.01 ms−1, Vs = -80 mV , and ξr = 0.3 mV −1, solid lines, and action
potential V , dashed line, as functions of the time. Right: delay associated to the NP and
GK active stress descriptions as functions of the action potential V .

Monodomain equation on moving domain

Usually electrical simulations are performed on static meshes. However, the evolution in time
of the cardiac configuration may affect the AP propagation. To account for the geometry defor-
mation, a convenient approach, routinely adopted in computational mechanics, is to map the
monodomain equation on the reference geometry Br . We take into account the motion of the
domain inside Eq. (1.90) throughout the Piola transformation (see Sec. 1.1.3). We obtain






































Jχ(Cm
∂ V
∂ t + Iion(V, s,c)) = ∇ ·

�

JF−1 GmF−T∇V
�

+ J Iapp, inBr ×T

ds
d t

= S(V,c) inBr ×T ,

dc
d t

= Z(V, s) inBr ×T ,

n · J F−1 Gm F−T∇V = 0 in ∂Br ×T ,

V (Br, t0) = V0, s(Br, t0) = s0, c(Br, t0) = c0.
(1.106)

As a matter of fact, the electric conductivity in the reference geometry is decreased (resp. in-
creased) if the tissue is locally stretched (resp. contracted). Moreover, mapping activation pat-
terns arising from different models into the same reference geometry allows for easy comparison
of them.

ECGs signals on moving domain

We account for the mechanical deformation of the geometry also in the computation of unipolar
ECG lead potentials. We consider a rapid ECG model on moving domain under the key assump-
tion of an infinite and homogeneous torso. For this reason, we do not consider the negligible
effects of the deformation of the heart over Eq. (1.97). We consider

Z(X′) =

∫

Br

J F−1 G i F
−T∇V (X) · ∇ϕ(X;X′)dX. (1.107)
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1.3.3 Electromechanics coupling strategies

In this thesis we consider two main roles played by the mechanics in modifications of the ECG
signals. The first one is due to the effects of mechanical contraction on the electrical activation
front [Smith et al., 2003b]. The second one is related to the change of distance from the elec-
trodes during the cardiac cycle. These effects are taken into account replacing Eq. (1.90) and
Eq. (1.95) by Eq. (1.106) and Eq. (1.107), respectively. We refer to the framework accounting
for all the EMFs and MEFs described in Sec. (1.3.1) and in Sec. (1.3.2) as bidirectional (BD)
or fully-coupled scenario. Accounting for both the above-mentioned mechanical roles, in our FE
framework the BD scenario represents the most complete electromechanical description of the
cardiac behavior. As a simplification of the BD scenario, we consider the monodirectional (MD) or
static-dynamic coupling scenario, in which the electrophysiology is solved on the reference config-
uration neglecting the mechanical deformation of the heart. The MD approach considers all the
EMFs described in Sec. 1.3.1 and the change of distance from the electrodes in the computation
of the ECGs signals as described in Eq. (1.107). MD setting allows to remove all mechano-electric
feedbacks (MEFs) which may affect the action potential propagation and therefore to isolate the
role of the distance from the electrodes. In contrast to the BD and the MD scenario, a purely
electrophysiological (PE) framework could be considered.

1.3.4 Summary of fully-coupled electromechanics governing equations

Summarizing the coupling equation of quasi-static formulation of the incompressible mechanical
problem and the monodomain system we obtain the following boundary problem

Find u ∈ L2(t0, tfin; H1
ΓD
(Br)3), p ∈ L2(t0, tfin; L2(Br)), V ∈ L2(t0, tfin; H1(Br)),

s ∈ L2(t0, tfin; (L2(Br))mg), c ∈ L2(t0, tfin; (L2(Br))mc) such that



















































































−Div(P) + B = 0 in Br ,

J = 1 in Br ,

u = 0 in ΓD,

P ·N = pN in ΓN ,

Jβ(CmV̇ + Iion(V, s,c)) = ∇ ·
�

JF−1 GmF−T∇V
�

+ J Iapp inBr ×T ,

ṡ = S(V,c) inBr ×T ,

ċ = Z(V, s) inBr ×T ,

n · J F−1 Gm F−T∇V = 0 in ∂Br ×T ,

V (Br, t0) = V0, s (Br, t0) = s0, c (Br, t0) = c0.

(1.108)

where V̇ = dV
d t , ṡ= ds

d t , and ċ= dc
d t . Moreover, it holds

P = Pdev + Pvol + Pa. (1.109)

If ΓN = ; we consider p ∈ L2(t0, tfin; L2
0(Br)) where L2

0(Ω) = { p ∈ L2(Ω):
∫

Ω
pdΩ= 0 } [Quar-

teroni, 2009a].
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1.3.5 Coupling electromechanical model with lumped models of circulations

State of the art of FE ventricular solid mechanics models involve mixed time varying boundary
conditions for the description of fluid dynamics [Tagliabue et al., 2017b]. To obtain more re-
alistic pressure and volume changes in the ventricles, FE mechanical models of the ventricles
can been coupled to simple afterload models, i.e. Windkessel models [Eriksson et al., 2013].
In these models, the filling of the ventricles is prescribed by a linear increase in diastolic pres-
sure. Coupling a left ventricular FE model ( in which the left atrium is treated as a time-varying
elastance) to a model of pulmonary venous return, Watanabe et al.[Watanabe et al., 2004] ob-
tained a more realistic ventricle preload. In this thesis we coupled the FE electromechanical
model outlined above with the lumped model of circulation (LMC) proposed by Kerckhoffs et
al. [Kerckhoffs et al., 2007]. A similar approach has been considered in [Gurev et al., 2015]. If
compared to afterload models, LMC results in a more realistic ventricles filling phase. Moreover
the considered LMC accounts for the active force generated by the ventricles while the mitral
and tricuspid are still open. The Kerckhoffs et al. time-varying elastance model includes direct
ventricular interaction. Moreover, the atria are also included as time-varying elastance cham-
bers. The model consider eight different structures, the left and right ventricles and atria, and
the pulmonic and the systemic arteries and veins. Each of them is treated as a modular unit,
and it is described by the time-dependent state triad (Vi(t), pi(t),Q i(t)) representing its volume,
pressure and flux at the current time t. We define the time-varying vectors V,p,Q such that
(V)i = Vi , (p)i = pi , (Q)i = Q i . Pressures of modular units are obtained from modular volumes
as

p= E (V−Vrest), (1.110)

where E is a time-dependent matrix describing the elastance of the structures and Vrest is a vector
describing of the resting volumes. The matrix C := E−1 is referred to as compliance matrix. The
flows are obtained from the difference of the pressures of subsequent modular unit as

Q= R−1(p− S8p), (1.111)

where R is the time-dependent matrix describing the module resistance and S8 is the matrix

S8 =

�

0 1
I7 0

�

.

Here I7 represents the 7×7 identity matrix. Changes in ventricular volume are purely determined
by ventricular in- and outflows as

dV
dt
= (Q− S8Q). (1.112)

When the circulatory model is coupled with the FE solid mechanics model, additional time de-
pendent scalar variables V k

inner, pk
f representing the inner ventricular volumes and the pressures

of the fluid ( i.e. the radial stress at the inner wall) are introduced in the FE solid mechanics
model. The flag k = {RV, LV } distinguishes the volumes and the pressures of the left and of the
right ventricles. In this case, the lumped model ventricles volumes and pressures are replaced by
the V k

inner, pk
f . Fig. 1.6 shows a schematic representation of the biventricular FE model with the

key anatomical features of the LMC embedded. We define the energy Ψcm : Br × Lin+→ R, as

Ψcm(u, p, pk
f ; V k

targ) = Ψp +Ψf, (1.113)
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Figure 1.6. Schematic representation of the key anatomical features of the of the FE elec-
tromechanical biventricular model coupled with a LMC.

here Ψp is the incompressible mechanics passive hyperelastic energy described in Eq. (1.56) and
Ψf is defined as

Ψf = pk
f (V

k
inner − V k

targ). (1.114)

The parameter V k
targ represents the target volume of the ventricles and it is prescribed by the LMC.

ThereforeΨf is a penalty term accounting for the difference between the FE fluid volume V k
inner and

the target volume V k
targ obtained from the LMC. The pressure pk

f is the indeterminate Lagrange
multiplier corresponding to such a constraint for the ventricle k. It represents an hydrostatic
pressure. The construction of a FE mesh is preventable for the computation of the inner volume
V k

inner. In fact, consider B k
inner to be inner cavity domain of the ventricle k. Its boundary can be

represented as disjoint union of the endocardial boundary Γ k
endo and of the “cap” boundary Γ k

cap.
The inner volume associated to the reference configuration of the domain can be computed as

V k
inner,0 =:= |Bk

inner|=
∫

Bk
inner

dX=
1
3

∫

Bk
inner

DivXdX=
1
3

∫

∂Bk
inner

X ·NdA. (1.115)

SupposeB k
cap is planar, normal to ez and such that each of its points has z = 0. Then from (1.115)

we obtain

V k
inner,0 = −

1
3

∫

Γ k
endo

X ·NdA+
1
3

∫

Γ k
cap

X · ezdA= −
1
3

∫

Γ k
endo

X ·NdA (1.116)

We recall that the sign is reverse since the outer normal to Γ k
endo is opposite to the one to ∂B0.

In the current configuration we have the following formula for the inner volume

V k
inner,t := |χ(B k

inner, t)|= −
1
3

∫

χ(Γ k
endo,t)

x · nda= −
1
3

∫

Γ k
endo

J(X+ u)F−T ·NdA, (1.117)

in which the third equality is obtained applying the Piola transformation (see Sec. 1.1.3). In the
original circulatory model, the four chambers time-varying elastance parameters are obtained
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from the diastolic and systolic unloaded volumes through trigonometric activation functions. In
the LMC proposed in [Kerckhoffs et al., 2007] the active stress is described as a given trigono-
metric function. Accounting for a progressive delayed activation of the tissue, in this thesis more
physiological ATs obtained from the Eikonal-diffusion model (see Sec. 1.2.13) are considered. In
this case the cellular start time of first active ventricular contraction prescribed by the LMC [Ker-
ckhoffs et al., 2007] is shifted by the simulated AT, i.e.

tactive,AT(x) = tactive +ψ(x) (1.118)

To summarize, the considered LMC - FE electromechanical involved the

- LMC proposed by Kerckhoffs et al. for the description of systemic and pulmonic circulations
and atrial time-varying elastance;

- FE model of incompressible mechanics with Guccione-Costa constitutive law (see Sec. 1.1.8)
and with active stress component (see Sec 1.3) for the description of the passive and active
contraction of the geometry;

- FE Eikonal model (see Sec. 1.2.13) for the simulation of the asynchronous electrical acti-
vation of the tissue.

Circulation lumped models - FE electromechanics coupling strategies

As already discuss in the previous section, the target volume parameter V k
targ is prescribed by

the LMC. Two different coupling strategies arise from the choice of pk
f in the circulation lumped

model. In loosely coupled simulations the pressures of the ventricles in the circulation lumped
model is considered to be independent on pressure of the FE model. In tightly coupled simulations
the pressures of the ventricles in the circulation lumped model are imposed to be equivalent to
the one of the FE mechanical model in, i.e. pk = pk

f . At the price of an higher number of
iterations in case implicit solution methods are taken into account, we considered the tightly
coupling strategy.

1.4 Computational aspects

1.4.1 Idealized ventricle geometry

The mean length, width and thickness of a human ventricle are around 1, 8.5, and 4 cm [Gupta
et al., 2014], respectively resulting in a corresponding volume between 80 ÷ 120 ml. The left
ventricular geometry is generally approximated by a truncated ellipsoid usually described adopt-
ing prolate spheroidal coordinates [LeGrice et al., 2001a; Colli Franzone and Pavarino, 2004].
Defining the idealized ventricle as a prolate ellipsoid, the fibers orientation can be analytically de-
fined [Colli Franzone et al., 2012; Eriksson et al., 2013]. Fibers orientation can also be described
by approximate geodesic [Peskin, 1989]. In this thesis, we consider the ellipsoidal idealization
of a rabbit ventricle proposed by Land et al. in [Land et al., 2015a]. The position of a generic
point X in the reference geometry is defined using the parametrization of a truncated ellipsoid

X=





X
Y
Z



=





rs sin u cos v
rs sin u sin v

rl cos u



 (1.119)
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The undeformed geometry is defined by the volume between

• the endocardial surface, obtained for rs = 7mm, rl = 17mm, u ∈ [−π,−arccos 5
17 ], v ∈

[−pi,π],

• the epicardial surface, obtained for rs = 10mm, rl = 20mm, u ∈ [−π,−arccos 5
20 ], v ∈

[−pi,π],

• the base plane z = 5 mm which is implicitly defined by the ranges for u.

For the correct computation of the inner volume of the ventricle (see Sec. 1.3.5), the undeformed
geometry is then shifted in the ez direction such that for the base plane z = 0. We compute the
local fiber orientation following the definition discussed in Sec. 1.1.7.

Transmural coordinate

Figure 1.7. Left: idealized LV geometry with the tetrahedral finite element mesh. Middle:
transmural coordinate ρ. Right: fibers distribution in anterior view. The colormap displays
the trasmural coordinate ρ.

1.4.2 Biventricular geometry

A biventricular geometry for a heart failure was provided by our collaboration at Cardiocentro
Ticino (Lugano, Switzerland). Left ventricular volumes were within the upper limits, mildly
reduced ejection fraction (39%) and pattern of dyssynchrony compatible with left bundle branch
block. The patient underwent a clinical standard magnetic resonance (Siemens, 3.0 T) before
the procedure. The model, presented in [Potse et al., 2012], merges all the structures of interest
in Blender [Blender Online Community]. In details, the endocardial and epicardial boundaries
of the ventricles were segmented on the 3D SSFP (Steady-State Free Precessions) sequences
in late diastole using a semi-automatic segmentation approach [Conti et al., 2011]. Atrial walls,
lungs, big vessels and the thorax were segmented from a static, 3D, ultra-fast volume-interpolated
breath-hold examination (ViBe sequence[Barnich and Van Droogenbroeck, 2011]). The locations
of the surface electrodes were also manually identified in the latter. The patient provided written
consent, and the institutional review board approved the use of the data for purpose of this
research. A visualization of the geometry and its associated mesh and computed transmural
thickness parameter are reported in Fig. 1.8. The left ventricle (LV) and right ventricle (RV) blood
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Figure 1.8. Biventricular geometry. Left: the cropped valves plane is highlighted in purple.
Right: the geometry with the tetrahedral finite element mesh.

pools were∼ 140 ml and∼ 80 ml, respectively. We cropped the top of the geometry to impose ΓD
to be the valves plane. For simplicity, we cut the base at by a planar face orthogonal to ~ez . This
was reflected in a negligible internal volume loss< 1%. The cropped area is highlighted in purple
in Fig. 1.8. As discussed in [Augustin et al., 2016; Costa et al., 1996], the use of high order cubic
Hermite Finite Elements (FE) became very popular in cardiac mechanics simulations. The main
reasons is that these elements allow a tessellation of approximate ventricular anatomy using a
very small number of elements For the tessellation of the geometry we considered tetrahedral
elements. An accurate description of the geometry microstructure requires a consider uniform
meshes with at the minimum ∼ 15 k tetrahedral elements. The mesh spacing is indicative and
varies with the considered simulation. The computed transmural coordinate ρ and the fibers
distribution for the geometry are reported in Fig. 1.9.

Transmural coordinate

Figure 1.9. Left: transmural coordinate ρ computed for the biventricular geometry. Right:
fibers distribution for the biventricular geometry in anterior view.



Chapter 2

Variational formulations and
solution methods

In this chapter we discuss numerical discretization schemes for the fully coupled electromechan-
ical model introduced in Chpt. 1. The multiscale nature of the coupled system results in the
need of different spatio-temporal scales for the solution of sub-systems describing each sub-
mechanism [Quarteroni et al., 2017]. In detail, cardiac electrophysiology involves functionalities
occurring at the meso- (action potential) and micro- (ionic channels) scales. Therefore a high
space-time resolution is necessary to capture the fast transient excitation wavefront. In partic-
ular the steep upstroke of the action potential results in a large spatial gradient in the AP field.
This demands a high spatial resolution (e.g. for the human heart model in the order of 108

nodes). Moreover, the stiffness associated with the time-evolution of the gating variables results
in the need of very small time-steps, which could go below the order of 10−2 ms in case ex-
plicit time stepping schemes are considered [M. Potse et al., 2006]. In contrast, the description
of the mechanical response of the tissue involves functionalities occurring at the macro-scale.
For this reason the elastic behavior of the cardiac muscle can be simulated using coarser spa-
tial and temporal scales if compared to the simulation of its electrical activation. The multiple
nonlinearities arising in the system (1.108) represent an addition difficulty for the solution of
the electromechanical model. The nonlinearities originate, for example, from the mechanical
constitutive equations, from the large deformations of the muscle, from Neumann boundary
conditions in the mechanical problem and from the complex dependency of the ionic currents on
the AP. Newton’s method [Kantorovich, 1948] is a standard iterative solution algorithm for the
solution of nonlinear problems. Using Newton’s like algorithms, the entire fully coupled elec-
tromechanical system can be solved in a monolithic fashion all at once. This choice results in
stable algorithms which, due to the fine (in space and in time) discretization scale required, are
of considerable complexity. A more common choice is to use segregated approaches, in which
each the sub-problem is solved sequentially. This allow for the use of appropriately fitted solution
strategy and space-time discretization grids for each sub-problem. In the literature finite volumes
methods and finite element methods (FEM) have been used to discretize the monodomain sys-
tem and the mechanical equations describing the cardiac activity. In our work the discretization
of the governing equations is based on the FEM. The FEM is a Galerkin discretization method
commonly applied for physical problems described by PDEs [Quarteroni, 2009b; Braess, 2009;
Hughes, 2009]. The chapter is organized as follows: in Sec. 2.1 we present Newton’s algorithm
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that we consider for the numerical solution of system (1.108). The derivation of this method
requires the differentiability in Banach spaces. For this reason we first give the definition of
Gâteaux differential [Lindenstrauss and Preiss, 2003]. In Sec. 2.2 we discuss the weak form
of the mechanical and of the governing equations in electrophysiology. The time discretization
of the weak forms follows in Sec. 2.3. In Sec. 2.4, we discuss different schemes for the time
advancing of the coupled electromechanical problem. In particular, we outline segregated algo-
rithms for the numerical solution of the fully coupled electromechanical problem. Introducing
the FE approximation of the variables of interests, the fully discretized equations are presented
in Sec. 2.5. Segregated solution strategies are then expressed in algebraic form. We recall that,
the FE approximation can be directly generalized for the high-order time discretization schemes
introduced in Chpt. 5.

2.1 Newton’s method

Let V and W be two Banach spaces. A function K : V →W is said to be Gâteaux differentiable
at x ∈ V in direction h ∈ V if there exists a bounded linear operator Tx ∈L (V, W ) such that

lim
ε→0

K (x+ εh)−K (x)
ε

= Txh. (2.1)

K is Gâteaux differentiable at x if and only if the limit above exists for all h ∈ V and there exists a
bounded linear operator Tx : h→ Txh. We denote the Gâteaux derivative asDK (x)[h]. Consider
a generic operator R : V → V∗. Newton’s method to find the a root of R reads as described in
Alg. (1). In practical cases, the computation of DR can be very expensive. Hence, it is possible

1: Given x0 ∈ V;
2: until <convergence criteria> is satisfied:
3: solve for δx such that DR(xk)δx= −R(xk);
4: update xk+1 = xk +δx.

Algorithm 1: Newton’s method.

to approximate DR by D̂R . In this case the method is referred to as quasi-Newton method.
There are two possible stopping criteria for the Newton’s method: the control of residuals and
the control of increments. In the former, for a given ε > 0, the algorithm stops if

‖R(uk, · )‖ ≤ ε. (2.2)

In the latter, the algorithm stops when

‖uk − uk−1‖V ≤ ε. (2.3)

In this thesis we consider the former stopping criteria.

2.2 Weak formulation

2.2.1 Weak form of the incompressible mechanics system

In the following section we introduce the weak formulation of nonlinear elasticity, also known
as principle of virtual work [Marsden and Hughes, 1994b]. We define the space H p(Br) to be

H p(Br) := { f ∈ L2(Br): Dα f ∈ L2(B),∀α: | α| ≤ p } . (2.4)
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Important subspaces of H1(Br) are

• H1
ΓD
(Br) := { f ∈ H1(Br): f | ΓD = 0 } ;

• H1
0(Br) := H1

ΓD
(Br) if ΓD = ∂Br ;

where the equality f |ΓD = 0 has to be intended in a weak sense. A solution (u, p) of the system










−Div (P(u, p, V )) + B = 0 in Br ×T ,
J (u) = 1 in Br ×T ,

u = 0 in ΓD ×T ,
P (u, p, V ) ·N = pN in ΓN ×T ,

(2.5)

belongs to L2(t0, tfin; W )× L2(t0, tfin;Q) where we consider W := H1
ΓD
(Br)3 and Q := L2(Br).

Detailed discussions on admissible function spaces in case of nonlinear elasticity are reported
in [Tallec, 1994; Ball, 1976]. In the residual form, weak form of the incompressible elasticity
problem reads
Find u ∈ L2(t0, tfin; W ), p ∈ L2(t0, tfin;Q) s.t.

(
∫

Br
P :∇vdX−

∫

ΓN
pN · vdA+

∫

Br
B · vdX = 0 ∀v ∈W,

∫

Br
(J − 1)q dX = 0 ∀q ∈Q.

(2.6)

Considering (1.109) it can be more explicitly written

∫

Br

P(u, p, V ) :∇vdX=

∫

Br

�

Pdev(u) + pJ(u)F−T (u) + Ta(V ) (f⊗ f)F−T
�

:∇vdX. (2.7)

Eq. (2.6.1) is the weak formulation of the momentum equation (2.5.1) and it is a linear functional
of v and is nonlinear in u, and p. Here the AP is considered as given. Equation (2.6.2) is the weak
formulation of the mass balance equation (2.5.2). It is a linear functional of q and is parametrized
in u. Since the boundary integral in (2.6.1) cannot be written as a derivative of an energy, the
formulation (2.6) cannot be obtained from a Hellinger-Reissner-like principle, i.e. as a Gâteaux
derivative of a Lagrangian function. In contrast, in case ΓN = ; the function

L (u, p) =

∫

Br

Ψ̄(F)dX+

∫

Br

p(J − 1)dX+

∫

Br

B(v) · vdX (2.8)

is the Lagrangian function which stationary point (u, p) is solution of (2.6).

2.2.2 Weak form of the monodomain equation

We here introduce the weak formulation of the monodomain system. Defined R := H1(Br), the
monodomain system reads Find V ∈ L2(t0, tfin; R), s ∈ (C1(t0, tfin))mg , c ∈ (C1(t0, tfin))mc s.t.


































J (u)β(CmV̇ + Iion(V, s,c)) = ∇ ·
�

J (u)F−1 (u)GmF−T (u)∇V
�

+ J (u)Iapp inBr ×T ,

n · J (u)F−1 (u)Gm F−T (u)∇V = 0 in ∂Br ×T ,

ṡ = S(V,c) inBr ×T ,

ċ = Z(V, s) inBr ×T ,

V (Br, t0) = V0, s (Br, t0) = s0, c (Br, t0) = c0.
(2.9)
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Here we suppose the displacement and the pressure to be given. We recall that the definitions of
S and Z do not usually involve derivative in space of V, s,c. For this reason in the FE framework,
it is convenient to solve the gating variables s and of the ionic concentrations c at each nodal
point [Quarteroni et al., 2017]. The weak form of Eq. (2.9) reads

Find V ∈ L2(t0, tfin; R), s ∈ (C1(t0, tfin))mg , c ∈ (C1(t0, tfin))mc s.t. ∀r ∈ R



































∫

Br
J (u)βCmV̇ rdX+

∫

Br
J (u)(βCm Iion(V, s,c) rdX+

−
∫

Br
J (u)F−1 (u)GmF−T (u)∇V · ∇rdX−

∫

Br
J (u)Iapp rdX = 0,

ṡ = S(V,c),

ċ = Z(V, s),

V (Br, t0) = V0, s (Br, t0) = s0, c (Br, t0) = c0.

(2.10)

2.2.3 Weak form of the fully coupled electromechanical problem

In the residual form, the weak form of the problem (1.108) reads:

Find u ∈ L2(t0, tfin; W ), p ∈ L2(t0, tfin;Q), V ∈ L2(t0, tfin; R), s ∈ (C1(t0, tfin))mg ,
c ∈ (C1(t0, tfin))mc s.t. ∀r ∈ R, ∀v ∈W , ∀q ∈Q,



























































∫

Br
P (u, p, V ) :∇vdX−

∫

ΓN
pN · vdA+

∫

Br
B · vdX= 0,

∫

Br
(J − 1 (u))q dX= 0,

∫

Br
J (u)βCmV̇ rdX+

∫

Br
J (u)(βCm Iion(V, s,c) rdX+

−
∫

Br
J (u)F−1 (u)GmF−T (u)∇V · ∇rdX−

∫

Br
J (u)Iapp rdX= 0,

ṡ= S(V,c),

ċ= Z(V, s),

V (Br, t0) = V0, s (Br, t0) = s0, c (Br, t0) = c0.

(2.11)

2.3 Time discretization

In this section, we discuss standard time stepping schemes for the solution of the fully coupled
electromechanical problem (2.11). Low-order methods are the most common choice in literature
for the solution of bidomain and monodomain equations.

In [Vigmond et al., 2002; M. Potse et al., 2006; Krause et al., 2012] an explicit Euler dis-
cretization for the bidomain equation in parabolic-elliptic form or the monodomain equation is
considered. Let T = [t0, t f in] be partitioned into N subintervals [tn, tn+1] of constant time step
τ. Explicit or explicit-implicit low-order discretization schemes can be combined with a first-
order splitting scheme resulting in decoupling state variables and the ionic equations from the
bidomain or monodomain equation. Explicit discretization schemes are bound to the stability
constraint τ << h2, where h denotes the minimal mesh width of the spatial discretization. This
constraint renders explicit schemes inapplicable for studies involving a high spatial resolution.
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In Rush-Larsen (RL) approach [Rush and Larsen, 1978], the time integration of the ODEs describ-
ing the gating variables is performed exactly by assuming the action potential constant over the
interval of integration. This method is equivalent to an explicit exponential integrator [Nørsett,
1969] and prevents over- and under-shooting in the numerical solution of gating variables, en-
suring that these belong to the physiological range [0,1]. This property is usually referred to as
positivity properties of the numerical scheme [Perego and Veneziani, 2009]. The ODE describing
the AP is integrated by means of an explicit Euler method. RL method improves the stability with
respect to standard explicit integrators, but its convergence is limited to the first order.
In contrast to explicit methods, the stability constraint of implicit time discretization schemes
are independent of the spatial discretization. However, due to their nonlinearity, these scheme
typically leads to a higher computational cost.

In this section, we consider implicit-explicit (IMEX) time stepping schemes [Ethier and Bour-
gault, 2008b]which combine the simplicity and low cost per time step of the explicit schemes with
the stability of implicit schemes. In these latters, the diffusion term is implicitly treated, while the
reaction term is explicitly considered. Even if they are conditionally stable, these methods allow
to employ larger time-steps and to solve one linear system per time-step. Moreover, we combine
the scheme with a first-order splitting. In detail, we consider an explicit exponential integrator
for the gating variables and an explicit integrator for the solution of ionic concentrations. We
denote with a superscript n the quantities computed at time tn. The first-order IMEX-RL scheme
for the solution of the fully coupled weak electromechanical problem (2.11) reads
Given un ∈ U , pn ∈ P, V n ∈ R, find un+1 ∈ U , pn+1 ∈ P, V n+1 ∈ R s.t.















































































∫

Br
P (un+1, pn+1, V n+1) :∇vdX−

∫

ΓN
pN · vdA+

∫

Br
B · vdX= 0,

∫

Br
(J (un+1 − 1)q dX= 0,

∫

Br
J (un+1)βCmV n+1 rdX−

∫

Br
J (un+1)βCmV n rdX+

−
∫

Br
τJ (un+1)F−1 (un+1)GmF−T (un+1)∇V n+1 · ∇rdX+

+
∫

Br
τJ (un)(βCm Iion(V n, sn+1,cn+1) rdX−

∫

Br
τJ (un)Iapp rdX= 0,

sn+1
i = sn

∞,i − (s
n
∞,i − sn

i )e
−
τ

θ n
i , for i = 1, . . . , mg,

cn+1 = cn +τZ(V n, sn),

V (Br, t0) = V0, s (Br, t0) = s0, c (Br, t0) = c0.
(2.12)

2.4 Solution algorithms for the electromechanical problem

For the solution of the electromechanical problem monolithic and segregated approaches are
available in the literature. In monolithic approaches the entire problem is considered and solved
all at once for every time step. In contrast, in segregated approaches each sub-problem is solved
sequentially and the obtained solution is used to initialize the next sub-system. This is done until
all sub-systems are solved. This algorithm is iterated until convergence for the initial problem
is reached. Segregated approaches allow for the use of appropriately fitted solution strategy
and space-time discretization grids for each sub-problem. In this section we outline segregated
schemes used for numerical simulation presented in the following chapters. In our case, the
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usage of segregated schemes for the solution of the fully coupled electromechanical problem is
motivated by the strain-rate independent activation model considered. Studies have reported nu-
merical instabilities associated to these latter schemes [Niederer and Smith, 2008; Pathmanathan
et al., 2010]. We recall that in our case for the proposed ionic models, we did no observed nu-
merical instabilities associated to the proposed segregated scheme.

2.4.1 Monolithic solution of the fully coupled electromechanical problem

The solution of system (2.12) in the framework of the Newton’s method requires the linearization
of the problem around the point (uk, pk, V k). This gives rise to the so-called tangent problem.
The linearization is obtained from the computation of the Gâteaux derivative of Mu , Mp, and
E with respect to the displacement u, the pressure p and the AP. Linearizing Eq. (2.12) around
the generic point (u, p, V ) we obtain

Find (h,π,ξ) ∈W ×Q× R s.t.

a(h,v;u, p, V ) + b(v,π;u) = −Mu(v;u, p, V ) ∀v ∈W,

b(h, q;u) = −Mp(q;u) ∀q ∈Q,

c(h, r; V, s,c,u) + e(ξ, r; V, s,c,u) = −E (r; V, s,c,u) ∀r ∈ R.
(2.13)

In the system above, we have that

a(h,v;u, p, V ) := DuMu(v;u, p, V )[h],
b(h, q;u) := DuMp(q;u)[h] = DqMu(h;u, q, V )[π],

c(h, r; V, s,c,u) := DuE (r; V, s,c,u)[h],
e(h, r; V, s,c,u) := DV E (r; V, s,c,u)[h],

(2.14)

where we have defined

Mu(v;u, p, V ) :=Mdev(v;u) +Mvol(v;u, p) +Mact(v;u, V ) +MB(v) +MN(v;u), (2.15)

for
Mdev(v;u) :=

∫

Br
Pdev :∇vdX,

Mvol(v;u, p) :=
∫

Br
pJF−T :∇vdX,

Mact(v;u, V ) :=
∫

Br
Ta (f⊗ f)F−T :∇vdX,

MB(v) :=
∫

Br
B · vdX,

MN(v;u) := −
∫

ΓN
pN · vdA,

(2.16)

and

Mp(q;u) :=

∫

Br

(J − 1)q dX. (2.17)

We observe that

a(h,v;u, p, V ) = adev(h,v;u) + avol(h,v;u, p) + aact(h,v;u, V ) + aB(h,v) + aN(h,v;u), (2.18)

where the addends at the right-hand-side of the last equation are the derivatives of the terms at
the right-hand-side of Eq. (2.15). Moreover, we have defined

E (r; V, s,c,u) := Ein(r; V̇ ,u) + Eion(r; V, s,c,u) + Ediff(r; V,u) + Eapp(r; V,u) (2.19)
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for
Ein(r; V̇ ,u) :=

∫

Br
J(u)βCmV̇ rdX,

Eion(r; V, s,c,u) :=
∫

Br
J(u)βCm Iion(V, s,c) rdX,

Ediff(r; V,u) := −
∫

Br
J(u)F−1(u)GmF−T (u)∇V · ∇rdX,

Eapp(r; V,u) := −
∫

Br
J(u)Iapp rdX.

(2.20)

The monolithic solution strategy for the BD coupled model (see Sec. 1.3.3) is outlined in Alg. 2.

1: Given Given un, pn, V n, sn, cn;
2: update the gating variables and the ionic concentrations, i.e. compute sn+1, cn+1 as

sn+1
i = sn

∞,i − (s
n
∞,i − sn

i )e
−
τ

θ n
i for i = 1, . . . , mg,

cn+1 = cn +τZ(V n, sn);

(2.21)

3: compute un+1, pn+1, V n+1 solving







































∫

Br
P (un+1, pn+1, V n+1) :∇vdX−

∫

ΓN
pN · vdA+

∫

Br
B · vdX = 0,

∫

Br
(J (un+1 − 1)q dX = 0,

∫

Br
J (un+1)βCmV n+1 rdX−

∫

Br
J (un+1)βCmV n rdX+

−
∫

Br
τJ (un+1)F−1 (un+1)GmF−T (un+1)∇V n+1 · ∇rdX+

+
∫

Br
τJ (un)(βCm Iion(V n, sn+1,cn+1) rdX−

∫

Br
τJ (un)Iapp rdX = 0.

(2.22)

as described in Alg. (1).

Algorithm 2: Monolithic solution scheme for the BD coupled electromechanical problem.

2.4.2 Segregated solution of the fully coupled electromechanical problem

In segregated approaches, for every time step n an iterative process of solutions of single-physics
electrophysiological and mechanical problems is considered. Fig. 2.1 shows BD and MD coupled
problems solved in a segregated fashion. The considered segregated approach for the solution
the BD coupled problem is outlined in Alg. 3. The segregated solution strategy for the MD cou-
pled model similarly to the one for the BD coupled model: the difference is that, for the MD
approach, Eq. (2.12.3) is computed on the undeformed configuration, i.e. considering F to be
the second order identity tensor and consequently, J = 1. In this latter case we have DuE = 0
and therefore Eq. (2.12.3) is naturally decoupled from Eq. (2.12). Suppose the action potential
V k+1 to be given. Linearizing Eq. (2.12.1) around the generic point (u, p) we obtain

Find (h,π) ∈W ×Q such that

a(h,v;u, p, V ) + b(v,π;u) = −Mu(v;u, p, V ) ∀v ∈W,

b(h, q;u) = −Mp(q;u) ∀q ∈Q.
(2.23)
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Figure 2.1. Top: segregated approach for the mono-directionally coupled problem. At each
time step, the obtained AP is transferred to the mechanical solver to update the active
force and, hence, to compute the new configuration. Bottom: segregated approach for the
bidirectionally coupled problem. Same as the MD segregated approach with the displacement
field is additionally transferred to the electrophysiological problem in order to solve the
monodomain equation in the deformed configuration.

The problem tangent to the reference configuration, i.e. (u, p) = (0, 0), reads:
Find (h,π) ∈W ×Q such that

aiso(h,v;0) + aact(h,v; 0, V ) + aN(h,v; 0) + b(v,π;0) = −Mu(v;0, 0, V ) ∀v ∈W,

b(h, q;0) = −Mp(q;0) ∀q ∈Q.
(2.24)

Here, we want to remind that the system above is different from system describing incompressible
linear elasticity, which reads:
Find (h,π) ∈W ×Q such that

aiso(h,v;0) + b(v,π;0) = −Mu(v;0, 0, V ) ∀v ∈W,

b(h, q;0) = −Mp(q;0) ∀q ∈Q.
(2.25)

In particular, the bilinear form associated to the linear elasticity operator (2.24) present an addi-
tional term that makes the bilinear form non-symmetric. For the incompressible linear elasticity
system (2.25), existence, uniqueness, and stability of the solution have been shown in [Brezzi and
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Fortin, 1991]. Given the displacement uk and the associated pressure pk and linearizing (2.28)
around the generic point V we obtain
Find ξ ∈ R s.t.

e(ξ, r; V, s,c,u) = −E (r; V, s,c,u) ∀r ∈ R. (2.26)

1: Given Given un, pn, V n, sn, cn;
2: define uk = un, pk = pn, V k = V n, sk = sn, ck = cn;
3: until <convergence criteria> is satisfied:
4: update the gating variables and the ionic concentrations, i.e. compute sk+1, ck+1 as

sk+1
i = sk

∞,i − (s
k
∞,i − sk

i )e
−
τ

θ k
i for i = 1, . . . , mg,

ck+1 = ck +τZ(V k, sk);

(2.27)

5: compute V k+1 solving
∫

Br
J (uk)βCmV k+1 rdX−

∫

Br
J (uk)βCmV k rdX+

−
∫

Br
τJ (uk)F−1 (uk)GmF−T (uk)∇V k+1 · ∇rdX+

+
∫

Br
τJ (uk)(βCm Iion(V k, sk+1,ck+1) rdX−

∫

Br
τJ (uk)Iapp rdX = 0;

(2.28)

with Alg. (1).
6: compute uk+1, pk+1 solving for







∫

Br
P (uk+1, pk+1, V k+1) :∇vdX−

∫

ΓN
pN · vdA+

∫

Br
B · vdX= 0,

∫

Br
(J (uk+1 − 1)q dX= 0.

(2.29)

with Alg. (1).
7: set k = k+ 1;
8: set un+1 = uk, pn+1 = pk, V n+1 = V k, sn+1 = sk, cn+1 = ck;

Algorithm 3: Segregated solution scheme for the BD coupled electromechanical problem.

2.5 Finite element dicretization

For the discretization of (2.12), we consider standard FE discretizations. We denote by TH , Th

partitions of Ω. Here H, h denote representative mesh parameters. We consider shape-regular
meshes consisting of quadrilateral or hexahedral axis-aligned elements for cuboid geometries or
of triangular or tetrahedral elements for more general geometries. We consider the FE subspaces
W l

H ⊂W , QσH ⊂Q and Rηh ⊂ R, defined as

W l
H =

�

vH ∈W : vH |Yi
∈ (Pl)3, for i = 1, . . . , NH

	

,
QσH =

�

πH ∈Q : πH |Yi
∈ Pσ, for i = 1, . . . , NH

	

,
Rηh =

�

ξh ∈ R : ξh|Zi
∈ Pη, for i = 1, . . . , Nh

	

,
(2.30)
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for (Pl)3, Pσ, and Pη spaces of polynomials of degree l, σ, and η respectively. The notation
(Pl)3 means that all components of the three-dimensional vector vvvh|Yi

are polynomials of degree
l. In case of a segregated solution approach is considered, for the mechanical problem the cou-
ple (W l

H ,QσH) is also denoted with Pl − Pσ in case of tetrahedral elements, or Ql −Qσ in case
of hexahedral elements. The well known Ladyzhenskaya-Babuska-Brezzi (LBB) condition is a
particular instance of the so- called discrete inf-sup condition it is a necessary and sufficient con-
dition for the well-posedness of discrete saddle point problems arising from discretization via
Galerkin methods. The LBB condition states

∃ cH s.t. cH‖qH‖L2 ≤ sup
wH∈W l

H

∫

Br
(∇ ·wH)qH

‖wH‖H1

∀qH ∈QσH . (2.31)

In this case, possible choices of l and σ leading to approximation spaces that satisfy the discrete
LBB stability condition are discussed in [Quarteroni, 2009b]. We recall that the so called Taylor-
Hood elements Pk − Pk−1 are stable for k ≥ 2 for linear elasticity. To overcome volume locking
issues, we consider second order finite elements for the approximation of the displacement field,
i.e. k = 2. Denoting the Lagrangian basis functions of W l

H , QσH and Rηh by

{ϕi }
wd
i=1 , {φ j }

qd
j=1 , {ψs }

rd
s=1 , (2.32)

respectively, the discrete solution (hH ,πH ,ξh) of problem (2.13) can be written as

hH =
wd
∑

i=1

hiϕ j , πH =
qd
∑

j=1

π jφ j , ξh =
rd
∑

s=1

ξsψs (2.33)

As described in [Quarteroni et al., 2017], a standard quadrature approximation of

Eion(r; V, s,c,u) :=

∫

Br

J(u)βCm Iion(V, s,c) rdX (2.34)

is performed considering the ionic current interpolation (ICI)

E ICI
ion (r; V, s,c,u) := βCm

rd
∑

s=1

[M] j,s J(Π(u)s)Iion(Vs, ss,cs). (2.35)

Here we have defined

[M] j,s :=

∫

Br

ψsψ jdX, (2.36)

and Vs, ss,cs,Π(u)s to be the coefficients of the variables V, s,c,Π(u) expanded with respect to
the basis {ψs }

rd
s=1.

2.5.1 Transfer operators

L2-projection is a fundamental tool to construct restriction and prolongation operators for MG
methods applied with non-nested meshes [Krause and Zulian, 2016]. We consider two shape-
regular meshes Th1

, Th2
. Following the naming convention of mortar methods, we refer to the

space Sp
h1

as master space, or mortar space. In contrast, we refer to Sp
h2

as slave, or non-mortar

space. Following [Sampath and Biros, 2010], we define the projection operatorFph2

h1
: Sp

h1
→ Sp

h2
.
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The mortar projection maps a function from the mortar space, to the non-mortar space. Given
vh1
∈ Sp

h1
we want to find wh2

=Fph2

h1
(vh1
) ∈ Sp

h2
, such that

(Fph2

h1
(vh1
), qh2

)L2 = (vh1
, qh2
)L2 ∀qh2

∈ Sp
h2

. (2.37)

Following [Bernardi et al., 2005] we reformulate (2.37) getting the weak equality condition

∫

Ω

(vh1
−Fph2

h1
(vh1
))qh2

dX=

∫

Ω

(vh1
−wh2

)qh2
dX= 0 ∀qh2

∈ Sp
h2

. (2.38)

Any coarse-grid vector vh1
and fine-grid vector wh2

can be expanded as

vh1
=

Nh1
∑

m=1

vm
h1
ψh1

m and wh2
=

Nh2
∑

n=1

wn
h2
ψh2

n , (2.39)

respectively. In Eq. (2.39) the coefficients vm
h1

and wn
h2

are the coefficients in the basis expansion

of vh1
and of wh2

with respect to the bases {ψh1
m }

Nh1
m=1 and {ψh2

n }
Nh2
n=1, respectively. This allows us

to write the point-wise contributions to Eq. (2.38) as

Nh1
∑

m=1

vm
h1

∫

Ω

ψh1
mψ

h2

k dX=
Nh2
∑

n=1

wn
h2

∫

Ω

ψh2
n ψ

h2

k dX ∀ k = 1, . . . , Nh2
. (2.40)

Defining the matrices Dh2

h2
andBh2

h1
of entries

(Dh2

h2
)k,n =

∫

Ω

ψh2
n ψ

h2

k dX, (Bh2

h1
)k,m =

∫

Ω

ψh1
mψ

h2

k dX, (2.41)

Eq. (2.40) admits the following algebraic representation

Dh2

h2
v=Bh2

h1
w. (2.42)

Here the vectors v, w are the vectors of coefficients with respective entries vm
h1

and wn
h2

. The

matrix Dh2

h2
is a mass matrix and hence it is invertible. Therefore, it holds

v= (Dh2

h2
)−1Bh2

h1
w=P h2

h1
w (2.43)

for P h2

h1
= (Dh2

h2
)−1Bh2

h1
. The discrete operator P h2

h1
is the algebraic representation of the L2-

projectionFph2

h1
. An explicit computation ofP h2

h1
is computationally unaffordable, since it would

require an explicit computation of the inverse of Dh2

h2
which is dense. Alternatively, the following

two strategies are considered:

• solve a linear system for Dh2

h2
each time the transfer operator is applied.

• consider biorthogonal basis functions of Sp
h2

with respect to the L2-inner product [Wohlmuth,

2000] obtaining a diagonal Dh2

h2
.
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Although the first-mentioned strategy may appear inconvenient, mass matrices are typically well-
conditioned, having a condition number independent on the mesh size. In contrast, the second
strategy is hardly applicable for p ≥ 2, due to the difficulties in generating biorthogonal basis
functions.

In case of nested grids, in particular when Th2
is a uniform refinement of Th1

, the projec-
tion operator can be easily constructed as the interpolation operator. Due to the definition of
Lagrangian basis function, for each ψh2

i , there exists a unique pi ∈ Ω such that

ψ
h2
j (pi) = δi j ∀i, j = 1, . . . , Nh2

(2.44)

where δ represents the Kronecker delta function. The point pi is the fine grid node associated
with ψh2

i . In case of nested grids, any coarse-grid function can be expended with respect to the
basis functions of the fine space. In this case, Eq. (2.44) leads to

v i
h2
=

Nh1
∑

j=1

v j
h1
ψ

h1
j (pi). (2.45)

The entries of the matrix P ph2

h1
are then just the coarse-grid basis functions evaluated at the

fine-grid vertices
(P ph2

h1
)i j =ψ j(pi). (2.46)

We define the restriction operator Rph1

h2
: Sp

h2
→ Sp

h1
as R =P T . Thanks to the Piola transforma-

tion, the assembling of transfer operators is performed only once on the reference configuration.

2.5.2 Discrete monolithic problem

The FE discretization of the monolithic tangent problem (2.13) reads
Find (hH ,πH ,ξh) ∈W l

H ×QσH × Rηh s.t.

a(hH ,vH ;uH , pH ,RηH
h (Vh)) + b(vH ,πH ;uH) = −Mu(vH ;uH , pH ,RηH

h (Vh)) ∀vH ∈WH ,

b(hH , qH ;uH) = −Mp(qH ;uH) ∀qH ∈QH ,

c(P lH
h (hH), rh; Vh, sh,ch,P lH

h (uH)) + e(ξh, rh; Vh, sh,ch,P lH
h (uH)) = −E (rh; Vh, sh,ch,P lH

h (uH)) ∀rh ∈ Rh.

(2.47)
which considering the base defined in Eq. (2.32) becomes

Find (hH ,πH ,ξh) ∈W l
H ×QσH × Rηh s.t.

a(hH ,ϕi;uH , pH ,RηH
h (Vh)) + b(ϕi ,πH ;uH) = −Mu(ϕi;uH , pH ,RηH

h (Vh))

b(hH ,φ j;uH) = −Mp(φ j;uH)

c(P lH
h (hH),ψs; Vh, sh,ch,P lH

h (uH)) + e(ξh,ψs; Vh, sh,ch,P lH
h (uH)) = −E (ψs; Vh, sh,ch,P lH

h (uH)).

(2.48)

for i = 1, . . . , wd , j = 1, . . . qd and s = 1, . . . , rd . Consider the matricesA ∈ Rwd×wd ,B ∈ Rwd×qd ,
C ∈ Rwd×rd , and D ∈ Rrd are the algebraic representations of the weak forms a(·, ·), b(·, ·), c(·, ·),
and d(·, ·), respectively, and their entries are given by

Ai j = a(ϕ j ,ϕ i), Bl j = b(ϕ l ,φ j),
Cl j = c(ϕ j ,ψl), Dln = d(ψn,ψl).

(2.49)
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We consider the vectors F , G, T which entries are

Fi =Mu(ϕi;uH , pH ,RηH
h (Vh)), G j =Mp(φ j;uH) , Ts = E (ψs; Vh, sh,ch,P lH

h (uH)),
(2.50)

and the vectors U , P and E such that Ui = hi , Pj = π j , and Es = ξs. Problem (2.48) is equivalent
to the algebraic problem





A B T 0
B 0 0
C 0 E









U
P
E



=





F
G
T



 . (2.51)

In the linear system above, we dropped the dependence of the submatrices A ,B ,C ,E on the
Newton’s step k. We choose l = 2, σ = 1 and η = 1. This means that for meshes with quadri-
lateral or hexahedral elements, we employ bi-quadratic FE to interpolate the displacement vari-
ables and bi-linear FE to interpolate the pressure and the action potential variables. For mesh
with triangular or tetrahedral elements, we employ quadratic FE to interpolate the displacement
variables and linear FE to interpolate the pressure and the action potential variables.

2.5.3 Discrete segregated problem

FE discretization of problem (2.23) and of problem (2.26) read

Find (hH ,πH) ∈W l
H ×QσH s.t.

a(hH ,ϕi;uH , pH ,RηH
h (Vh)) + b(ϕi ,πH ;uH) = −Mu(ϕi;uH , pH ,RηH

h (Vh))

b(hH ,φ j;uH) = −Mp(φ j;uH), (2.52)

and

Find ξh ∈ Rηh s.t.

c(P lH
h (hH),ψs; Vh, sh,ch,P lH

h (uH)) + e(ξh,ψs; Vh, sh,ch,P lH
h (uH)) = −E (ψs; Vh, sh,ch,P lH

h (uH)),

(2.53)

for i = 1, . . . , wd , j = 1, . . . qd and s = 1, . . . , rd , respectively. Problems (2.52) and (2.53) are
equivalent to the algebraic problems

�

A B T

B 0

��

U
P

�

=

�

F
G

�

, (2.54)

and
E E = T, (2.55)

respectively. We define H ∈ R(wd+qd )×(wd+qd ) to be the matrix at the left hand side of (2.54). At
the first step of Newton’s method, the LBB condition ensures the matrixH to be non singular. In
general, it is not possible to prove that such condition eliminates spurious modes for any tangent
problem. In the specific case of incompressible elasticity, the matrix A is singular at the first
iteration of Newton’s method and singular or non-positive definite at any iteration of Newton’s
method. Following [Quarteroni et al., 2017], the introduced segregated approach corresponds
to a block Gauss-Seidel iteration of to a serial loosely coupled scheme.
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Chapter 3

High-order time stepping schemes for
cardiac electrophysiology

In this chapter, we derive high-order numerical schemes for the time integration of cardiac elec-
trophysiology. To this aim, we generalize the approach proposed by Rush and Larsen [Rush and
Larsen, 1978]. Final aim of this study is to investigate the impact of the high-order schemes on
simulated post-processing quantities of clinical interest. For the purpose of simplicity, we here
neglect the deformation of the body which contribution is out of the scope of focus of the chapter.

High-order time integration of the monodomain system coupled with stiff and nonlinear ionic
models is a widely known challenge in cardiac electrophysiology [Lontsi et al., 2017; Franzone
and Pavarino, 2004; Sundnes et al., 2005]. The main numerical difficulties arising from the time
integration of cardiac electrophysiology are the stiffness associated with the time-evolution of
the gating variables and the complex dependence of the ionic currents on the action potential.
The Rush-Larsen (RL) scheme is one of the most popular numerical strategy for the solution of
the cellular models in which it allows to overcome the two above-mentioned problematics. In
RL scheme a first-order exponential integrator is proposed for the solution the ionic channels.
In detail, the time integration of the ODEs describing the gating variables is performed exactly
but assuming the AP constant over the interval of integration. The RL method is equivalent
to an explicit exponential integrator [Nørsett, 1969] and prevents over- and under-shooting in
the numerical solution of gating variables, ensuring that they belong to the physiological range
[0,1]. Eventually, the ODE for the AP is integrated by means of an explicit Euler method. The RL
method improves the stability w.r.t. standard explicit integrators, but its convergence is limited to
the first-order. Although the RL scheme falls into the class of exponential integrators, it originates
from a peculiar linearization of the original problem. Literature of exponential integrators is well
established [Lawson, 1967; Beylkin et al., 1998; Boyd, 2001; Cox and Matthews, 2002; Smith
et al., 2003a; Hochbruck and Ostermann, 2005; Minchev and Wright, 2005; Krogstad, 2005] but
it is focused mainly on semilinear ODEs with constant coefficients of the linear terms. For this
class of ODEs, the derivation of high-order methods is straightforward. When considering the
ODEs describing the gating variable dynamic, the coefficients of the linear terms are not constant,
rather they depend on the action potential. In this context, high order exponential integrators
can not be readily derived. An attempt to derive a second order RL scheme has been proposed
in [Sundnes et al., 2009]. This method consists in a predictor-corrector midpoint method. The
predictor step exploits the standard RL method, then, in the fashion of Heun integrators, the
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standard first-order formulae is evaluated at the midpoint of the time step. This approach has
been shown to outperform standard RL and Runge-Kutta methods with a double computational
cost for each time step [Gomes and dos Santos, 2015]. In [Perego and Veneziani, 2009], formulae
for generalized RL schemes have been presented but they are shown not to be in general A-stable.
An alternative strategy to employ high-order exponential integrators consists in transforming the
original problem in an equivalent one in which the leading coefficient of the right-hand-side is
constant over the discretization interval [Lontsi et al., 2017]. This coefficient is referred to as
time step dependent stabilizer.

A further step of complexity is introduced by the monodomain or bidomain operators. Both
are diffusion-like, thus contributing to the stiffness of the system. The standard choice for the
integration of this kind of model is either to decouple diffusion and reaction (operator splitting)
or to partially treat the ionic currents explicitly [Franzone and Pavarino, 2004; Ethier and Bour-
gault, 2008a; Perego and Veneziani, 2009]. In the formes, overall convergence rate is limited to
first or second order (depending on the splitting scheme), albeit it is possible to attain higher-
order convergence treating the reaction term with RL-like schemes and the diffusion term with
implicit schemes. Implicit-explicit (IMEX) schemes allow to employ larger time steps, even if
they are conditionally stable, and to solve one linear system per time step. High-order IMEX
schemes can be formally derived, but the strict stability condition depending on the mesh-size
prevents their use in realistic simulations. To avoid the usage of very small time steps, backward
differentiation formula (BDF) can be used [Ethier and Bourgault, 2008a; Perego and Veneziani,
2009; Hundsdorfer and Verwer, 2013] but they require the expensive evaluation of the deriva-
tives of the ionic currents. Operator-splitting methods are commonly used to avoid the implicit
evaluation of derivatives [Qu and Garfinkel, 1999; Sundnes et al., 2005]. Adaptive time step
methods, see e.g. [Franzone et al., 2006; Qu and Garfinkel, 1999], represent provide added
value to the above-mentioned approaches. In [Krause, 2013] lightweight spatially and space-
time adaptive schemes for large-scale parallel simulations are designed. In detail, two different
adaptive schemes based on locally structured meshes are proposed. In [Campos et al., 2013b]
different techniques (adaptive time step-methods, partial evaluation and lookup tables, and the
exploitation of the code concurrency via OpenMP directives) to automatically speed up the nu-
merical solution of cardiac models are proposed.

Starting from the standard derivation of exponential integrators, in this chapter we propose
novel generalized schemes for the time-integration of the equations describing the behavior of
the gating variables. Stabilized and non-stabilized schemes are hence coupled with IMEX and
BDF methods for the solution of the reaction-diffusion equation describing the AP. Additional
contribution of this work is the introduction of a novel quasi-Newton (qN-BDF) approach for
the implicit solution of the algebraic problem arising from the implicit discretization of the mon-
odomain system. The proposed quasi-Newton approach is applicable to every cellular model
that follows the HH [Hodgkin and Huxley, 1952] formalism. As an alternative, we propose the
evaluation of the complex dependence of the ionic currents on the AP considering the complex
step derivative approximation (CSDA-BDF) approach.

The chapter is organized as follows. In Sec. 3.1, starting from exponential integrators theory,
we present different high-order exponential (EXP) schemes for the numerical integration of the
gating variables. In Sec. 3.2, we present high-order IMEX and BDF schemes for the time inte-
gration of the monodomain equation. In Sec. 3.3, our novel quasi-Newton (qN) approach and
the application of the complex step derivative approximation (CSDA) approach for the approx-
imation of the derivative of the ionic current with respect to the AP are introduced. Sec. 3.4
the convergence behavior of the above-mentioned high-order numerical strategies is assessed for
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the numerical solution of an initial value problem (IVP) with trigonometric coefficient, of the
FHN and the BWZVP cellular models and of the monodomain system. We recall that the FHN
model, the BWZVP model and the Beeler-Reuter model [Beeler and Reuter, 1977 Jun] are suit-
able ionic models for testing the accuracy of high-order time integration schemes in which, in
these models, the analytical definition of the ionic currents are regular enough. The last section
is finalized with the study of the impact of high-order time integration on simulated AT, CV, APD90

and pseudo-ECGs signals for 3D simulation of the monodomain system coupled with the BWZVP
cellular model.

3.1 High-order exponential schemes

Theory of exponential integrators is well established for semi-linear problems of the form
�

y ′(t) = c` y(t) + n(y(t), t),

y(0) = y0.
(3.1)

Given suitable initial conditions, each gating variable s obeys an equation of the form

s′i =
si,∞(V )− si

τi(V )
. (3.2)

For this reason, we consider the following generalization of the IVP (3.2)
�

y ′(t) = f (y(t)) = `(t)y(t) + n(t),

y(0) = y0.
(3.3)

This section is devoted to the description of first-, and high-order EXP integration schemes for
the solution to semi-linear IVP (3.3). Defining A(t) =

∫ t

0 `(s)ds and multiplying the equation by
the integrating factor e−A(t) we obtain

(e−A(t) y(t))′ = e−A(t)n(t). (3.4)

Integrating (3.4) we obtain

y(τ) = e
∫ τ

0 `(s)ds y(0) +

∫ τ

0

e
∫ τ

ω
`(s)dsn(ω)dω, (3.5)

or, equivalently,

y(t +τ) = e
∫ t+τ

t `(s)ds y(t) +

∫ t+τ

t

e
∫ t+τ
ω

`(s)dsn(ω)dω. (3.6)

We define the function I : T → R as

I (ω; [t, t +τ]) = e
∫ t+τ
ω

`(s)dsn(ω). (3.7)

Different numerical approximations of the integrand I in (3.5) lead to different numerical
integration strategies. The ETD schemes are obtained by distinct polynomial approximation
of the functions ` and n. IF methods are obtained when the whole integrand I is approx-
imated. This is equivalent to apply standard time stepping schemes to Eq. (3.4). Defining
yn := y(tn), `n := `(tn), and nn := n(tn) Eq. ( 3.6) are written as

y(tn+1) = e
∫ tn+1

tn `(s)ds y(tn) +

∫ tn+1

tn

e
∫ tn+1

ω
`(s)dsn(ω)dω. (3.8)
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We define

E j
i := e

∫ t j

t i `(s) ds. (3.9)

3.1.1 Exponential time differencing schemes

ETD Adams-Bashforth schemes with stabilization procedure

ETD approaches with stabilization procedure are constructed by transformation of the IVP (3.3)
in an equivalent form in which the leading coefficient in the right hand side is constant on the
considered discretization interval [tn, tn+1]:

y ′(t) = cn
` y(t) + rn(y(t)). (3.10)

cn
`
∈ R is usually called time step dependent stabilizer and rn(y(t)) = (`(t)− cn

`
)y(t) + n(t). The

exact solution of Eq. (3.10) satisfies the variation of the constant formula

yn+1 = eτcn
`

 

yn +

∫ tn+1

tn

e−cn
`
(ω−tn)rn(ω)dω

!

. (3.11)

Following [Nørsett, 1969], we apply Adams methods to Eq. (3.11). ETD Adams-Bashforth meth-
ods have the form:

yn+1 = eτcn
` yn +τ

q−1
∑

j=0

α j(τcn
` )∇

jnn, (3.12)

where ∇0nn−1 = nn−1 and ∇ j+1nn−1 = ∇ jnn−1 − ∇ jnn−2 are the backward differences. The
functions α j(x) satisfy the following recurrence relations

¨

xα0(x) = ex − 1,

xα j+1(x) = α j(x) +
1
2α j−1(x) +

1
3α j−2(x) + · · ·++

1
j+1α0(x).

(3.13)

To overcome the numerical round-off errors arising when computing the powers of the product
τcn
`

for small time steps we approximate the exponential function by its truncated Taylor expan-
sion considering cn

`
= `n. In the first-order ETD Adams-Bashforth method the functions ` and

n in Eq. (3.4) are approximated in the interval [tn, tn+1] by their evaluations `n = `(tn) and
nn = n(tn) at time tn. In this case, we obtain:

yn+1 = eτ`
n
yn +

(eτ`
n
− 1)
`n

nn. (3.14)

The first-order ETD Adams-Bashforth method is also known as exponential explicit Euler (EEE)
method. As an alternative the functions ` and n can be implicitly evaluated. Eq. (3.14) can also
be derived from the following linearization of the IVP (3.3)

y′(t +τ) = f (y(t)) + f (y(t))′(y(t +τt)− y(t)). (3.15)

The exact solution of Eq. (3.15) is

y(t +τ) = y(t) +τϕ1

�

τ f (y(t))′
�

f (t) (3.16)

where it is defined

ϕ1(z) =
exp(z)− 1

z
. (3.17)
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The method is exact for
f (y(t)) = c` y(t) + cn (3.18)

for c` and cn constants. In case only c` is constant the error per-step is τ2

2 n′, so the method is
accurate if n is “slowly varying”. EEE method has been introduced in cardiac electrophysiological
simulations in [Rush and Larsen, 1978]. Since then the EEE method has been largely used for
the time integration of the ODEs related to the gating variables. For this reason, disregarding the
global nature of the strategy proposed in the original work for the solution of the complete elec-
trophysiological problem, the application of EEE method in cardiac electrophysiology literature
is often referred to as RL method. For the i-th Eq. (1.78-1.79) we have

`(tn) = −1/τn
i , n(tn) = sn

∞,i/τ
n
i . (3.19)

Applying EEE method we obtain

sn+1
i = sn

i,∞ − (s
n
i,∞ − sn

i )e
− τ
τn

i .

For the purpose of this work we limit our study to ETD Adams-Bashforth methods. Stabilized ETD
Adams-Bashforth method of order m in the plots is referred to as ETDStabm. We refer to [Minchev
and Wright, 2005] for the construction of ETD Adams-Moulton formulae.

ETD schemes without stabilization procedure

We here introduce ETD schemes without stabilization procedure which represent an alternative
approach to the stabilization-based method described in the previous section. Given a function
f : T → R and its evaluation on p + 1 distinct points

�

t0, . . . , tp

	

∈ T , the function admits the
polynomial approximation

P( f ; [t0, . . . , tp]) =
p
∑

i=0

yi( f )mi(t) with yi( f ) = f (t i), mi(t) =
p
∏

j=0, j 6=i

t − t j

t i − t j
. (3.20)

We consider P(`; [tn−m, . . . , tn+1]) and P(n; [tn−m, . . . , tn+1]) approximations of ` and n, respec-
tively. We define

Ên+1
n ([tn−m, . . . , tn+1]) := e

∫ tn+1

tn P(`;[tn−m,...,tn+1])(s)ds, (3.21)

and

Î n+1
n ([tn−m, . . . , tn+1]) :=

∫ tk+1

tk

�

e
∫ tk+1

ω
P(`;[tn−m,...,tn+1])(s)ds

�

P(n; [tn−m, . . . , tn+1])(ω)dω (3.22)

approximations of En+1
n and I n+1

n , respectively. We define the m+ 1 order ETD scheme

yn+1([tn−m, . . . , tn+1]) =Ên+1
n ([tn−m, . . . , tn+1])y

n + Î n+1
n ([tn−m, . . . , tn+1]) (3.23)

where the computation of the integrands Ên+1
n and Î n+1

n is performed using an integration
method of order of accuracy at equal or bigger than m+ 1. The computation of Ên+1

n and Î n+1
n

require implicit evaluations of the functions ` and n. The ETD method of order of accuracy m
without stabilization procedure in the plots is referred to as ETDm.
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ETD midpoint scheme

In the second-order ETD midpoint method we approximate the functions ` and n over the time
interval [tn, tn+1] through the constants P(`; [tn+ 1

2
]) and P(n; [tn+ 1

2
]), respectively. Given this

approximation, integrating Eq. (3.6) we obtain

yn+1 = eτ`
n+ 1

2 yn +
eτ`

n+ 1
2 − 1

`n+ 1
2

nn+ 1
2 . (3.24)

The ETD midpoint scheme is referred to in the plots as ETDMid2.

3.1.2 Integrating factor schemes

In this section we present first-, and high-order Adams- and backward differentiation formula-
based IF schemes.

IF Adams-Bashforth schemes

IFAB1

Applying the first-order Adams-Bashforth (AB) scheme to Eq. (3.4) and multiplying the resulting
equation by eA(tn+1) we obtain

yn+1 = En+1
n yn +τEn+1

n nn. (3.25)

We approximating ` and n by P(`; [tn]) = `n and P(n; [tn]) = nn, and consequently En+1
n by

Ên+1
n = eτ`

n
. We obtain

yn+1 = eτ`
n
yn +τeτ`

n
nn. (3.26)

IFAB2

Applying the second-order AB to Eq. (3.4) and multiplying the resulting equation by eA(tn+1) we
obtain

yn+1 = En+1
n yn +

τ

2
(3En+1

n nn − En+1
n−1 nn−1). (3.27)

We consider P(`; [t j , tn+1]), P(n; [t j , tn+1]), for j = n− 1, n. The factor Ên+1
j is computed apply-

ing the trapezoidal integration rule over the interval [t j , tn+1]. Even if the method is explicit with
respect to the solution variable y , the computation of the coefficient Ên+1

j requires an implicit
evaluation of the functions ` and n.

IFAB3

Applying the third-order AB to Eq. (3.4) and multiplying the resulting equation by eA(tn+1) we
obtain

yn+1 = En+1
n yn +

τ

12
(23En+1

n nn − 16En+1
n−1 nn−1 + 5En+1

n−2 nn−2). (3.28)

We consider P(`; [t j , tn, tn+1]), P(n; [t j , tn, tn+1]) for j = n − 1, n − 2. The factor Ên+1
j , for j =

n− 2, n− 1, is computed applying the trapezoidal integration rule over the interval [t j , tn+1].
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IF Adams-Moulton schemes

IFAM1

Applying the first-order Adams-Moulton (AM) scheme to Eq. (3.4) and multiplying the resulting
equation by eA(tn+1) we obtain

yn+1 = En+1
n yn +τnn+1. (3.29)

Similarly as for the IFAB1 method, we approximate ` and n by P(`; [tn]) = `n and P(n; [tn]) = nn,
obtaining Ên+1

n = eτ`
n

as approximation for En+1
n .

IFAM2

Applying the second-order AM scheme to Eq. (3.4) and multiplying the obtained equation by
eA(tn+1) we obtain

yn+1 = En+1
n yn +

τ

2
(nn+1 + En+1

n nn). (3.30)

The factor Ên+1
n , is computed as outlined for the IFAB2 method.

IFAM3

Applying the second-order AM scheme to Eq. (3.4) and multiplying the resulting equation by
eA(tn+1) we obtain

yn+1 = En+1
n yn +

τ

12
(5nn+1 + 8En+1

n nn − En+1
n−1 nn−1). (3.31)

The factor Ên+1
j for j = n− 1, n is computed as outlined for the IFAB3 method.

IF midpoint scheme

Applying the midpoint rule to Eq. (3.4) and multiplying the resulting equation by eA(tn+1) we
obtain

yn+1 = En+1
n yn +τEn+1

n+ 1
2
nn+ 1

2 . (3.32)

Consider P(`; [t j , tn+1]), P(n; [t j , tn+1]) for j = n, n+ 1
2 . The factor Ên+1

j , is computed applying
the trapezoidal integration rule over the interval [t j , tn+1]. The IF midpoint scheme is referred
to in the plots as IFMid2.

Integrating factor backward differentiation schemes

IFBDF2

Applying the second-order BDF scheme to Eq. (3.4) and multiplying the resulting equation by
eA(tn+1) we obtain

yn+1 =
4
3

En+1
n yn −

1
3

yn−1En+1
n−1 +τ

2
3

nn+1. (3.33)

The factor Ên+1
j for j = n− 1, n is computed as outlined for the IFAB2 method.
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IFBDF3

Applying the third-order BDF scheme to Eq. (3.4) and multiplying the resulting equation by
eA(tn+1) we obtain

yn+1 =
18
11

En+1
n yn −

9
11

yn−1En+1
n−1 +

2
11

yn−2En+1
n−2 +τ

6
11

nn+1. (3.34)

The factor Ên+1
j for j = n− 2, n− 1, n is computed as outlined for the IFAB3 schemes. Following

similar approaches to the ones described above, we obtain the IFAB4, IFAM4 and IFBDF4 schemes.

3.1.3 High-order RL schemes

In [Lontsi et al., 2017] exponential AB and the RL schemes are considered up to fourth-order
accuracy. These methods are based on the variation of constants formula. The RL method of
order of accuracy m (referred to as RLm) is of the form

yn+1 = yn +τϕ1(αn,mτ)(αn,m yn + βn,m). (3.35)

The coefficient αn,m and βn,m (which explicit expressions are reported in [Lontsi et al., 2017])
are chosen to ensure the convergence at order m of the scheme (3.35). In [Lontsi et al., 2017]
the canine ventricular Beeler-Reuter [Beeler and Reuter, 1977 Jun] model is considered. In our
work the performance of RLm are assessed for the more stiff BWZVP model.

3.2 High-order schemes for the monodomain equation

In this section we present high-order strategies for the time discretization of the monodomain
system











































β(Cm
∂ V
∂ t
+ Iion(V, s,c)) = ∇ · Gm∇V + Iapp, inBr ×T ,

ds
d t

= S(V,c) inBr ×T ,

dc
d t

= Z(V, s) inBr ×T ,

n · Gm∇V = 0 in ∂Br ×T ,

V (Br, 0) = V0, s(Br, 0) = s0, c(Br, 0) = c0.

(3.36)

We apply the three steps strategy designed in Alg. 4. The considered IMEX-EXPm and BDF-EXPm

schemes. For both IMEX-EXPm and BDF-EXPm strategies, we solve the ODEs (3.36.2) by mean of
an EXPm time stepping scheme while the ODEs (3.36.3) are solved considering the ABm scheme.
The IMEX-EXPm and BDF-EXPm schemes differ each other by the numerical discretization of
(3.36.1). In IMEXm schemes an implicit-explicit time integrator [Franzone and Pavarino, 2004;
Ethier and Bourgault, 2008a; Perego and Veneziani, 2009] of order of accuracy m is applied for
the solution of Eq. (3.36.1). In BDFm schemes this equation is solved by mean of the backward
differentiation formula [Ethier and Bourgault, 2008a; Perego and Veneziani, 2009; Hundsdorfer
and Verwer, 2013] of order of accuracy m.

Unless extrapolation techniques are considered, high-order IFm and ETDm (without stabi-
lization) approaches require an implicit evaluation of the coefficients with respect to the AP. In
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this case the above-mentioned strategy for the staggered solution of (3.36) need to be modified.
Under these circumstances IMEXm approaches can be applied for the solution of Eq. (3.36.1)
coupled with implicit or explicit schemes in V for the solution of Eq. (3.36.2) switching stage 2
and 3. On the other hand, BDF approaches for the solution of Eq. (3.36.1) can be coupled with
ETDStabm and RLm approaches for the solution of Eq. (3.36.2). Alternatively, in a predictor-
correct fashion, a corrective fourth step can be additionally considered. In this case in stage 2.
we consider an EXPm method fully explicit with respect to V . This step can be seen as a predictor
step. After the computation of the action potential in stage 3. via IMEXm or BDFm approach, we
are then able to apply a EXPm method implicit with respect to V in stage 4. This step can be
regarded as a corrector step. In the next sections we present IMEX and BDF approaches for the
solution of Eq. (3.36.1). For simplicity, we neglect the contribution of the applied current Iapp

which, in the proposed numerical tests, is independent on V .

1: a step of ABm scheme is applied to (3.36.3) to update the ionic concentrations c;
2: a step an EXPm scheme is then applied to (3.36.2) to update the gating variables s;
3: a step of IMEXm or BDFm is applied to (3.36.1) to update the action potential V .

Algorithm 4: Numerical integration schemes for the solution of the monodomain system.

3.2.1 Implicit-explicit - exponential schemes

IMEXm schemes for the solution of Eq. (3.36.1) combine an implicit scheme for the discretization
of the diffusive term and an explicit one for the discretization of the ionic (and applied) currents.
In detail, they combine implicit and explicit Adams schemes of order of accuracy m obtaining

βCm

m
∑

j=0

a jV
n+1− j +τ

 

m
∑

j=0

b j∇ · Gm∇V n+1− j + β
m
∑

j=1

c j Iion(V
n+1− j , sn+1− j ,cn+1− j)

!

= 0.

(3.37)

The parameters a j , b j , and c j are chosen to obtain a m-th order scheme. Coupling IMEXm scheme
with a EXPm scheme for the solution of Eq. (3.36.2) and with the ABm scheme for the solution
of the ionic concentrations described in Eq. (3.36.3) the resulting method is referred to as IMEX-
EXPm scheme. In case we consider cells dynamics, we replace Eq. (3.36.1) by

Cm
dV
d t
+ Iion(V, s,c) = 0 (3.38)

In this case stage 3. is substituted by a step of ABm scheme applied to (3.38) to update V . Under-
lining the explicit nature of Bashforth schemes, we refer to the resulting strategies as EX-EXPm

schemes.

3.2.2 Backward differentiation formula - exponential schemes

The application of BDFm schemes to Eq. (3.36.1) results into an implicit evaluation of the diffusive
term and of the ionic (and applied) currents. Resulting schemes obey the equation

βCm

m
∑

j=0

a jV
n+1− j +τb

�

∇ · Gm∇V n+1 + β Iion(V
n+1, sn+1,cn+1)

�

= 0, (3.39)
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where the parameters a j , and b are chosen to obtain a m-order of accuracy scheme. We con-
sider a0 = 1. Coupling the obtained BDFm scheme with an EXPm scheme for the solution of
(3.36.2) and with the ABm scheme for the solution of the ionic concentrations (3.36.3) the re-
sulting method is referred to as BDF-EXPm scheme. In this case, we consider an explicit EXPm

scheme for the solution of the gating variables. We define r(V n+1) to be the left hand side of
Eq. (3.39). The solution of the arising nonlinear problem r(V n+1) = 0 is computed applying the
Newton’s algorithm. In this case, considering the time step n + 1 (which index is neglected),
stage 3 of Newton’s Alg. (1) reads

solve for δV s.t. D r(V k)δV = −r(V k) (3.40)

where

r(V k) = V k + βCm

∑m
j=1 a jV

n+1− j +τb
�

∇ · Gm∇V k + β Iion(V k, sn+1,cn+1)
�

= 0. (3.41)

It holds

D r(V k)δV =
∂ r
∂ V k

δV = βCmδV +τb

�

∇ · Gm∇(δV ) + β
∂ Iion(V k, sn+1,cn+1)

∂ V k
δV

�

. (3.42)

Therefore the application of BDF discretization implies the need to evaluate the derivatives of the
ionic currents with respect to the AP. To obtain an estimate of the derivatives finite differences
(FD) method is applicable. Due to its computational cost, the resulting FD-BDF-EXPm strategy is
suitable just in one-dimensional simulations. In the next sections we present two alternative to
the FD approach: the quasi-Newton (qN-BDF-EXP) and the complex step derivative approxima-
tion (CSDA-BDF-EXP) backward differentiation exponential schemes.

3.3 Approximation of the derivatives of the ionic currents in
backward differentiation formula-based schemes

3.3.1 Quasi-Newton schemes

Goal of quasi-Newton approaches is to propose a suitable approximation of the derivatives of
interest. Slightly modifying the general form proposed by [Ambrosi et al., 2012], ionic currents
can be expressed as sum of P currents as

Iion(V, s,c) =
P
∑

p=1

Ip(V, s) where Ip(V, s) = gp(V, s,c)(V − Vp). (3.43)

In detail we define

gp(V, s,c) = kpqp(V,c)
ng
∏

i=1

s
ppi

i (V,c). (3.44)

Here kp are the maximum conductances of the ionic channel p and ppi are integers. Moreover
qp : Br × T → R. Consider the time step n + 1 of stage 3 of Newton’s Alg. 1. For the sake of
simplicity, we neglect the index n. In the proposed qN approach, we approximate the derivative
of the ionic currents with respect to V by

∂ Iion(V k, sn+1,cn+1)
∂ V k

δV ≈ kpqp(V
k,cn+1)

ng
∏

i=1

s
ppi

i (V
k +δV,cn+1). (3.45)
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We recall that the FHN model ( see 1.2.2) does not follow the HH formalism. For this model the
analytic computation of the derivative of Iion with respect to the AP is straightforward. For this
latter model, in the proposed qN approach we approximate the derivative of interest neglecting
the contribution of the term associated to the recovery gating variable ω, i.e.

∂ Iion(V k,ωn+1)
∂ V k

δV ≈ c1((V k +δV − Vr)(V k +δV − Vunst)+

+(V k +δV − Vr)(V k +δV − Vp) + (V k +δV − Vunst)(V k +δV − Vp)).
(3.46)

3.3.2 Complex step derivative approximation

Lyness and Moler [Lyness, 1967; Lyness and Moler, 1967] introduced the use of complex arith-
metic for the numerical approximation of derivatives. In this section we discuss the application
of the CSDA for the evaluation of the partial derivative of the function Iion(V, s,c), with respect
to V . We consider V to be an independent variable. Given the function Iion : R×Rng ×Rmc → R,
we consider its Taylor series expansion

Iion(V + ihv , s,c) =
∞
∑

ζ=0

(ihv)ζ

ζ!
dζ Iion(V, s,c)

∂ V ζ
=

= Iion(V, s,c) + ihv
∂ Iion(V, s,c)

∂ V
+

−
hv

2!
∂ 2 Iion(V, s,c)

∂ V 2
+O(h3

v),

where V, hv ∈ R and i2 = −1. Equating the imaginary parts it holds

∂ Iion(V, s,c)
∂ V

= Im
Iion(V + ihv , s,c)

hv
+O(h2

v). (3.47)

We underline that the estimate

∂ Iion(V, s,c)
∂ V

' Im
Iion(V + ihv , s,c)

hv
(3.48)

is not subject to subtractive numerical cancellation errors. Applying the CSDA method, in Eq. 3.42
we consider the estimate

∂ Iion(V k, sn+1,cn+1)
∂ V k

≈ Im
Iion(V k + iδV, sn+1,cn+1)

δV
. (3.49)

Main advantages of the CSDA are that the considered approximation is not subject to roundoff
errors and that the method is easily implementable in a black-box manner. The CSDA can be ap-
plied to generic functions under the hypothesis that they admit a complex analytic extension. In
case, for example, the considered ionic model involves an Heaviside function, an approximation
of this function that admit a complex extension need to be considered. Uses of the CSDA appear
in [Kelley, 2003] and in [Martins et al., 2003]. In this latter work the automatic implementation
of the CSDA is presented in detail for C/C++ and Fortran. To the best of our knowledge, the
application of this approach in cardiac electrophysiology represents a novelty of our work.
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Equation Symbol Quantity Unit Value

Monodomain Cm transmembrane capacitance µF cm−2 1

χ surface to volume ratio cm−1 1400

Gi intra-longitudinal conductivity mS mm−1 0.17, 0.019

Ge extra-longitudinal conductivity mS mm−1 0.62, 0.24

FHN Vr resting value mV -85.0

Vp peak value mV 30.0

Vunst unstable value mV -57.6

η1 first param. mScm−2mV−2 1.4e-3

η2 second param. mScm−2 10.0

η3 third param ms−1mV−1 2.6e-3

η4 fourth param ms−1 2.3

BWZVP Vr resting AP value mV -90.2

TTNP06 Vr resting AP value mV -85.8

APD restitution slope 1.1

Table 3.1. Parameters calibration for the performed numerical tests.
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3.4 Numerical Results

Aim of this section is to investigate the convergence behavior of the high-order time integration
schemes presented in Sec. 3.1 and in Sec. 3.2. Moreover we study their impact on post-processing
quantities of clinical relevance. As a preliminary test, in Sec. 3.4.1 we assess the performances
of EXPm schemes applied to a IVP with trigonometric functions as coefficient (test A). Moreover,
we discuss the numerical results for the EXPm schemes applied to the BWZVP cellular model
with given action potential (test B). To extend the results, we study of the converge of the IMEX-
ETDStabm and of the BDF-ETDStabm schemes for the solution of the complete cellular BWZVP
model (test C). In this case, due to the absence of the diffusive term, IMEX-ETDStabm schemes
reduce to EX-ETDStabm schemes. Additionally in Sec. 3.4.2, we discuss high-order nonlinear
strategies for the solution of the monodomain system. In detail, in test D, we investigate the
performance of IMEX-ETDStabm and qN-BDF-ETDStabm schemes for the solution of the mon-
odomain system (3.36) coupled with the FHN and the BWZVP ionic models. Moreover, the qN-
BDF-ETDStabm schemes are compared in terms of required computational time. In Sec. 3.4.3,
we compare the performance of the qN-BDF-ETDStabm, the CSDA-BDF-ETDStabm and the FD-
BDF-ETDStabm schemes in 1D and 3D numerical tests. In detail, for this tests we consider the
FHN, the BWZVP, and the TNNP06 models. Unless otherwise stated, we consider the model pa-
rameters reported in Tab. 5.1 and the absolute tolerance of tol = 1e-10 as stopping criteria. We
solve the linear system arising from the linearization of the monodomain equation with algebraic
multigrid (AMG) method (BoomerAMG of the PETSc suite [Balay et al., 2017]).

3.4.1 Numerical results for exponential schemes

In this section, we consider the relative error in L∞(t0, tfin) norm between the numerical solution
yτ and the reference solution uref defined as

er rr(yτ, uref) =
‖yτ − uref‖L∞

‖uref‖L∞
. (3.50)

Exponential schemes for trigonometric IVP - Test A

We compare the performance of the EXP schemes for the solution of the IVP problem

�

y(t)′ = cos(t)y(t) + cos3(t),

y(0) =0.
(3.51)

The IVP above admits analytical solution u(t) = sin(t)2+2sin(t)+1−esin(t). We consider tfin = 10.
In Fig. 3.1, we compare the performance of first-, second-, third- and fourth-order EXPm schemes,
respectively, for the solution of Eq. (3.51). In particular second-, third- and fourth-rows show
results obtained for the IFm schemes on the left and for the ETDm schemes on the right panels
of the figure. For all the considered order of accuracy, results show that ETDm (with or without
stabilization) and RLm schemes allow to achieve a smaller relative error if compared to the ones
achieved using IFm schemes. Due to the polynomial approximation required by the methods, we
underline that the low errors obtained applying the non-stabilized ETDm schemes are associated
with an higher computational cost.
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Figure 3.1. Test A. Performance of IFm, BDFm, ETDm, and RLm schemes for the IVP (3.51).
Second-, third- and fourth-rows show results obtained for the IFm schemes (left) and for the
ETDm schemes (right). Relative errors in L∞ norm are computed against the analytical
solution u.
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Exponential schemes for the BWZVP cellular model action potential given) - Test B

We here report the results obtained applying the ETDm and RLm methods for the solution of the
BWZVP first generation cellular model







Cm
dV
dt + Iion(V, s) = Iapp,

dsi
d t = αi(V )(1− si)− βi(V )si , i = 1, . . . , ng .

(3.52)

The reference solution u is obtained considering a AB2-AM3 predictor-corrector approach with
time step τ = 2−12 ms. We study the performance of the schemes in an isolated fashion consid-
ering the AP as given. We consider the C∞(t0, tfin) stimulation protocol

Iapp(t) = χ(19,21)(t)Imaxe((t−20)2−1)−1

with Imax = 100 µA. (3.53)

We consider [t0, tfin] = [0,450] ms. First-, second- and third-rows of Fig. 3.2 show the perfor-
mance of first- and second-, third- and fourth-order schemes, respectively. Relative errors in L∞

norm are computed against the reference solution. Results are shown for the stiff gating vari-
ables v (first column) and m (second column) and for the non-stiff variable f (third column).
Results show that, for all the considered order of accuracy, the non-stabilized ETD schemes allow
to achieve a smaller relative error if compared to the ones achieved applying the ETDStab and
RL schemes. The ETDStab and the RL schemes perform similarly for the solution of the non-stiff
gating variable f . The behavior of the errors associated to the non-stiff gating variables to and X
is similar to the one associated to f . Avoiding redundancy in the plots we report only the gating
variables v, m, f .

Exponential schemes for the BWZVP cellular model - Test C

We investigate the convergence of the EX-ETDStab and of the BDF-ETDStab methods for the
BWZVP cellular model (see Sec. 3.52). We consider V0(x) = 0, and the naturally associated
initial values for the gating variables. As in the previous test, we consider [t0, tfin] = [0, 450]
ms. The reference solution is obtained applying AB2-AM3 predictor-corrector approach with time
step τ = 2−12 ms. Tab. 3.2 and 3.3 report the relative errors (denoted as errr) of the numerical
solutions computed applying the EX-ETDStabm and qN-BDF-ETDStabm schemes, respectively. Ta-
bles show that, considering the same time step and the same order of accuracy of the methods,
the EXP-ETDStab and qN-BDF-ETDStab approaches perform similarly. However we recall that the
application of high-order EX-ETDStabm is subjected to stability conditions. In particular τ≤ 1e-1
ms and τ≤ 5e-2 ms are required to obtain the convergence of EX-ETDStab3 and the EX-ETDStab4

schemes, respectively. Similar stability results have been shown in [Perego and Veneziani, 2009].
The estimated convergence rates (denoted as r and computed considering nested sequence of
time grids) are reported in brackets. Even if theoretical proofs of convergence for the considered
schemes are not available, the estimated convergence rates of the qN-BDF-ETDStabm approaches
perfectly fit our expectations.

3.4.2 Numerical results for nonlinear high-order schemes

In this section, we consider the absolute error between the numerical solution yτ and the refer-
ence solution u computed as

er ra(yτ, u) = max
t∈ [t0,tfin]

‖yτ − u‖L2 . (3.54)
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Figure 3.2. Test B. Performance of EXPm integration schemes for the solution of the stiff
gating variables v (first-) and m (second-column) and for the non-stiff variable f (third
column) of the BWZVP model. Results are shown for the first- and second- (first-), third-
(second-) and fourth-order (third-row) schemes. The AP is considered as given. Relative
errors in L∞ norm are computed against the reference solution.

High-order schemes for 1D monodomain coupled with the BWZVP model - Test D

As idealized cardiac muscle fiber, we consider a 2 cm long fiber aligned along the x-axis. In 1D
tests, we consider the intra-longitudinal and the extra-longitudinal conductivities to be equal to
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EX-ETDStab1 EX-ETDStab2 EX-ETDStab3 EX-ETDStab4

τ [ms] errr r err r r errr r errr r

2e-1 7.09e1 (-) 6.44e1 (-) - - - -

1e-1 5.06e1 (0.48) 1.35e1 (2.16) 3.73e1 (-) - -

5e-2 1.61e1 (1.65) 6.52 (1.04) 4.44 (3.07) 1.10 (-)

2.5e-2 4.86 (1.73) 2.22 (1.55) 4.47e-1 (3.31) 5.89e-2 (4.22)

1.25e-2 2.42 (1.00) 6.19e-1 (1.84) 5.56e-2 (3.00) 1.78e-3 (5.04)

6.25e-3 1.21 (1.00) 1.60e-1 (1.94) 6.62e-3 ( 3.07) 2.61e-4 (2.76)

3.125e-3 0.60 (1.00) 4.06e-2 (1.98) 8.01e-4 (3.04) 2.41e-5 (3.43)

1.5625e-3 0.30 (1.00) 1.02e-2 (1.99) 1.00e-4 (2.99) 5.29e-7 (5.50)

Table 3.2. Test C. Relative errors (denoted as err) in L∞ norm for the solution of the
BWZVP cellular model applying EX-ETDStabm schemes. The estimated convergence rates
(denoted as r), computed considering nested sequence of time grids, are reported in brackets.

1mS mm−1. We consider the stimulus

Iapp(x , t) = χ[0,0.2]×(0,2)(x , t)Imaxe((t−1)2−1)−1

with Imax = 130000 µA,

for [t0, tfin] = [0,450] ms. In case the FHN ionic model is considered, the exact Newton (N)
method is applicable. As a preliminary test, we first study of the converge of N-BDF-BDFm and
N-BDF-ETDStabm schemes for the solution of the monodomain equation coupled with the FHN
ionic model. Left panel of Fig. 3.3 reports the snapshots of the numerical solutions obtained
with the N-BDF-ETDStabm schemes at time t = 10 ms. The reference solution is computed with
the time step τ = 2−9 ms and a spatial mesh of size h =2e-4 cm. The space-time grids consid-
ered are uniformly distributed. The reference solution is obtained with the N-BDF-BDF3 scheme,
which convergence for τ = 2−13 has been tested against the solutions obtained with the N-BDF-
BDF1 and the N-BDF-BDF2 schemes. It is well known that, in case of travelling waves, consider-
ing sufficiently small values of h, FE schemes overestimates the analytical conduction velocities
(CV) [Pezzuto et al., 2016]. Fixed a particular h, our goal is to study how the numerical time-
integration schemes reproduce the CV obtained for the reference numerical solution. For the
BWZVP model, considering the first-order scheme a remarkable delay in the electrical activation
of the tissue is obtained. After 10 ms, the mean CV computed considering the N-BDF-BDF1 and
the N-BDF-ETDStab1 schemes are approximatively the 6% higher of the one computed consider-
ing the corresponding second-, third-, and fourth-order schemes. The obtained absolute errors (
denoted in the table as erra) for the N-BDF-BDFm and N-BDF-ETDStabm schemes are reported in
Tab. 3.4 and 3.5. Estimated convergence rates (denoted with r), computed considering nested
sequence of time grids, are reported in brackets. For what concerns the estimated convergence
rates, all the methods perfectly fit our expectations. Moreover we study of the converge of
the IMEX-ETDStabm and the BDF-ETDStabm schemes for the solution of the monodomain system
coupled with the BWZVP ionic model. As already discussed in the introduction, high-order IMEX-
ETDStabm schemes are conditionally stable. In this test, the convergence of the IMEX-ETDStab3
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qN-BDF-ETDStab1 qN-BDF-ETDStab2 qN-BDF-ETDStab3 qN-BDF-ETDStab4

τ [ms] errr r errr r errr r errr r

2e-1 1.05e1 (-) 1.11e1 (-) 4.23e1 (-) 3.05e1 (-)

1e-1 5.34 (0.98) 4.57 (1.33) 8.57 (2.30) 1.47e1 (1.10)

5e-2 3.62 (0.55) 1.39 (1.71) 1.46 (2.55) 7.81e-1 (4.23)

2.5e-2 2.43 (0.57) 3.37e-1 (2.04) 1.97e-1 (2.88) 5.39e-2 (3.85)

1.25e-2 1.37 (0.82) 1.01e-1 (1.74) 1.95e-2 (3.33) 3.67e-3 (3.87)

6.25e-3 7.22e-1 (0.92) 2.80e-2 (1.84) 2.25e-3 (3.11) 2.34e-4 (3.94)

3.125e-3 3.70e-1 (0.96) 7.35e-3 (1.93) 2.88e-4 (2.97) 1.31e-5 ( 4.17)

1.5625e-3 1.87e-1 (0.98) 1.88e-3 (1.96) 3.57e-5 (3.01) 1.30e-6 ( 3.33)

Table 3.3. Test C: relative errors (denoted as errm) in L∞ norm for the solution of the
BWZVP cellular model applying qN-BDF-ETDStabm schemes. Estimated convergence rates
(denoted as r), computed considering nested sequence of time grids, are reported in brackets.
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Figure 3.3. Test D: snapshot at t = 10 ms of the numerical solutions of the monodomain
system coupled with the FHN (left) and the BWZVP (right) models computed with qN-
BDF-ETDStabm schemes with τ= 5e-2 ms.

and IMEX-ETDStab4 methods are subjected to τ≤ 5e-2 ms and τ≤ 2.5e-2 ms, respectively. For
smaller values of τ, the sizes hmin of the finest spatial grids that ensure the convergence of the
IMEX-ETDStab3 and IMEX-ETDStab4 schemes are reported in Tab. 3.6. Similar results have been
reported in [Ethier and Bourgault, 2008a]. Considering the spatial grids of mesh sizes hmin, it
is not possible to observe the order of accuracy expected in time for the proposed schemes. In
these cases the convergence in time is concealed by spatial effects. As discussed in Sec. 3.2.2,
the application of BDF-ETDStabm methods in a Newton fashion require the evaluations of the
derivatives of the currents with respect to V . We consider the numerical solutions obtained with
qN-BDF-ETDStabm schemes. Right panel of Fig. 3.3 reports the snapshots of the numerical solu-
tions at time t = 10 ms. Considering the first-order scheme a remarkable delay in the electrical
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N-BDF-BDF1 N-BDF-BDF2 N-BDF-BDF3 N-BDF-BDF4

τ [ms] erra r erra r erra r erra r

2e-1 2.94e1 (-) 6.68 (-) 3.51 (-) 1.74 (-)

1e-1 1.52e1 (0.94) 2.03 (1.71) 5.61e-1 (2.64) 4.58e-1 (1.92)

5e-2 7.58 (1.00) 5.74e-1 (1.82) 1.11e-1 (2.32) 6.7e-2 (2.75)

2.5e-2 3.73 (1.02) 1.48e-1 (1.95) 1.52e-2 (2.87) 6.13e-3 (3.46)

1.25e-2 1.84 (1.01) 3.67e-2 (2.01) 1.60e-3 (3.24) 4.39e-4 (3.80)

6.25e-3 9.14e-1 (1.01) 9.06e-3 (2.01) 2.37e-4 (2.75) 2.6e-5 (4.07)

3.125e-3 4.55e-1 (1.00) 2.24e-3 (2.01) 3.17e-5 (2.90) 1.48e-6 (4.13)

1.5625e-3 2.27e-1 (1.00) 5.58e-4 (2.00) 4.10e-6 (2.95) 9.25e-8 (4.00)

Table 3.4. Test D: absolute errors (denoted with erra) for the solution monodomain equation
coupled with the FHN ionic model applying the N-BDF-BDFm schemes. The estimated
convergence rates r, computed considering nested sequence of time grids, are reported in
brackets.

N-BDF-ETDStab1 N-BDF-ETDStab2 N-BDF-ETDStab3 N-BDF-ETDStab4

τ [ms] erra r erra r erra r erra r

2e-1 2.94e1 (-) 6.69 (-) 3.51 (-) 1.74 (-)

1e-1 1.52e1 (0.94) 2.03 (1.71) 5.61e-1 (2.64) 4.58e-1 (1.92)

5e-2 7.58 (1.00) 5.75e-1 (1.82) 1.11e-1 (2.32) 6.79e-2 (2.75)

2.5e-2 3.35 (1.02) 1.48e-1 (1.95) 1.52e-2 (2.87) 6.13e-3 (3.46)

1.25e-2 1.84 (1.01) 3.68e-2 (2.01) 1.60e-3 (3.24) 4.45e-4 (3.78)

6.25e-3 9.14e-1 (1.01) 9.08e-3 (2.01) 2.37e-4 (2.75) 2.6e-5 (4.09)

3.125e-3 4.55e-1 (1.00) 2.21e-3 (2.03) 3.18e-5 (2.89) 1.54e-6 (4.08)

1.5625e-3 2.08e-1 (1.12) 5.48e-4 (2.01) 4.10e-6 (2.95) 9.25e-8 (4.05)

Table 3.5. Test D: absolute errors (denoted with erra) for the solution monodomain equation
coupled with the FHN ionic model applying the N-BDF-ETDStabm schemes. The estimated
convergence rates r, computed considering nested sequence of time grids, are reported in
brackets.
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activation of the tissue is obtained. After 10 ms, the mean CV computed considering the qN-
BDF-ETDStab1 scheme is approximatively the 7% smaller of the one computed considering the
qN-BDF-ETDStab4 scheme. The absolute errors (denoted with erra) associated to the numerical
solutions obtained with the qN-BDF-ETDStabm schemes are reported in Tab. 3.7. The estimated
convergence rates (denoted with r), computed considering nested sequence of time grids, are
reported in brackets. Concerning the estimated convergence rates, qN-BDF-ETDStab1, qN-BDF-
ETDStab2 and qN-BDF-ETDStab3 perfectly fit our expectations. For the BDF-ETDStab4 method,
the estimated convergence rates presents some fluctuations around the expected value 4.

τ [ms] IMEX-ETDStab3 IMEX-ETDStab4

5e-2 4.878e-3 ;

2.5e-2 3.194e-3 5.263e-3

1.25e-2 2.222e-3 3.333e-3

6.25e-3 1.510e-3 2.222e-3

Table 3.6. Test D: minimum size hmin of the spatial uniform grids that ensure convergence
of the IMEX-ETDStabm schemes given a specific time step τ. Results are reported for the
IMEX-ETDStab3 and IMEX-ETDStab4 methods.

qN-BDF-ETDStab1 qN-BDF-ETDStab2 qN-BDF-ETDStab3 qN-BDF-ETDStab4

τ [ms] erra r erra r erra r erra r

2e-1 2.46e1 (-) 1.45e1 (-) 5.44 (-) 1.70e1 (-)

1e-1 1.35e1 (0.86) 2.08 (2.80) 1.42e1 (-) 2.01e1 (-)

5e-2 6.42 (1.07) 1.78 (0.22) 2.46 (2.52) 8.20e-1 (4.61)

2.5e-2 2.97 (1.11) 6.34e-1 (1.48) 3.16e-1 (2.96) 2.33e-3 (8.45)

1.25e-2 1.40 (1.08) 1.86e-1 (1.76) 3.88e-2 (3.02) 2.26e-3 (0.04)

6.25e-3 6.83e-1 (1.03) 5.03e-2 (1.88) 4.73e-3 (3.03) 2.13e-4 (3.40)

3.125e-3 3.36e-1 (1.02) 1.30e-2 (1.95) 5.77e-4 (3.03) 1.54e-5 (3.78)

1.5625e-3 1.66e-1 (1.01) 3.32e-3 (1.96) 6.99e-5 (3.04) 1.10e-6 (3.80)

Table 3.7. Test D: absolute errors (denoted with erra) for the solution monodomain equation
coupled with the BWZVP ionic model applying qN-BDF-ETDStabm schemes. The estimated
convergence rates r, computed considering nested sequence of time grids, are reported in
brackets.

Computational cost

To evaluate the computation cost of different time stepping schemes, we define
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qN-BDF-ETDStab1 qN-BDF-ETDStab2

τ [ms] tG [s] tH [s] N tts [s] tgv[s] tG [s] tH [s] N tts [s] tgv[s]

2e-1 5.55e-3 5.68e-3 10.55 1.44e-1 4.44e-3 5.98e-3 5.98e-3 8.53 1.21e-1 5.02e-3

1e-1 5.78e-3 5.83e-3 7.71 1.08e-1 4.37e-3 6.01e-3 6.01e-3 6.74 1.00e-1 4.90e-3

5e-2 5.88e-3 5.89e-3 5.88 8.65e-2 4.23e-3 5.91e-3 6.06e-3 5.78 8.70e-2 4.74e-3

2.5e-2 6.01e-3 6.06e-3 4.90 7.67e-2 4.53e-3 6.24e-3 6.30e-3 4.87 7.86e-2 4.97e-3

1.25e-2 5.88e-3 5.85e-3 4.85 7.33e-2 4.46e-3 6.48e-3 6.58e-3 3.93 6.84e-2 5.12e-3

6.25e-3 5.89e-3 5.93e-3 3.92 6.18e-2 4.32e-3 6.32e-3 6.44e-3 3.90 6.61e-2 4.78e-3

3.125e-3 6.03e-3 5.98e-3 3.90 6.19e-2 4.37e-3 6.27e-3 6.42e-3 2.96 5.22e-2 4.87e-3

1.5625e-3 6.22e-3 6.29e-3 2.94 5.12e-2 4.37e-3 6.45e-3 6.78e-3 1.99 4.15e-2 4.75e-3

qN-BDF-ETDStab3 qN-BDF-ETDStab4

τ [ms] tG [s] tH [s] N tts [s] tgv [s] tG [s] tH [s] N tts [s] tgv [s]

2e-1 5.94e-3 6.12e-3 7.55 1.10e-1 5.57e-3 6.23e-3 6.58e-3 6.71 1.05e-1 6.57e-3

1e-1 6.08e-3 6.29e-3 5.86 9.08e-2 5.55e-3 6.47e-3 6.88e-3 5.83 9.76e-2 6.48e-3

5e-2 6.17e-3 6.50e-3 4.92 8.03e-2 5.60e-3 6.42e-3 6.85e-3 4.9 8.37e-2 6.51e-3

2.5e-2 6.54e-3 6.85e-3 4.87 8.35e-2 5.67e-3 6.45e-3 6.92e-3 4.83 8.29e-2 6.48e-3

1.25e-2 6.31e-3 6.81e-3 3.92 6.88e-2 5.57e-3 6.51e-3 7.10e-3 3.92 7.09e-2 6.56e-3

6.25e-3 6.63e-3 7.01e-3 3.90 7.04e-2 5.63e-3 6.55e-3 7.09e-3 3.9 7.04e-2 6.60e-3

3.125e-3 6.83e-3 7.16e-3 2.95 5.73e-2 5.64e-3 6.81e-3 7.23e-3 2.94 5.74e-2 6.38e-3

1.5625e-3 6.66e-3 6.98e-3 2.93 5.58e-2 5.65e-3 6.86e-3 7.26e-3 2.93 5.78e-2 6.43e-3

Table 3.8. Test D: tG , tH the mean execution times for a single evaluation of the gradient
and Hessian functions on the complete domain, N the mean number of nonlinear iterations
per time step, tts the mean execution time per time step, and tgv the mean evaluation time
for the current value of the gating variables reported in second against the considered time
step τ. We consider the qN-BDF-ETDStabm schemes for the BWZVP ionic model.

1. tG , tH : mean execution times in seconds for a single evaluation of the gradient and Hessian
functions, respectively, on the complete domain;

2. N : mean number of nonlinear iterations per time step;

3. tts: mean total assembling time in seconds per time step;

4. tgv: mean execution times in seconds for the evaluation of the gating variables on the
complete domain.

Tab. 3.8 reports the values of tG , tH , N , tts computed with the qN-BDF-ETDStabm schemes
considering the first 20 ms of simulation after the electrical activation of the tissue. Results are
shown for the monodomain system coupled with the BWZVP ionic model. Simulations are run
as single-core executions performed on MacBook Pro (Retina, Mid 2015) PC. Compared with the
ones obtained for the first-order scheme, the times tG and tH increase respectively of approxima-
tively the 5% and 6% for the qN-BDF-ETDStab2 , of the 8% and 13% for the qN-BDF-ETDStab3 and
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of the 10% and 17% for the qN-BDF-ETDStab4 schemes. Moreover, the mean times tgv increase of
approximatively the 11%, the 27% and the 48% for the qN-BDF-ETDStab2, the qN-BDF-ETDStab3

and the qN-BDF-ETDStab4 schemes, respectively. For equal values of τ, high-order methods cor-
respond to a smaller number of nonlinear iteration per time stepN . In detail, compared with the
ones obtained for the first-order scheme, a decrease ofN of approximatively the 13%, of the 17%
and of the 19% is obtained for the qN-BDF-ETDStab2, qN-BDF-ETDStab3 and qN-BDF-ETDStab4

schemes, respectively. This results in smaller values of tts of approximatively the 7% for the -BDF-
ETDStab2 and qN-BDF-ETDStab3 schemes and the 5% for the qN-BDF-ETDStab4 scheme. Fig. 3.4
shows the cost in CPU time for the qN-BDF-ETDStabm schemes for 1 ms of simulation against the
associated absolute errors. We notice that, for equal values of τ, the CPU times for the different
schemes present very small fluctuations. For m= {1,2, 3 } , moving from the qN-BDF-ETDStabm

scheme to the qN-BDF-ETDStabm+1 scheme results in a reduction of the absolute errors. In detail,
for values of τ smaller or equal than 2.5e-2 ms results in approximatively in a factor of 0.1.
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Figure 3.4. Test D: cost in CPU time for the qN-BDF-ETDStabm schemes against the
absolute error (denoted with erra) obtained of the scheme for 1ms of simulation of the
monodomain system coupled with the BWZVP ionic model.

3.4.3 Numerical results - approximation of the derivatives of the ionic currents

In this section we compare the numerical results obtained for qN-BDF-ETDStabm, CSDA-BDF-
ETDStabm and FD-BDF-ETDStabm schemes in 1D and 3D numerical tests. We consider the FHN,
the BWZVP, and the TNNP06 models described in Sec. 1.2.4. For Newton-BDF-ETDStabm, qN-
BDF-ETDStabm, and CSDA-BDF-ETDStabm schemes the mean number of nonlinear iterations per
time step coincides with the mean number of evaluations of the gradient (and of the Hessian)
on the complete domain. For the FD-BDF-ETDStabm methods to every nonlinear step correspond
four evaluations of the gradient, three of which are associated to the assembling of the Hessian
matrix. As in [Martins et al., 2003], for the CSDA-BDF method we have tested a wide range of
CSDA step-sizes, from hv = 10−2 to hv = 10−200. For all of the considered step sizes the complex-
step method yields accurate numerical solutions and results into the same number of nonlinear
iterations per time step N .



69 3.4 Numerical Results

Comparison of derivatives approximations for 1D monodomain model - Test E

We simulate the propagation of the electrical impulse through the domainBr introduced in test
D. We consider the exponential activation described in Eq. (3.4.2) for Imax = 250000 µA and a
uniform space-time grids with h = 0.02 mm and τ = 0.1 ms. We consider [t0, tfin] = [0, 600]
ms. Tab. 3.9 reports tG , tH , N , and tts for the CSDA-BDF-ETDStab1, qN-BDF-ETDStab1, and
FD-BDF-ETDStab1 schemes. Data in Tab. 3.9 are computed as mean values over the first fifty
milliseconds of simulation. Results are reported for the FHN, for the BWZVP (discretized with
first- and second-order BDF-ETDStab schemes), and for the TNNP06 ionic models. For the FHN
model, results are reported also for the Newton’s method (N-BDF-ETDStab1). For the BWZVP
model results are reported also for the BDF-ETDStab2 scheme. The FD-BDF-ETDStab1 scheme
for the TNNP06 model does not converge for τ= 0.1 ms. For this model results are computed also
considering τ= 0.02 ms, the biggest time step for which the method converges. For all the con-
sidered test cases, the CSDA-BDF-ETDStabm schemes perform similarly to the FD-BDF-ETDStabm

schemes in terms of mean number N of nonlinear iterations per time step. On the other hand,
CSDA result into a smaller mean execution times for the evaluation of the gradient and Hes-
sian functions if compared to the FD-BDF-ETDStabm schemes. Even if for the BWZVP model the
qN-BDF-ETDStabm schemes performs poorly, it results to be the best performing scheme when
the TNNP06 model is considered. For the considered schemes, Fig. 3.5 shows the number of
nonlinear iterations against the current simulation time considering τ = 0.1 ms. For the FHN
model, for the time steps for which the contribution of ω to the ionic current is relevant, the
qN-BDF-ETDStab1 scheme results into an higher number of nonlinear iterations. In detail in this
case, the maximum number of nonlinear iteration per time step is obtained around t = 100 ms,
see Fig. 3.5 (top left). For t ≥ 150 ms, the contribution of ω is reduced in importance and
the qN-BDF-ETDStab1 scheme performs similarly to the other schemes. Simulations are run as
single-core executions performed on MacBook Pro (Retina, Mid 2015) PC.

Comparison of derivatives approximations for 3D slab of tissue - Test F

We simulate the propagation of the electrical impulse through a 3D slab of tissue for 50 ms. We
consider a slab of size 20 mm×7 mm×3 mm and with fibers aligned along X-axis, see Fig. 3.6.
This test case has been proposed in the “N-benchmark paper” [Niederer et al., 2011]. We consider
a uniform mesh of 420k elements. For this hexahedral mesh, third-order gauss quadrature rule
results into 8 quadrature points for each element. As a stimulation geometry we consider a 1.5
mm ×1.5 mm ×1.5 cube from the corner ps = 0 (outlined in black in Fig. 3.6). We consider the
stimulation protocol

Iapp(t,x) = χ[0,0.15]3×(0,2)(x, t)Imaxe((t−1)2−1)−1

with Imax = 250000 µA. (3.55)

Fig. 3.6 shows, for the reference solution, the AP propagation for the BWZVP model reported
25 ms after the application of the electrical stimulus. Tab. 3.6 reports the numerical results ob-
tained for the CSDA-BDF-ETDStab1, the qN-BDF-ETDStab1, and the FD-BDF-ETDStab1 schemes.
As obtained in test E, for the FHN model, the qN-BDF-ETDStab1 method results into an higher
number of nonlinear iterations if compared to the other schemes. For the BWZVP model, the
CSDA-BDF-ETDStab1 scheme outperforms the qN-BDF-ETDStab1 scheme. The opposite behavior
can be observed for the TNNP06 model. Simulations were run on the ICS cluster, which each
node runs CentOS 7.1×86_64. In detail, 3D simulations for test F and test G were run on 4 nodes
with 2×Intel E5-2650 v3, 20 (2 x 10) cores.
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FHN

τ= 0.1 ms, -BDF-ETDStab1

tG [s] tH [s] N tts [s]

N- 3.315e-3 3.521e-3 3.98 2.726e-2

CSDA- 3.282e-3 3.520e-3 3.98 2.712e-2

qN- 3.395e-3 3.662e-3 5.98 4.225e-2

FD- 3.651e-3 3*3.651e-3 3.98 5.815e-2

BWZVP

τ= 0.1 ms, -BDF-ETDStab1 τ= 0.1 ms, -BDF-ETDStab2

tG [s] tH [s] N tts [s] tG [s] tH [s] N tts [s]

CSDA- 7.253e-3 9.961e-3 2.97 5.126e-2 7.435e-3 9.915e-3 2.96 5.146e-2

qN- 7.258e-3 7.652e-3 7.84 1.175e-1 7.675e-3 7.839e-3 6.92 1.073e-1

FD- 7.602e-3 3*7.602e-3 2.97 9.055e-2 7.915e-3 3*7.915e-3 2.96 9.390e-2

TTNP06

τ= 0.1 ms, -BDF-ETDStab1 τ= 0.02 ms, -BDF-ETDStab1

tG [s] tH [s] N tts [s] tG [s] tH [s] N tts [s]

CSDA- 8.501e-3 1.007e-2 4.972 9.237e-2 8.794e-3 9.968e-3 3.96 7.443e-2

qN- 8.754e-3 8.913e-3 5.014 8.858e-2 8.888e-3 8.667e-3 3.97 6.976e-2

FD- - - - - 8.777e-3 3*8.777e-3 2.99 1.050e-1

Table 3.9. Test E: tG , tH mean execution times for a single evaluation of the gradient and
Hessian functions on the complete domain, mean number of nonlinear iterations N per time
step, and tts, mean execution time per time step for the Newton-BDF-ETDStabm, the qN-
BDF-ETDStabm, the CDSA-BDF-ETDStabm and the FD-BDF-ETDStabm schemes. The
considered ionic models are: the FHN, the BWZVP (discretized with the BDF-ETDStab1

and the BDF- ETDStab2 schemes), and the TNNP06 models.
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Figure 3.5. Test E: number of nonlinear iterations against the current simulation time.
Results for τ = 0.1 ms for the Newton-BDF-ETDStabm, qN-BDF-ETDStabm, CDSA-BDF-
ETDStabm and FD-BDF-ETDStabm methods are reported. The considered ionic models
are: the FHN, the BWZVP, and the TNNP06 models.

Comparison of derivatives approximations for the idealized left ventricle - Test G

We consider an idealized LV obtained by uniformly scaling (factor ≈ 0.37) the idealized LV ge-
ometry described in Sec. 1.4.1. Geometrical and mesh information are reported in Tab. 3.12. For
the tetrahedral mesh, third-order gauss quadrature rule results into five quadrature points per
element. We consider the stimulation protocol

Iapp(t,x) = χBr (xs)×(0,2)(x, t)Imaxe((t−1)2−1)−1

with Imax = 380000 µA,

where Br(xs) represents a sphere of radius r and center xs. Tab. 3.11 reports the numerical
results for the CSDA-BDF-ETDStab1, qN-BDF-ETDStab1, and FD-BDF-ETDStab1 schemes. As in
the previous test, the CSDA-BDF-ETDStab1 scheme outperforms the qN-BDF-ETDStab1 scheme
when we consider the BWZVP model. Moreover the opposite behavior can be observed when the
TTNP06 model is considered.

3.4.4 Impact of high-order time integration schemes on post-processing quan-
tities

We consider the effects of the time integration schemes for the solution of (1.90) on the computed
activation times ψ, APD90 and pseudo-ECG signals (see Sec. 1.2.11). Results for the BWZVP
model are considered. In detail,

- in the first test we consider a two-dimensional perforated cardiac tissue. In this case, we
compare the ATs and the APD90 post-processing quantities.

- to reduce the complex effects due to geometry and fiber orientation, in the second test we
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Figure 3.6. Spatial distribution of the action potential for a slab of tissue with fibers aligned
along the X-axis. The configuration is reported for the BWZVP model 10 ms after the
application of the electrical stimulus on the stimulation geometry (outlined in black).

consider a three-dimensional slab of tissue. In this test, we compare the morphology of the
obtained pseudo-ECGs signals.

- in the third test we compare, for the different schemes, the morphology of the obtained
pseudo-ECGs signals for the uniformly scaled idealized LV.

Comparison of AT, APD90 for a perforated cardiac tissue

We consider Br to be a two-dimensional geometry of size 2 cm×2 cm presenting a 1 cm×1 cm
hole in its center. We consider Cm = 2µ F cm−2 and χ = 1400 cm−1. As a stimulation geometry
we consider the 1.5 mm ×1.5 mm square positioned at the corner ps = 0 and subjected to the
stimulation protocol

Iapp(t,x) = χ[0,0.15]2×(0,2)(t,x)Imaxe((t−1)2−1)−1

with Imax = 250000 µA

We consider the properties of the epicardial cells. The reference solution is computed applying
the qN-BDF-ETDStab3 scheme with τ =1.5625e-3 ms. We fix the spatial mesh of mesh size h =
5e-3 cm. Fig. 3.7 shows, from left to right, snapshots at time t = 100 ms of the numerical
solutions obtained considering first-, second-, third- and fourth-order qN-BDF-ETDStab schemes
with τ=2.5e-2 ms. Tab. 3.13 shows the ATs at the corner pv = (2,2) opposite to the stimulation
geometry. In particular, we consider τ ∈ {2e-1,1e-1,5e-2, 2.5e-2, 1.25e-2}. Post-processing the
reference solution we obtain ψref(pv) = 125.209375 ms. Results obtained with the qN-BDF-
ETDStab1 scheme show a smaller CV if compared to the ones obtained with third-order scheme.
In detail

- for τ=1e-1 we obtain ψ(pv) = 131 ms. If compared to ψref, a delay of about 5 ms (≈4%)
in the AT for pv is obtained.

- τ=2.5e-2 we obtain ψ(pv) = 127.075 ms. If compared to ψref, a delay of about 2 ms
(<1%) in the AT for pv is obtained.

- as expected, ATs for pv converge to the reference value for τ→ 0.
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FHN TTNP06

τ= 0.1 ms, -BDF-ETDStab1 τ= 0.1 ms, -BDF-ETDStab1

tG [s] tH [s] N tts [s] tG [s] tH [s] N tts [s]

N- 0.1310 0.1995 3.99 1.319 - - - -

CSDA- 0.1321 0.2026 3.99 1.3355 0.393 0.6003 8.134 8.08

qN- 0.1325 0.1997 5.794 1.9254 0.4444 0.4595 5.048 4.5631

BWZVP

τ= 0.1 ms, -BDF-ETDStab1 τ= 0.1 ms, -BDF-ETDStab2

tG [s] tH [s] N tts [s] tG [s] tH [s] N tts [s]

CSDA- 0.3875 0.6793 2.978 3.1774 0.4651 0.7126 2.934 3.4556

qN- 0.3548 0.42 7.908 6.128 0.4118 0.4603 6.902 6.0202

Table 3.10. Test F: tG , tH mean execution times for a single evaluation of the gradient and
Hessian functions on the complete domain, mean number of nonlinear iterations N per time
step, and tts, mean execution time per time step. Results are shown for the N-, qN-, CSDA-
and FD- BDF-ETDStabm methods. Solution of a 3D slab of tissue for the FHN, BWZVP
and TNNP06 ionic models.

qN-BDF-ETDStab1 qN-BDF-ETDStab2 qN-BDF-ETDStab3 qN-BDF-ETDStab4

Figure 3.7. Perforated cardiac tissue: comparison of the activation times ψ obtained with
the qN-BDF-ETDStabm schemes for τ=2.5e-2 ms.

Even considering finer grids in space, the qN-BDF-ETDStab4 scheme is not convergent for τ=2e-1
ms. In Fig. 3.8 we compare the APD90 obtained with the different schemes for τ=5e-2 ms. From
left to right, results are shown for the first-, second-, third-, and fourth-order qN-BDF-ETDStabm

schemes. No significant changes arise in the simulated APD90 considering the different schemes:
the APD90 is accurately estimated using τ=5e-2 ms independently on the order of the accuracy of
the numerical scheme. In conclusion the obtained results show how, fixed the time step and the
spatial-grid, the choice of the numerical method affects the AT and, consequently, the excitation
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FHN TTNP06

τ= 0.1 ms, -BDF-ETDStab1 τ= 0.1 ms, -BDF-ETDStab1

tG [s] tH [s] N tts [s] tG [s] tH [s] N tts [s]

N- 0.1778 0.2093 3.007 1.1641 - - - -

CSDA- 0.1796 0.2121 3.007 1.1781 0.7556 1.0512 7.874 13.8970

qN- 0.1764 0.2053 4.888 1.8662 0.7973 0.7013 4.931 7.3903

BWZVP

τ= 0.1 ms, -BDF-ETDStab1 τ= 0.1 ms, -BDF-ETDStab2

tG [s] tH [s] N tts [s] tG [s] tH [s] N tts [s]

CSDA- 0.7285 1.1635 2.652 5.0177 0.8638 1.2366 2.772 5.8226

qN- 0.6493 0.6377 6.421 8.2642 0.7346 0.6821 5.933 8.4013

Table 3.11. Test G: tG , tH mean execution times for a single evaluation of the gradient
and Hessian functions on the complete domain, mean number of nonlinear iterations N per
time step, and tts, mean execution time per time step. Results are shown for the N-, qN-,
CSDA- and FD- BDF-ETDStabm methods. Solution of the idealized LV geometry for the
FHN, BWZVP, and TNNP06 ionic models.
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Element Information

LV bounding box X = [-1,1], Y = [-1,1], Z = [-2.5,0]

LV Tetmesh Total Nodes: ∼ 240k

Stimulated AV node Sphere of radius r = 0.15 cm, center xs = (0.8,0,-0.2) cm

V1 (2,2,-1) cm

V2 (1,2,-1) cm

V3 (0.5,1,-1.5) cm

V4 (0,2,-2) cm

V5 (-0.8,2,-2) cm

V6 (-1.2,1.8,-1.7) cm

Table 3.12. Test G: idealized scaled LV geometry and mesh information, and relative position
of the pseudo-electrodes.

qN-BDF-ETDStab1 qN-BDF-ETDStab2 qN-BDF-ETDStab3 qN-BDF-ETDStab4

Figure 3.8. Perforated cardiac tissue: comparison of the action potential duration at 90%
obtained with the qN-BDF-ETDStabm schemes for τ= 5e-2 ms.

wavefronts. However the choice of the numerical scheme does not affect the simulated APD90.
This suggests that main differences are detectable at the tissue level but are not evident at the
cellular one.

Comparison of pseudo-ECG signals for a 3D slab of tissue

We systematically study the effects of high-order BDF time-stepping schemes on the simulated
pseudo-ECGs signals. The domain, the stimulation geometry and the stimulation protocol are
the same as described in test F . We consider a uniform spatial mesh of size h= 0.1 mm. In 3.9,
zero isopotential surfaces obtained with the qN-BDF-ETDStabm schemes for the BWZVP model
are reported after 20 ms (left) and 30 ms (right) after the application of the electrical stimu-
lus on the stimulation geometry for τ =1e-1 ms. We compute the pseudo-ECGs signals at six
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Figure 3.9. Tissue slab: zero isopotential surfaces obtained with the qN-BDF-ETDStabm

schemes for τ =1e-1 ms. Fibers are aligned along the X-axis. The configuration is reported
for the BWZVP model 20 ms (left) and 30 ms (right) after the application of the electrical
stimulus. Zero isopotential surfaces are represented in yellow for qN-BDF-ETDStab1, in
orange for qN-BDF-ETDStab2, in red for qN-BDF-ETDStab3 and in brown for qN-BDF-
ETDStab4.
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Figure 3.10. Tissue slab: time associated to the achievement of the peak values of the
simulated R-waves obtained with qN-BDF-ETDStabm schemes against the considered time
step τ.
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qN-BDF-ETDStab1 qN-BDF-ETDStab2 qN-BDF-ETDStab3 qN-BDF-ETDStab4

τ [ms] ψ ψ ψ ψ

2e-1 147.0 ms 132.2 ms 124.4 ms -

1e-1 131.0 ms 122.90 ms 123.05 ms 110.9 ms

5e-2 129.25 ms 124.05 ms 124.05 ms 125.05 ms

2.5e-2 127.075 ms 124.825 ms 125.075 ms 125.225 ms

1.25e-2 126.1000 ms 125.1000 ms 125.2000 ms 125.2125 ms

Table 3.13. Perforated cardiac tissue: activation times at the corner opposite to the stimu-
lation geometry obtained with the qN-BDF-ETDStabm schemes.

unipolar electrodes, two for each Cartesian axis. They are arranged symmetrically with respect
to the center of the domain, and 4 cm far from ∂Br . Different order of accuracy schemes lead
to some variances in the simulated pseudo-ECGs. These variances, mostly visible in X-direction,
are shown in Fig. 3.11. In detail, from left to right, results for τ=2.5e-2 ms, τ=5e-2 ms, τ=1e-
1 ms, and τ =2e-1 ms for the positive pseudo-electrode in fiber direction are reported. The
qN-BDF-ETDStab4 scheme does not converge for τ=2e-1. First row shows the impact of low-
order numerical schemes on the simulated QRS-complex. Fig. 3.10 shows the times associated
to the achievement of the peak values of the simulated R-waves obtained with qN-BDF-ETDStabm

schemes against the considered time step τ. Results are compared with the time associated to
the achievement of the peak value for the reference solution which is computed considering the
qN-BDF-ETDStab3 scheme with τ =1.5625e-3 ms. As shown in the figure, low-order methods
are associated with a delay in the achievement of the peak values of the simulated R-waves.
In particular if compared to the reference solution, the qN-BDF-ETDStab1 scheme with τ=2e-1
ms results into a delay of more then 5 ms (about a 16% time shift is observed). Second row
of Fig. 3.11 shows the effects of the different strategies on the simulated T-waves. In general,
different order of accuracy schemes produce T-waves of different amplitudes. If compared to the
reference solution, the qN-BDF-ETDStab1 scheme with τ=2e-1 ms results into a T-wave of ampli-
tude increased of about 14%. No relevant changes in the simulated pseudo-ECGs configuration
are present in the ST segments, during which the simulated pseudo-ECG are almost equal.

Comparison of pseudo-ECG signals for the idealized scaled LV

We consider the effect of different schemes on the morphology of the simulated pseudo-ECGs
for idealized scaled LV. Fig. 3.12 shows the considered geometry and the six unipolar pseudo-
electrodes Vi . We consider the stimulation protocol

Iapp(t,x) = χBr (xs)×(0,2)(x, t)Imaxe((t−1)2−1)−1

with Imax = 250000 µA

where Br(xs) represents a sphere of radius r = 0.15 cm and center xs = (0.8, 0,−0.2) cm.
Fig. 3.13 shows, from left to right, anterior coronal, posterior coronal, transverse and bottom
views of the ATs obtained with the different time integration schemes for τ =1e-1ms. From
top to bottom, results for the qN-BDF-ETDStab1, qN-BDF-ETDStab2, qN-BDF-ETDStab3 schemes
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τ=2.5e-2 ms τ=5e-2 ms τ=1e-1 ms τ=2e-1 ms

Figure 3.11. Tissue slab: simulated QRS-complex (first row) and T-waves (second row)
obtained with qN-BDF-ETDStabm schemes. From left to right results are shown at the
positive pseudo-electrode in X-direction for τ =2.5e-2 ms, τ =5e-2 ms, τ =1e-1 ms and for
τ=2e-1 ms.

Figure 3.12. Idealized scaled LV: relative position of the pseudo-electrodes.
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are shown. Fig. 3.14 and Fig. 3.15 show the simulated pseudo-ECGs for the different schemes
focusing on the simulated QRS-complex (left) and T-waves (right) for τ =5e-2 ms and τ =1e-
1ms, respectively. As obtained for the previous test, low-order methods are associated with a
delay in the achievement of the peak values of the simulated R- and T-waves. Moreover they
result into T-waves of increased amplitudes. If compared with the solution obtained with the
qN-BDF-ETDStab3 scheme, for τ=5e-2 the qN-BDF-ETDStab1 scheme results in a delay of about
2 ms (about 4% time shift is observed) in the achievement of the R- and T- waves peak values and
in an increase of amplitude of the T-wave of about the 5% for the pseudo-electrodes V1,V2,V3,V4

and of about the 30% for V5 and V6. For τ=5e-2 ms no significant changes are visible comparing
the pseudo-ECGs obtained applying the qN-BDF-ETDStab2 and qN-BDF-ETDStab3 schemes. As
shown in Fig. 3.15, if compared with the solution obtained with the qN-BDF-ETDStab3 scheme,
for τ =1e-1 ms the qN-BDF-ETDStab1 scheme results in a delay of about 8-10 ms (about 19%-
23% time shift is observed) in the achievement of the R- and T- waves peak values and in an
increase of amplitude of the T-wave of about the 8% for the pseudo-electrodes V1,V2,V3 and of
about the 50% for V5 and V6. A different behavior is observable for V4 for which the first-order
scheme underestimates the T- waves peak value obtained with the third-order scheme of about
the 3%. For τ =1e-1 ms changes are visible comparing the pseudo-ECGs obtained applying the
qN-BDF-ETDStab2 and qN-BDF-ETDStab3 schemes. In particular, these changes are remarkable
for the pseudo-ECG signals obtained with the second-order scheme for V5 and V6 for which a
delay of about 3-6 ms (about 7%-14% time shift is observed) in the achievement of the R- and
T- waves peak values and in an increase of amplitude of the T-wave of about the 25%

3.5 Comments

The qN-BDF-ETDStab1, qN-BDF-ETDStab2, and qN-BDF-ETDStab3 methods for the solution of the
monodomain system in one-dimension coupled with the FHN and BWZVP ionic model, have been
show to perfectly fit our expectations in terms of order of accuracy of the methods. The qN-BDF-
ETDStab4 method perfectly fits our expectation for the FHN ionic model, and presents some fluc-
tuation for the BWZVP ionic model for τ ≈ 2.5e-2 ms. The advantage of the usage of the third-
and fourth-order time stepping schemes has been shown comparing the computational costs of
the different qN-BDF-ETDStab strategies against the obtained errors. The two-dimensional nu-
merical experiment conducted on the perforated tissue geometry shows how the choice of the
numerical method affects the conduction velocities, and, consequently, the activation times and
the excitation wavefronts. As expected, the choice of the numerical scheme does not affect the
simulated APD90. Three-dimensional numerical experiments simulated show an impact of high-
order integration strategies on the simulated conduction velocities and pseudo-ECG signals. In
detail, low-order methods are associated to a delay in the achievement of the R- and T- waves
peak values and in an increase of amplitude of the T-wave. These effects is obviously dampen by
the usage of small time-steps.
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Figure 3.13. Idealized scaled LV: anterior coronal view (first column), posterior coronal view
(first column), transverse view (third column) and bottom view (fourth column) of the ATs
obtained with the different order of accuracy schemes. From top to bottom: results for qN-
BDF-ETDStab1, qN-BDF-ETDStab2, and qN-BDF-ETDStab3, schemes for the time step
τ=1e-1 ms.
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Figure 3.14. Idealized scaled LV: obtained QRS-complex (left) and T-waves (right) for the
qN-BDF-ETDStabm schemes. Results are shown for the six pseudo-electrodes V1, . . . ,V6

considering the time step τ=5e-2 ms.
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Figure 3.15. Idealized scaled LV: obtained QRS-complex (left) and T-waves (right) for the
qN-BDF-ETDStabm schemes. Results are shown for the six pseudo-electrodes V1, . . . ,V6

considering the time step τ=1e-1 ms.



Chapter 4

Numerical algorithms for the solution of
incompressible mechanics

Biological tissues are usually described as incompressible nonlinear elastic material in that they
are mainly composed by water. A typical example comes from the modeling of cardiac tissue
[Rossi et al., 2012; Favino et al., 2016; Ambrosi and Pezzuto, 2012] whose elastic response is
highly nonlinear, anisotropic, and characterized by an active stress or an active strain compo-
nent. The incompressible or nearly-incompressible behavior of the myocardium is still an open
debate [Land et al., 2012; Yin et al., 1996], in that the myocardium is extensively perfused with
distensible vessels which volumes vary in time. In this chapter we deal with the computational
hurdles arising in the numerical solution of the equation of cardiac mechanics under the incom-
pressibility hypothesis.

Incompressible elasticity is a constrained problem in which the unknowns are the primal
variable, the displacement, and the dual variable, the pressure. This latter variable plays the
role of a Lagrange multiplier to enforce the incompressibility constraint. In the most general
cases of volume and boundary loads, the system of equation describing incompressible elasticity
is written as a generalized nonlinear saddle point (SP) problem, i.e. a system of equations that
cannot be derived from an inf-sup principle.

The development of efficient solution methods for the solution of this kind of systems is
a very active field of research. Although, a lot of effort has been put in the development of
nonlinear solution methods, almost no work focuses on the efficient solution of the linearized
tangent problem that has be solved at each iteration of Newton-like methods. The mathematical
properties of the tangent problem render particularly complicated the analysis: it is a generalized
saddle-point problem where the elasticity operator is singular at the first iteration of Newton’s
method and singular or non-positive definite at any iteration of Newton’s method. This is in
contrast with other well-studied SP problems, such as Navier-Stokes equations, Stokes equation,
and incompressible linear elasticity.

Geometric multigrid (MG) methods allow to smooth the error in the solution transferring a
correction from a coarse level to a finer one. MG methods for solving partial differential equations
(PDEs) have been extensively developed for linear elliptic problems [Braess, 2009] and some
extensions can be found for SP problems [Bacuta, 2006; Bacuta and Shu, 2013]. For these latter,
MG, as other solution methods, can be applied in a coupled or in a segregated fashion. Coupled
MG approaches consist in the application of MG methods in the “primitive variables” [Vanka,
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1986]. They do not require any a-priori hypothesis on the elasticity operator and in general
they are not characterized by an optimal convergence rate, i.e. the number of iterations needed
to reach a given tolerance is mesh dependent. The application of coupled MG methods is also
connected to some technical overheads:

- they require prolongation and restriction operators able of dealing with variables of possi-
bly different order,

- they require the implementation of modified smoothers, since standard iterative methods
cannot be employed.

In contrast, segregated approaches involve the solution of the Schur complement system of the
original SP problem. MG methods coupled with Schur-complement-like approaches represent
valuable approaches in which they can be constructed exploiting standard tools and here we
follow this approach. In case of incompressible linear elasticity, when the elasticity operator is
positive definite, Schur-complement-based approaches are favourable since they deal with the
solution of two elliptic problems at the price of nested iterations [Benzi et al., 2005]. In this case,
optimal preconditioners are known [Verfurth, 1984] and they provide also mesh optimality of
MG methods.

In the field of nonlinear elasticity, MG methods have been applied to incompressible [Campos
et al., 2018; Hadjicharalambous et al., 2014] and to nearly-incompressible [Augustin et al., 2016;
Colli Franzone et al., 2015] formulations. In [Augustin et al., 2016; Colli Franzone et al., 2015,
2018; Pavarino et al., 2015] purely primal formulations are considered and the incompressibility
constraint is imposed by means of penalty terms. Mechanically speaking, the penalization pa-
rameter corresponds to the bulk modulus. The primal formulation results in a sequence of elliptic
problems, the nearly-incompressible formulation leads to ill-conditioned stiffness matrices which
deteriorate the performance of iterative solution methods [Campos et al., 2018]. In contrast, MG
methods have been applied for the solution of the incompressible formulation considering the
static condensation of the pressure variable [Campos et al., 2018] or its approximations [Had-
jicharalambous et al., 2014].

Several augmenting strategies have been proposed to improve the convergence of Newton’s
and multigrid methods for incompressible nonlinear elasticity. In [Land et al., 2015b], it has been
numerically shown that adding a penalty term improves the convergence of Newton’s method.
In [Gurev et al., 2015], the same strategy has been used to improve the performance of multigrid
solution methods for the tangent problem. In the same work, an alternative strategy based on
augmented Lagrangian methods has been discussed. This second strategy is purely algebraic
and consists in the transformation of the considered linear system in an equivalent one [Benzi
and Liu, 2007]. In this chapter, we present the two approaches proposed in [Gurev et al., 2015]
and compare their performance when multigrid methods are applied. We refer to the resulting
strategies as physics-based segregated multigrid preconditioned (SMGP) strategy and augmented
Lagrangian SMGP strategy.

To the best of our knowledge, the only work where MG solution methods are used for incom-
pressible nonlinear elasticity is [Gurev et al., 2015]. Here, a segregated approach is proposed
for the solution of the tangent problem. For the inversion of the elasticity operator, a first-order
approximation is employed as coarse level for a second-order approximation, allowing for a large
reduction of degrees of freedom in the coarse level. The coarse level is solved by means of an
algebraic MG strategy. Moreover, different preconditioners for the Schur complement have been
considered.
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As an alternative to geometric MG, p-multigrid methods can be considered. In p-multigrid
methods the construction of the coarse spaces rely on a sequence of solution approximation
of different polynomial order. In the context of the high order spectral volume and difference
methods, p-multigrid methods have been extensively studied [Kannan and Wang, 2009; Kannan,
2011; Liang et al., 2009].

In this chapter, we propose a segregated approach with a geometric MG. A mass matrix is used
as preconditioner for the Schur complement system. In detail, MG is employed for the solution
of an elasticity problem and of a pressure mass matrix, for which standard smoothing strategies
are effective. Our method can be summarized in the following steps:

1. the nonlinear problem is discretized by mixed FE formulation,

2. the discrete nonlinear problem is solved by means of Newton’s method,

3. an augmenting strategy in employed to remove the singularity of the elasticity operator,

4. a segregated approach is used to solve the augmented linear system: this corresponds to
the solution of the Schur complement of the augmented system, for which a mass matrix
is used as a preconditioner,

5. two MG preconditioners are used to solve for the elasticity operator - in the application of
the Schur complement - and for the mass matrix preconditioner.

Convergence and optimality proofs are quite complicated for these kinds of problems. We apply
our SMGP strategy to solve two- and three-dimensional problems in order to numerically evaluate
its properties. Several tests are employed to study the convergence behavior of the strategy and in
particular to evaluate the influence of the number of degrees-of-freedom in the discretization, the
value of the augmenting parameters, and the number of MG levels. The parallel implementation
of the proposed solution strategy relies on the PCFIELDSPLIT and PCMG preconditioners in the
PETSc suite [Balay et al., 2017]. The MOONoLith library [Krause and Zulian, 2016] allows for a
fast and parallel construction of the projection and prolongation operators.

The chapter is organized following the above-mentioned steps. In Sec. 4.1 motivational
benchmark problems are introduced and the results obtained for the incompressible and for
the nearly-incompressible formulations compared. In Sec. 4.2 the augmenting strategies are in-
troduced. Moreover, we introduce the standard notation of MG approaches and we present our
novel SMGP solution strategy. Finally, in Sec. 4.3, numerical tests in two- and three-dimensional
settings are employed to show the optimality of the proposed approach and to study the scaling
properties of its implementation in the PETSc suite [Balay et al., 2017].

4.1 Motivation

Verification of computational models and of solution strategies is an important stage of software
development. In [Land et al., 2015a] a framework for verifying mechanical models of cardiac
tissue has been proposed. To verifying the implemented mathematical models and their correct
solutions, our research group carried out the proposed benchmark problems participating to this
latter work. In this section we compare the numerical results obtained for these problems for the
incompressible and the nearly compressible formulations. We reproduce and extend the three
benchmarks problems proposed in [Land et al., 2015a] of which we report a small description.
We tested the nearly incompressible formulation for the penalty parameter (often referred to as
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Figure 4.1. Norm of the obtained displacement (left) and pressure (right) reported in the
deformed configuration. Results for the solution of setting 1 (Neo-Hookean hyperelastic law
describing the passive behavior of the beam) on the mesh composed by uniform quadrilaterals
of size 0.5 mm.

bulk modulus) kn belonging to a broad spectrum of values. It is often assumed that the bulk
modulus becomes very large as a material approaches incompressibility. However, high values of
kn may lead to very ill-conditioned problems. We recall that the choice of the penalty parameter
is not standard. Even if estimates for kn for soft human tissues exist [Saraf et al., 2007], there
is a lack of data on the dynamic behavior of cardiac tissues. This is due to the difficulty of
obtaining human tissues in sufficient quantities and to the lack of standard techniques for testing
the loading of soft tissues.

4.1.1 Benchmark problems

Problem 1: deformation of a rectangular beam

The undeformed geometry is defined by the region Br = [0, 10]× [0, 1]× [0, 1] mm. Homoge-
neous Dirichlet boundary conditions are imposed for all the directions on the left edge at X = 0.
A constant normal force g per unit area is applied on the bottom edge at Y = 0. We consider
three different settings, corresponding to three material laws for the description of the passive
cardiac tissue. Material laws, parameters, and boundary forces are

setting 1: Neo-Hookean law [Rivlin, 1948; Bonet and Wood, 1997] with µ = 2.0 kPa, and g =
1.6 Pa in inward-pointing normal direction. Fig. 4.1 reports the norm of the obtained
displacement (left) and pressure (right) in the deformed configuration. The solution is
computed on the mesh composed by uniform quadrilaterals of size 0.5 mm.

setting 2: isotropic Guccione-Costa law with C = 10 kPa, b f = 1, bt = 1, b f s = 1 and g = 4 Pa.

setting 3: anisotropic Guccione-Costa law with C = 2 kPa, b f = 8, bt = 2, b f s = 4. Fibers are
aligned along the x-axis and g = 4 Pa.

Here C , b f , bt , b f s represent the constitutive parameters of the Guccione-Costa law defined as
in [Guccione et al., 1995].
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Problem 2: inflation of an isotropic ellipsoid

Considering the ellipsoide-like LV presented in Sec. 1.4.1 , this problem tests a deformation pat-
tern similar to cardiac inflation. Constitutive parameters are C = 10 kPa, b f = 1, bt = 1, b f s = 1.
Dirichlet boundary conditions are imposed at the base plane z = 5 mm, which is fixed in all di-
rections. A pressure of 10 kPa is applied to the endocardial surface. A constant pressure of 15
kPa is applied to the endocardium.

Problem 3: inflation and active contraction of a transversely isotropic ellipsoid

Using the geometry already proposed for the second problem, this test used a transversely isotropic
material with C = 2 kPa, b f = 8, bt = 2, b f s = 4. The complex realistic fibers distribution de-
scribed in Sec. 1.1.7 and an active contraction of the tissue are considered. The active stress is
given by a constant, homogeneous, stress of 60 kPa in the direction of the fibers.

The use of high-order cubic Hermite elements became very popular in cardiac mechanics simula-
tions [Costa et al., 1996]. The main reason is that these elements allow a tessellation of stylized
ventricular anatomy using a small number of elements. To accommodate more complex geome-
tries the use of tetrahedral elements has been recently introduced [Gurev et al., 2015; Fritz et al.,
2014]. To investigate the differences between the two approaches, results for the first problem
are compared considering tetrahedral elements (P2-P1 for the incompressible case and P2 for the
nearly-incompressible formulation) and hexahedral elements (Q2-Q1 for the incompressible case
andQ2 for the nearly-incompressible formulation). In the second and third problems tetrahedral
elements are considered. Sixth-order quadrature rule is applied. In the nearly-incompressible
case, the Newton’s method is applied to solve the nonlinear problem with a fixed number of load
increments. Following [Campos et al., 2013a], we used 10 load increments for the second and
the third problems. As Newton’s method convergence criterion we consider for the residual norm
the absolute tolerance of 10−10.

4.1.2 Comparison of incompressible and nearly-incompressible formulations

Comparison for benchmark problem 1

We compare the results obtained for the incompressible and for the nearly-incompressible for-
mulations for the bending of the rectangular beam. Taking into consideration the setting 3., we
consider different problem sizes and elements types. Tab. 4.1 shows, for the hexahedralH and
tetrahedral T considered meshes, the total number of DOFs for the incompressible and nearly-
incompressible formulations. Fig. 4.2 shows the maximal deflections of the point (10,0.5, 1)
plotted against the number of DOFs used. In this test, the selected bulk parameter in the nearly-
incompressible formulation is kn = 2000 kPa. In addition, the graphs report the results obtained
with the codes tested in the benchmark paper. The average solution of the maximal deflection
obtained from the results of the cardiac mechanical benchmark was 4.161 mm (with a standard
deviation of 0.032 mm). Considering the incompressible formulation we obtain for T7 a maxi-
mal deflection in z of 4.16914 mm and forH9 a maximal deflection of 4.16963 mm. In general,
the solution obtained considering HEX elements overestimates the reference numerical solution.
In contrast, considering the nearly-incompressible formulation we obtain for T6 a maximal de-
flection in z of 4.17135 mm and for H9 a maximal deflection of 4.16582 mm. For both the in-
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Figure 4.2. Maximal deflection of the beam across different solutions plotted against the
number of degrees of freedom for the incompressible formulation (left) and for the nearly-
incompressible one (right).

compressible and the nearly-incompressible formulations the solution obtained considering TET
elements underestimates the reference numerical solution. For the nearly-incompressible formu-

Formulation / Mesh H1 H2 H3 H4 H5 H6 H7 H8 H9

Incompressible 3k 20k 64k 146k 278k 472k 740k 1095k 1547k

N
o.

D
O

Fs

Nearly-inc. 3k 19k 61k 139k 265k 451k 708k 1048k 1482k

Formulation / Mesh T1 T2 T3 T4 T5 T6 T7

Incompressible 10k 77k 251k 583k 1125k 1928k 3044k

N
o.

D
O

Fs

Nearly-inc. 10k 73k 238k 555075 1071k 1836k 2898k

Table 4.1. Comparison of the number of DOFs for the considered meshes for the incompress-
ible and the nearly-incompressible formulations.

lation, Fig. 4.3 reports the maximal deflection of the beam plotted against the bulk modulus kn.
Results, here reported for the grid T4, show the for relative small values of the bulk modulus
kn the deflection of the bar in the z-direction is overestimated at the end of the bar. Fig. 4.4
reports the obtained strains plotted against the considered bulk modulus kn. Following [Land
et al., 2015a], to calculate strain Si , we track changes in the distance between pairs of n points
with coordinates X i

1 and X i
2 in the undeformed FE geometries and coordinates x i

1 and x i
2 of the

deformed geometry, where i = 0,1, . . . , n. We use the finite difference scheme

si =

�

‖x i
1 − x i

2‖
‖X i

1 − X i
2‖
− 1

�

× 100%. (4.1)

We use the points along the line (x , 0.5, 0.5) to calculate axial strain in the x-direction: X i
1 =

(i − 1, 0.5,0.5) and X i
2 = (i, 0.5, 0.5), where i = 1, . . . , 9. For transverse strain, we use X i

1 =
(i, 0.5, 0.5), where i= 1, ..., 10 and X i

2 = (i, 0.9, 0.5) and X i
2 = (i, 0.5, 0.9) for strain calculations

in the y- and z-directions, respectively. Results, here reported for the grid T4, show that the
simulated strains are well recovered considering the nearly-incompressible formulation even for
small values of the bulk modulus kn. For kn = 20, the strains in z-direction are the ones subjected
to higher variance of the results.
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Figure 4.3. Maximal deflection of the beam across different solutions plotted against the
bulk modulus kn for the nearly-incompressible formulation. Result for the incompressible
formulation are also plotted (dashed line). Results are shown for the grid T4.
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Figure 4.5. Idealized scaled LV: slices for the computation of the wall thickening

Comparison for benchmark problem 2

We compare the results obtained for the nearly-incompressible formulation with the results ob-
tained with the incompressible formulation for the benchmark problem 2. In detail, we evaluate
the wall thickening at the maximum ventricle inflation at the height Si = −(0.1 + 0.5(i − 1))
for i = 1, . . . , 5, see Fig. 4.5. We consider kn = {10C , 100C , 1000C , 3000C }. Results are shown
in Fig. 4.6, for a mesh of tetrahedral elements with ' 236k total nodes. The mesh (for P2-P1

discretization) results in ' 707k DOFs for the nearly-incompressible formulation and ' 739k
DOFs for the incompressible formulation. The considered geometry has an internal volume of
' 32.272 mm3.
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Figure 4.6. Idealized scaled LV: wall thickening computed at the slices
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4.2 Segregated multigrid strategies for incompressible nonlinear
elasticity

4.2.1 Segregated approaches for the solution of saddle-point problems

Iterative algorithms for the solution of SP problems are usually divided into two categories [Benzi
et al., 2005]: segregated and coupled methods. In coupled method the linear system is solved “all
at once”. Segregated approaches are based on the splitting of primal and dual variables. In
general they rely on the invertibility of the matrix A . State-of-the-art segregated approaches
focus on SP systems withA symmetric and positive definite. They can be formally derived from
static condensation of the primal variable, from the use of specific preconditioners, or on a formal
application of a block LU decomposition.

Following this latter approach, assuming that A is nonsingular, the SP problem (2.54) is
equivalent to

�

A B T

0 S

��

U
P

�

=

�

F
G −BA −1F

�

(4.2)

where S is the Schur complement of the system and it is defined as S = −BA −1B T . Segre-
gated approaches involve the solution of a linear system of size M

S P = G −BA −1F. (4.3)

Once P has been computed, U can be computed solving the N dimensional system

A U = F −B T P. (4.4)

In realistic large-scale simulations, the Schur complement S is not explicitly constructed. The
application of iterative methods for the solution of (4.3) involves the solution of A at each
iteration.

In order to precondition the linear system (4.3), alternatives can be considered:

• the pressure mass matrixMp; such a matrix is known to be an efficient preconditioner for
the Schur complement for passive solid mechanics [El Maliki et al., 2010] and in particular
has been shown to be an optimal preconditioner for linear elasticity; In [Verfurth, 1984],
Verfürth showed that in the FE setting of the Stokes flow problem the Schur complement
is spectrally equivalent to the mass or L2-projection matrix. Verfürth’s proof is based on
the LBB condition and shows that the mass matrix is a suitable approximation to the Schur
complement. Following [Verfurth, 1984], we consider the mass matrix in the pressure field
Mp as a preconditioner for S .

• least square commutators [Elman et al., 2006] which assuming B TB is not a singular
matrix approximate the inverse of interest as

S ≈ (B TB)−1B TAB(B TB)−1. (4.5)

• sparse approximate inverse (SPAI) approaches [Benzi and Tuma, 1999]; a possible choice is
to approximate the inverse ofA with the inverse of a fixed sparsity pattern matrix arising
from the solution of a least squares problem.
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In the context of cardiac mechanics, these strategies have been compared in [Gurev et al., 2015]
for passive soft tissue deformation and also considering an active stress. In this latter case the
pressure mass matrix was found to be less effective. Similar strategies for the approximation of
the Schur complement for the Oseen’s problem and for the Stokes problem are available in the
literature [Verfurth, 1984; Elman et al., 2014]. Due to the cost of the construction of the approx-
imation and to its lack of robustness with respect to mesh size, these approximation strategies
are not always beneficial.

As discussed in Sec. 2.5, for the incompressible elasticity case the matrix A is singular at
the first iteration of Newton’s method (see Eq. (2.24)) and a priori not definite for all the other
iterations. This is due to the considered volumetric/isochoric splitting of the deformation gradi-
ent. In the next section we present two augmenting strategies that allow for the application of
segregated approaches.

4.2.2 Augmented approaches

Due to the singularity of the matrixA in the system (2.54), segregated strategies are not directly
applicable to incompressible elasticity problems. Augmented methods allow to remove such
problems replacing the original algebraic system (2.54) with one of the form

�

Ã B T

B 0

��

Ũ
P̃

�

=

�

F̃
G

�

. (4.6)

where Ã and F̃ are obtained from the application of augmented Lagrangian methods to (2.54).
We define H̃ ∈ R(N+M)×(N+M) to be the matrix at the left hand side of (4.6). Considering (4.6)
instead of (2.54) the two-stage strategy described in (4.3)-(4.4) results in the successive solution
of

S̃ P̃ = G −BÃ −1 F̃ , (4.7)

and
Ã Ũ = F̃ −B T P̃. (4.8)

In the following, we discuss two possible strategies for augmenting the linear system (2.54)
obtaining a system of the form (4.6).

Physics-based augmenting strategy

The first evaluated approach considers the additional term

Ψpb(J) =

∫

Br

k
2
(J − 1)2dX (4.9)

to the elastic energy. Here k ∈ R+. This contribution modifies Eq. (1.45) into

−Div
�

Pdev + J pF−T + k(J − 1)J F−T
�

= 0 in Br . (4.10)

We underline that, differently from the nearly incompressible formulation, the volumetric con-
straint is still forced by Eq. (1.108.2) and the role of the additional term is to remove the singular-
ity of the elasticity matrixA . For this reason, relatively small values of k can be considered. The
additional contribution vanishes when we are close to the numerical solution (ũ∗, p̃∗). Defining

Mu,aug(v;u) = k
∫

Br
(J − 1)JF−T : VdX, (4.11)
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we consider
M̃u(v;u, p) = Mu(v;u, p) +Mu,aug(v;u). (4.12)

Defining
ã(h,v;u, p) := duM̃u(v;u, p)[h] (4.13)

the tangent problem (2.13) is replaced by

ã(h,v;u, p) + b(v,π;u) = −M̃u(v;u, p) ∀v ∈W,

b(h, q;u) = −Mp(q;u) ∀q ∈Q.
(4.14)

The discretization of (4.14) leads to the algebraic problem of the form (4.6). To underline the
dependence of the augmented elasticity block on the parameter k, we denote Ã as Ak. The
matrix Ak retains the sparsity pattern of A . Advantage of this augmenting strategy is that, if
the equations of nearly incompressible mechanics are available in the considered FE framework,
the application of the method is straightforward. In contrast, the proposed method is model
dependent. Therefore it is not directly applicable to generalized SP problems arising in a context
other than incompressible mechanics or fluids motion for large Reynolds numbers.

Augmented Lagrangian strategy

The second approach consists in transforming (2.54) in the equivalent system [Powell, 1969;
Glowinski and Le Tallec, 1989; Fortin and Glowinski, 2000; Benzi and Liu, 2007]

�

A + γB TW −1B B T

B 0

��

Ũ
P̃

�

=

�

F + γB TW −1G
G

�

(4.15)

where γ ∈ R+ and W ∈ Rm×m. For

Ã =Aγ :=A + γB TW −1B , (4.16)

and
F̃ = F + γB TW −1G, (4.17)

the system (4.15) can be written as (4.6). It holds that (Ũ , P̃) = (U , P). The matrix W is sym-
metric and positive definite. A sufficiently large γ makes the augmented elasticity block “less
asymmetric and indefinite” [Benzi and Liu, 2007].

This augmenting strategy is uniquely based on algebraic considerations. It could be applied to
any SP problem [Gulliksson et al., 2002] but at the potential price of an high number of nonzero
elements arising in the matrix Ã . In particular, the sparsity pattern of W can change the one
of Ã =Aγ, making this latter potentially dense. This is reflected in a large memory usage and
large computing times for iterative solution methods. In this work, we consider W to be the
lumped pressure mass matrix M̄p. Alternative choices for W are:

A. I; in this case the choice of γ= ‖A‖2/‖B‖2
2 has been found to perform nicely [Benzi et al.,

2005];

B. pressure mass matrixMp; In [Benzi and Olshanskii, 2006] it has been shown thatW =Mp

represents a good choice. However, this choice is associated to a dense matrixAγ;

The choice W = M̄p represents a compromise between the above-mentioned strategies. In fact
M̄p represents an approximation ofMp and this choice reduces the sparsity pattern ofAγ to the
one obtained following alternative A.. In the next section we describe the segregated multigrid
preconditioned strategy proposed to solve the augmented system (4.6).
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4.2.3 Multigrid strategy

We briefly illustrate a geometric MG method for arbitrarily shaped meshes. Given {Th1
, . . . ,ThL

},
conforming meshes, consider the following hierarchy of L nested interpolation spaces

N = {Sp
h1

, . . . , Sp
hL
} , (4.18)

defined as in 2.5. Here the mesh Th` at level ` is obtained as uniform refinement of the mesh

at level `− 1, such that Kh` ⊆ Kh`−1
. The prolongation operator P ph`

h`−1
: Sp

h`−1
→ Sp

h`
, defined in

Sec. 2.5.1, relates coefficients on level ` − 1 with the ones on level `. To simplify the notation
we write P p`

`−1 instead of P ph`
h`−1

. We define the restriction operator Rp`−1
`

: Sp
h`
→ Sp

h`−1
as

Rp`−1
`
= (P p`

`−1)
T . The solution of the system

Lu= f, (4.19)

for L ∈ RNhL×NhL and u, f ∈ RNhL , requires the assembling of L and f on level L. We construct
the stiffness matrices L on the coarser levels by Galerkin projection, i.e.

L`−1 =Rp`−1
` L`P p``−1. (4.20)

In a similar fashion, we define

r`−1 =Rp`−1
` r`, (4.21)

where rL = r= f−Lu. We consider MG of V-cycle type. We write the step ν of the MG algorithm
for the solution of (4.19) in Alg. 5. In the algorithm, we consider sb pre- and sa post-smoothing
steps (of GMRES type) for the solution of L`u` = f`. This is denoted with S(L`, r`, sb, sa). We
denote the MG algorithm as MG(L , f, L, sb, sa).

for each ` ∈ {L − 1, . . . , 1} do
compute: L`−1 =Rp`−1

`
L`P p`

`−1 (Galerkin restriction of stiffness matrix)
end
Multigrid Iteration:
given: uν ∈ Rn

compute: ũν = uν + S(L , f, sb) (fine grid pre smoothing)
initialize: r= f−L ũν

for each ` in {L − 1, . . . , 1} do
v` = S(L`, r`, sb) (pre smoothing)
r` = r` −L`v` (update of residual)
r`−1 =Rp`−1

`
r` (restriction of residual)

end
compute: coarse grid correction v0 (direct solver)
for each ` ∈ {L − 1, . . . , 1} do

v` = v` +P p`
`−1v`−1 (interpolation)

v` = S(L`, r`, sa) (post smoothing)
end
compute: ũν = ũν +P pL

L−1vL−1

compute: uν+1 = uν + S(L , f, sa) (fine grid post smoothing)

Algorithm 5: Multigrid strategy: u=MG(L , f, L, sb, sa)
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4.2.4 Segregated multigrid preconditioned strategy

In this section we describe the segregated multigrid preconditioned strategy (SMGP) that we pro-
pose for the solution of (4.6). It is based on the two-stage strategy (4.7)-(4.8). We recall that
Cholesky factorization and CG method cannot be applied inasmuch S̃ and Ã are not symmet-
ric and positive definite. In the proposed algorithm, Ã and S̃ are solved employing GMRES
preconditioned strategies.

In particular, we employ

I) an L-levels MG strategy (Alg. 5) for the solution of the systems associated to the matrix Ã .
In detail, we refer to the computation of the left hand side of Eq. (4.7) and of the solution
to Eq. (4.8).

II) an L-levels MG strategy (Alg. 5) for the application of the inverse of the mass matrixMp,
that we employ as preconditioner for S̃ . Each GMRES iteration for S̃ requires the solution
of a system with matrix Ã which is performed following I). We remind that the mass matrix
has a condition number which is independent of the mesh size. The application of this
preconditioner could be replaced by running a few GMRES cycles on the finest level.

The construction of interpolation operators (see Sec. 2.5.1) is performed only once for all
nonlinear iterations. The SMGP strategy for the computation of the solution (Ũ∗, P̃∗) consists in
the following steps:

0. for `= 1, . . . , L − 1, compute P 1`
`−1P 2`

`−1, R1`−1
`

, R2`−1
`

;

1. compute Z = Ã −1 F̃ following the strategy described in I);

2. solve Eq. (4.7) following the strategy described in II);

3. solve Eq. (4.8) following the strategy described in I).

Details on the SMGP algorithm are reported in Alg. 6. We refer to the GMRES method for the so-
lution of Gx= b with a L-levels MG preconditioner as u= GMRES(L ,G ,b, MG(L, s)). Here L is
the preconditioner for the matrix G and MG represents the solution method. In this case MG(L, s)
is shortcut for MG(L ,d, L, s, s) where d is the right hand side associated to the preconditioned
system. Here s represents the number of pre- and post-smoothing steps of GMRES type, which,
for the solution of a given matrix, we consider to be equal. We consider sÃ to be the number of
smoothing iterations for the solution of Ã and sS̃ the one for S̃ . The resulting SMGP strategy
is denoted with SMGP(Mp,H̃ , ~rhs, L, sS̃ , sÃ ).

In the description above and in the numerical tests described in the next section, we con-
sidered the same number of MG levels for the solution of Ã and S̃ . We remind that different
preconditioning strategies for the two systems can be used. On the fine level L, given the linear
iteration k, we computed the approximate asymptotic convergence rate ρ̃k

L according to

ρ̃k
L =
‖rk+1‖
‖rk‖

.
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if t = t0 then
for each ` ∈ {1, . . . , L − 1} do

compute: P 1`
`−1P 2`

`−1, R1`−1
`

, R2`−1
`

end
end
for each linear step k do

solve: Ã Z = F̃ as z= GMRES(Ã ,Ã , F̃ , MG(L, sÃ ))
compute: rhsp = G −BZ
solve: S̃ P̃∗ = rhsp as P̃∗ = GMRES(Mp, S̃ , rhsp, MG(L, sS̃ ))
compute: rhsx = F̃ −B T P̃∗

solve: Ã Ũ∗ = rhsx as Ũ∗ = GMRES(Ã ,Ã , rhsx, MG(L, sÃ ))
end

Algorithm 6: Segregated approach: (Ũ∗, P̃∗) = SMGP(Mp,H̃ , ~rhs, L, sS̃ , sÃ )

4.3 Numerical results

In this section we investigate the performance of the proposed SMGP approach by means of nu-
merical experiments. The first numerical experiment consists in the bending of a two-dimensional
rectangular beam of size 10×1 mm (Subsection 4.3.1). In particular, we consider three different
settings, corresponding to three material laws: 1) Neo-Hookean [Rivlin, 1948; Bonet and Wood,
1997], 2) isotropic Guccione-Costa, and 3) anisotropic Guccione-Costa [Guccione et al., 1995].
For all these settings, we first study the performance of the two different augmenting strategies
on the SMGP approach and the effect of different numbers of smoothing steps (Test A). Then, we
study the optimality of the SMGP approach employing a two- and three-level MG strategies (Tests
B and C). Finally, we study the performance of the physics-based SMGP approach increasing the
number of MG levels, and keeping fixed the coarse level (Test D).

The second numerical experiment consists in the passive inflation and active contraction of an
idealized left ventricle (LV) with anisotropic material properties (Subsection 4.3.2). This latter
experiment has been proposed in [Land et al., 2015a] and here it is employed to assess the
performance of the physics-based SMGP approach on a realistic geometry. In particular, with this
experiment, we want to evaluate performance and optimality in presence of active forces.

The numerical experiments have been performed in HART, a novel application for fully cou-
pled electromechanical cardiac simulations, implemented in the FE framework MOOSE [R Gaston
et al., 2014].

HART is developed at CCMC (Center for Computational Medicine in Cardiology) and ICS
(Institute of Computational Science, Università della Svizzera italiana). MOOSE relies upon
PETSc [Balay et al., 2017] in which our solution strategy has been implemented. The parallel
implementation of the proposed solution strategy relies on the PCFIELDSPLIT and PCMG pre-
conditioners. The MOONoLith library [Krause and Zulian, 2016] allows for a fast and parallel
construction of the projection and prolongation operators.

4.3.1 Bending of a rectangular beam

The coarsest meshH0 is composed of uniform quadrilaterals of size 0.5 mm. MeshH` is obtained
by ` uniform refinements of the coarsest mesh. Tab. 4.2 reports the number of vertices and
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Level Grid # Vertices # DOFs
0 H0 63 148
1 H1 205 473
2 H2 729 1663
3 H3 2737 6203
4 H4 10593 23923
5 H5 41665 93923
6 H6 165249 372163
7 H7 658177 1481603
8 H8 2627073 5912323

Table 4.2. Refinement history of the meshes associated to the beam geometry.

degrees of freedom (DOFs) of the hierarchy of considered meshes. Relative tolerances of 10−10,
10−11 and 10−13 are employed as stopping criteria for the external Newton method, the solver
for S̃ , and the solver for Ã , respectively. All tests were run on a 4-core Intel processor with 2.2
GHz with MPI task parallelism.

Test A: comparison of augmenting strategies and effects of smoothing steps

As first test, we compare the augmented Lagrangian and physics-based augmenting strategies
with γ ∈ {2, 20,200} and k ∈ {2, 20}. We consider a two-grid approach with H1 as fine mesh.
In particular, we study the impact of these strategies and parameters on the number of itera-
tions for the solution of S̃ and of Ã at different steps of Newton’s method setting sÃ = 6 and
sS̃ = 2. For all three settings, Newton’s method converged to the relative tolerance in 7 itera-
tions. Fig. 4.7 reports the convergence history for the setting 1. The plots report the obtained
residuals(first and third columns) and the estimated convergence rates ρ̃1 (second and fourth
columns) against the iteration number. Results are reported for the first, second and second to
last iterations of Newton’s method (first, second and third rows). Since the solver for Ã is called
at each iteration of the Schur complement solution process, the convergence history for Ã is
reported at first iteration of the solution of S̃ . For both the SMGP strategies, the convergence
of Ã deteriorates considering high values of the augmenting parameters γ and k. This behavior
is partially balanced by an improvement of the convergence for the solution of S̃ . Results show
that, for relatively small and comparable values of k and γ, the physics-based SMGP approach
performs better then the augmented Lagrangian one. In contrast, the physics-based SMGP ap-
proach does not converge for high values of k. This is due to a failure for the solver for Ã .
For this specific setting, optimal parameters for γ and k belong the range [2, 20]. Comparing
the different nonlinear iterations considered, the augmented Lagrangian and the physics-based
SMGP approach presents a stable behavior. If compared to the augmented Lagrangian approach,
for k = 20 the physics-based SMGP approach results in a better convergence for the solution of
S̃ . Similarly, Fig. 4.8 and 4.9 report the convergence histories for the settings 2 and 3, respec-
tively. Comparing the results settings 2 and 3, we notice that the anisotropy does not affect the
convergence history.

As a second test, we study the impact of the number of smoothing steps on the convergence
of the SMGP approach. For setting 3, first row of Fig. 4.10 reports the mean number of itera-
tions for the solution of S̃ and of Ã for the SMGP approach against the augmenting parameters
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considered. The mean is computed over all the Newton’s iterations. Second row of Fig. 4.10
reports total simulation time (in seconds) for the solution of the beam problem against the
considered augmenting parameter. Results for different augmenting strategies and number of
smoothing steps are shown (reported in the figure). As smoothing steps, we consider the couples
(sS̃ , sÃ ) ∈ { (2,2), (4,4), (6, 6), (8, 8) }. To show the stability of the obtained results with respect
to the size of the fine level mesh and with respect to the number of levels, we consider two-grid
SMGP approach on meshH1 (left) and on meshH2 (center), and three-grid SMGP approach for
the solution on H2 (right). Results show a stronger dependence of the physics-based approach
on the augmenting parameter k with respect to the augmented Lagrangian one. We observe
that two smoothing steps are sufficient for the solution of the Schur complement, while in gen-
eral a larger number of smoothing steps improves the convergence for the elasticity matrix. The
physics-based SMGP approach does not converge for k > 50. The augmented Lagrangian SMGP
approach is associated with a fill in of the sparsity pattern of the augmented matrix Ã with re-
spect toA . This is reflected in a larger memory usage and computing times per SMGP iteration
for the solution of the block Ã . This numerical drawback makes the usage of this approach for
big-size problems unfeasible.

As a third test, we investigate the stability of the obtained results with respect to the size of
the fine level. Fig. 4.11 reports the number of iterations for the physics-based SMGP approach
for the solution of S̃ (left) and Ã (right) plotted against the considered fine level mesh size and
augmenting parameter. In this case, results for the second nonlinear iteration are reported. We
consider a two-level approach with meshes H` - H`−1, for ` = 1, . . . , 5. In this case, we fix the
number of smoothing steps to sS̃ = sÃ = 6. Obtained results show that the number of iterations
for the solution of S̃ and Ã slightly depends on the mesh size, suggesting an optimality of the
approach in a plausible range of the augmenting parameter.

Our final goal is the large scale simulation of anisotropic cardiac tissue. For this reason, in
successive tests, we consider the physics-based SMGP approach for the solution of setting 3 fixing
k = 20.

Test B-C-D: Optimality of the proposed approach

In test B, we evaluate the optimality of the two-grid physics-based SMGP approach with respect
to the mesh size h of the fine level. We apply a uniform refinement to the meshes associated to
all the levels. Fig. (4.12) reports the obtained convergence history. Results are shown for the
second nonlinear iteration. Results for the solution of Ã are reported for the second iteration of
the Schur complement. The obtained number of iterations for S̃ and Ã remain constant. This
suggest an extension of the theoretical optimality results well known for the linear case. Similar
results are obtained in test C, where three-grid physics-based SMGP approach is considered.
Results for this test are shown in Fig. 4.13. For the solution on the three finest grids, we notice
a small decrease in the performance of the approach for the solution of S̃ at iteration 5. In test
D, we compare the performance of physics-based SMGP approach against the number of levels
considered. For all the simulations we considerH0 to be the coarsest grid. Fig. 4.14 reports the
results associated to this test. The obtained number of iterations for S̃ and Ã remain constant
with respect to the number of levels.
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Figure 4.7. Test A, setting 1. Residuals (first and third columns) and estimated convergence
rate ρ̃1 (second and fourth columns) for the solution of S̃ and Ã considered against the
number of iteration for the the SMGP strategies. Obtained results are reported for the first,
the second and the second to last nonlinear iterations in the first, second and third rows,
respectively.

4.3.2 Inflation-contraction of an idealized left ventricle

We consider the problem of passive inflation and active contraction of a LV. Geometry, fiber orien-
tation and material parameters are the same as described in third benchmark problem of [Land
et al., 2015a]. Tab. 4.3 reports the number of vertices and DOFs of the considered hierarchy of
nested meshes. The passive force per unit area of 15 kPa and the active stress of 60 kPa are simul-
taneously applied in ten incremental loading steps [Campos et al., 2013a]. We set as stopping
criteria for Newton’s method a relative tolerances of 10−6 as in [Campos et al., 2018]. Moreover,
we set 10−9 and 10−11 as stopping criteria for the solution of the systems associated to the matrix
S̃ and Ã , respectively.

Simulations are run on Linux cluster with nodes of 2×Intel E5-2650 v3 processors.
Fig. 4.15 shows the norm of the obtained displacement after ten incremental loading steps.

The bottom view shown in the central part of the figure reports the LV twist due to the anisotropy
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Figure 4.8. Test A, setting 2. Residuals (first and third columns) and estimated convergence
rate ρ̃1 (second and fourth columns) for the solution of S̃ and Ã considered against the
number of iteration for the SMGP strategy. Obtained results are reported for the first,
the second and the second to last nonlinear iterations in the first, second and third rows,
respectively.

of the material law.

Comparison of augmenting parameters and effects of smoothing steps

We study the impact of the augmenting parameter and of the number of smoothing steps on the
convergence of the SMGP approach for the idealized LV. Fig. 4.16 reports the mean number of iter-
ations for the solution of S̃ and of Ã for the SMGP approach against the augmenting parameter
considered. The mean is computed over all the Newton’s iterations. In particular, we consider the
physics-based SMGP approach for the solution on the mesh T1 with (sS̃ , sÃ ) ∈ { (2,3), (2,5) }.
Results show that the augmenting parameter that minimizes the number of iterations for the
solution of Ã is k = 50. For k ∈ [1, 200], the number of iterations for the solution of S̃ are
monotonically decreasing with respect to k. The increase of the number of smoothing steps from
3 to 5 has a small impact on the solution of Ã .
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Figure 4.9. Test A, setting 3. Residuals (first and third columns) and estimated convergence
rate ρ̃1 (second and fourth columns) for the solution of S̃ and Ã considered against the
number of iteration for the SMGP strategy. Obtained results are reported for the first,
the second and the second to last nonlinear iterations in the first, second and third rows,
respectively.

Strong scalability

We investigate how the number of cores affects the mean number of iterations for the solution
of S̃ and of Ã at a given nonlinear iteration. We also investigate the strong scaling in which
we keep fixed the size of the problem and increase the number of processors. We consider a
two-grid and a three-grid approach for the solution of the inflation-contraction problem on T1

and T2, respectively. We fixed k = 50, sS̃ = 2, and sÃ = 5.
Fig. 4.17, left panel, shows the mean number of iterations for the solution of S̃ and of Ã

against the number of computing cores. The average is computed over all the solutions of S̃
and Ã over all the nonlinear steps. On the right of the figure, the mean run times (in seconds)
per nonlinear step against the number of cores considered are shown. The higher number of
iterations for the solution on T2 is due to the increase of the number of levels from 2 to 3. The
solution of Ã is slightly affected by the increase of the number of cores. In contrast, the solution
of S̃ is independent on the considered number of cores and on the problem-size. Differently from
standard smoothing approaches with classic iterative solvers, the dependence on the number of
cores is mitigated by the use of a GMRES smoother. In fact, this optimality with respect to the
number of cores affects its scaling properties. We observe from right panel of Fig. (4.17) that the
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Figure 4.10. Test A, setting 3. First row: mean number of iterations (for a single iteration
of the Newton’s method) for S̃ and Ã for the SMGP strategy against the augmenting
parameter. Second row: total simulation time (in seconds) for the solution of the beam
problem against the considered augmenting parameter. As number of smoothing steps we
consider the couples (sS̃ , sÃ ) ∈ { (2, 2), (4, 4), (6,6), (8,8) } (reported in the figure). Results
for two-grid SMGP approach for the solution on H1 (left) and on H2 (center) and three-grid
SMGP approach for the solution on H2 (right) are reported.

scaling is not optimal for a large number of cores.

Effect of the active stress contribution

The components of the active stress in the Jacobian are usually believed to negatively affect the
convergence of the linear and nonlinear solution methods [Gurev et al., 2015]. In particular,
the mass matrix defined on the pressure space is not an optimal preconditioner for the Schur
complement. In order to study the impact of the active stress contribution on the Newton’s
strategy, the passive inflation and the active contraction phases have been decoupled by first
applying the maximum force on the endocardium (diastolic phase) in twenty incremental loading
steps and then by applying the active stress (systolic phase) in twenty steps. Maximum values
are the same as the ones reported in Sec. 4.3.2. For each of these forty steps, Fig. 4.18 reports
the number of Newton’s iterations (left) and the mean number of iterations for the solution of Ã
and of S̃ (right). We consider (sS̃ , sÃ ) = (2, 5) and (sS̃ , sÃ ) = (4, 7) smoothing steps. Newton’s
method coupled with physics-based SMGP approach performs similarly during the passive and
active phases. In this latter phase, increasing the smoothing steps from (sS̃ , sÃ ) = (2, 5) to
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Figure 4.11. Test A, setting 3: mean number of iterations for S̃ (left) and for Ã (right)
for the two-grid physics-based SMGP approach plotted against the considered mesh size and
augmenting parameter.
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Figure 4.12. Test B, setting 3: two-grid physics-based SMGP approach. Residuals (first
and third columns) and estimated convergence rate ρ̃l (second and fourth columns) for the
solution of S̃ and Ã considered against the number of iteration.

(sS̃ , sÃ ) = (4,7) results in a small decrease of the number of iterations. The highest numbers
of iterations for the solution of S̃ and Ã are obtained around the incremental steps 20 and 40
which are associated to the maximum values of forces imposed on the domain. However, no
significant differences are obtained for the solution of Ã and of S̃ during the two phases.

4.4 Conclusions

We presented a novel Schur-complement-based segregated strategy for the solution of saddle
point problems arising from mixed finite element discretizations in incompressible nonlinear
mechanics. The arising tangent problem, which has a saddle point structure, is solved in a segre-
gated fashion employing a GMRES solver for the Schur complement preconditioned by means of
a pressure mass matrix. Hence, at each iteration of the Schur complement, a multigrid strategy
has been employed to solve both the elasticity operator and the mass matrix. In order to remove
the singularity of the elasticity matrix two different augmenting strategies have been tested:
the physics-based and the augmented Lagrangian approaches. The physics-based segregated
multigrid-preconditioned approach is applicable to incompressible elasticity. It has the main
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Figure 4.13. Test C, setting 3: three-grid physics-based SMGP approach. Residuals (first
and third columns) and estimated convergence rate ρ̃l (second and fourth columns) for the
solution of S̃ and Ã considered against the number of iteration.
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Figure 4.14. Test D, setting 3: multi-level physics-based SMGP approach. Residuals (first
and third columns) and estimated convergence rate ρ̃l (second and fourth columns) for the
solution of S̃ and Ã considered against the number of iteration.

advantage of preserving the sparsity pattern of the stiffness matrix. Compared to standard aug-
menting Lagrangian methods, this physics-based approach presents better convergence rates. By
means of several numerical tests, we showed the optimality of the proposed strategy with respect
to the augmenting parameter, the mesh-size, and the number of multigrid levels. In conclusion,
the extensive comparative study performed suggest that the proposed Schur-complement-based
segregated strategy coupled with the physics-based augmenting approach represents an efficient
solution strategy for the solution of the equations describing incompressible nonlinear materials
for the augmenting parameter belonging to the range [20, 50].

Level Grid # Vertices # DOFs
0 T0 ∼4 k ∼14 k
1 T1 ∼32 k ∼100 k
2 T2 ∼235 k ∼738 k
3 T3 ∼1820 k ∼5696 k

Table 4.3. Idealized left ventricle: table associated to the refinement history.



105 4.4 Conclusions

Sonia Pozzi -Figure 10

Figure 4.15. Snapshots of the idealized left ventricle after 10 incremental loading steps. In
detail, norm of the displacement in anterior view (left), in bottom view (center) and in top
view (right). Results on the grid T0 are reported.
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Figure 4.16. Mean number of iterations (for a single iteration of the Newton’s method) for
S̃ and S̃ for the two-grids physic-based SMGP strategy against the considered augmenting
parameter. As number of smoothing steps we consider the couples (sS̃ , sÃ ) ∈ { (2,3), (2, 5) }
(reported in figure).
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Figure 4.17. Left: mean number of iterations for the solution of the block Ã and of the
Schur complement S̃ against the number of cores. Right: mean run times for nonlinear
iteration against the number of cores.
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Figure 4.18. Left: number of Newton’s iterations against the number of the current incre-
mental loading step. Right: mean number of iterations for the solution of Ã and of S̃
against the number of the current incremental loading step are reported. Results are shown
considering (sS̃ , sÃ ) = (2,5) and (sS̃ , sÃ ) = (4,7) smoothing steps.



Chapter 5

Coupled numerical simulations

5.1 Impact of mechanical deformation on pseudo-ECGs:
a simulation study

The spatio-temporal morphology of the ECG is the result of the relative motion of the cardiac
extracellular action potentials with respect to the position of the electrodes. ECG is usually com-
puted as static process, without considering the mechanical deformation due to the beating heart
and breathing. In detail, in the computation of the ECG, often a fixed geometry of the heart in
the torso is assumed. Based on this approximation, patient-tailored ECGs can be simulated in
a few minutes on HPC architectures with anatomically detailed cardiac electrophysiology mod-
els [M. Potse et al., 2006; Villongco et al., 2014]. However, the heart is mechanically active and
several model studies showed that the T-wave in the ECGs is influenced by the volume of blood
in the cavity [Cluitmans et al., 2015] and hence by the current configuration of the heart [Keller
et al., 2011; Smith et al., 2003a; De Oliveira et al., 2013]. This indicates that the commonly used
pure electrophysiology (PE) scenario may be too simple.

From a geometrical point of view, mechanics plays a double role in possible modifications of
the ECG signals in contrast to a purely electrophysiological (PE) scenario: one is due to the ef-
fects of mechanical contraction on the electrical activation front and the second one is related to
the change of distance from the electrodes during the cardiac cycle (see Sec. 1.3.2). Aim of this
simulation study is to investigate the impact of the above-mentioned geometrical effects on sim-
ulated pseudo-ECGs. For this purpose two coupling strategies have been presented in Sec. 1.3.3.
We employ a MD coupling scenario to isolate the role of the distance from the electrodes and a
BD coupling scenario to understand the combined role of the two effects. MD coupling strategy
allows to remove all mechano-electrical feedbacks (MEFs) which may affect the AP propaga-
tion. Additionally, this study results also in a comparison of the PE, MD and BD computational
scenarios.

Experimental setup

We consider the monodomain system (1.90) coupled with the BOCF (see Sec. 1.2.7) ionic model
and the fully incompressible Guccione-Costa hyperelastic law (see Sec. 1.1.8) with the GK model
(see Sec. 1.3.1) for the mechanical description of the cardiac elastic active response. We consider
kTa
= 50 kPa, ε0 = 1 ms−1 and ε∞ = 0.01 ms−1, Vs = −30 mV , and ξr = 0.3 mV −1. The
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conductivity tensor is assumed to be transversely isotropic. Electrophysiology material properties
are homogeneous in space and taken from [Niederer et al., 2011]. We aim to systematically study
the effect of the mechanical deformation on pseudo-ECGs. Thus we reduce the complex effects
due to geometry and fiber orientation, considering the following three settings in whichBr is a

setting 1: cube with edge of 7 mm and fibers aligned along x-axis,

setting 2: slab of size 20 mm × 7 mm × 3 mm and fibers aligned along x-axis, and

setting 3: slab of size 20 mm × 7 mm × 3 mm and fibers aligned along y-axis.

In order to avoid rigid-body motion, the boundary faces along the planes x = 0, y = 0, and z =
0 are fixed in the normal direction. Setting 2. represents the electro-mechanical enrichment of
the purely electrophysiological test studied presented in [Niederer et al., 2011].

We computed the pseudo-ECG signals as described in Sec. 1.3.2 at six unipolar electrodes
Zi,±, two for each Cartesian axis i = x , y, z . They are arranged symmetrically with respect to
the center of the domain and are 10 cm apart from the boundary faces. In addition, the unipolar
signals from electrodes aligned in the same direction are combined into a single bipolar pseudo-
ECG, with the electrode in the positive direction being the cathode and the opposite one being
the anode, defining Zi = Zi,+ − Zi,−.

The time integration of the monodomain system is performed by means of the qN-BDF-
ETDStab1 scheme described in Chpt. 3. The linear system arising from the implicit lineariza-
tion of the nonlinear monodomain equation has been solved with an algebraic multigrid solver
(BoomerAMG, PETSc suite). The non-linear mechanical model has been solved with Newton’s
SMGP strategy described in Chpt. 4. The spatial computational meshes of the electrophysiology
have a resolution of 0.125 mm. Since no steep gradients in the deformation are present, the
mechanical solver employs a coarser mesh of step-size 1 mm. Both solvers employ a temporal
mesh with mesh size 0.05 ms.

Numerical Results

The AP and the pseudo-ECGs computed with the three computational scenarios are shown in
Fig. 5.1, Fig. 5.2, and Fig. 5.3 for settings 1, 2, and 3, respectively. To compare zero potential
isosurfaces considering MD and BD coupling approaches, the simulated AP have been mapped to
the reference geometry. The isosurfaces of PE are equal to those of the MD since the electrophys-
iology problems are solved on the same domain for both the scenarios. The two leftmost upper
panels of Fig. 5.1 depict the deformed states (reported in colors) of the two electro-mechanical
approaches and they are compared with the undeformed state (computational grid is reported).
The activation starts from the rightmost corner (marked with a green dot) closed to the clamped
faces x = 0, y =0, and z =0. On the other faces, a stress-free boundary condition is imposed.
The AP is depicted after 25 ms: the green region is in a depolarized state and the red region is
in a resting condition. It can be seen that in the MD simulation the wavefront has progressed
less, especially in the XZ- and XY-planes (parallel to the fiber direction, marked in red). Front
of the BD method is also flatter. The influence of deformation on the activation wavefronts at
different times is reported in the right upper panel. In general, due to the contraction of the
tissue the BD scenario gave a faster activation front in the interior of the tissue and close to
the stress-free faces along fiber direction. Hence, with the BD coupling strategy the same point
activated earlier. Instead, in the cross fiber direction a slower activation has been noticed. An
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opposite behavior has been observed close to the clamped edge along fiber direction. Specif-
ically, the point located at (0, 0,7) activated 0.2 ms earlier with PE and MD. The influence of
mechanical deformations is then reflected in the computed pseudo-ECGs. As a consequence of
the simple axis aligned geometry, pseudo-ECG potential was basically dominated by the activated
areas orthogonal to positive-to-negative electrode direction, weighted by the distance from the
electrodes. The differences in the propagation are mostly visible in the X-direction where larger
deformations occur. Initially, the potential increased since the activated area on the x = 0 face
increased. Since no changes in configuration are present at this point, computed pseudo-ECGs
are almost equal. After reaching its peak value, when the opposite face started to activate the
potential abruptly decreased. Here differences are reflected in the notching present in the QRS
complex of X-direction around the S-wave. MD scenario was responsible for a sharp notch, com-
pared to the PE and BD. This was a consequence of the varying distance of the electrodes from
the tissue. The activated areas between the approaches were comparable, but they were located
at different distances from the electrode Zi,+. The difference between BD and PE approaches is
less appreciable, due to the change of conductivity, that compensated for the relative variation
of the electrode location with slower areal velocity. For the other two electrodes, the QRS com-
plex duration and shape were similar among PE, MD and BD approaches. In general, PE and BD
produced T-waves of different amplitude. The discrepancy varied among the electrodes and test
cases, with either higher or lower amplitudes. MD coupling scenario always provided a good
approximation of the BD coupling one. In order to show more clearly the effect of conduction
and contraction along the fibers, simulations were performed in two flatter and longer tissue
slabs. For setting 2 (see Fig. 5.2) the effect of the boundary condition on the propagation was
more apparent due to the orientation of the fibers along the major axis. MD and BD provided
similar activation patterns until the signal reached the top face (around 7 ms after the electrical
activation of the tissue). Then, since the signal has reached the stress- free top face, the tissue
slab started to contract and thus the interplay between mechanics and electrophysiology became
manifest. The propagation for BD approach resulted faster on the top face and slower close to
the bottom face of the preparation. In particular, the zero-potential isosurfaces from MD and
BD coupling approaches intersected on the reference geometry, certifying a face-to-face smooth
variation in conduction velocity (see right panel of Fig. 5.2). Concerning the pseudo-ECG, the
PE simulation gave a slightly smaller potential at the peak of the QRS complex compared to
the other two approaches while the Y-lead of the pseudo-ECGs showed an opposite effect (see
Fig. 5.2). No large differences were observed between MD and BD. Actually, the tissue is long
enough along the fiber direction to decouple the activation of the two opposite faces, and thus
easing the pseudo-ECGs interpretation. Differently from the previous case, accounting for defor-
mation in the BD resulted in a larger and slightly earlier T-wave along the x- axis than in the MD
and PE approaches. Finally, setting 3. (reported in Fig. 5.3) confirmed the results of the previous
two cases, with a faster activation front of BD along fiber directions. In the pseudo-ECG, differ-
ences were noticeable in the S-wave between the different approaches in the fiber direction (see
bottom panel of Fig. 5.3). As for setting 1, larger potential in the QRS complex were given by
the BD and even larger by the MD. A delayed and amplified T-wave was observed for the Y-axis.
Again, the MD approximation is not satisfactory for the computation of pseudo-ECGs. Even if
the overall shape of the QRS complex, overestimated values are observed (for example peak of
S-wave for y-axis was 0.09270 mV) and surprisingly a change of the sign of the T-wave was also
present.
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Figure 5.1. Setting 1. Top left: snapshots of the spatial distribution of the action potential
from the MD and BD for a cube of tissue with fibers aligned along the x-axis. Configurations
are reported 25 ms after applying an electrical stimulus at the location of the green dot. The
grid reflects the mechanical mesh of the static configuration. Top right: comparison of zero
isopotential surfaces obtained from the MD scenario (red surface) and BD scenario (blue
surface) for different time steps (10 ms, 25 ms, 30 ms). In order to compare them, the
different activations have been projected on the reference configuration. Bottom: simulated
pseudo-ECGs. The three bipolar pseudo-ECGs along the Cartesian axes are shown here.
Green, red and blue lines represent results for the pure-electrophysiology approach, the MD
approach and the BD approach, respectively.
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Figure 5.2. Setting 2. Top left: snapshots of the spatial distribution of the action potential
from the MD and BD for a slab of tissue with fibers aligned along the x-axis. Configurations
are reported 25 ms after applying an electrical stimulus at the location of the green dot.
The grid reflects the mechanical mesh of the static configuration. Top right: comparison
of zero isopotential surfaces obtained from the MD scenario (red surface) and BD scenario
(blue surface) for different time steps (10 ms, 25 ms, 30 ms). In order to compare them, the
different activations have been projected on the reference configuration. Bottom: simulated
pseudo-ECGs. The three bipolar pseudo-ECGs along the Cartesian axes are shown here.
Green, red and blue lines represent results for the pure-electrophysiology approach, the MD
approach and BD approach, respectively.
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Figure 5.3. Setting 3. Top left: snapshots of the spatial distribution of the action potential
from the MD and BD for a slab of tissue with fibers aligned along the y-axis. Configurations
are reported 25 ms after applying an electrical stimulus at the location of the green dot.
The grid reflects the mechanical mesh of the static configuration. Top right: comparison
of zero isopotential surfaces obtained from the MD scenario (red surface) and BD scenario
(blue surface) for different time steps (10 ms, 25 ms, 30 ms). In order to compare them, the
different activations have been projected on the reference configuration. Bottom: simulated
pseudo-ECGs. The three bipolar pseudo-ECGs along the Cartesian axes are shown here.
Green, red and blue lines represent results for the pure-electrophysiology approach, the MD
approach and BD approach, respectively.
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Comments

ECG is usually computed as static process, without considering the mechanical deformation due
to the beating heart and breathing. Our results confirm the importance to account for mechanical
deformation while simulating the ECG. Moreover, they significantly extend previous knowledge
indicating that different ways of coupling electrophysiology and cardiac mechanics may result in
different propagation patterns and ECGs. Mechanical changes have been shown to have major
effects on potential propagation both at the macroscopic level [Nguyên et al., 2015], depending
on the position of the heart in the torso, and at cellular level [Smith et al., 2003b; Dos Santos
et al., 2006; Trayanova et al., 2011]. In this study, we focused on the changes in the pseudo-ECG
signals due to the different propagation pattern given by the mechanical deformations and due
to the changes in the relative distance from the electrodes. The purely electrophysiological, the
MD, and the BD coupling approaches of electrophysiology and mechanics had the role to the sep-
arate these two effects. The numerical experiments show an impact of mechanics on the T-wave
and, under specific circumstances, on the QRS complex as well. At the T-wave, the shorten-
ing along the fiber direction has its maximal value, and hence the major differences between the
electro-mechanical models and the PE one are noticeable. On the other hand, smaller differences
are usually observed between the two electro-mechanical scenarios. This demonstrates that the
change in conductivity is mostly a dynamical effect: deformations are slower during repolar-
ization. Also Cluitmans et al. in [Cluitmans et al., 2015] confirmed that the differences in the
repolarization phase are mostly due to the difference location of the heart, performing a static
comparison of electrograms in systolic and diastolic cardiac geometries. Differences between
the MD and BD scenarios, when present, become more relevant at the QRS complex. During
the depolarization phase, faster and larger changes occur in the active force and hence in the
deformation. The position of the tissue in the ideal torso appears to be counteracted in the BD
approach by the effect of deforming myocardium on its conduction velocity. This can be seen
observing that the calculated pseudo-ECGs in the BD simulations were closer to those from the
PE simulations. Changes in both the QRS complex and the T-wave were observed in [Smith et al.,
2003b]. In a two-dimensional comparison between BD and PE they motivated the early T-wave
partially by the geometrical changes and partially by phenomena at the cellular level. In our
simulations, an altered T-wave both in time and amplitude had been observed but, differently
from the previous studies, time shift depends on the geometry and fiber orientation. Actually for
the cubic case, reported in Fig. 5.1, the T-wave with mechanics has a larger amplitude while for
the tissue slab, reported in Fig. 5.2, an opposite effect was noticeable. Our results confirmed the
findings of Smith et al. also concerning the QRS complex. The BD approach is responsible for a
larger potential in QRS complex. The MD approach in this cases is responsible also for an early
S-wave and for a notch that are in particular visible for the leads located along the propagation
direction (see Fig. 5.1 and Fig. 5.3). The expected larger conduction velocities are usually vis-
ible on the non-clamped sides of the preparations. On the other sides, PE and MD had a faster
velocity. This means that mechanical boundary condition may have a significant impact on the
propagation of the activation potential. This effect is mostly challenging in its understanding
but, in any case, it suggests that mechanical boundary conditions have to be accurately cho-
sen in fully coupled simulations in order not to introduce disturbance on the propagation, and
hence invalidate the results. The use of the MD coupling, and to a lesser extent the BD coupling,
resulted in some cases in QRS complexes characterized by a notch that was less visible in the
PE simulations. This observation suggests that the occurrence of notches in the QRS complex
may in part be related to the effect of deformation. A well-known pseudo-ECG condition, where
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notching appears, is left bundle branch block (LBBB). In LBBB, due to a delay (or disruption) of
conduction of the left bundle, the right ventricle is activated first and then the activation front
spreads from right-to-left through the septum. The typical notching observed in the pseudo-ECG
of patients with LBBB, may be due to a slow trans-septal conduction. Our simulations represent
a proof of concept of a possible explanation for notching in LBBB. The septum undergoes a com-
plicated paradoxical deformation, often referred to as septal flash [Leenders et al., 2012] while
the action potential is traveling through it LV. This is similar to pseudo-ECG along fiber direction
occurring, for example, reported in Fig. 5.1 and Fig. 5.3. In this simulation, propagation was
orthogonal to the fibers, and thus the cube or the slab started to contract before the entire block
had been activated. Because of the incompressibility of the material, a contraction in the fiber
direction translated into an expansion in the cross-fiber plane, thus introducing a relative motion
of the action potential with respect to the electrodes.

Note on choice of the active force

The choice of the active stress parameters, in some cases, led to an unstable behavior of the
mechanical solver. This instability generally occurred during the repolarization phase and it was
due to a singularity in the linearized mechanical problem. A possible explanation comes from
a buckling phenomenon given by active stress model under compression [Ambrosi and Pezzuto,
2012; Augustin et al., 2016]: fibers can exert an active force only under extension. We conducted
the same simulation study for the NP model (see Sec. 1.3.1) for the active stress. In this case we
considered kTa

= 30 kPa, and ε0 = ε∞ = 0.01 mV−1 obtaining, for a single cell, the smooth active
stress function reported in Fig. 5.4. The considerations above apply also for the NP model [Favino
et al., 2016]. No remarkable differences had arisen for the simulated pseudo-ECG with the NP
and the GK activation model. As shown in Fig. 5.4, a delay of approximatively 200 ms is obtained
between upstroke of the action potential and the onset of force development considering the
NP and the GK activation models for the chosen parameters. For this reason, in simulations
involving the complete cardiac geometry we do not expect the mechanical deformation to impact
the simulated QRS-complex. However in our simulations, the simplified shape of the considered
geometries and the boundary effects damp the outcomes associated to this electromechanical
delay in the resulting QRS-complex. Additional simulations on the biventricular geometry would
support a more robust understanding of the impact of the mechanical deformation on simulated
pseudo-ECG.

Limitations

The model adopted in this study comes with some simplifications: the active force generation is
phenomenological and not integrated into the cellular model. Moreover, used fiber orientations
were uniform and aligned along one axis of the pseudo-ECG electrodes. Also, the rectangular
arrangement of the six pseudo-ECG electrodes and the space they surround are a simplification
of the actual shape of a human torso. These simplifications were used in order to more clearly
demonstrate the proof of principle of the impact of deformation on the pseudo-ECG. Further
investigations are, hence, necessary in order to understand the role of fibers distribution, e.g.
employing slabs with non-uniform fiber directions, and of the geometry, e.g. employing a trun-
cated ellipsoids or realistic hearts.
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Figure 5.4. Comparison of the Nash Panfilov (NP) and Göktepe and Kuhl (GK) active stress
models and action potential considered in the simulation study.

5.2 Simulated patient-specific pV-loop

Goal of this chapter is to study the effect of synchronous and asynchronous activation of the my-
ofibers on the pressure-volumes loops obtained for the ventricular cavities. For this purpose we
consider the LMC - FE electromechanical model described in with the closed-loop lumped model
of circulation (LMC). In the LMC - FE incompressible elasticity coupled model, we consider the
Guccione-Costa constitutive law [Guccione et al., 1995] described in Sec. 1.1.8. The constitutive
parameters for the incompressible elasticity model are taken from [Land et al., 2015a] and re-
ported in Tab. 5.1. Additionally, Tab. 5.1 reports the parameters for the Eikonal-diffusion model
described in Sec. 1.2.13.

The novelty of our work is represented by the study of the effects of asynchronous activation
of the myofibers on the pressure-volumes loops obtained for the ventricular cavities. In the
LMC originally proposed by Kerckhoffs et al. [Kerckhoffs et al., 2007], synchronous activation
of ventricular cardiac cells is considered in which the ventricular chambers are described as
0D variables. Coupling the LMC with the FE electromechanical model we consider different
synchronous and asynchronous experimental setups. In asynchronous settings, the cellular start
time of first active ventricular contraction tactive is shifted by the simulated electrical activation
time ψ, i.e. we consider

tactive,AT(x) = tactive +ψ(x). (5.1)

ATs are computed considering the reduced Eikonal-diffusion model described Sec. 1.2.13. In
detail, we consider

setting 1: synchronous mechanical activation of myocardial cell, i.e. tactive to constant onBr .

setting 2: asynchronous mechanical activation of myocardial cells, with activation delay pre-
scribed by the Eikonal-diffusion model with early activated site represented by a group of
cells located in the ventricular septal (represented by a blue region in Fig. 5.5).

setting 3: asynchronous, mechanical activation of myocardial cells, with delay prescribed by the
Eikonal-diffusion model with as early activated site 18 groups of cells representing the
termination of Purkinje fibers (represented by a blue regions in Fig. 5.6). Nine groups of
cells are located in the LV and nine in the RV.
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Figure 5.5. Activation times ψ in milliseconds obtained with the reduced Eikonal-diffusion
model in anterior (left), top (center) and bottom (right) views. The early activated site is
represented by a group of cells (here represented by the blue area of the domain) located in
the ventricular septal.

First row of Fig. 5.7 shows the four chambers volumes (left) and pressures (right) obtained for
the canine LMC [Kerckhoffs et al., 2007]. Second row of Fig. 5.7 shows the pV-loops for the left
(left) and right (center) ventricular cavities and the trigonometric functions (right) controlling
the mechanical activation of the atrium and ventricles. In case the biventricular geometry is con-
sidered, circulation parameters such as the total blood volume and suitable initial conditions for
the pure LMC have to be determined. In this case, data for the different circulatory segments have
been estimated from magnetic resonance imaging (MRI) of the ventricular cavities considering
the frame after mitral valve closure (MVC) taking into account epidemiologic data. Volumetric
and time parameters have been scaled accordingly to the biventricular geometry and the human
basic cycle length. Considered parameters and initial conditions for the patient-specific LMC are
reported in Tab. 5.1. First row of Fig. 5.8 shows the four chambers volumes (left panel) and
pressures (right panel) obtained with the Kerckhoffs et al. LMC with the parameters tuned for
the biventricular geometry. Second row of Fig. 5.8 shows the pV-loops for the left (left) and right
(center) ventricular cavities and the trigonometric functions (right) controlling the mechanical
activation of the atrium and ventricles. Independent on mechanical deformation of the geometry,
the Eikonal-diffusion model was first solved with the Newton’s method. The solution was com-
puted on the FE anatomical biventricular geometry discretized considering ≈820k tetrahedral
elements and then interpolated on a coarser grid of ≈102k elements. Incompressible elasticity is
then solved with the Newton’s method on the coarser grid. As a non-linear convergence criteria
we considered the absolute tolerance of tol =1e-10. The system arising from the linearization
of the Eikonal-diffusion model and of the mechanical equations were solved with a direct solver
(MUMPS of the PETSc suite [Balay et al., 2017]).

5.2.1 Numerical results

In this section, we compare the numerical results obtained for the three numerical setting de-
scribed above in terms of resulting pV-loops and ventricular ejection fraction (EF). In Fig. 5.9
snapshots of the displacement for the simulated pV-loops for the setting 1 are reported. In detail,
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Equation Symbol Quantity Canine geometry Biventricular

geometry geometry

Circulation Vtot total blood 1.7 l 4.4 l

lumped model VLA volume of left atrium 37.3 ml 39.0 ml

VLV volume of left ventricle 45.4 ml 84.61 ml

Vas volume of systemic 352 ml 900 ml

arteries and capillares

Vvs volume of systemic 1040 ml 2700 ml

veins

VRA volume of right atrium 35 ml 32 ml

VRV volume of right ventricle 34.7 ml 48.56 ml

Vap volume of pulmonic 84.9 ml 245 ml

arteries and capillaries

Vpv volume of pulmonic 93 ml 245 ml

veins

tactive start time of first 200 ms 200 ms

ventricular contraction

tcycle basic cycle length 600 ms 1100 ms

ttwitch duration of 300 ms 400 ms

ventricular twitch

Incompressible mu - 2.0kPa

elasticity bf - 8.0

bt - 2.0

bfs - 4.0

Eikonal model χ surface to volume ratio - 1440 cm−1

c0 diffusivity parameter - 0.03 µ F−1cm 3

θ - 3.5 cm ms−1 mS−
1
2

Table 5.1. Simulated pV-loop: parameters calibration for the canine and the biventricular
geometry.
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Figure 5.6. Activation times ψ in milliseconds obtained with the reduced Eikonal-diffusion
model in anterior (left), top (center) and bottom (right) views. The set of early activated
sites (here represented by the blue areas of the domain) represent the cells located close to
the terminations of Purkinje fibers.

unloaded geometry at t = 0 ms is reported in the top left corner of the figure. For the first heart-
beat the first 200 ms of the simulation are devoted to a preload of the geometry, representing the
ventricular filling phase. The loaded geometry at time t = 200 ms is reported in the top right
corner of Fig. 5.9. Second row of Fig. 5.9 reports the deformed geometry at t = 400 ms (left)
and t = 600 ms (right). Fig. 5.10 reports the obtained results for the three different settings for
the LMC - FE electromechanical model with parameters tuned for the biventricular geometry. In
detail, first row of the figure shows the ventricular (solid line) and atrial (dashed line) volumes.
Second row of the figure reports the obtained ventricular pressure for the left (left) and for the
right (right) ventricular cavities. Third row of the figure shows the pV-loops for the left (left)
and right (center) ventricular cavities. For all the considered settings, the simulated ventricular
pressure underestimate normal hemodynamic parameters. Tab. 5.2 reports for the 10th beat for
the three different settings, the end-diastolic pressure (EDP), the end-diastolic volume (EDV),
the peak pressure (Pmax), the end-systolic pressure (ESP), the stroke volumes (SV) and the ejec-
tion fraction EF. The ventricular EF is expressed as the ratio of the ventricular stroke volume
(SV) to the ventricular end-diastolic volume (EDV). SV is obtained by subtracting the ventricular
end-systolic volume (ESV) from EDV. Therefore, EF is calculated as

EF=
EDV− ESV

EDV
× 100(%). (5.2)

EF for setting 2 is smaller than the one for setting 1 in the percentage of the 2.3% for the LV and
of the 1% for the RV. EF for setting 3 is smaller than the one for setting 1 in the percentage of
the 0.8% for the LV and of the 0.2% for the RV. If compared to setting 1, setting 2 results in a
delay of the 39% in time for the achievement of the pressure peak value and setting 3 in a delay
of the 17%. Moreover asynchronous settings result in variations of the peak pressures. In detail,
setting 2 results in a decrease of the 2.7% for the LV and of the 4.8% for the RV and setting 3
results 0.8% for the LV and of the 2.9% for the RV.
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Figure 5.7. LMC canine model: first row: four chambers volumes (left) and cavity pressures
(right) obtained with the LMC [Kerckhoffs et al., 2007]. Second row: pV-loops for the left
(right) and right (center) ventricular cavities and (right) the trigonometric functions ya and
yv controlling the elastances of the atria and ventricles, respectively.

Limitations

Parameters of the compliance matrix have been obtained rescaling the ones of the LMC by the
ratio between the unloaded volumes of the biventricular and of the canine geometry. Entries
of the matrix should be obtained from the non-linear pressure-volumes relationships and as a
qualification of direct ventricular interaction for the FE mechanical model. Obtained results
demonstrate the proof of principle of the impact of the asynchronous activation of the cardiac
tissue on the simulated pV-loops. Limitations of this work include that the proposed study has
be performed on a single patient-specific case. Moreover, as discussed for the test case presented
in Sec. 5.1, in the model adopted the active force generation is phenomenological. The LMC -
FE electromechanical model proposed involves the computation of the electrical activation times
considering the reduced Eikonal-diffusion model. As a further investigation the LMC could be
coupled to the fully coupled 3D electromechanical model in which the propagation of the AP is
computed on the deformed geometry.
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Figure 5.8. LMC patient-specific model: first row: four chambers volumes (left) and cav-
ity pressures (right) obtained with the LMC [Kerckhoffs et al., 2007] with the parameters
tuned for the biventricular geometry. Second row: pV-loops for the left (right) and right
(center) ventricular cavities and (right) the trigonometric functions ya and yv controlling the
elastances of the atria and ventricles, respectively.

Setting 1 Setting 2 Setting 3

LV RV LV RV LV RV

EDP [mmHg] 12.67 8.33 12.94 8.14 12.74 8.26

EDV [ml] 163.13 101.78 164.18 101.69 163.43 101.77

Pmax [kPa] 69.13 22.15 67.26 23.23 68.57 21.50

ESP [mmHg] 58.51 13.81 57.96 13.60 58.05 14.05

SV [ml] 67.59 70.60 66.41 69.82 67.15 70.40

EF [%] 41.44 69.37 40.45 68.67 41.09 69.17

Table 5.2. The 10th beat for the three different settings, EDP, end-diastolic pressure; EDV,
end-diastolic volume; Pmax, peak pressure; ESP, end-systolic pressure; SV, stroke volumes;
EF, ejection fraction.
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Figure 5.9. LMC - FE electromechanical patient-specific model: snapshots of the displace-
ment for the simulated pV-loops at time t = 0 ms (top left), t = 200 ms (top right), t = 400
ms (bottom left) and t = 600 ms (bottom right). Results for setting 1 are reported.
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Figure 5.10. LMC - FE electromechanical patient-specific model: first row: left ventricle and
left atrium (dashed) volumes (left) and right ventricle and right atrium (dashed) volumes
(right). Second row: left ventricular pressure (left) and right ventricular pressure (right).
Thirs row: pV-loops for the left (right) and right (center) ventricular cavities. Results are
reported for the three different settings for τ= 2ms.



Final remarks

In this work, we developed discretization and solution methods for the simulation of a fully-
coupled electromechanical model of the heart. We presented high-order schemes for time inte-
gration of the monodomain system based on an extension of the well-known Rush-Larsen scheme.
Moreover, we presented a novel segregated solution strategy for the saddle-point system arising
from the discretization of the equations of incompressible nonlinear elasticity.
The main novel results of this work can be summarized as follow.

• The Rush-Larsen scheme for the integration of the monodomain equation has been rein-
terpreted as an exponential integrator. Hence, by generalizing this latter, we developed
high-order exponential schemes for the time integration of the gating variables. The de-
veloped schemes have been coupled with high-order backward differentiation methods for
the time integration of the reaction-diffusion equation. An additional contribution comes
from a novel quasi-Newton method for the implicit discretization of the monodomain equa-
tion based on the specific form of the ionic currents. As an alternative, we also proposed
to evaluation of the complicated Jacobian by means of a complex step differentiation tech-
nique.

• We developed an efficient solution strategy for the solution of the linear system with a
saddle-point structure arising from the finite element discretization of the tangent problem
in the simulation of incompressible nonlinear elasticity. In details, to increase the minimum
eigenvalue of the elasticity operator in the tangent problem, we considered and compared
two penalty volumetric terms: a linear and a nonlinear augmenting strategies. This allows
to remove the possible singularity in the elasticity block and hence makes possible to use
segregated approaches to solve the augmented linear system. This approach corresponds
to the solution of the Schur complement of the augmented system, for which a mass matrix
was used as a preconditioner. Two multigrid preconditioners have been used to solve the
Schur complement associated: one for the elasticity operator and one for the mass matrix
preconditioner. A particular choice in our multigrid strategy was the use of a GMRES
solver as a smoother. We have also investigated the effect of the augmenting parameters in
the convergence and the optimality of the proposed multigrid strategy with respect to the
mesh-size and number of multigrid levels. With these choices the linear solver converged
with a fixed number of Newton iterations and demonstrated good scalability properties.
We showed the stability of the linear and nonlinear solution methods for a purely passive
response of the material and the weak dependence of the solver on the active contribution
to the elastic response.
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We considered the following applications of the coupled electromechanical model:

• We studied the impact of geometrical changes on the electrical activation front and of the
change of distance from the electrodes during the cardiac cycle on simulated electrocardio-
grams. The study of three different coupling scenarios (defined as purely electrophysiolog-
ical, mono-directional and bi-directional electromechanical coupling strategies) allowed us
to show the impact of mechanical deformation on simulated pseudo-ECGs.

• The developed finite element electromechanical model was coupled to a lumped model of
circulation. This allowed us to simulate complete cardiac cycles and, as a result, to ob-
tain pressure-volume loops in a patient-specific setting. In the simulated pressure-volumes
loops, we highlighted significant differences arising from synchronous and asynchronous
mechanical activation of the cardiac muscle.

Finally, we point out the following future research.

• High-order time integration schemes should be extended to deal with discontinuous de-
scriptions of the behavior of the gating variables. High-order integration schemes lead to
an accurate solution of equation governing electrophysiology. However, the requirement
of small time steps does not allow to fully exploit high-order strategies to reduce the com-
putational time needed for the solution of the monodomain system. This is due to stiffness
of the gating variables. For this reason, high-order time integration schemes should be
coupled to adaptive time integration schemes.

• In the solver for the equations describing of incompressible behavior of the tissue, I em-
ployed the GMRES solver as a smoother. Other more efficient smoothers should be inves-
tigated.

• At the price of the development of appropriately fitted block-element smoothers, coupled
solvers for the equations arising in cardiac mechanics should be considered.

• An extension to the model should be performed: in the model adopted the active force
generated is not integrated into the cellular model.

• Parameters of the compliance matrix for the finite element electromechanical model cou-
pled with the lumped model of circulation should be computed from the nonlinear pressure-
volume relationships. The proposed model involved the computation of the electrical ac-
tivation times considering the reduced Eikonal-diffusion model. As a further investigation
the considered lumped model of circulation should be coupled to the fully coupled elec-
tromechanical FE model in which the AP is computed on the deformed geometry.

• In the study of the impact of geometric changes due to mechanical deformation of the
tissue on simulated electrocardiograms, fiber orientations were considered to be uniform
and aligned along one axis of the pseudo-ECG electrodes. To understand the role of fiber
distribution, the results for the patient-specific geometry should be investigated.
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