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Queen Mary University of London 

ABSTRACT 

SCHOOL OF ENGINEERING AND MATERIALS SCIENCE 

Doctor of Philosophy 

Aerofoil broadband and tonal noise modelling using Fast-Random-Particle-

Mesh method and Large Eddy Simulation  

by Stanislav Proskurov 

 

The aim of this work is to critically examine state-of-the art numerical methods used in 

computational aero-acoustics with the goal to further develop methods of choice that satisfy 

the industry requirements for aero-acoustic design, that is being fast, physical and potentially 

applicable to a variety of airframe noise problems. At the core of this thesis, two different 

modelling techniques are applied to benchmark aerofoil noise problems. One is based on a 

modern Fast Random Particle Mesh (FRPM) method with the mean flow and turbulence 

statistics supplied from the Reynolds-Averaged Navier-Stokes (RANS) simulation. The 

second technique is a Large Eddy Simulation (LES) method utilising the new in-house fast-

turn-around GPU CABARET code.   

 

The novelty of the work presented herein consists in the development of new modifications to 

the stochastic FRPM method featuring both tonal and broadband noise sources. The 

technique relies on the combination of incorporated vortex-shedding resolved flow available 

from Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulation with the fine-scale 

turbulence FRPM solution generated via stochastic velocity fluctuations in the context of 

vortex sound theory. In contrast to the existing literature, proposed methodology 

encompasses a unified treatment for broadband and tonal acoustic noise sources at the source 

level, thus, accounting for linear source interference as well as possible non-linear source 

interaction effects. Results of the method’s application for two aerofoil benchmark cases, 

with sharp and blunt trailing edges are presented. In each case, the importance of individual 

linear and non-linear noise sources was investigated. Several new key features related to the 

unsteady implementation of the method were tested and brought into the equation.  

 

The source terms responsible for noise generation in accordance with the vortex sound theory 

are computed to assess the validity range of a digital filter calibration parameter used in the 

FRPM method for synthetic turbulence generation as compared to the same source 

reconstructed from the first principle LES solution. Such comparison at the source level has 

been achieved for the first time in the modelling literature, which allows for the physical 

interpretation of results obtained by the FRPM method. Finally, solutions of the FRPM 

method with the calibration parameter tailored in accordance with the LES are used for far-

field noise predictions which are compared with experimental measurements.    
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Chapter 1 

Introduction 

Aero-acoustics is a research area that explores the physics of noise generated by aerodynamic 

flows. [1] For many industrial applications that involve turbulent flows, such as turbo-

machinery, jets, airframe, various ducts to name the few, there is a problem due to noise 

generated by these flows which could be very obstructive to human hearing. The human 

hearing system can sense various sounds within the defined hearing band. Sound is the 

sensation detected by the ear where noise is regarded as an unwanted sound which may not 

cause annoyance only but in some cases can lead to a permanent hearing loss. On many 

occasions noise is very difficult to attenuate at a receiver location which in turn presents the 

aero-acoustics community with a challenge to develop efficient noise reduction mechanisms. 

Aero-acoustics has become an important part of aeronautical sciences since the mid-20
th

 

century, when as a consequence of rapidly growing aviation the problem of noise pollution 

became very notable. In the dawn of the jet aircraft age Mawardi and Dyer (1952) [2] 

published measurements on turbo-jet engine noise and it was the same year when Lighthill’s 

pioneering theory emerged, showing how the turbulence in free space radiated sound waves 

in proportion to the eighth power of velocity. In the Bakerian lecture held in 1961, Lighthill 

demonstrated the relevance of his theory to practical engines. [3] The method employing 

acoustic analogy, initially proposed by Lighthill, gained popularity and was further developed 

in the works of Lilley [4], Ffowcs Williams [5], Ribner [6], Mani [7], Dowling [8], Goldstein 

[9] and others. Following the footsteps of classical works we shall review the hierarchy of 

equations of fluid mechanics and the acoustic analogy formulation in the following chapters 

but first, the importance of noise in engineering is discussed.  

To this day, the aero-acoustics research remains mostly driven by the aerospace industry, 

mainly because of the size of airframe and engine components, e.g. wing flaps, slats, pylon, 

nozzle exhaust and others which bear a significant noise impact. As a result, demanding noise 

regulations constantly push boundaries, so much so that noise reduction has become a very 

important objective in aircraft design. Since 1950s most efforts in reducing aircraft noise 

have been devoted to the jet engine noise which used to dominate at take-off and fly-over 

conditions. Another important noise component associated with a turbo-jet engine is the fan 

noise and solutions for its reduction via geometry optimisation followed at the time when the 

fan noise potentially has become of comparable magnitude to the jet noise. With constant 

improvements to jet engines since 1980s effective noise reductions have been mainly 

achieved by increasing the bypass ratio of the jet for best aerodynamic efficiency until the jet 

installation had become a problem. As the pure jet and fan noise have become of a lesser 

problem, airframe noise as well as new types of noise sources such as the jet installation 

noise due to jet flow interaction with an airframe are now becoming of a major importance. 

For landing conditions, airframe noise has always been dominant due to the deployment of 
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high lift devices such as flaps and slats, which together with a wing leading and trailing edge 

form a multi-body aerofoil shape, as well as the contribution of a landing gear to overall 

noise levels. Hence, understanding and predicting the airframe noise is currently at the root of 

solving the aircraft noise problem. (See Figure 1 for main sources of noise generally 

attributed to commercial airplanes).         

 

Figure 1 – Main sources of noise of a large commercial airplane depicted while landing. 

Beyond aeronautics, the applications of aero-acoustics range from environmental and energy 

to automotive sectors where in the former case noise reduction is now also an important part 

of wind turbine design. [10] Being closely related to aero-acoustics, hydro-acoustics also 

finds important applications such as investigating noise in pipe flow problems. (See acoustic 

broadband benchmark cases in pipe bends and T-junctions, e.g. [11]). Where automotive 

industry is concerned, aerodynamic noise often becomes an issue when travelling at 

motorway speeds. Vehicle components such as wing mirrors, roof racks, railings, antennas, 

down-force devices such as a rear mounted spoiler and a convertible roof edges may all 

contribute to the generation of obtrusive sound. For example, open windows or a sunroof can 

give rise to broadband and tonal noise [12] at high speeds when aerodynamic noise dominates 

over other sources of noise, such as noise radiated from tires, engine or exhaust. Interior noise 

caused by heating ventilation and air-conditioning systems also attracts attention. (See HVAC 

duct benchmark case [13]). Often, long distance motorcycle riders wear ear protection as 

prolonged exposure to aerodynamic noise becomes a serious issue [14], which to some extent 

can be reduced by passive noise reduction devices such as a modern helmet. [15] Also, the 
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top end touring motorcycles with optimised air flow can be distinctly quieter at high speeds. 

There are many other examples of noise problems in engineering, which inevitably influence 

a modern life, making aero-acoustics such a great field for research.  

It is worth mentioning that not all frequencies having the same sound pressure magnitude are 

anticipated by the ear in the same way. There is a sensitivity factor that is involved in hearing 

with a maximum of around     kHz and for that reason a special weighting at different 

frequencies exist, such as dBA weighting. In the A-weighted system the noise is attenuated at 

low frequencies in contrast with the un-weighted measurements assuming that a low 

frequency contribution may be less important compared to the high-frequency sound that is 

very intrusive. Loudness is another measure to be considered. In the next section we shall 

proceed with the discussion on how to define and measure noise in mathematical terms. 

         

1.1 Physics of sound and noise measurements: basic 

definitions 

The lowest frequency that a human can hear is about 20 Hz and the highest frequency is 

about 20 kHz. This is a broad audio-frequency range where 50 Hz may represent a low 

rumble and 20 kHz is a very high whistle. In general, pure tones consist of one frequency 

only, for example, playing scales on a trumpet note by note or using a tuning fork 

“kammerton” which vibrates to give a note of specific pitch (commonly “La”, A = 440 Hz). 

However, most sounds in our daily life are made up of a mixture of frequencies and it is 

convenient to represent sound as a spectrum. One important measure commonly used in 

acoustics is the octave. If two frequencies,    and    describe the octave then    must be twice 

the   . For example, the middle C or “Do” has the frequency of about 260 Hz and one octave 

above the note “Do” (    has the frequency of approximately 520 Hz and should be exactly 

twice the frequency of the middle C,       . The centre frequency    √     is the 

geometric mean. For environmental and noise control applications, pressure measurements 

are often recorded for a narrow frequency band and as a method of filtering, usually, the 1/3 

octave band is used, which is simply     
 

 ⁄   . In general, the n
th

 octave band may be 

defined as     
 

 ⁄   . The octave frequencies are made up of lower band limits, centre 

frequencies, and upper band limits. For 1/3 octave band,          
    ( 

 

   
 )

   

 

      .   

In addition to the difference in frequencies power and energy are also major descriptors of 

wave propagation. The power level of the audible sound measured in Watts (W) has a wide 

variation, where a wind noise on a quiet day at the countryside (       W) and the loud 

sound of jet airplane at take-off (     W) may express such contrast. Wide variation makes 

it convenient to represent the magnitude and frequency of sound on a logarithmic scale. The 

sound power level, PWL, is measured in decibels (dB), such that                   

          and the sound pressure level,                         is expressed in terms 
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of the root mean square acoustic pressure fluctuations   , where      √     ∫      
 

 
 and 

where      is the reference pressure, usually taken as 20     in air that corresponds to the 

threshold of hearing at 1 kHz for a typical human ear. (See Table 1) 

The sound intensity level is defined as                 
           where intensity,  , is 

related to sound power and, hence, to the reference pressure via the relationship   

          In air,                   which is called the characteristic impedance of a fluid. 

Some examples of sound sources and their corresponding SPL, average pressure and intensity 

are presented in Table 1.  

Noise sources examples with distance  
SPL 

(dB) 
     (Pa) I        

Jet aircraft, 50 m 140 200 100 

Pneumatic drill, 1 m (threshold of pain) 130 63.3 10 

Loud locomotive horn, 3 m 120 20 1 

Rock concert, 1 m from the speaker 110 6.3 0.1 

Inside machine shop 100 2 0.01 

Underground train 90 0.63 0.001 

Busy road, 10 m 80 0.2      

Vacuum cleaner, 2 m 70 0.063      

Conversation, 1 m  60 0.02      

Office 50 0.0063      

Light rainfall 40 0.002      

Quiet library 30               

Audio recording studio 20              

Rustling leaf 10                

Threshold of hearing 0              

 

Table 1 – Table of SPL, corresponding pressure and sound intensity for various noise sources  

Sound intensity which is defined as        is a vector quantity and in physical terms it 

expresses how much power is transported in which direction. In this relationship, the 

intensity is a product of two physical quantities the sound pressure    and particle velocity    

where phase difference between the two is significant as it determines how well the 

(pressure) force can generate the velocity (response). Therefore, sound intensity is classified 

into active and reactive intensity where the former is in phase and the latter has 90° (     

phase difference. [16]  

Sound intensity and energy are closely related. First, assume that the dissipated energy in a 

fluid is negligible in comparison to both potential and kinetic energy which make up the total 

energy,         . Then the energy per unit volume has to be balanced by the net power 

flow through the surfaces that enclose the volume of interest. By definition, acoustic intensity 

is the acoustic power per unit area, which in this case leads to the following conservation 

equation: 
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                      (1) 

For a spherical wave propagating in free space, the intensity in the radial direction obeys an 

inverse-square law, meaning that the intensity is decreasing when following the wave front 

away from the source. For a propagating spherical wave the energy dissipation would be 

difficult to observe since the total energy would be spread over the rapidly increasing wave 

front’s surface area. Hence, sound waves can propagate much further when the energy is 

concentrated in one dimension, such as for example in a narrow duct. However, the sound 

wave would not propagate infinitely even in such favourable one-dimensional environment 

because energy dissipation is an underlying process in acoustics. As prescribed by the 

governing equations of fluid dynamics, viscosity acts as a dissipation mechanism of acoustic 

waves. In a flow where fluid compressibility is fundamental, such as in shock waves, the 

dilatational viscosity dominates sound attenuation and the absorption of sound energy 

depends on the frequency, which defines the rate of molecular relaxation. [17] In general, 

noise attenuation increases with increasing frequency, explaining why predominantly low 

frequencies are heard of a distant flying airplane. When sound propagates through a viscous 

medium its energy inevitably dissipates into heat. In addition to pure dissipation effects, the 

presence of a non-uniformity of media which leads to acoustic wave scattering and reflection 

can be also regarded as a sound attenuation mechanism.       

In acoustics, fundamental physical quantities such as pressure and velocity are important 

variables that formulate acoustic intensity, acoustic impedance which will be discussed in 

details in Chapter 2 and so on. In order to get in better grips with acoustics one also has to 

consider the scales involved in hearing. Acoustic waves displace fluid particles with a 

fluctuation velocity   , given by: 

                          (2)  

where from Table 1 for SPL 140 dB, |  |          and for the harmonic wave at 1 kHz, the 

acoustic displacement of a fluid particle would be   |  |           . Moreover, 

dividing Eq. (2) by    and utilising the thermodynamic relationship      
   , the Mach 

number       can be regarded as the measure of the relative density variation,      . The 

acoustic Strouhal number can be estimated via the displacement,         where   is the 

characteristic length. It should be noted that   increases with decreasing frequency. As can be 

seen, the displacement of          is very small in comparison to the wavelength, 

       which for 1 kHz is         and for the highest audible frequency (20 kHz) 

        . On such small acoustic scale the displacement still represents the macroscopic 

average effect that consists of a significant number of molecular collisions as integrated by an 

ear.    
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1.2 Computational aero-acoustics 

Computational Aero-Acoustics, namely (CAA), is a research area dedicated to obtaining the 

noise prediction via computational modelling. Once a computational method is successfully 

validated on a benchmark problem it can be used for obtaining acoustic predictions for a 

similar class of problems and thus, making engineering design process more efficient. The 

search for modern computational methods and techniques is aimed at selecting the best 

compromise between the computational cost and fidelity of the method which can minimise 

the number of required experiments during a design phase. Only over the last decade 

computers have become powerful enough to perform high-fidelity simulations for problems 

relevant for industrial applications. Nevertheless, aero-acoustic modelling remains a 

challenging task even for problems where aerodynamic modelling has an established 

approach which had been demonstrated to give reliable flow predictions. The difficulty 

comes from the wide diversity of the flow scales typical for aero-acoustic problems, usually 

leading to a necessity of application of different modelling techniques for solving one 

problem and their further adaptation to specifics of a considered case. For example, problems 

of sound generation and sound propagation are usually considered separately. For instance, as 

proposed in [18], the sound generation can be evaluated using the non-linear Navier-Stokes 

equations in the near-field of the effective sound source, while acoustic propagation to the 

far-field is performed using the Ffowcs-Williams and Hawkings [19] (FW-H) method. The 

latter method is based on solving the problem of linear wave propagation to the far-field 

analytically, with the Green’s function method, following the approach of Lighthill. In the 

FW-H approach acoustic sources are collected on a control surface which can be permeable 

or impermeable depending on the surface location and definition of noise sources. Sources 

can be found away from boundaries in the case of jet-mixing or next to a solid wall in 

airframe noise cases. The details of the FW-H method as well as Lighthill’s analogy are 

considered in Section 2.2.   

An alternative approach to using the classical acoustic analogy of Lighthill where a 

propagation problem can be obtained analytically is solving a form of Linearised Euler 

Equations (LEE) [9] in the time domain numerically, e.g. using the Finite-Element (FE), 

Finite-Volume (FV) or Finite-Difference (FD) methods on a mesh incorporating both, noise 

sources and an observer. The advantage of solving the wave propagation equations for the 

entire far-field mainly lies in the possibility of eliminating assumptions such as using a 

constant mean flow when solving the problem via an analytical approach. Also, solving the 

wave propagation is particularly promising when working with complicated geometries, and 

thus, accounting for possible wave reflections and refractions that may influence the entire 

acoustic field. In addition, the input acoustic source terms are taken from a volume, meaning 

their spatial distribution and magnitude would be more accurately represented when coupled 

to a sound generation method in comparison to using integration surface approaches, such as 

the FW-H method mentioned previously. Unfortunately, performing the wave propagation in 

three dimensions in space and taking into account the required time sampling of a solution to 

resolve low frequencies comes at a substantial computational cost. Usually, a simulation time 

step becomes the limiting factor for time accurate simulations as fine mesh resolutions are 
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required in the source zone as well as next to solid boundaries. For example, at the observer 

location multiple passes of waves having wavelengths comparable to the size of geometry 

under consideration are normally required for obtaining the desired frequency resolution of 

the acoustic signal, inevitably increasing the turnaround time. Still, solving a linear sound 

propagation problem is considerably less expensive compared to the solution of a fully non-

linear problem (e.g. Large Eddy Simulation) because of a coarser grid required to resolve the 

relevant acoustic scales. Such an approach becomes particularly attractive when the effect of 

a non-linear flow is modelled with a stochastic method for acoustic source generation. For 

example, the application of LEE for the stochastic method can be traced back to one of early 

works of Bailly and Juvé [20]. High order methods [21] are particularly suitable for solving 

linear propagation problems because of their accuracy on coarse grids which makes them 

attractive for CAA applications. [22] Furthermore, several techniques have been developed to 

further improve the speed and accuracy of acoustic solvers such as the Quadrature-Free 

formulation applied to Discontinuous Galerkin (FE-DG) method. [23]   

In the current work the FE-DG is used for solving the Acoustic Perturbation Equations (APE) 

[22] for the sound propagation, which essentially is an entropy- and vorticity-less version of 

Linearised Euler Equations. Alongside the APE, the FW-H integral method is also applied to 

a benchmark case. The availability of several wave propagation methods which are applied to 

the same benchmark is highly beneficial for assessment of the advantages and disadvantages 

of the methods of choice. Overall, the wave propagation methods employed in this work are 

well documented in the literature and widely employed in CAA.    

Irrespective of the wave propagation modelling approach, the quality of the acoustic 

simulation resides on the accuracy of calculated acoustic sources. For this purpose, high 

fidelity methods such as the Large Eddy Simulation (LES) are most advantageous as all parts 

of the acoustic source could be obtained by directly solving the governing Navier-Stokes 

equations. A well-known challenge in solving unsteady fluid dynamic equations such as the 

Navier-Stokes equations on a discrete finite-difference or finite-volume grid used in the LES 

approach is associated with high dissipation and dispersion errors. [24] [25] In order to 

improve dispersion and dissipation properties of the method, advanced solvers usually offer a 

high-order approximation of variables in space and time. For a numerical solution, fluid 

dynamics equations that describe convection could be written either in the conservative or in 

the non-conservative form. For solving fluid dynamics equations in space and time using the 

conservative approach the flow domain is divided into discrete control volumes. Then, the 

governing equations are integrated on the individual control volumes to construct algebraic 

equations for the discrete variables (the unknowns). However, as discretisation leads to 

approximation errors, only in very special cases the discretised equations lead to the exact 

solution of the governing equations. In other cases, numerical dissipation or dispersion errors 

emerge. Numerical oscillations occur in the solution due to the accumulation of dispersion 

errors. These errors are unavoidable when solving non-linear problems on a fixed grid. In the 

CFD literature, there have been many techniques developed to suppress these oscillations by 

adding some artificial viscosity. For example, one of the classical methods of smearing the 

unwanted oscillations which occur when computing shock problems is the von Neumann-
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Richtmyer artificial viscosity. [26] This artificial viscosity is introduced into the governing 

equations similar to a physical viscosity but is activated with a switch for compression waves 

only. This method can produce good shock-capturing results but remains very empirical in 

nature. [27] An alternative to using the classic artificial viscosity method for alleviating the 

effect of dispersion errors and, thus, preserving shocks/discontinuities was proposed in the 

work of Boris and Book [28] who developed the Flux-Correction Transport (FCT) approach 

for advection problems. The idea of FCT was to correct the conservation fluxes so that the 

solution positivity is enforced as well the conservation property remains preserved. In 

essence, FCT introduces a non-linear artificial viscosity into the governing equation to 

preserve the oscillation-free solution. The original FCT approach was largely empirical and 

applied to one-dimensional problems only. For example, it was not clear how to generalise it 

to systems of nonlinear conservation laws such as gas dynamics. Then Harten (see [29] [30]) 

came up with a unified approach for developing high-resolution non-oscillatory schemes for 

general nonlinear hyperbolic conservation laws. Harten's idea was to develop methods which 

satisfy the solution Total Variation Diminishing (TVD) property as well as the entropy 

inequality to make sure that unphysical solutions like expansion shocks do not occur. [31]  

Dispersion properties of finite-difference schemes can be optimised by a careful choice of the 

scheme’s stencil. For example, the Dispersion-Relation-Preserving (DRP) scheme [32] 

employs the fine-tuned coefficients for minimising the numerical dispersion error for linear 

wave propagation, which is found to work well for smooth solutions. On the other hand the 

second or third order TVD schemes are particularly good when dealing with shock waves but 

are too dissipative for linear advection problems. For the Total Variation Bounding (TVB) 

schemes which are a class of TVD and use high order approximation (5 and above) the 

dissipation problem could be almost eliminated by using an extended stencil and requiring 

that the solution variance is limited only globally, thus, preventing its growth in time. The 

idea of TVB schemes is constructing the hierarchy of the least oscillatory stencils designed 

for approximating high order derivatives. Then, the best non-oscillatory stencil is used at 

each time step such as realised in ENO/WENO [33] [34]. Note that TVB uses a more relaxed 

condition compared to TVD, permitting some small oscillations for the price of having 

superb low-dissipation properties.   

A special attention is attributed to the CABARET numerical scheme utilised in this work for 

solving fluid dynamics equations. CABARET stands for Compact Accurately Boundary 

Adjusting high-Resolution Technique [35] that is the extension of Upwind Leapfrog methods 

[36] [37] [38] [39] to non-oscillatory conservative schemes on staggered grids with 

preserving low dissipative and low dispersive properties. In comparison to many CFD 

methods, the CABARET employs a very compact stencil which for linear advection takes 

only one computational cell in space and time. A relatively simple implementation along with 

a low dissipation and dispersion is particularly advantageous when the CABARET scheme is 

used in the framework of Monotonically Integrated LES (MILES) e.g., [40] which is a 

version of Implicit LES techniques. For the implicit sub-grid scale model within the MILES 

method, the CABARET uses a low-dissipative conservative non-linear flux correction 

method directly based on the maximum principle. In accordance with [41], the application of 
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MILES for low-speed high-Reynolds number flows considered in this work is particularly 

challenging because of the inherent numerical dissipation typical of many MILES methods.  

Up to date, CABARET scheme has been found efficient for a number of unsteady fluid 

dynamics problems including linear advection in stochastic velocity field [42], non-linear 

aero-acoustic problems [43] [44], T-junction pipe flows in nuclear engineering [45] and for 

high-speed turbulent jet flow modelling [46]. More recently, the CABARET flow solver has 

been extended to asynchronous time-stepping [47], GPU computing, and fully unstructured 

meshes [48] [49] [50]. The latest GPU version of the CABARET solver will be used in the 

current work for LES aerofoil flow simulations.  

Over the last decade synthetic turbulence methods used for acoustic source generation gained 

recognition in industry. Contrary to LES methods that typically require a substantial 

computational effort when applied to an industrial problem, the ability to conduct noise 

simulations using the stochastic method which does not require obtaining a first principle 

solution for the entire field like the LES proved attractive. The idea of stochastic turbulence 

methods is based around introducing stochastic Lagrangian particles whose trajectories and 

ensemble averaged statistics is found from a precursor Reynolds-Averaged Navier-Stokes 

(RANS) calculation. Interestingly, the idea of drifting Lagrangian particles in cells used for 

hydrodynamic calculations originated with the appearance of first computers. [51] Early steps 

in development of the stochastic method for turbulence generation could be traced back to the 

work by Careta et al. (1993). [52] Around the millennium mark, Ewert et al. [53] developed a 

synthetic turbulence method for CAA applications which is based on white noise filtering 

approach. [54] It was called the Random Particle Mesh (RPM) method. Later, for broadband 

noise predictions, a more efficient Fast Random Particle Mesh (FRPM) method was 

developed [55] [56] [57] which can predict sound generated by turbulent flows over a wide 

range of Reynolds numbers. The synthetic turbulence fluctuations obtained by specially 

weighting the stochastic Lagrangian particles are then, typically, substituted into the right-

hand-side sources of some acoustic formulation, the same way as the LES fluctuations would 

be, to propagate the acoustic solution to the far-field.  

Importantly, unlike the LES-based noise prediction schemes, which automatically account for 

all types of noise sources in the flow solution, the original FRPM model can only simulate 

broadband fluctuations which are generated by the stochastic particles moving with the time-

averaged RANS flow field. Therefore, being based on the time averaged flow, the original 

FRPM model cannot include any unsteady flow features such as vortex shedding or pairing 

which would produce tones in the noise spectra. In Section 3.3 it is shown how under the 

scale separation assumption between the high-frequency turbulence fluctuations and the low 

frequency tones typical of the Unsteady-RANS (URANS) solution methods, the vortex 

shedding effects should also be possible to incorporate in the corresponding acoustic 

prediction scheme. 
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1.3 Representative airframe noise benchmark cases  

Because of the diversity of airframe noise problems there is no unique solution procedure 

applicable to all CAA problems. In attempt to devote efforts of researchers across the field, 

CAA problems are allocated into different categories. For the purpose of combining the joint 

effort in development of the state of the art methodologies and benchmarking in aero-

acoustics, the workshop on Benchmark problems for Airframe Noise Computations (BANC) 

[58] was initiated by the American Institute of Aeronautics and Astronautics (AIAA).  

Aerofoil trailing edge noise remains one of the prioritised cases in the BANC workshop and 

it was explored in this work for several reasons. First of all, the consideration of a classical 

yet representative benchmark case allows isolating and analysing specific features of the 

noise mechanism. Secondly, the problem is not contaminated by other hydrodynamic effects, 

which are case and testing facility specific. For the geometry such as a NACA 0012 aerofoil 

the aerodynamic and aero-acoustic validation data is available from multiple sources. Hence, 

the use of this benchmark case is convenient for development and validation of new 

computational models such as considered in this thesis.     

Another benchmark considered is the rod-aerofoil configuration. [59] Simulating the flow 

over a bluff body is always challenging, especially without having a fixed separation point as 

in the case of a circular cylinder. It is considered to be a very challenging case for the 

CABARET as a pure LES method where a valuable experience is gained by understanding its 

limitations. As a consequence, the modelling strategy is developed for simulating the flow 

around an aerofoil.     

This section follows with a literature review on the trailing edge noise (Section 1.3.1) giving 

an introduction to the first two aerofoil benchmark cases explored in this work with both 

sharp and blunt trailing edges. Section 1.3.2 presents the second benchmark case, exploring 

the flow over a circular cylinder that is part of the rod-aerofoil problem.   

 

1.3.1 Aerofoil trailing edge noise  

Aerofoil noise, or the noise generated by scattering in a hydrodynamic field in the turbulent 

boundary layer close to the wing trailing edge, has been a subject of investigation since 

1970s. [60] [61] In recent years, this classical problem has kept attracting attention [62] [63] 

[64] [65] and despite the availability of several experimental databases [66] [67] [68], an 

understanding of trailing edge noise mechanisms leading to robust scaling laws is still 

lacking. 

Numerical modelling of aerofoil noise based on unsteady computational fluid dynamics 

approaches such as LES or Direct Numerical Simulation (DNS) came into practice in 2000 

[69] [70]. Since then, there have been approaches at various levels of validity and complexity 

used for modelling the unresolved near-wall turbulence or directly resolving this for low 

Reynolds number flows [43] [71] [72] [73] [74]. For acoustic modelling of the trailing edge 
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noise, there has also been a range of formulations of various complexity used starting from 

Ffowcs Williams-Hawkings (1969) [19] and Amiet's theory (1976) [75] to solving the 

Acoustic Perturbation Equations (APE) [22] and performing direct noise computations. [76] 

[77] 

A serious limitation of using LES for trailing edge noise modelling is their restriction to 

relatively low Reynolds numbers due to prohibitively high computational cost of resolving 

the boundary layer turbulence. This limitation has resulted in a very little use of LES in 

support of existing experimental aerofoil noise campaigns or industrial design processes 

where the computational cost is further increased due to the geometrical complexity. 

Therefore, attention turned to methods with a fast turnaround time, such as RANS 

simulations that evolved through 1990s and by the end of the decade were extensively used to 

obtain a time-averaged flow prediction for a wide variety of industrial problems with varying 

degrees of success. Despite its drawbacks in transition modelling and inability to accurately 

model the separation, RANS methods can provide a quick prediction for high Reynolds 

number flows typical to many industrial problems and therefore, these tools remain 

commonly used to the present day. Compared to LES the validity of acoustic prediction 

schemes based on RANS strongly depends on the model calibration. This also applies to 

hybrid RANS/LES methods [78] where a calibrated transition from one scheme to another 

needs to be performed. 

In the context of trailing edge noise modelling, URANS simulations have been used to 

predict the tonal noise generated by a bluff body vortex generator attached to an aerofoil 

boundary close to the trailing edge [79]. Pure tonal noise prediction schemes based on 

URANS were applied for multi-blade configurations in turbo-machinery, for example, in 

application to fan noise [80] and turbine noise [81] modelling with a reasonable 

computational efficiency. However, the ability of such schemes to provide reliable tonal 

noise predictions through estimating the isolated vortex shedding characteristics is rather 

questionable.    

Following the work of Ewert et al. [62], the exploration of numerical methods begins by 

setting a benchmark for comparison using a quick trailing edge broadband noise prediction 

technique which is implemented in a framework of Altus acoustic solver [11] that is a 

proprietary code of BAE Systems. The solver applies the FRPM method on a Cartesian grid 

with the flow field interpolated from the RANS calculation to generate the sound sources. 

The sources are then interpolated onto an unstructured grid of general complexity around a 

scattering body to solve a set of Acoustic Perturbation Equations (APE-4 formulation) [22] 

using a high-order Quadrature-Free Discontinuous Galerkin (QF-DG) method and the explicit 

ADER scheme for time integration [82]. This solver is further developed to be used in the 

current work for broadband and tonal noise predictions.  
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1.3.2 Flow past a circular cylinder 

The flow past a cylinder is calculated at the Reynolds number 48,000 which can be identified 

as the beginning of the upper subcrtical regime with quick transition to turbulence in the free 

shear layers. The flow separation remains laminar up to the Reynolds number ~ 140,000. 

Thus, it is sometimes referred as the Laminar Separation (LS) case as explored in [83].  

However, at the investigated regime the Reynolds number is sufficiently high to cause a 

sudden burst of turbulence in the near wake close to the surface of the cylinder where after a 

short transition the wake becomes highly three-dimensional. The cylindrical rod sheds 

vortices as a von Kármán street corresponding to the Strouhal number of just below 0.2 for 

the entire flow regime. [84] The existence of such recirculating pattern is responsible for the 

generated tonal noise that could be heard as a distinct hiss, scientifically referred to as the 

aeolian tone. It should be mentioned that the flow at this Re range is not only of interest for 

CFD / CAA communities but is often encountered in mechanical, chemical and nuclear 

engineering. 

The test case being explored is mildly compressible with the mean flow Mach number equal 

0.2. The experiment with these flow conditions was performed by Jacob et al. [59] for a rod-

aerofoil set up where acoustic results were also measured for the rod alone. Importantly, in 

the experimental work velocity and turbulence intensity profiles were recorded at different 

near-field check zones around the cylinder that serve as a valuable comparison. The rod-

aerofoil test case which is thought to be relevant to noise mechanisms found in 

turbomachinery applications comprises of a cylindrical rod followed by a wing section of the 

NACA 0012 profile where the disturbed flow impacts the leading edge of the aerofoil. The 

latter not only results in a highly turbulent wake around the aerofoil surface but also affects 

the development of the boundary layers, their ability to separate or withstand adverse 

pressure gradients at the rear part of the aerofoil, and the wake shedding behind the trailing 

edge. The effect of the turbulent wake as well as its interaction with the aerofoil boundary 

layers results in broadband noise generation.  

From the modelling view point, the flow over a bluff body is always a challenging problem. 

One attribute of this flow regime around a circular cylinder is that the separation point is not 

fixed in space. Moreover, one should expect a wide azimuthal variation of the separation 

point depending on phase. Therefore, the near-wall treatment is far from trivial and this flow 

regime is thought to be more challenging for high fidelity computational modelling than the 

flow at higher Re number having a turbulent separation (TS case) which is quite unusual. 

Regarding the numerical methods, first of all, because of the relatively high Reynolds number 

DNS is prohibitively expensive. On the other hand, because of the large area of separated 

flow and the nature of the flow regime with an immediate transition to turbulence close to the 

surface of the cylinder, URANS methods are also hardly suitable for this problem. First of all, 

due to a relatively large time scales employed in URANS methods crucial details on fine 

scale turbulence are missing which are responsible for the flow separation. Secondly, span-

wise correlations cannot be reproduced in a URANS simulation where a rolling vortex sheet 

is obtained instead. In general, methods based on RANS have a tendency to over-predict the 
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shedding frequency. [85] One of the main characteristics of this flow case is attributed to 

large span-wise correlations that extend over several cylinder diameters in the span-wise 

direction as reported in the experiment. [59] In order to correctly capture the flow physics of 

the cylinder case under consideration, the span-wise correlations must not be neglected, 

particularly as the broadband noise will be largely affected and of course, the tonal noise 

would be prescribed by the shedding frequency that is highly dependent on the near-wall 

modelling. At present, the main bottleneck in applying the stochastic FRPM method to the 

cylinder benchmark is the missing information about the span-wise correlations, which 

cannot be obtained from the URANS solutions employed in this thesis.  

Hybrid RANS-LES techniques such Detached Eddy Simulation (DES) methods, which 

combine RANS in the boundary layer zone with LES in the wake region, potentially offer a 

stable control on the boundary layer modelling with explicitly resolving large-scale eddies. 

Potential problems of hybrid RANS-LES methods include the treatment of boundary layer 

regions where flow separation and transition occurs, and the model behaviour strongly 

depends on the turbulence model used as well as on the numerical switch from RANS to 

LES. To some extent, these problems have been addressed in most advanced hybrid models 

of this type, e.g., [78]. Examples of solutions using the Delayed-Detached Eddy Simulation 

(DDES) methods applied to this benchmark problem include the following: [86] [87] [88]. 

However, these methods are not employed in this work since the prime target is to investigate 

into acoustic sources that are generated in the turbulent boundary layer close to the wall. 

Hence, a high portion of vortex sound sources falls within a ‘grey area’ of DES methods, 

making investigation into acoustic sources based on a hybrid RANS/LES technique less 

valid. Therefore, there is a need to search for a suitable Large Eddy Simulation (LES) method 

which could be applied for simulating the flow and acoustics of this benchmark case.           

In the literature, high-fidelity LES modelling has been applied to simulate the flow in the 

entire computational domain that includes the near-wall region and the wake. [89] [90] Near-

wall modelling remains by far the most challenging part, especially for such complicated 

flow case with a floating separation point. A sub-grid scale model seems to play a significant 

role when modelling the near-wall eddies and this part remains a grey area in existing 

practice. The flow past a circular cylinder considered in this work has a sufficiently high Re 

number at which DNS resolutions may not be easily achievable, making it also very 

challenging for pure LES methods like the MILES CABARET.  

 

1.4 Aims and contributions of this thesis 

This project has been initiated by BAE Systems through the Cooperative Awards in Science 

& Technology (CASE) with Engineering and Physical Sciences Research Council (EPSRC). 

The aim of the project is to examine the existing stochastic FRPM method in terms of 

assumptions involved when comparing to a first principle LES solution and extend its 

applicability range by developing a unified approach that also incorporates tonal noise 

effects. All method developments discussed in the present thesis have been implemented in 
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the engineering code Altus that is used by BAE Systems Ltd. for the complete aero-acoustics 

problem solution cycle.  

The MILES CABARET method has been chosen for providing first principle solutions which 

should provide an insight into vortex sound sources and, hence, help in the development of 

the FRPM method. Also, the applicability of MILES CABARET to the benchmark aerofoil 

and cylinder cases has been investigated. This can be considered as an additional contribution 

of this thesis since the CABARET method is constantly improving and finding new 

applications in CAA [49], with the snappy mesh and asynchronous time stepping being 

implemented recently. [50]   

Outline of the main results of the thesis: 

I. For a low Mach number ideal flow, where the exact analytical solution is available 

the CABARET solver has been applied to show the absence of excessive 

numerical entropy generation when compared to the standard second order finite-

volume method used in the conventional CFD (Fluent) solver. The absence of 

excessive numerical entropy generation means the method is low dissipative, 

hence, suitable for acoustics sensitive simulations. This is a major requirement on 

accuracy as discussed by Hirsch [24] (see Chapter 11 in the textbook) which can 

indicate whether an acceptable mesh refinement level has been achieved and 

whether the numerical dissipation of the applied method is sufficiently low, 

making it suitable for high-fidelity simulations.  

II. Several boundary layer tripping techniques have been investigated for LES in 

application to aerofoil flow problems and the corresponding solutions of the 

MILES CABARET have been analysed and compared with the existing RANS 

and experimental data; a fair agreement is reported. 

III. The FRPM method has been used to reconstruct the effective aerofoil trailing edge 

noise sources with the help of RANS mean quantities in accordance with the 

vortex sound theory. [57] [91] The sources have been compared with the same 

extracted from LES for obtaining the calibration parameter used for the FRPM 

acoustic source scaling.  

IV. For aerofoil trailing edge noise investigations, vortex sound components 

contributing most to the overall sound pressure level are evaluated and compared 

to results previously reported in the literature; consistency in findings is reported.  

V. A new scale decomposition method is developed to extend the original FRPM 

method to modelling of broadband and tonal noise sources in the same simulation 

framework. Results are validated in comparison to the experiment of Brooks & 

Hodgson [92] where a NACA 0012 aerofoil with a blunt trailing edge is used. 
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The original contributions of this thesis are explained below:  

 Solving the flow past a circular cylinder with Laminar Separated (LS) shear 

layers at Reynolds number 50,000 using MILES CABARET has been attempted 

for the first time. The LS case is believed to be the most numerically challenging 

flow regime of a flow past a cylinder problem. Initially, the dissipation and 

dispersion properties were examined for the inviscid case, thus, providing 

guidance on computational grids. Consequently, the benchmark cylinder flow 

case allowed assessing limitations of the MILES method when predicting the 

flow separation. 

 

 Several boundary layer tripping techniques have been implemented in LES 

CABARET code and discussed in details in this work. These include a steady 

suction & blowing flow tripping in a form of a step and sine functions, 

correlated and uncorrelated stochastic tripping spatially represented by a 

Gaussian, and a physical rectangular tripping device. While various boundary 

layer tripping techniques proved to be insufficient for reproducing the correct 

physics on a LS cylinder case, their implementation in the framework of MILES 

CABARET led to accurate resolution of a tripped aerofoil benchmark case at 

high Re number. 

 

 Several concepts and assumptions used in FRPM method were implemented and 

tested in the Altus code. Specifically, trailing edge noise predictions were 

obtained for all linear and non-linear source terms according to the vortex 

source model, presenting the acoustic spectra for individual source terms as well 

as their combination. 

 

 Investigation into the sources of trailing edge noise at the source level has 

permitted the comparison of effective noise sources between the two methods, 

namely the FRPM and MILES CABARET considered in this work. Instead of 

using the standard calibration based on the far-field sound, the scaling parameter 

of the FRPM method was obtained by matching the vortex sources solution with 

that from LES. A multi-stage comparison between two simulations and the 

experiment has been used. Firstly, the near-field flow solution of RANS on 

which FRPM relies and the LES solution have been validated with the help of 

the benchmark experiment. Secondly, the root-mean-square (rms) of turbulent 

quantities and vortex source terms have been evaluated and compared between 

the two methods. Finally, performing the correlation analysis at the trailing edge 

location provided valuable insight into the accuracy of source modelling.     

 

 A new acoustic model based on the flow decomposition has been developed for 

consistent modelling of the flow scales responsible for broadband and tonal 

noise generation at the source level in the FRPM method and implementing the 

new algorithm in the Altus code. The new approach automatically accounts for 
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all tonal and broadband noise sources present in the zone of interest, only 

requiring a single simulation run. Stochastic methods are usually criticised for 

their inability to predict noise from coherent structures, such as vortex shedding 

and also being unsuitable for flows with highly pronounced three-dimensional 

features, such as flows over bluff bodies where information on flow correlations 

would be absent. The current work is the first step in the direction of unification 

of such classic stochastic turbulence methods for broadband noise prediction 

which do not contain any information about the flow coherent structures and the 

methods such as URANS that can predict some of the coherent dynamic features 

in 2D, i.e. those associated with the vortex shedding, thus, generating tonal 

noise. Previously, CAA problems containing tones had to be solved by a 

combination of separate methods which involved additional assumptions about 

how the resulting noise signal is formed at the far-field observer location as well 

as required solving the far-field propagation problem at least twice compared to 

the new unified approach. 

 

 Broadband and tonal noise predictions are performed for a NACA 0012 aerofoil 

with a blunt trailing edge [92] using the FRPM method. Since for this 

benchmark the thickness of the blunt trailing edge is still only a small fraction of 

the chord length and the flow over a surface remains attached broadband noise 

prediction should still be valid. In Section 1.3.2 it has been discussed that 

URANS methods tend to over-predict the shedding frequency which can deviate 

from the target experiment by 10 ~ 15 %. Therefore, in an attempt to correctly 

model important features of the process of the flow separation near the blunt 

trailing edge in the framework of URANS modelling the trailing edge thickness 

has been slightly reduced to capture the target shedding frequency. Hence, the 

same tonal information is fed to the acoustic propagation model. Acoustic 

results presented in this thesis include both unaltered and calibrated URANS 

flow solutions supplied to the new acoustic model which is based on the small 

scales (broadband) large scales (tonal) decomposition. The calibrated mean flow 

solution leads to improved far-field acoustic predictions when compared to the 

experiment.      

   

1.5 Outline of contents 

This thesis is organised as follows. 

 Chapter 2 provides the reader with the background on computational methods for 

turbulence and acoustic modelling considered in this work. The hierarchy of equations 

of fluid mechanics is reviewed, starting from the Navier-Stokes governing equations 

following with the Euler equations and with the classical acoustic analogy. Popular 

methods used for obtaining the acoustic signal at the far-field are reviewed. A review 

of numerical methods for unsteady fluid dynamics equations including the theoretical 
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background on the CABARET numerical scheme is provided. In the context of 

turbulence modelling approaches, the background on the RANS methods is discussed 

demonstrating their limitations. Finally, the LES methods used for turbulence 

modelling are considered, which includes the discussion on application of the MILES 

CABARET method to high Reynolds number flows.         

 

 In Chapter 3, after a brief introduction into synthetic turbulence methods, the work 

follows with a description of the FRPM method as implemented in Altus code, also, 

introducing the new technique for tonal noise modelling. The concepts from this 

chapter are used for obtaining reliable acoustic predictions for the aerofoil benchmark 

case explored in one of the early works entitled: “The exploration of numerical 

methods and noise modelling techniques applied to the trailing edge noise case with 

evaluation of their suitability for aero-acoustic design” presented at CEAA 

International Workshop, 24-27 September 2014, Svetlogorsk, Russia.  

 

 In Chapter 4 the selected benchmark problems are considered. First, the CABARET 

solution for the Euler and Navier-Stokes equations are obtained. Some variations of 

the obtained solution from the benchmark experiment are discussed along with the 

accuracy of modelling the flow separation and transition to turbulence. Secondly, the 

MILES CABARET is applied to an aerofoil flow problem at a high Reynolds number 

where it is demonstrated how two different tripping techniques can be used for 

obtaining aerodynamic solution which closely resembles the solution of the tripped 

aerofoil experiment. In addition, the FRPM solution which is based on the averaged 

statistics from the RANS/URANS model is applied for the flow and noise sources 

predictions of a sharp and blunt trailing edges. In this chapter we show how by 

modifying the geometry of the trailing edge tip one can obtain the correct shedding 

frequency for the blunt aerofoil benchmark in the framework of URANS modelling 

and its influence on far-field acoustic predictions. Some important findings presented 

in this chapter are published in the Journal of Sound and Vibration (JSV) entitled 

“Aerofoil broadband and tonal noise modelling using stochastic sound sources and 

incorporated large scale fluctuations”. [93]   

 

 In Chapter 5 the trailing edge noise sources which are described by the vortex source 

model are compared between the LES and RANS-based FRPM methods. The analysis 

is used to validate the acoustic model and to better understand the empirical 

calibration involved in the FRPM source modelling. Far-field acoustic predictions are 

compared using different vortex source term description in the framework of the 

FRPM model and compared to findings of other researchers for similar airframe noise 

cases. Also, the importance of individual noise components is discussed according 

with the far-field spectra predictions for the tonal and broadband noise obtained using 

the new formulation in the FRPM method. Some key findings included in this chapter 

were presented in [94] at the 23
rd

 AIAA/CEAS Aero-acoustics conference.         
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 Finally, Chapter 6 discusses the main conclusions and future areas of research. In 

addition, the overview of the Altus code algorithm is provided in the appendix which 

can serve as a useful roadmap between different parts of the solver.     
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Chapter 2 

Theory 

2.1 Governing equations of fluid mechanics: Navier-Stokes 

In continuum fluid mechanics gases and liquids are considered as macroscopic averages. A 

“fluid particle” can be defined as a small “control volume” which is assumed large enough 

compared to molecular scales and contain its average but small compared to length scales of 

the flow problem. The fluxes acting on the virtual “control volume” are conserved by 

assumption. The conservation law is the fundamental concept behind the laws of fluid 

mechanics. The laws describing the evolution of fluid flows are totally defined by the 

conservation of mass, momentum and energy, which are augmented by closing relations such 

as the equation of state, viscous stress/strain relation, and the closure model in case of 

equations written in ensemble averaged quantities for turbulence modelling.      

The conservation of mass or continuity equation derived through the idea of the variation of 

quantity in the “control volume” per unit time in differential form reads:   

  

  
              (2.1) 

The momentum equation is based on Newton’s second law that relates the acceleration of 

fluid (advection part) to surface forces and body forces experienced by the fluid: 

 

  
                          (2.2) 

In the above expression,   is the external force and    is the added momentum. The fluid 

stress tensor (denoted by  )  is related to the pressure   and the viscous stress tensor,   via 

the relationship: 

                   (2.3) 

In Eq. (2.3)         is the unit tensor,     – Kronecker
1
 delta. The relationship between   

and the deformation rate of a fluid element          could be assumed linear for a 

Newtonian fluid. Further, applying Stokes’ hypothesis of local thermodynamic equilibrium 

yields: 

              
 

 
              (2.4) 

                                                           
1
       if    ,       if     
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Eq. (2.4) is called the constitutive equation where   is the dynamic viscosity determined 

experimentally. By substituting (2.4) into the momentum equation (2.2), exploiting the 

solenoidal condition (       from (2.1) we obtain the Navier-Stokes equations:  

  

  
  

 

 
             (2.5) 

                 is known as the total derivative and       is the kinematic 

viscosity.  

The energy conservation law reads:  

 

  
 (  

 

 
  )    (  (  

 

 
  ))                           (2.6) 

where   is the specific internal energy and   is the heat flux due to conduction. A further 

discussion on derivation of the above equations and explanation of physical meaning with 

appropriate assumptions could be found, for example, in [17] [24] [95]. 

By neglecting viscosity and heat transfer that are not very important for acoustic wave 

propagation, the Navier-Stokes Eq. (2.5) reduces to the Euler equation: 

   
  

  
  

 

 
              (2.7) 

An additional relationship between density and velocity is derived from the continuity 

equation,               ⁄  Also, pressure is a function of density and temperature,  

         which follows from thermodynamic relations and the energy equation, 

                  ⁄  with the internal energy        ) completes the set of gas 

dynamics equations. 

   

The above gas dynamics equations are non-linear and are difficult to solve analytically in a 

general case. However, in many cases of interest in aero-acoustics, perturbations can be 

assumed small. Hence, the linearised Euler equations can be considered for acoustic 

propagation which can become more amendable for analytical or semi-analytical solutions.  

 

2.2 Linearised Euler, Lighthill’s analogy and Acoustic 

Perturbation Equations (APE) 

In Section 2.1 the relationship between pressure and velocity described by Euler’s equation 

was derived from the Navier-Stokes equations for the condition of adiabatic flow and zero 

viscosity. Euler’s equation (2.7) can be linearised, making it easier to solve with the 

following assumptions:  

The pressure   is decomposed into a mean static pressure    and a small pressure fluctuation 

expressed as   , such as        . Similarly, using the decomposition for the density, 

        and the velocity,         and then inserting decomposed variables into Eq. 
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(2.7), ignoring all non-linear terms as part of the linearisation procedure, and subtracting from 

the Euler equation for the mean flow quantities, yields: 

       
   

  
               (2.8) 

The above equation is the simplest form of the linearised Euler equation where    

          . Eq. (2.8) states that the resulting acceleration        is caused by the acoustic 

pressure gradient. For example, if two identical microphones are placed a small distance      

apart the acoustic velocity can be determined according to Eq. (2.8), 

        ∫
  
    

 

     

 

  
  

 
       (2.9) 

Also, in Section 2.1 it was stated that three equations are required in order to completely 

characterise the relations so two more equations are needed. From continuity we get: 

   

  
                             (2.10) 

Therefore, the final equation must characterise how the acoustic pressure is related to the 

fluctuating density. As the local pressure fluctuation inevitably causes a local change in 

density    and entropy   . Thus, the relationship can be described as follows: 

   (
  

  
)
 
   (

  

  
)
 
        (2.11) 

For an isentropic assumption, as typically used in acoustics, the second term in Eq. (2.11) can 

be neglected which leads to a constitutive relation: 

  

  
         (2.12) 

In Eq. (2.12)   is the speed of sound. Note that the relationship in Eq. (2.12) can be derived 

using the equation of state of an ideal gas. If    and    are eliminated from Eq. (2.8) using the 

continuity equation and the constitutive relation one can obtain: 

     
 

  

    

   
            (2.13) 

which is a three-dimensional form of a linearised wave equation. The next point to consider is 

what makes the solution unique: the boundary and initial conditions. Indeed, the above 

relations satisfy solutions to wave propagation in time and space but without regard to 

acoustic sources, that is, excitations. Eq. (2.13) is therefore, a homogeneous governing 

equation. The inhomogeneous source terms may include arbitrary mass, momentum and 

entropy/enthalpy sources that can give rise to acoustic waves but in this work only the first 

two are considered which excite waves via changing pressure or a sudden volumetric change. 

In Section 2.4.3 the derivation details of the vortex sound sources will be discussed. First, Eq. 

(2.10) has to be modified to include the additional rate of mass change per unit volume term: 
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                        (2.14) 

Then, following the same procedure as was employed for obtaining Eq. (2.13) but with the 

new Eq. (2.14) instead of Eq. (2.10) gives: 

     
 

  

    

   
    

  

  
       (2.15) 

The source term on the right hand side is the mass source term. We then consider the 

harmonic solution,                  and the right-hand side term can be expressed as
2
 

                with a point source at      such as: 

                                  (2.16) 

where         is a Dirac delta function;      ⁄ . Eq. (2.16) is known as the 

inhomogeneous Helmholtz equation. Similarly, assuming the source occupies the finite 

volume region since      has finite support and    being the source spatial coordinate, we 

arrive at the formulation for inhomogeneous three-dimensional wave equation, where the 

solution to      is the convolution with the Green’s function:   

              ∫                          (2.17) 

In general, source terms in inhomogeneous wave equation may contain quite complicated 

acoustic definitions that are derived from fluid mechanical processes. It has been shown 

above that the inhomogeneous wave equation can be derived for the limited source region in 

a confined volume. Then, a uniform stagnant fluid with sound speed   , density    and 

pressure    is assumed at the listeners’ location. By taking the time derivative of mass 

conservation, Eq. (2.1), one finds: 

   

   
 

  

     
      

    

   
       (2.18) 

where 
    

   
 

  

  
;   is the volume fraction, and         is the density used for 

expressing the rate of change of injected mass,  . Subsequently, taking the divergence of 

momentum of Eq. (2.2): 

  

     
      

  

      
(         )  

   

   
      (2.19) 

The following relationship may be established from Eq. (2.18) and Eq. (2.19): 

   

   
 

  

      
(         )  

    

   
 

   

   
      (2.20) 

Assume that the fluctuating density    is used as an acoustic variable instead of pressure and 

in Eq. (2.20) the term   
          

  , where    is the sound speed at the listeners’ location, 

                                                           
2
 where   √   is the unit imaginary number 



 
 

23 
 

can be subtracted from both sides to reform Eq. (2.20) into a wave equation similar to Eq. 

(2.13): 

 
    

   
   

 (
    

   
 )  

     

      
 

    

   
 

   

   
                     (2.21) 

Eq. (2.21) above is the famous Lighthill equation.  

where                     
         is Lighthill’s stress tensor. 

Term by term it follows as: 

1) The non-linear convective force is described by the Reynolds stress tensor,      . 

2) The term     is the shear stress. 

3) The term      
    accounts for the deviation from an isentropic relationship or a 

deviation from a uniform velocity,   .  

Lighthill’s equation is regarded as a fundamental analogy in acoustics theory. However, Eq. 

(2.21) is in fact not any easier to solve than the original equations of motion as it was derived 

using the mass conservation and the three components of momentum equation that all 

became part of the single equation. Therefore, some simplifying assumptions have to be 

introduced to get closer to the solution. In the original work of Lighthill it was recognised 

that information on the acoustic field can be obtained ignoring the effect of an acoustic 

variable inside the Lighthill stress term     using the integral formulation, thus, replacing the 

non-linear equation with a non-homogeneous linear wave equation that can be solved 

analytically. [1] It proved an efficient approach that cuts down by an order of magnitude in 

comparison to solving the Navier-Stokes equations.  

By using the thermodynamic relation, the mass source term      
    can be written out as 

derived in [61]: 

 

  
(
  

  
    )  (

  

  
   )

   

  
 

  

  
 (

  

  
)
 

   

  
       (2.22)         

From the above, the expression which can be analysed is derived using the mass conservation 

law and ‘excess’ density,            
 : 

 
    

   
 

 

  
[(

  

  
    

  

 
)

   

  
 

  

  
 (

  

  
)
 

   

  
         ]         (2.23) 

In Eq. (2.23) the first term in the brackets vanishes for sound propagation in free space 

      
             the second term,       

                   which is derived 

from a fundamental law of thermodynamics gives rise to sound sources as a result of non-

isentropic processes, such as combustion and the final, third term,          excites sound 

waves by spatial density variations.  

While Lighthill’s analogy can provide an order of magnitude estimate of sound produced by 

various processes, the formulation may not be robust enough for arbitrary complex flows 
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because of the assumptions made. More advanced versions of the acoustic analogy include 

those of Lilley [4] and Goldstein [9] where increasingly more realistic wave propagation 

models are considered. Still, solving the Linearised Euler Equations for arbitrary mean flows 

can be rather computationally challenging because of the convective instabilities which can 

experience an unbounded growth for linear problems compared to the non-linear equations. 

Acoustic Perturbation Equations (APE) [22] use another formulation which maintains the 

main features of the full acoustic propagation process while is simpler for implementation 

than LEE. The idea behind APE is to explicitly separate the potential (acoustic) fluctuations 

from the vorticity and entropy effects. This separation is not possible for LEE because of the 

mode coupling in case of a non-uniform mean flow. Hence, several assumptions are required 

for obtaining the APE model. The APE system has been derived for acoustic perturbation 

quantities    and    where the governing equation for enthalpy,  , served as an underlying 

formulation from which pressure was deducted using the thermodynamic relationship 

             . Then, with the help of the mass conservation and Navier-Stokes equations 

the governing equation for the perturbation velocity was derived, initially containing the 

enthalpy,  , and velocities,  , as variables. The APE system reads: 

   

  
   

   (      
  

  
 )    

                 (2.24) 

   

  
             (

  

  
)                   (2.25) 

with sources: 

          
  

  

   

  
         (2.26) 

           
                    (2.27) 

In Eq. (2.25)    and    denote mean and acoustic velocities respectively while   , found in 

the in the first term of Eq. (2.26) and inside the Poisson equation    , represents solenoidal 

vortical perturbations. The velocity decomposition follows the convention,         

        . The term     
 contains the mean vorticity,       terms and the rest of Eq. 

(2.27) contains entropy fluctuations.  

       [
   

  
                   (        )

 
 (

   

 
)
 

]     (2.28) 

Eq. (2.28) is the Poisson equation enclosed in Eq. (2.27) where all    containing terms have 

been neglected. Terms with a prime refer to the quantity in parenthesis with a subtracted 

mean. Also, in Eq. (2.28)   denotes the stress tensor. 

The system describes wave propagation in a non-uniform mean flow field   . It can be 

reminded that the non-linear terms as well as vortical and entropy disturbances were entirely 

excluded from the propagation side and as a result non-linear convection effects as well as 

sound generation effects due to non-linear interaction are not considered in the APE system. 

Naturally, an unsteady simulation is required for obtaining the right-hand side source terms. 
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Therefore, the sources described by Eq. (2.26-2.27) have to be shaped into a form that can be 

conveniently computed with a compressible flow simulation without having to solve the 

Poisson equation. On the other hand, the propagation can be performed based on time-

averaged flow information which can be obtained, for example, using efficient RANS 

methods.  

For a low Mach number flow, mostly encountered in airframe noise problems at atmospheric 

condition, entropy fluctuations found in {           } and in monopole heat sources 

             can be assumed negligible. This leaves three terms containing vortical modes 

where the first term in Eq. (2.27), which is described by the Poisson equation    , is most 

relevant to airframe noise. [22] Also, this term could be directly obtained from an LES 

solution via a perturbation pressure,          . Details of the formulation of vortex sound 

sources used to drive the APE system are discussed in Section 2.4.3.  

The stability of the APE system having properties outlined above was examined through 

eigenmode analysis by Ewert and Schröder [22] making this acoustic approach attractive for 

the propagation of acoustic waves in arbitrary time-averaged mean flow fields. Interestingly, 

the stability could be assessed qualitatively using a similarity with the equivalent wave 

operator exercised in Möhring’s acoustic analogy for a moving acoustic medium. [96] [97] 

The perturbation velocity    can be split into an irrotational acoustic velocity    expressed 

through a potential     and    that contains all vortical modes. Note,              

Furthermore, imposing the condition where the unsteady pressure is expressed in terms of the 

unsteady potential,              ; where                 is a substantial 

derivative. Then, re-writing the propagation part of Eq. (2.24) without entropy sources in 

terms of the potential gives: 

  (     
  

  
 

  

  
  )  
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)         

                 (2.29) 

Applying the same for Eq. (2.25) and assuming the mean flow relation             for 

simplicity: 

    [
 

  
(

 

  
 

 

  
)  

 

  
       ]  

 

  
      

      (2.30) 

and the vortical perturbations of the system: 

   

  
                  (2.31) 

The inhomogeneous wave operator    for the potential   on the left-hand side of Eq. (2.30) 

describes the behaviour of the acoustic mode while Eq. (2.31) depicts the vortical mode, 

where the condition          holds, thus, preventing the growth of instabilities. 

Moreover, Eq. (2.30) is equivalent to the linearised wave operator in Möhring’s acoustic 

analogy found in [97], which reads: 

    
 

  
(

 

  
 

  

  
)  

 

  
         

     

  
           (2.32) 
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In Eq. (2.32)                is the total enthalpy and      contains vortical and entropy 

sound sources. Möhring showed that applying the energy theorem to the solution of an initial 

value problem with vanishing right-hand side      at a sufficiently large distance maintains 

the constant total energy of the sound field. Hence, instabilities cannot occur as none of the 

contributions to the left-hand side can grow exponentially in time. If    is proven to be stable 

then the APE equivalent system Eq. (2.30) is also stable. The APE system allows for density 

gradients in an arbitrary mean flow and therefore, in acoustic calculations a no-slip boundary 

condition can be applied to solid bodies, thus, endowing the physical aspect of wave 

propagation with APEs. 

 

2.3 Analytical and semi-analytical methods for solving the 

acoustic equations 

2.3.1 Basics of wave propagation: solution as an analogy with 

elementary vibrations  

The wave equation can be defined from first principles by considering a space-time vibration. 

Mathematically, vibrations can be described by two representative characteristics, namely, 

time period,  , and amplitude,  . Initially, let      be a function of time only that describes a 

simple sinusoidal vibration,          (  
 

 
 ) where     is the frequency of oscillations 

in Hz. Then, a slightly more complicated mode of vibration may be described by the 

summation of simple vibrations. 

     ∑                
 
        (2.33) 

The cosine function is a possibility as well and the phase difference,    is introduced as 

vibrations may not start all at the same time. In general: 

     ∑                
 
    ∑                

 
      (2.34) 

The simplest mode of vibration which is the first harmonic is illustrated in Figure 2 with a 

string attached at both ends. All points on the string vibrate with the same frequency yet their 

spatial distribution is unique.  

 

Figure 2 – Illustration of the first harmonic with a vibrating string 
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Eq. (2.34) can be extended to include the spatial part which satisfies the condition of a wave 

problem. The general equation for this type of vibration can be expressed as: 

       ∑                
 
      (

  

 
 )            (2.35) 

In the above equation index n represents the mode of vibration and    is the contribution of 

this mode to the displacement       . Recalling the identity,          
 

 
{         

        }, Eq. (2.35) can be manipulated into the form that provides an insight into a 

physical meaning: 

       ∑
 

 
  

 
   {   

  

 
(  

  

   
  

  

      
)     

  

 
(  

  

   
  

  

      
)}   (2.36) 

This equation states that each mode propagates with a velocity        in opposite directions. 

A general form which is not simply a cosine wave is: 

                                    (2.37)  

The shape of the propagating wave is defined by functions   and  . For example, if        

                     is assumed a sinusoidal shape wave, the statement       

must hold where   is a wave number,        and       is known as the dispersion 

relation. By differentiating Eq. (2.37) w.r.t.   and   twice one would obtain a general form of 

a one-dimensional linear wave equation:    

    
 

  

   

   
             (2.38) 

The above equation is hyperbolic and links the variation in space with the variation in time 

and can be solved for any problem with the application of appropriate boundary conditions.   

 

2.3.2 Solution method via Green’s function and impedance 

For a harmonic wave considered in 2.3.1, let        be the impulse excitation function at 

    , then the response of the string using the general Eq. (2.38) would be:  

    
 

  

   

   
            (2.39) 

More precisely, the response        can be written in terms of the Green’s function:  

          |    
          (2.40)  

where the excitation on the string is represented as the summation of delta functions having a 

certain magnitude and Eq. (2.39) can be approximated as: 

     |    
 

  

     |   
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                 (2.41) 

In the above equation    represents a tension force and the solution can be assumed: 

   |         |    |       (2.42) 

If Eq. (2.41) is integrated at the vicinity of     , 

∫            
    

 

    
   

 

  
                      (2.43) 

  

  
]
    

 
 

  

  
]
    

 
  

 

  
          (2.44) 

Inserting Eq. (2.42) into Eq. (2.44) gives: 

   
 

     
;     |     

 

     
    |    |                               (2.45) 

This is the Green’s function for an infinite string because the boundary conditions were not 

considered so far. Assume, the string is attached at both ends as in Figure 2 then    |      

at       . There are two possible waveforms that may satisfy Eq. (2.45): a sine and cosine 

functions. However, the cosine function does not satisfy the boundary conditions and hence,  

   |    {
                     

                     
          (2.46)   

Substituting Eq. (2.46) into Eq. (2.41) and integrating: 

  
 

        
         (2.47) 

Eqns. (2.46-2.47) show the Green’s function solution that predicts the response at any 

position along the string as a result of an impulse excitation applied at     . 

Acoustic impedance is used to analyse instant, reflected and transmitted waves. In [98], an 

impedance based approach is regarded as a fundamental concept in acoustics. In CAA 

applications the knowledge of impedance is essential when developing physical boundary 

conditions. The simplest possible way of demonstrating a solution to a simple problem via an 

impedance approach is to imagine two media with different properties where the wave is 

propagating from one to another as shown in Figure 3.  

 

Figure 3 – Wave propagation between different media in a 1D case, illustrated with two 

attached strings. 
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According to Eq. (2.37), the instant and reflected waves in medium 1 may be described as 

                 , and the wave transmitted to medium 2 is         . The velocity, 

   and    would depend on the properties of medium 1 and medium 2 respectively. It is 

possible to solve three equations by analysing the boundary condition. At the interface of two 

strings the displacement must be identical and the velocity should be so too. For a one-

dimensional case, such as wave propagation in a string, it can be assumed that the 

displacement in y direction is much larger than the displacement in x direction. This makes 

the description of impedance clearer, yet similar velocity and force conditions can be applied 

to x direction, if necessary. Characteristic impedance is defined as the ratio of force over 

velocity,       where the force in  -direction can be expressed via tension   multiplied 

by the gradient: 

  
  

  

  
  

  

 
  

  
            (2.47) 

In Eq. (2.47)    is a tension force and    is the velocity in y-direction according with the 

above mentioned assumption. Hence, the reflection coefficient at the interface is     

                     and the transmission coefficient at the interface is         

           . A physical meaning of impedance is the force applied per unit velocity. If 

impedance is very large, for example,      an infinite amount of force would be required 

to move the point. Assuming       in the above example,        and        and the 

wave would be reflected back, almost entirely. On the other hand, if      ,        and 

       meaning the amplitude of the transmitted wave would be increased approximately by 

a factor of 2. However, the energy transmitted in the case of       would not increase by a 

factor of 2 as it is impossible to get the power gain through wave transmission to another 

medium. One has to derive the power transmission coefficient and as a matter of fact in this 

case where       there would be almost none. In this simple example it has been 

demonstrated that the impedance mismatch causes reflection and transmission of waves. 

 

2.3.3 Elementary sources: monopole, dipole and quadrupole 

2.3.3.1 Monopole source 

In previous chapters we considered the inhomogeneous wave equation with the source terms 

isolated on the right-hand side. In theory, the right-hand side point source is only non-zero at 

the origin and elsewhere the homogeneous equation may be used. To grasp the physical 

meaning of the pressure wave behaviour in space and time the periodic pressure variation 

shall be considered as a simple solution to the homogeneous wave equation. By starting with 

a simplest case of a one-dimensional wave, which can also be described by Eq. (2.13), the 

pressure at position   and time  , denoted       , may be written as: 

                                      (2.48) 
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For convenience, expressing Eq. (2.13) in spherical coordinates and choosing distance from 

the origin,   vector, in the direction of wave propagation and assuming pressure only depends 

on the distance from the origin,  , as for the plane wave, also, ignoring any angular 

dependence which is a possibility when using spherical coordinates, the wave equation 

becomes: 

  

   
     

 

  

  

   
                            (2.49) 

and the simplest solution by analogy with Eq. (2.48): 

       
 

 
                         (2.50) 

where   is a complex amplitude. The periodic pressure variation in Eq. (2.50), in fact, 

provides the definition of a monopole source. In Eq. (2.50) pressure is inversely proportional 

to the distance   and when      that is at the origin, pressure has a singularity (as it tends to 

infinity). Furthermore, by using Euler’s relationship the velocity corresponding to the 

behaviour in Eq. (2.50) can be examined. Expressing the Euler equation (2.8) for    which is 

the velocity in the radial direction, in spherical coordinates reads: 

   

  
  

 

  

  

  
           (2.51)       

meaning that, 

   
 

 
 

 

   
(  

 

  
)                     (2.52) 

At this stage, it is convenient to express the impedance using Eq. (2.50) and Eq. (2.52) and 

manipulating into a form as shown in [98], given below: 

   
 

  
    [

     

       
  

    

       
]            (2.53) 

In the above equation, the impedance is expressed in terms of the dimensionless distance   , 

having real and imaginary parts. The behaviour of the monopole source is best illustrated on 

the impedance plot shown in Figure 4 below.  

 

Figure 4 – Impedance function for a monopole radiation. 



 
 

31 
 

When      and the distance from the origin is large in comparison to the wavelength in  , 

the impedance        levels out and approaches the plane wave impedance that is equal to 

the characteristic impedance of a medium. In this ‘far-field’ region the one-dimensional wave 

propagation could be thought of as a wave propagating along the string and linear 

propagation laws apply. On the other hand, when     , the pressure and velocity is 90° out 

of phase. In this region, fluid particles are accelerated by the changing pressure and the 

imaginary component, clearly, is not negligible. This can be referred to as the ‘near-field’ 

region. Moreover, as this simple solution satisfies the wave equation, one can assume that 

superposition of simple solutions will also satisfy the governing wave equation, allowing for 

more complicated waves to be constructed by using the monopole source concept. For 

example, two monopoles located next to each other with the opposite phase form a dipole. 

Following the same principle and grouping 4 monopoles with alternating opposite phases 

results in a quadrupole. A complicated wave pattern may be formed by observing multiple 

monopoles in action in a shallow water ripple tank. 

In a three dimensional space, a monopole source could be described by a repeatedly 

expanding and contracting sphere. The sound pressure at the source could be represented in 

exactly the same way as Eq. (2.50) suggests: 

     
 

 
                 (2.54) 

Here, the complex amplitude   must represent a ‘driving force’ of a fluid mass per unit time 

and angle. The equation for the amplitude reads: 

  
 

  
                                                            (2.55) 

where   is the volume rate of change of a monopole source. Dimensional analysis suggests 

that units of   are [    ]. Again, from Euler’s equation, the velocity in the direction of   is: 

   
 

     

  

  
 

        

     
(  

 

  
)           (2.56) 

Hence, the impedance could be obtained: 

In the near-field:     
    

     
                                        (2.57) 

In the far-field:     
    

     
                  (2.58) 

The average intensity in the direction of   could be obtained by multiplying      and       

in Eq. (2.54) and Eq. (2.56). Both of the above mentioned equations have a complex phase 

and as for plane waves the phase of sound pressure is identical to that of particle velocity and 

only the active intensity (the real part) exists and the reactive intensity (the imaginary part) 

becomes zero. In general, the complex intensity reads: 

                   
 

 
                    (2.59) 
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With the following definitions                     and                     for 

pressure and velocity, where    and    is the phase of the sound pressure and particle 

velocity respectively. The magnitude of complex intensity is |    |    ⁄       and the 

average intensity by definition is: 

        
 

 
             

 

 
  {         

 }                       (2.60) 

In Eq. (2.60), * implies a complex conjugate. Comparing the definition to Eq. (2.54) and Eq. 

(2.56), the average intensity can be written as: 

        
 

 
 

 

   

| | 

  
                  (2.61) 

When reviewing Figure 4 with the definition of intensity in mind, in the far-field region 

where there is no phase difference between the sound pressure and particle velocity, the 

intensity is inversely proportional to the square of the distance but independent of   . On the 

other hand, by thinking of the reactive intensity derived from the imaginary part of Eq. 

(2.56), and where pressure and velocity would have 90° phase difference, it is inversely 

proportional to the square of the distance and also inversely proportional to   . Therefore, the 

reactive intensity decreases rapidly when moving away from the origin and in the vicinity of 

the origin, as highlighted in Figure 4, it dominates the acoustic behaviour and waves do not 

propagate well. 

The average acoustic power can be obtained by integrating the intensity Eq. (2.61) over an 

area with a radius  . Due to the spherical symmetry, the integration of intensity of a 

monopole source corresponds to its multiplication with a surface         .   

     ∫ ∫        
  

 
   

 
         

   | | 

   
          (2.62) 

2.3.3.2 Dipole source 

In a situation when two monopole sources are placed in a close proximity to each other with a 

180° phase difference, as each of them is effectively a point source the collective effect forms 

a dipole. The sound pressure of a dipole can be expressed mathematically as: 

                (
       

  
 

       

  
)      (2.63) 

where   is the separation distance between two monopole sources. In following derivations, 

the separation and the position of sources has to be handled with care, as the sound field may 

change with respect to these characteristics. The generalised form of the sound pressure 

exerted by a dipole source is given below. (See Appendix A for derivation) 

             
      

 

 

 
(  

 

  
)      

      

 
    (  

 

  
)       (2.64)      
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In this equation       and it is assumed that the two sources are located on the   axis. 

From Euler’s equation, the velocity in the direction of   could be written as: 

            
  

   

      

 
    (    (

 

  
)   (

 

  
)
 

)     (2.65) 

Hence, the impedance could be obtained: 

             
   (

 

  
)

    (
 

  
)  (

 

  
)
            (2.66) 

The average intensity then obtained similarly to Eq. (2.61), 

            
  | | 

    

 

     
            (2.69) 

and sound power is just an area integral, 

     
     | | 

    
             (2.70) 

2.3.3.3 Quadrupole source 

A quadrupole source can be formed by two closely located dipole sources with the opposite 

phase or four closely placed monopoles. Following the Section 2.3.3.2 the sound pressure of 

a quadrupole can be expressed mathematically as: 

                     [
       

  
     {   (

 

   
)}  

       

  
     {   (

 

   
)}] (2.71) 

The generalised form of Eq. (2.71) for the sound pressure exerted by a quadrupole source is 

given below. (See Appendix A for derivation) 
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)       (2.72) 

where   is the quadrupole amplitude. As before, proceeding with the corresponding velocity 

equation and impedance:  
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)     (2.73) 
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)
                (2.74) 

Intensity in the   direction is: 

             
  | | 

    

 

     
            (2.75) 

And power in the   direction is: 
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  | | 

     
           (2.76) 

It can be observed that that for all source types, monopole, dipole and quadrupole considered, 

when      that is the far-field condition, the impedance in the   direction,           

    is identical to the impedance of a plane wave. Distinctively, the radiated power in the   

direction is independent of the wavenumber   for the monopole source, while for the dipole 

and quadrupole it is proportional to    and    respectively.  

 

2.4 Popular far-field noise prediction methods based on a 

combination of the theory and numerical simulations  

In this section the review on far-field noise prediction methods is presented, ranging from 

more simple / less general to more complex / more general in terms of the acoustic 

modelling. The section begins with an introduction into Kirchhoff’s integral method which is 

fundamental to Ffowcs Williams-Hawkings acoustic surface integration technique, which 

remains one of the popular methods of choice in aero-acoustic community to this day. In this 

work FW-H is the method of choice for obtaining far-field acoustic predictions with noise 

sources derived from LES. Finally, a vortex sound method based on solving Acoustic 

Perturbation Equations is reviewed. Note that APEs represent the second sound propagation 

technique which is employed in the current work in conjunction with the FRPM method. For 

airframe noise applications, the vortex sound model is believed to describe the underlying 

physics behind sound generation processes. In Section 2.4.3, important noise source 

components are identified and discussed as well as some popular assumptions applied when 

using these techniques.  

 

2.4.1 Kirchhoff’s integral method 

Among various acoustic analogies proposed over the years, Kirchhoff’s integral method [99] 

[100] [101] remains one of the simplest techniques for determining far-field acoustics. 

Usually, an observer is located at a relatively large distance from an acoustic source and a 

problem can be split into a near-field region, where sources are computed or determined 

experimentally and a far-field zone. In practice, a control surface S that provides coupling 

between wave propagation and right-hand side sources is introduced to separate the two 

zones. In order to determine the solution at the observer’s location, the homogeneous wave 

equation is solved using the free-space Green’s function approach with an input source term 

specified from the inside of the control surface. The volume      may be enclosed by the 

control surface     , which is defined by a smooth function          if       . 

Otherwise, the domain is divided as discussed: 

 ̃      {
                

                   
            (2.77) 
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Assuming the medium moves with a constant velocity   , the homogeneous wave equation 

for any acoustic variable, for example,         could be defined for the outer and inner 

regions in accordance with Eq. (2.77) as follows: 

 

  
 

  

   
 ̃         ̃                             (2.78) 

In Eq. (2.78)  ̃                  where      is the Heaviside function specified as zero 

inside      and 1 in the outer wave propagation region. In accordance to Farassat & Myers 

[102], the discontinuity across the control surface at         ,   ̃   ̃(     )  

 ̃(     ) is treated with a Dirac delta function and the generalised derivative becomes: 

 ̅ ̃

   
 

  ̃

   
   ̃

  

   
     

  ̃

   
   ̂           (2.79) 

where  ̂  is the surface unit normal and    ̃(     ). A bar over a derivative operator is 

used to denote a generalised differentiation. By differentiating again for obtaining    ̃      

term in Eq. (2.78) we get the following expression: 

 ̅  ̃     ̃  
 

   
[  ̂     ]             (2.80)    

where     ̂    . Following the same procedure for the time derivative yields: 

 
 ̅ ̃

  
 

  ̃

  
  

  

  
               (2.81) 

In Eq. (2.81) above, the time derivative of the function   includes the mean flow convection, 

such as,         ̂     ̂      where  ̂       and  ̂         then,   

 ̅  ̃
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[             ]  

  

  
                    (2.82) 

By using Eq. (2.80) and Eq. (2.82) to form the relationship:  
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[  ̂     ]    

(2.83) 

where           is the local Mach number normal to the surface and             is 

the normal Mach number of the moving frame. Substituting Eq. (2.78) into Eq. (2.83) gives 

the Kirchhoff’s formula in the moving medium:  
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[             ]  

 

   
[  ̂                 ]  

(2.84) 

Without convection, the wave equation Eq. (2.84) simply reads: 
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]      

 

  

 

  
[       ]  

 

   
[  ̂     ]      (2.85) 

The above equations, Eq. (2.84) or Eq. (2.85) can be solved using the Green’s function 

approach for a wave equation. All three terms in above equations (2.84-2.85) are of 

monopole and dipole type with delta function acting at the control surface. Hence, an acoustic 

solution can be obtained by simply solving three surface integrals, derived from spatio-

temporal integration.  

The main advantage of Kirchhoff’s formulation is in the relatively simple definition where 

variables have to be integrated over a surface for estimation of acoustics in the far-field. 

Additionally, the specific formulation of acoustic sources as well as the unsteadiness inside 

     is immaterial in the above definition and averaged acoustic quantities are used as the 

only input information. The simplicity of this formulation can also be a disadvantage where, 

for example, one of the method’s notable shortcomings arises by neglecting inhomogeneity 

of the flow field as well as other sound sources present inside     , as there is no direct link 

between turbulent quantities. 

 

2.4.2 Ffowcs Williams-Hawkings method 

Another integral method commonly adopted in CAA application and employed in this work 

is known as Ffowcs-Williams Hawkings (FW-H) acoustic analogy [19], which is based on 

Lighthill’s equation introduced in Section 2.2 previously. In practice, FW-H is considered the 

superior method over Kirchhoff’s formulation due to a more flexible definition of the control 

surface and especially because Lighthill’s analogy is derived from equations of motion. As a 

matter of fact, the definition in Eq. (2.84) and Eq. (2.85) is consistent with the FW-H analogy 

when the input data are compatible with the linearised wave equation, i.e. when the control 

surface is located in a linear propagation zone.             

The FW-H equation reads: 

(
 

  
 

  

   
   )   ̃      

     

      
  [      ]  

 

  
[      ]                 (2.86) 

where  ̃   (                
       )     is the Lighthill tensor with perturbations 

        and        . An additional multiplier      is the Heaviside function 

specified as zero inside      and 1 in the outer wave propagation region.  

      [           ]      ̂   and     [           ]              

At this time it is convenient to show the relationship between Eq. (2.86) and Eq. (2.84), 

discussed previously. Let,      denote the right-hand side sources in Kirchhoff’s formula Eq. 

(2.84) such that: 
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Then, by adding      and subtracting source terms, Eq. (2.86) can be re-written as: 
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(2.87) 

By using the continuity and momentum equations, along with the relationship                        

     [ ̂     ]         [      ]  [100] one can re-write Eq. (2.87) as following: 
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(2.88) 

Finally, for the linear flow region,        
 , Eq.(2.88) becomes: 

(
 

  
 

  

   
   )   ̃           

  (     )

      
                      (2.89) 

The only remaining term is the second order perturbation velocities that are negligible in the 

derivation of the wave equation. Hence, the FW-H formulation could be assumed equivalent 

to Kirchhoff’s formula if the control surface is placed in the linear flow region.   

Consider the right-hand side source terms in the FW-H equation, Eq. (2.86), which consists 

of a quadrupole term, 
     

      
 along with the dipole and monopole terms,  [      ] and 

 

  
[      ], where for the last two terms surface integrals could be obtained. If the 

integration surface could be matched to an aerofoil profile these source terms gain a physical 

meaning which is related to aerodynamic characteristics. In essence, the dipole term, 

 [      ] is proportional to the normal pressure force of a solid body. On the other hand, the 

monopole term, 
 

  
[      ] in a close proximity to the aerofoil’s surface describes the 

divergence of velocity       , practically signifying on the compressibility effects next to a 

solid surface. To conclude, for a so called impenetrable formulation when the control surface 
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S is described by the outline of an aerofoil’s profile, the dipole source term is defined by a lift 

force while the monopole is proportional to the compressibility effects, which strengthen with 

increasing Mach number and profile thickness. In the propagation region, the quadrupole 

term is described by the Lighthill stress tensor     as shown in Section 2.2. This term consists 

of three components, where the sources of noise may originate due to non-linear convection, 

viscous effects described via shear stresses and anisotropic flow behaviour. The correct 

representation of the quadrupole term is very challenging from the modelling viewpoint but 

thankfully, for most low Mach number CAA problems its contribution to overall noise 

generally is negligible, as will be demonstrated when investigating into the sources of the 

trailing edge noise in later chapters. Therefore, it is beneficial to ignore the quadrupole term 

from the FW-H analogy.         

As mentioned previously, the FW-H differential equation can be solved via Green’s function 

approach,                     where     and           . The distance 

between the source and the observer,   |         |  by neglecting the quadrupole term, a 

far-field pressure signal at the observer’s location can be determined through integration: 

          ∫ ∫
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         (2.90) 

In Eq. (2.90),         represents           
 ; where by assumption the flow is linear and 

isentropic at the observer’s location. By following the definition for           at S in the 

local reference frame, called the   frame, which is specified with respect to the control 

surface, the variable   could be transformed to the variable   and the surface integral is then 

evaluated. Additionally, accounting for a temporal delay before the signal reaches the 

observer,      |          |    and after several transformations [103] [104] one could 

obtain: 
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(2.91) 

where   (
 

  
   )               Here,     is the projection of Mach number onto 

   and     is the Mach number relative to the moving reference frame. Furthermore, 

|     |
   denotes a Doppler’s shift in a moving source reference frame. Clearly, this 

approach may lose precision when approaching sonic speeds and more complicated 

integration procedures should be adopted. [104] However, when dealing with low Mach 

number aerofoil flows, the above formulation can be used. In the current work Eq. (2.91) is 

used in conjunction with the LES CABARET method where at a specified time interval near-

wall pressure fluctuations are linearly interpolated onto the control surface, which is wrapped 

about the quasi-2D slice of an aerofoil. Then, surface integrals are evaluated numerically 

using the trapezium rule.  
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2.4.3 Vortex sound method and its implementation based on 

solving Acoustic Perturbation Equations (APE) 

In contrast to integral methods reviewed so far where acoustic sources have to be specifically 

derived using the definition of a control surface, the vortex sound method uses a less general 

formulation. In essence, vortex sound theory translates the particular vortical description 

derived from a turbulent flow into sound sources, meaning that the spatial location of such 

sources would be completely prescribed by physics of the turbulent flow. Also, vortex sound 

sources could be specified in a 3D space which makes inclusion of a quadrupole term 

possible. This can be regarded as an advantage, yet the sound mechanism formulated by the 

turbulent flow is quite complicated as seen from Lighthill’s equation, Eq. (2.21), which 

source terms do not have a simple physical meaning except for the simplest case of sound 

generation in uniform stationary media. As observed by Powell (1964) [91], the sound 

generation in subsonic flows with constant entropy assumption is associated to the vortex 

dynamics,      . Other notable research work focusing on elaboration of vortex sound 

theory includes works of Möhring [105], Schram and Hirschberg [106], Howe [107], Ewert 

and Schröder [22]. In the literature on acoustic modelling, typically, the effective sound 

sources are evaluated with the help of additional simplifying assumptions. In the current 

work, the sound sources which correspond to the vortex sound model are analysed in details 

for the aerofoil trailing edge problem using the LES solution. Specifically, vortex sound 

sources are based on the Lamb vector, (generally defined as    ) which describes the 

right-hand side source term. This can be implied considering the APEs discussed in Section 

2.2. The governing equations for the APE system can be derived from continuity and 

momentum equations [22]:  

   

  
     ̅      ̅           ̅̅ ̅̅ ̅̅                    (2.92)   

   

  
   ̅              ̅   (

  

 ̅
)         (2.93) 

where   consists of the non-linear part,      (         
   

 
)

 

 and entropy terms, 

       ̅      ̅. The density and pressure fluctuations are related thermodynamically, 

    ̅    (  ̅   ⁄ )  . For obtaining the specific form of Eq. (2.93), the enthalpy and 

entropy gradients are substituted for the pressure gradient using             relation 

and the equations for perturbation quantities follow by subtracting the time-averaged 

momentum equation. Then, the only enthalpy term,    , which remains in the momentum 

equation is eliminated utilising the relationship               as it was already 

mentioned in Section 2.2. Finally, using the identity Eq. (2.94) in application to Eq. (2.93) the 

APE system could be manipulated into the form given by Eq. (2.24-2.25) in Section 2.2 but 

the definition of the right-hand side source terms will differ from Eq. (2.26-2.27) in the new 

formulation called the APE-4 system. (See below)  

  ̅              ̅     ̅          ̅   ̅            (2.94) 
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In Section 2.2 the general formulation for APE system was presented. However, using the 

derivation method as outlined above, Ewert and Schröder [22] formulated the right-hand side 

source terms without the Poisson equation, calling the modified version the APE-4 system, 

where the source terms    and    in Eq. (2.26-2.27) read instead: 

              
 ̅

  

 ̅  

  
         (2.95) 

               ̅      ̅  ( 
(  )

 

 
)
 

 (
   

 
)
 

                 (2.96) 

In this form it is much easier to provide the source input, where non-linear and entropy terms 

can be ignored due to being of minor importance in vortex sound problems and the remaining 

dominant source term is simply the Lamb vector. Therefore, the governing APE equations 

can be re-written as following:  

 
   

  
     ̅  ̅      ̅               (2.97) 

   

  
     ̅       (

  

 ̅
)             (2.98) 

where   is the effective acoustic source vector. In practice, time averaged quantities, namely 

pressure, density and velocity fields could be obtained from a separate calculation such as a 

RANS simulation and mapped to an acoustic grid, where the wave propagation takes place.  

Subsequently, the acoustic source vector   is calculated and provided to the system of 

equations, Eq. (2.97-2.98), at every time step of the simulation. The acoustic sources are 

defined following the vortex sound theory model from [57] specifying the Lamb vector 

which is established as the dominant source, expressed through the following three terms: 

           {     }  {     }  {     }       (2.99) 

               Term I          Term II       Term III             

In Eq. (2.99),    and    represent the mean flow vorticity vector and its fluctuation, 

respectively. The vorticity fields can be defined from the mean flow and fluctuating velocity 

component through the standard relationships, e.g.         . The first two terms in Eq. 

(2.99) represent linear sources with respect to velocity and vorticity fluctuations, later 

referred to       part as term I and to       part as term II, and the third one is 

quadratic in terms of the fluctuations. The third non-linear part       of the vortex source 

in Eq. (2.99) is thought to be smaller than the first two terms for low Mach number aerofoil 

flows at moderate angles of attack and by assumption is neglected. As discussed in [57] it is 

often the second, linear vorticity fluctuation term,       included while the rest of the 

sources are ignored. In the present work, all three source terms of Eq. (2.99) will be retained 

to verify their relative importance for the test cases considered. 
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In accordance with the original FRPM model, where various source descriptions could be 

implemented [57], the underlying part of the fluctuating solution field in Eq. (2.99) is 

obtained from synthetic turbulence generated using the method discussed in Chapter 3. 

 

2.5 Numerical methods for CAA 

This section presents a review on numerical methods for solving fluid dynamics and 

acoustics equations. The scope of this work includes solving APEs with the Finite Element 

(FE) method using Galerkin elements discussed in Section 2.5.1, finite difference / volume 

methods are employed for implementing the CABARET scheme in the framework of MILES 

presented in Section 2.5.2. Since the scope covers a variety of numerical methods the key 

conceptual properties shall be briefly reviewed first. According to the basic terminology, 

finite difference methods evolve in time the point-values of the solution whereas finite 

volume numerical methods evolve in time the cell averages of the solution. On the other 

hand, in finite element Discontinuous Galerkin (DG) methods an exact solution is 

approximated through polynomials which are specified as an expansion (or sometimes 

referred to as a projection) with respect to the bases functions. In other words, DG methods 

evolve in time the degrees of freedom of the solution, i.e. the time evolution of expansion 

coefficients with respect to the bases functions is determined for the entire polynomial. 

Various time marching methods applied in DG deserve particular attention, including a single 

time-step evolution ADER scheme [82] used in this work which is high-order accurate in 

both space and time. In addition, this work employs commercial software as a credible tool 

for RANS simulations. All in all this section is designed to provide the reader with the 

knowledge of a link between theoretical concepts reviewed earlier and their numerical 

realisation for CAA applications.    

 

2.5.1 Finite Element Discontinuous Galerkin method 

CAA methods used for solving the wave propagation in space and time must exceed the 

accuracy of conventional second order CFD methods, primarily because of geometrical 

complexity or issues associated with the solution efficiency. These qualities are particularly 

desirable in presence of some non-linearity which occurs, for example, in the presence of 

shock waves. Furthermore, for aero-acoustic applications where fine details of the solution 

are important using high-order methods can be advantageous due to the ability of using fewer 

elements in the far-field and also, using automated p-refinement for the smallest frequency of 

interest is beneficial not only for calculation efficiency but also, from mesh-generation 

viewpoint. Major development of a DG method was undertaken in the works by Cockburn, 

Shu et al. [108] [109] [110] In this work FE-DG method [21] is used in the framework of 

Altus solver for acoustic wave propagation in the time domain. First, consider the FE 

formulation for PDEs written in the conservative form: 

  
  

  
                               (2.100) 
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In the above equation,   is the vector of conserved quantities, while      is a non-linear flux 

tensor that depends on the state  . For example, the net flux through an element (which 

represents a control volume) will cause a change in a conserved quantity. For hyperbolic 

PDEs the flux matrix must have real roots and the system such as given by Eq. (2.100) in the 

conservative form can be solved through conservative numerical schemes. [111] If the non-

conservative form is used instead the solution follows a different approach as for the so-

called path-conservative numerical schemes which are based on the theory proposed by Dal 

Maso et al. [112] but such schemes are not considered in this work.  

The weak form solution of the PDEs (specified in the conservative form) is the integral over 

the global domain           multiplied by any continuously differentiable test function, 

  of compact support
3
 and integrated in time,   [    .  

∫ ∫ ( 
  

  
    )

 

  

 

 
                     (2.101) 

Integration by parts and using the property of the compact support where the test function 

vanishes in the limit of spatial and temporal infinity leads to the following weak formulation: 

∫ ∫ ( 
  

  
    )      

 

  
∫         

 

  

 

 
         (2.102) 

The Discontinuous Galerkin method is based on a weak formulation Eq. (2.102) where a 

function   is called a weak solution of the conservative equation for all functions  .   

2.5.1.1 Discontinuous Galerkin discretisation 

In DG the global computational domain   is split into   elements where the local solution is 

defined for each individual element   .  

  ⋃   
 
           (2.103) 

In Eq. (2.103) the index   ranges from 1 to the total number of elements   and similar to a FE 

approach the global solution is the sum of the piecewise polynomials. However, in DG the 

continuity of polynomial functions is not enforced between elements and thus, it usually 

requires the solution of a Riemann problem for determining the flux between elements. 

Following the weak solution procedure, applying the divergence theorem and integration by 

parts with integration being performed over an individual element   , the DG formulation 

reads: 

∫
  

    
    ∫ [      ] 

   
   ∫       

  
                (2.104) 

In the above equation, the second term is a surface integral whose solution can be best 

explained using a one-dimensional example where it would simply read: 

∫ [      ] 
   

   [     ] |
  

  
          (2.105)  

                                                           
3
 The function will vanish approaching limits of the domain,                             
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In Eq. (2.105)    and    are left and right states with respect to the one-dimensional element 

  . Since the end points of neighbouring elements are coincident, for example, the local 

solution at    for the element    would also correspond to the solution at    for the element 

     and therefore, the solution at this point is multiply defined. By conservation, the flux 

between elements must be equal: 

      {     }     
{     }                  (2.106)  

At this point we may refer to a FV approach where some flux function,  ̃   , which is an 

approximation to the flux, permits communication between elements and thus, allowing to 

recover the global solution. The choice of the flux function is problem specific and providing 

that characteristics of the flux is known the numerical flux function could be crafted into the 

solution to reflect the physicality of the system. There are a variety of Riemann solvers 

available for determining the approximation to a numerical flux on the element’s surface such 

as Lax-Friedrichs [113], Roe [114], Engquist-Osher, Harten-Lax-van Leer (HLL) etc. Also, 

the Godunov’s flux method [115] attempts to analytically solve a Riemann problem, 

describing several flux cases for advection, shock and expansion wave treatment. The 

Godunov scheme is a simple treatment which for linear advection equation is identical to the 

standard upwind scheme that is known to yield a physical solution. 

There are two volume integrals |  |  ∫   
  

 in Eq. (2.104) requiring the solution 

approximation within the element    to compute the integral of the solution based on a 

discrete formulation. Assume, that the solution approximation  ̃    belongs to a finite vector 

space  ̃     and is represented within each cell by piecewise polynomials of the order  , 

such that: 

 ̃     
   ∑  ̃ 

  
                                (2.107) 

where       is a spatial basis vector function,  ̃  is referred to as the discrete representation 

of the solution and the coefficients  ̃ 
  are the degrees of freedom. For simplicity at first it 

can be assumed that the vector space    contains polynomials of order     and from the 

definition Eq. (2.107) there must be two basis functions. One can think of these as two linear 

ramp functions (see Figure 5) specified for a given one-dimensional element    such that the 

sum of two bases at any point inside the element is equal to 1, following the partition of unity 

concept. 

 

Figure 5 – Sketch showing two ramp functions for a linear element    within the 

approximation space    defined from 0 at    to 1 at   . 
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In FE-DG the space for the weighting functions is chosen such that it corresponds to the 

approximation space     , meaning that in the above example for     weighting 

functions would be ramp functions too,             and            . In order to 

solve for approximation to Eq. (2.104) the weak form solution must be satisfied for each 

weighting function as will be shown in Section 2.5.1.2 when assembling a semi-discrete 

system. 

In practice, using the first order polynomials at most is not very efficient and ultimately, with 

DG methods, most benefits come when exploiting high-order properties (where   is 

typically      ). [116] From Godunov’s order theorem [115] it follows that the linearity of 

the numerical scheme has to be sacrificed in favour of non-oscillatory properties for high-

order schemes. Therefore, all DG schemes which are of the high-order of approximation are 

non-linear. In principle, any polynomial function can be chosen to represent the 

approximation but in practice some choices of polynomial bases are better than others and 

several fundamental classes exist, namely modal (or hierarchical) and nodal. [117] The 

hierarchical bases consist of a set of     polynomials with degree ranging from zero (a 

constant) to a maximum degree   where Legendre polynomials may represent such a set. 

(See Figure 6a) On the other hand, the nodal bases all consist of polynomials of degree   

with a total number of functions also being    . [118] In the nodal approach the “nodal 

coordinates” are computed in the reference space forming     Lagrange interpolation 

polynomials that pass through     Gauss-Legendre quadrature nodes. Importantly, nodal 

bases functions are constructed to satisfy the “Kronecker delta” condition, i.e. the first 

polynomial function may have an approximation value at the first node while being zero at all 

other control nodes within the reference space. In contrast, other polynomial functions would 

coincide at zero at the first node and then one of the functions will appear to have some value 

in the second node and so on. (See Figure 6b) The shape of bases is determined by the degree 

 .        

a)       b) 

  

Figure 6 – Legendre polynomials (modal / hierarchical) (a) and Lagrange     quadratic 

and     cubic polynomials (nodal) (b) 

In computational practice the Lagrange interpolation polynomials are evaluated via the 

solution of linear systems with coefficients arranged in a matrix form.     
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2.5.1.2 Towards assembling of a semi-discrete system 

The governing DG equation (Eq. (2.104)) can be re-written using the discrete representation 

of solution and flux vectors discussed above and the property of Eq. (2.105) where a one-

dimensional system can be assembled as following: 

∫
  ̃     

  

    
        [ ̃  ̃            ] |

  

  
 ∫  ̃  ̃     

    
  

           (2.108) 

        Mass matrix           Numerical flux              Stiffness matrix 

where     , the solution approximation  ̃     
   is given by Eq. (2.107) and the weighting 

functions       can be assumed to be the ramp functions for    , which is the appropriate 

choice for conceptual derivation. First, substituting the solution approximation Eq. (2.107) 

into the Mass matrix gives: 

∫
  ̃     

  

    
        ∑

 

  
 ̃ 

  
   ∫             

                (2.109)  

Note that in the above expression the coefficients  ̃ 
  are functions of time only and the 

integral over the element    could be readily pre-computed containing bases and weights 

which are both spatial functions. If the vector space is chosen as prescribed in Figure 5 the 

bases         and       when substituted in Eq. (2.109) with integration limits from 0 

to 1 result in the following mass matrix:  

∫           |
 
   

 [
        

        
] |

 
 

 [
 

 ⁄
 

 ⁄

 
 ⁄

 
 ⁄
]            (2.110) 

The solution of the Numerical flux term which provides coupling between elements could be 

difficult to obtain due to the flux being multiply defined at the element’s boundary leading to 

a Riemann problem. If the wave is propagating from left to right in a one-dimensional 

incompressible case with a constant velocity  , one can simply choose the ‘upwind’ flux as 

an approximation to  ̃, such that: 

 ̃( ̃   ̃ )    ̃   if                (2.111) 

where the conserved quantity   ̃  moves to the right and for the element    it would 

represent the flux at the boundary    being equated to the incoming (or ‘upwind’) flux. In the 

DG formulation there is no enforced continuity for the fluxes at the interface, i.e.  ̃  
     

 ̃    
     by default. In this case, using the upwind flux in Eq. (2.108) results in the 

following approximation:  

[ ̃  ̃            ] |
  

  
   ̃  

             ̃    
                     (2.112) 

Note the  ̃    
     term in the above equation coming from the right state of the      cell. 

Moreover, from Figure 5 it is possible to deduct that          and similarly,         , 

resulting in the following flux matrix: 
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 ̃  [
  ̃    

    

  ̃  
    

]   [
 ̃    

    

 ̃  
    

]            (2.113) 

The stiffness matrix in Eq. (2.108) also contains a numerical flux yet there is no Riemann 

solver involved since the approximation is well defined everywhere within the element. 

Similarly to the Mass matrix the final term can be pre-computed by substituting the 

approximate solution and bases which were already evaluated in Section 2.5.1.1 into the 

stiffness term.  

∫  ̃  ̃     
    

  
        ∑   ̃ 

  
   ∫              

        (2.114) 

Assembling the stiffness matrix for the specified vector space gives: 

∫            |
 
   
 [

          

          
] |

 
 
 [

  
 ⁄   

 ⁄

 
 ⁄

 
 ⁄

]         (2.115) 

Using Eq. (2.110), Eq. (2.113) and Eq. (2.115) it is now possible to assemble a semi-discrete 

system which in the matrix form reads: 

    ̃ 
   ̃     ̃        (2.116) 

where prime denotes a time derivative. For each time step there would be a number of 

coefficients starting from  ̃ 
  initial conditions. For example, if the solution to a sinusoidal 

function has to be advanced in time using the DG method, for the initial conditions all 

coefficients will be spatially pre-defined with a reference to sinusoidal function. Then the 

time rate of change  ̃ 
  of the solution has to be evaluated numerically. In the introduction to 

Section 2.5 it was mentioned that the DG method advances the degrees of freedom (or 

coefficients) in time and after assembling a semi-discrete system Eq. (2.116) the basic DG 

mechanism could be summarised as follows:  

     ̃ 
  [   ̃   ̃]                            (2.117) 

The solution to Eq. (2.117) requires the Mass matrix to be inverted which could be easily 

obtained using hand calculations for something as simple as a 2x2 symmetric matrix Eq. 

(2.110) which is obtained for the first order polynomials. However, using higher degree of 

approximation yields a higher number of operations. The R.H.S. of Eq. (2.117) could be 

entirely pre-computed using the initial conditions for  ̃  coefficients and in the final step the 

semi-discrete system needs to be discretised in time which is the subject of the next section.       

2.5.1.3 Time marching methods 

The solution  ̃  is known at a time level    and a prediction has to be made for evaluating 

the solution at     . In the simplest case the time rate of change  ̃  can be directly used to 

make such a prediction which results in a ‘forward Euler’ explicit scheme: 

 ̃ 
     ̃ 

   ̃                      (2.118) 
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where    is the time step. Eq. (2.118) can be used together with a semi-discrete system Eq. 

(2.117) for implementing a one-dimensional incompressible DG solver. Also, non-linear DG 

schemes are known to be    stable which proof can be found in the literature [113], thus, 

positively influencing the robustness of a DG method. However, the    stability does not 

guarantee the absence of oscillations and neither the absence of excessive numerical 

dissipation originating due to a flux jump. For a more advanced implementation of a high-

order DG solver better temporal accuracy than the ‘forward Euler’ is required and in that 

instance a multi-stage time-marching scheme is commonly adopted for solving coupled 

differential equations such as Runge-Kutta (RKDG) schemes. [119] Since DG is a variable 

order method the selection of the most suitable time marching scheme in terms of accuracy 

and computational performance will depend on implementation specifics. Consider cubic 

polynomials     representation of        where   is the coordinate of the local domain. 

Then using the modal bases to represent the discretisation one may get the following 

expression: 

        ̃           ̃           ̃           ̃                  (2.119)    

When the approximation of the solution Eq. (2.119) is substituted into the governing DG 

equation (Eq. (2.108)) it results in a system of 4 coupled ordinary differential equations for 

each of the degrees of freedom (in a modal approach) which have to be solved 

simultaneously since each degree of freedom is implied in the computation of the non-linear 

flux term. In RKDG discretisation the first term in Eq. (2.119), namely  ̃         , is 

evolved in time using a “finite-volume” procedure, since the expansion of a constant is 

simply a cell average, giving the scheme an “upwind” property. The fluxes at the interface 

 ̃    and  ̃    can be obtained by solving a Riemann problem which are subsequently 

weighted by the bases in three other equations. Hence, the higher order equations could be 

thought of as performing the error correction.  

In CAA an explicit RKDG time discretisation method is commonly used so its various 

formulations are not discussed in this work. However, one thing to note would be that with 

RKDG there is a decrease in efficiency when the formal order of accuracy is higher than four, 

leading to an effect which is known as the “Butcher’s barrier” after John C. Butcher [120] 

where the number of intermediate stages becomes too large in comparison to any benefits 

gained by the increased order of accuracy.  

In order to improve the time integration techniques the ADER (Arbitrary DERivative) 

approach has been proposed by Toro et al. [121] Over the last decade numerical schemes 

based on ADER have become attractive due to being significantly more efficient in 

comparison to Runge-Kutta for very high order (5-7) DG schemes [122] and also, ADER is 

almost a factor of two faster for non-stiff problems
4
. [123] Such computational efficiency 

achieved by the ADER approach is mainly due to its single time-step evolution for a DG 

scheme which still remains high-order accurate both in space and time. The complexity of 

                                                           
4
 Stiffness is the phenomenon attributed to the system of differential equations which may include terms 

describing physical processes which occur on different time scales and thus, restricting the time integration to 

excessively small steps over an interval where the analytical solution is expected to exhibit smoothness.  
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this approach lies in the treatment of the generalised Riemann problem. Hence, there is a 

difference between the original concept of Toro et al. [121] and its modified version (Titarev 

and Toro [82]) which uses the local time-space DG predictor. Since the ADER concept and a 

DG method as a whole very much rely on the accurate flux reconstruction we shall begin by 

looking into a high order generalised Riemann problem and exploring some computationally 

feasible options. By definition of a generalised Riemann problem, initial data between 

interfaces of adjacent cells are no longer piecewise constant but piecewise polynomial. (See 

Figure 7) 

            {
           

           
  

         
         

;           (2.120) 

 

Figure 7 – Schematic initial conditions for a generalised Riemann problem for a component 

      . The data are smooth functions away from the interface located at    . 

The standard procedure for solving such Riemann problem is to apply the Taylor expansion 

in time at the interface so that the leading term can be solved using the standard Riemann 

problem approach and higher-order derivatives using the Cauchy-Kovalewski procedure. In 

short, the approximate solution         can be evaluated as follows, first beginning with the 

Taylor expansion.  

              
   ∑

  

  
  

    
         

       (2.121) 

where   
   

       
  

   
      ; and            . In Eq. (2.121) the leading term 

represents the solution to a linear Riemann problem with constant left and right states and 

higher-order terms are represented with a set of space-time derivatives: 

     (
  

  
)              (2.122) 

      (
   

   )        (
  

  
)             (2.123) 

  
    (

   

   )        (
  

  
)                (2.124) 
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There are more equations with progressive order. Time derivatives may be represented by Eq. 

(2.122) and the spatial derivatives then have to be obtained via solving a sequence of   

linear Riemann problems for the equations: 

  [  
   

       ]   ̃  [  
   

       ]                (2.125) 

where  ̃   [       ]  is the constant matrix computed in the leading state and      , 

where   is the degree of the polynomial as stated previously. For a linear system where the 

coefficients of the matrix  ̃ are constants for all analytic derivatives the matrix can be 

evaluated only once. As a result of the above procedure, the solution approximation can be 

established for a generalised Riemann problem, which is represented by a temporal evolution 

of   Eq. (2.121) at the interface. 

The philosophy of ADER is to use the above result in a single time step evolution scheme so 

that the DG discretisation is integrated in time directly. [124] 

(∫       
  ) ( ̃ 

     ̃ 
 )  ∫ ∫      

 
    

  
            ∫ ∫      

 
    

  
           

(2.126) 

In Eq. (2.126) the main ingredients of the governing equation, namely the Mass and Stiffness 

matrices and the fluxes in the form of a surface integral are retained but with the incorporated 

time integration. This procedure may get very complicated depending on the system of PDEs. 

Aero-acoustic problems typically involve the source terms and the system of equations drawn 

in place of Eq. (2.122-2.124) becomes virtually impossible to solve beyond a simple analytic 

problem. Thus, for a realistic case to be solved numerically an alternative to the Cauchy-

Kovalewski procedure and the Taylor expansion in time is required which involves 

performing an operation locally for each cell, taking the DG polynomial    as input and the 

output becomes its evolution in time. This operation involves the local “predictor” which 

determines the evolved solution approximation within each cell.  

In Section 2.5.1.1 it was necessary to perform the spatial expansion of the solution with the 

polynomial bases following the standard Galerkin procedure and now using the ADER 

approach we shall include the temporal expansion at once. 

          
                   ̃                    (2.127) 

In the above equation,    is the conserved quantity,    is its evolution in time known as the 

sought polynomial and the terms  ̃  are the space-time degrees of freedom (the unknowns), 

where the bases are given by a product. 

                                      (2.128) 

The local predictor step is best illustrated starting with a PDE which includes the source term 

  as often will be the case in acoustics in the reference coordinates. 

  

  
                       (2.129) 



 
 

50 
 

where the “star” flux and source terms include the transformation Jacobian from physical into 

the reference domain. As a next step Eq. (2.129) is multiplied by the space-time test functions 

   and integrated both in time and in space over the control volume. Since spatio-temporal 

integration remains local to each cell there is no Riemann solver involved at this stage, which 

absence simplifies this procedure significantly. 

∫∫∫∫  (
  

  
 

   

  
   )                (2.130) 

When performing the integration by parts the fluxes and the sources can be expanded over 

the same bases as in Eq. (2.127). It is worth mentioning that by using the nodal shape 

functions there is an apparent advantage as it allows expressing the physical fluxes at the 

nodes through the degrees of freedom  ̃ , such as  ̃ 
     ( ̃ ) and similarly for the sources 

 ̃ 
     ( ̃ ). Then, the system of matrices is pre-computed at the initial conditions for the 

unknown coefficients  ̃ . The system of equation has to be solved iteratively up to a desired 

tolerance which results in the approximate solution to Eq. (2.127). Now that the space-time 

predictor         is known for each cell it can be used in the governing equation: 

(∫       
  ) ( ̃ 

     ̃ 
 )  ∫ ∫      

 ̃  
    

  
   

    
          

∫ ∫      
 

    

  
            

(2.131) 

where   
  and   

  are the left and right states of the Riemann problem  ̃   respectively, 

which evaluation completes the coupling between elements, allowing to recover the global 

solution. In ADER terminology this final step is referred to as the corrector step. [125]                  

2.5.1.4 DG methods for aero-acoustics     

This subsection provides a brief review of the DG method which closely resembles the 

solution to the Acoustic Perturbation Equations (APE) in the Altus code used in this work 

with the source term   appearing on the right-hand side. The equations are solved in a 

general conservation form: 

       

  
 

   

   
                    (2.132) 

where   and    are the corresponding solution and flux vectors, j=1,2,3, and Einstein 

summation over the repeated index is implied. For numerical computation with the DG 

scheme [21] [23], the flow solution, the flux vectors and the sources are expanded in terms of 

the finite-element basis functions       , as discussed previously, e.g.: 

                        ∑      
 
    ̃ 

           ̃ 
             

                   ∑      
 
     ̃ 

           ̃ 
 
                   (2.133) 

              ∑      
 
    ̃           ̃ 
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Following the standard weak solution procedure, the governing equations are multiplied by 

the test function   , which are up to the 6
th

 order of approximation in this work, integrated 

over the volume, applying integration by parts. 

∫    

       

  
   {∫

     

   
   ∫   

   

   
  

  
}  ∫    

                (2.134) 

Furthermore, applying the divergence theorem to the first term in brackets and using Eq. 

(2.133) leads to a system of ordinary differential equations for unknown time amplitudes  ̃  

  
  ̃ 

  
 ∫      

  ̃      ∫     

   

   
     ∫      

 ̃          (2.135) 

where the mass matrix is: 

   ∫      
                         (2.136) 

In the second term of Eq. (2.135),    is an outward pointing surface element normal and   ̃    

is an approximation to a Riemann flux which solution depends on the element under 

consideration and on the neighbouring element. This term is referred to as the boundary 

integral and the only term involving the Riemann problem which provides a crucial solution 

coupling between elements as discussed in the previous section.    

Due to linearity of the fluxes    with respect to the acoustic variable, the corresponding 

Jacobian matrix can be pre-computed using the Quadrature-Free method. [23] [124] In this 

formulation there is a fundamental restriction on the type of elements that are permitted, 

ensuring that in the reference coordinate system, the Jacobian matrix is not a function of 

space, | |  | |       . The solution volume   is defined in terms of the local domain, 

which is partitioned into non-overlapping elements. Then, the Quadrature-Free concept is 

best illustrated on the flow quantity for which the solution has to be obtained. Consider the 

acoustic density variation in space and time,                   where a Jacobian is used 

for the transformation between the physical space and the reference domain. 

∫          ∫             |  |       
         (2.137)    

Essentially, the integration determined numerically via the integration over volume and then 

over all elements   is performed only once and stored, while the remaining part |  |      is 

computed. The Jacobian |  | is different for every element yet in this case it appears outside 

the integral due to the property | |  | |        which leads to improved calculation 

efficiency. For better clarity it is possible to simplify the formulation further by using Eq. 

(2.136) knowing that for a given type of elements the mass matrix    would be the same, 

(i.e. one mass matrix is applicable to all prisms, another is applicable to all squares and so 

on). If we assume that in a particular calculation all elements are of the same type the 

temporal term can be re-written as |  |   ̃  where  ̃  
 

  
[ ̃ ]. 
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Volume integral 

The volume integral in the governing equation, Eq. (2.135), can be re-written as a matrix 

times a vector quantity and the system in a short representation without element and order 

notation reads: 

   ̃  ∫      
 

 ̃           ̃                (2.138) 

where   [    ] and      ∫           
    [ ̃ ] and  ̃            [    ]. Note 

the vector matrices   and   which are constant for all elements can be pre-computed at the 

pre-processing stage and stored. The volume integral can be evaluated for each cell without 

solving a Riemann problem since there are no discontinuities present within the cell and the 

only remaining term which solution is required for determining the time evolution of  ̃  in 

Eq. (2.138) is the boundary integral ∫      
 

 ̃   . 

Boundary integral 

For evaluation of the boundary integral all elements within the domain of interest are 

partitioned into segments where every segment is associated with the side of an element. 

Then, according to Eq. (2.138) the boundary integral can be represented as a multiplication of 

the flux vector with the corresponding matrix. The difficulty comes from  ̃  being the 

function of the solution in elements adjacent to the boundary segment as discussed previously 

and each segment has its own local coordinate system. For that reason, firstly, the bases 

functions contained in   must be translated into the coordinate system that is common to 

both elements which in practice is performed using an auxiliary matrix which is exactly 

specified for each edge and remains constant. Secondly, the approximate Riemann flux is 

computed in the edge coordinates and finally, the computed flux is projected onto the space 

using the expansion with a set of basis functions. The solution to a Riemann problem could 

be as simple as using the upwind flux as demonstrated in Section 2.5.1.2 for a simple scalar 

DG solver or it may involve quite complicated procedures containing a full set of wave speed 

estimates where an improved accuracy in flux reconstruction is necessary. In this work a high 

order DG method is employed for aero-acoustic wave propagation where a Roe solver [114] 

is used for evaluating the standard Riemann problem at the element’s interfaces and thus, 

approximating      ̃    term. 

The FE-DG method is used in conjunction with the FRPM method described in details in 

Chapter 3 which provides the definition for the source vector  . Altogether, these 

calculations are implemented in the framework of the Altus solver. Appendix B provides the 

outline of the CAA procedure starting from the calculation of the source terms and feeding 

them into APEs which are then evaluated on a mesh with the aid of FE-DG method using the 

ADER time marching scheme.   
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2.5.2 CABARET scheme for convection dominated flow modelling 

This section presents the concept of the finite-difference / finite-volume CABARET scheme 

which has been primarily developed for solving convection dominated flow problems. The 

scope of applicability of the scheme includes simulating vortex and turbulent flow at high Re 

number which is of interest in this work. From all numerical schemes commonly adopted in 

CAA, the CABARET scheme’s advantages include ease of implementation and improved 

solution accuracy in comparison to the conventional second order schemes. [126]    

Following the motivation in searching of high-fidelity CFD/CAA methods as outlined in 

Chapter 1, the CABARET scheme with improved dissipation and dispersion properties 

deserves attention.  

A one-dimensional linear advection equation is written down to illustrate the CABARET 

method’s concept:  

  

  
 

     

  
                        (2.139) 

                    . A non-uniform finite difference grid is considered where 

               and                temporal and spatial discretisation respectively. It 

is assumed that all variables are known at the n
th

 time level. Marching a half time step using 

the forward-time central-space approximation then yields:  

      
     

       
 

          
 

 (    
 )  (  

 )

      
                     (2.140) 

Eq. (2.140) is constructed over a rectangular space-time stencil with central points both on 

the edges and in the middle of the stencil, allowing marching in half steps. (See Figure 8) The 

variables   
  are attributed to mesh nodes, while       

     
 are calculated on the intermediate 

time level        first, then, an upwind extrapolation to a new time level takes place, 

 ̃   
            

     
   

 , where     
            ̃   

     Finally, Eq. (2.140) is followed by 

another half step using the backward-time central-space approximation: 

 
      

          
     

          
 

 (    
   )  (  

   )

      
                      (2.141) 

The equations (2.140-2.141) are written in the form of predictor-corrector, making the 

CABARET scheme an explicit single-temporal-stage method which can be shown second 

order accurate even on non-uniform grids due to its compact one cell computational stencil. 

For Eq. (2.139) the scheme is conservative over a single cell control volume and stable under 

the Courant condition           , and the scheme is exact when the Courant number is 

equal to 0, 0.5 and 1.  

The CABARET stencil shown in Figure 8 has some similarities with the upwind Leapfrog 

(UL) scheme first proposed by Iserles [36]. For one dimensional linear advection equation 



 
 

54 
 

both schemes are the same and have good dispersion properties and zero numerical 

dissipation. However, the compact stencil of CABARET allows its effective extension to 

multiple dimensions in space and for non-linear flows.     

         

Figure 8 – CABARET spatio-temporal single cell compact numerical stencil in 1D 

If the CABARET scheme is to be applied for solving non-linear flows, such as in the 

framework of the MILES method, similar to other CFD methods, its resolution will be 

limited by the grid. Hence, the unresolved small scales need to be removed from the solution 

without spurious backscatter from small to large scales and keep the simulation stable. For 

example, the simplest practical solution consists of introducing a small amount of artificial 

viscosity such that the CABARET scheme represented by Eq. (2.140-2.141) is modified to 

include a constant Panikovski’s dissipater [126] without extending the scheme’s stencil:     

    
    

        
     

        
 

   
               (2.142) 

When     the scheme is non-dissipative and when    , it exhibits the properties of the 

first order upwind monotonic Godunov (simple upwind scheme) [115] in which case 

    
          

     
       

        
     

. In the work of Goloviznin and Samarskii [126] it was 

demonstrated that generally,   can be greater than 1 and the scheme’s stability would not be 

affected. However, in practical applications   is can be set   0.1 leading to a very mild 

smoothing in the vicinity of unresolved solution gradients and the scheme can still maintain  

good stability. A more advanced method used in this work employs the non-linear flux 

limiters for overcoming spurious oscillations making the method robust enough for practical 

applications and maintaining the second order of accuracy in space and time. The non-linear 

correction procedure is based on the maximum principle [33] [127], according to which the 

variable     
    must not exceed the maximum or fall behind the minimum where the following 

applies: 

                          
       [        ]

{       }        
        

      
      

            
       [        ]

{       }        
        

      
           (2.143) 
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For an extrapolated variable on a new time level the non-linear correction reads:  

    
    {

    
      [            

      
               

 ] 

           
       

               
  

            
       

                
  

 (2.144) 

The dissipation and dispersion properties were analysed closely in [36] [126], applying the 

CABARET scheme without the non-linear flux correction. In this analysis a travelling wave 

solution,   
     [             ] is substituted into the scheme. The characteristic 

equation is then derived that establishes a link between the frequency,   and the 

wavenumber,   and the roots of the characteristic equation are the function of the Courant 

number (    | |   ) and the dimensionless wavenumber: 

                             (2.145) 

where  

              
                  

 
 

 

 
 √                             (2.146) 

As shown in [126] the modulus of the root, |    |    for        . Thus, wave 

amplitudes stay the same when marching to a new time layer, meaning that the scheme is 

non-dissipative and stable for      . Hence, the dispersion is the only source of error.  

Assume that we need to find a solution to Cauchy’s one dimensional problem with periodic 

initial conditions: 

  
  ∑ [        

          
 ]            

         (2.147)    

The coefficients       and       are determined by initial conditions at the first grid point 

and     
  are the roots that determine the solution as it progresses in time. The solution can be 

evaluated in such a way that only one of the two roots in Eq. (2.147) is necessary to 

determine the evolution in time while the other one would only affect the stability. [126] 

Hence, one with better dispersion properties should be used which can be determined by 

investigating the values of the roots. By knowing that                  ), the phase 

velocities      given in Eq. (2.148) below could be determined. 

           [             ]                  [             ]   

           
  

   
 

 

      
       [             ]                          

           
  

   
 

 

      
       [             ]              (2.148) 

The scheme is free from phase error when   and    are equal to 1. Therefore, the dispersion 

error would be characterised as                and               . It has to be 

said that, usually, most first order upwind schemes are resilient to dispersion for a linear 

advection problem when the Courant number is equal 1, while for smaller CFL numbers the 
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first order upwind scheme is quite dissipative. On the contrary, the CABARET scheme is 

exact for both (     ) and at mid-range (         where the scheme has good stability. 

Dispersion properties improve when approaching the (         condition from either side, 

where for                       the scheme is completely dispersion free. Figure 9(a) 

shows the dispersion error comparison of the CABARET scheme at different Courant 

numbers against other conventional finite difference schemes where E2, E4 and E6 denote 

standard central differences of second, fourth and sixth order respectively at the Courant 

number which allows for most accurate time marching. DRP is the fourth order scheme of 

Tam & Webb (1993) [32] and LUI stands for the optimised sixth order compact scheme of 

Lui & Lele [128]. Throughout the entire range of             which denotes a number 

of points per wavelength (P.P.W.), the error in CABARET approaches the accuracy of 

conventional sixth order schemes for the Courant number of 0.51. Moreover, away from the 

optimal condition, for example, when (       ) the phase error in CABARET is still 

comparable to the fourth order scheme. Figure 9(b) shows the group speed error comparison, 

   
 

 

         

      
, which is an approximation error instigated by the propagation speed of wave 

packets. Any deviation of    from 1 corresponds to an error in physical wave propagation. 

Importantly, for the CABARET scheme, the numerical group speed,   , always remains 

positive, while    dips to negative values for other schemes at low resolution   , meaning 

that CABARET would remain free of artificial reflections / wave cut-offs on a coarse grid in 

comparison to other central difference schemes which will suffer beyond some threshold 

frequency.              

a)       b) 

 

Figure 9 – Comparison of linear dispersion errors of several finite-difference schemes, 

namely E2, E4, E6, 4
th

 order DRP and 6
th

 order LUI in comparison to the CABARET scheme 

at different     condition in terms of grid points per wavelength    (P.P.W.) (a), numerical 

group speed error comparison (b), published in [129]. 
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2.5.2.1 CABARET scheme for one-dimensional gas dynamic equations 

in Euler coordinates 

In this section the CABARET extension for solving the system of hyperbolic equations 

describing the conservation of mass, momentum and energy is reviewed. [130] In the Euler 

coordinates these equations read: 

  

  
 

   

  
            

   

  
 

        

  
             

   

  
 

         

  
     

                                                        (2.149) 

where                 ,                    and                  are the source 

functions and all other quantities have their usual meaning. The equation of state can be 

specified as the following: 

  

  
 

 

  
 

  

  
                        (2.150) 

In the above equation   is the speed of sound. The hyperbolic system can be written in the 

characteristic form. 

{  
  

  
}    {  

  

  
}                                       (2.151) 

  [
        

         

     

] and   [

    
    
    

]  [
     

     
   

]        (2.152) 

              where      ,                ,  

and    
  

  
 
 

 
 [                  ]  

  

  
   . 

In the work by Goloviznin [130] the CABARET scheme is described as the balance-

characteristic method, combining the properties of the characteristic and conservative 

approaches in a numerical scheme which involves the so-called conservative and flux 

variables. The conservative variables, namely       ,       ,       ,        and        

denoting velocity, density, pressure, internal energy and the total energy in that order are 

attributed to cell centres with the index       while the flux variables   ,    and    are 

defined at the mesh nodes.    

Assuming that the conservative and flux variables are known at the time level   , the system 

of equations can be written in the conservative form using the finite difference discretisation 

with the second order of approximation. Then, the new conservative variables will have to be 

evaluated at the time level      but first, Eq. (2.149) are approximated for the time level 

                    .    
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 ,                (2.153) 

where       
     

       
     

           
     

       
     

, and   
    

        
    

  

The characteristic system Eq. (2.151) is approximated in a similar way: 

{      
     

 
  

  
}        

     
 {      

     
 
  

  
}        

     
       

     
    (2.154) 

and similarly filling the matrices Eq. (2.152), 
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Eq. (2.154) can be re-written as: 

   

  
          

     
 
   

  
          

     
                      (2.156) 

with the following notation: 

        
     

  ,         
     

       
     

       
     

,         
     

 (      
     

       
     

)
  

,              

               
     

       , 

               
     

       , 

         (      
     

)
 

                     (2.157) 

The quantities         are the Riemann invariants which are to be calculated at the time level 

       using the mid-point “conservative” variables and the flux information from the time 

level   . As discussed in [129] and [130] the balance-characteristic procedure is based on Eq. 

(2.153), numerically implemented as a system Eq. (2.154) which describes a “predictor” step. 
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The “corrector” step follows requiring the invariants to satisfy conditions which are outlined 

below, at the same time linearly extrapolating the values to a new time level      where the 

invariants will be compared against the         values as part of the non-linear correction.  

       
               

     
      

 ,            
               

     
        

    (2.158) 

            [     
           

     
        

 ]                  
     

 

            [     
           

     
        

 ]                  
     

           (2.159) 

where   is the stencil       [         ]  [       ]. Hence, the correction procedure can 

be defined as: 

[  ̃     
   ]      {

       
      [                

            ] 

                 
             

                  
              

      (2.160) 

Same conditions for the correction as in Eq. (2.160) apply to [  ̃   
   ]     . Therefore, at 

every node with the index         there would be six solutions to the invariants        , 

namely   ̃ 
         ,   ̃ 

         ,   ̃ 
         ,   ̃ 

         ,   ̃ 
          and   ̃ 

         . 

Since the scheme is directional, the flux variables at the new time level     are determined 

via characteristic equations where the choice of invariants will depend on the direction from 

which information arrives at the node        . (See [39] [130]) In short, the sought values 

of  ̃ 
    and  ̃ 

    are approximated using the following equations: 

 ̃ 
          

     
       

     
   

 ,       ̃ 
          

     
       

     
   

             (2.161) 

And the characteristic velocities are defined at the new time level: 

( ̃ ) 
   

  ̃ 
     ̃ 

   ,      ( ̃ ) 
   

  ̃ 
     ̃ 

   ,      ( ̃ ) 
   

  ̃ 
         (2.162) 

Then the above characteristic velocities are compared to zero, drawing the system of 

equations for evaluating the flux variables   
   ,   

    and   
    using the corresponding 

invariants. This stage completes the calculation of the flux variables at the new time level 

   . More details on various modifications of the algorithm, boundary conditions, extenson 

to 2D / 3D flows as well as its application to practical problems and comparison with other 

numerical schemes could be found in works of Goloviznin [39] [130], Karabasov et al. [35] 

[44] [129], Faranosov et al. [46] and Markesteijn et al. [48] [49] [50]. 

Summary of main properties 

 The CABARET scheme uses a single cell stencil over which the fluxes   
   ,   

    

and   
    are computed for maximum compactness.  

 The scheme is second order accurate in space and time even on non-uniform 

computational grids. 
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 The scheme is stable for         and exact for the Courant number of 0, 0.5 and 

1. 

 Non-dissipative. Therefore, potentially free from amplitude errors. 

 Improved dispersion properties in comparison to the conventional finite-difference 

schemes as demonstrated in Figure 9 which for example, makes the application of 

CABARET attractive in the framework of Monotonically Integrated Large-Eddy 

Simulation (MILES). This will be discussed further down.     

 Nonlinear flux correction can be applied directly based on the maximum principle 

without the introduction of any additional tuning parameters to better control 

dissipation and dispersion properties. 

 

2.6 Turbulence modelling approaches 

2.6.1 Reynolds-Averaged Navier-Stokes: the basic concept 

In numerical modelling, RANS involves the solution of the Reynolds-averaged equations to 

determine the mean flow field. The concept of RANS is illustrated by solving the transport 

equation as it is fundamental for low Mach / incompressible flows. The governing Navier-

Stokes equations are re-arranged by inserting a sum of mean and fluctuating parts,    ̅  

  ,     ̅     into the momentum equation. It is easy to verify that the continuity equation 

applies to the averaged flow as well as to fluctuations.  

  ̅ 

  
  ̅ 

  ̅ 

   
 

 

 
  ̅   

   ̅ 

   
  

       ̅̅ ̅̅ ̅̅ ̅

   
               (2.163) 

Eq. (2.163) is a time averaged transport equation for velocity components. Time averaging of 

the non-linear convective term resulted in appearance of the “Reynolds stress” term 

       ̅̅ ̅̅ ̅̅ ̅    ⁄  that embodies the average dissipative effect of the fluctuation turbulence. Due to 

the closure problem, RANS equations have to be solved with “Reynolds stress” term being 

represented by some empirical model.  

In this work RANS models are used to supply the mean flow information into a fast 

turnaround FRPM acoustic code discussed in Chapter 3 where the two-equation model is 

required for obtaining the turbulence length scales which are then manipulated into the length 

scales of the acoustic solution following the definition of source terms. 

Usually, RANS models do not require an in-house code to be written specifically for solving 

Reynolds averaged equations because these are too generic and do not involve complicated 

procedures in problem solving due to time-averaged characteristics. In this case, commercial 

software can be more robust and offer various options for pre- and post-processing, as well as 

capabilities to fine tune model constants used within a solver, making equations fully 

customisable in application for a wide range of problems. In terms of the modelling options, 

the mixing length model could be thought of as the simplest turbulence model in terms of 

RANS which can produce incorrect results for all but the simplest flows. Alternatively, 
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instead of using a local equilibrium assumption, a transport equation can be solved for the 

turbulent kinematic viscosity,   . A most widely used one equation turbulence model is 

Spalart-Allmaras (SA) [131] which is numerically well conditioned and the closure is 

achieved using empirical constants. Other one equation models, originated approximately at 

the same period include Baldwin-Barth (1992) [132] and Menter (1994) [133] but are seldom 

used.  

In an attempt to improve RANS modelling, a two-equation model class was proposed, [134] 

solving transport equations for the turbulent kinetic energy and the dissipation rate,   and  . 

Unlike with the one-equation model, closure is achieved using the definition for a turbulence 

length scale,    
 

    as well as utilising the relationship,         that endowed the model 

with a generally correct behaviour for   . As a consequence, two-equation models can be 

deemed “complete” and hence, have the broadest range of applicability. In CAA applications, 

when RANS models are used, in addition to supplying mean flow information, the features of 

the two-equation model allow augmenting the two turbulent quantities to obtain the 

unknowns, for example, using the property of the length scale. Therefore, this class of RANS 

models is preferred in this work and deserves particular attention.  

Historically, many two-equation turbulence models have been proposed. The choice of   is 

fairly convenient when transport equations are derived from the Navier-Stokes following a 

similar procedure as shown in Eq. (2.118), where      〈 ̅   ̅〉. However, the equation for 

  is purely empirical, presenting a diverse choice for the second quantity. The second most 

popular model is    , [135] where   is the specific dissipation rate      . Essentially, 

the description of   and    is identical to the     model with subtle differences between   

and   equations, more precisely the difference lies in the diffusion term. As a result, the 

    model became superior in viscous near-wall region treatment and improved stream-

wise pressure gradient prediction for turbulent flows, as described in details by Wilcox 

(1993) [135]. Furthermore, Menter [133] has attempted to derive a turbulence model that 

combines the best properties of both,     and     models with the introduction of a 

blending function that switches between zero close to the wall, behaving like   equation and 

unity away from wall making it a standard   equation. Such treatment is called     SST 

which stands for the ‘shear stress transport’. Importantly, with all RANS models there is no 

increase in computational effort with increasing Re number.     

In this work the code for solving RANS and URANS equations is implemented in ANSYS 

CFX which is the preferred solver from which data is input into the acoustic code Altus 

discussed in Chapter 3. The CFX solver is selected mainly for the reason of having powerful 

post-processing and data export capabilities. For simulations implemented in this project a 

non-linear recipe for a blending factor based on the boundedness principle proposed by Barth 

and Jespersen [136] is used making the advection scheme second order accurate in space. The 

algorithm used can be shown Total Variation Diminishing (TVD) when applied to a one-

dimensional flow problem. Other solvers, namely ANSYS Fluent and OpenFOAM are also 

employed for comparison between RANS simulations, solving the flow past a NACA 0012 

aerofoil. See Appendix C for results and discussion. 



 
 

62 
 

2.6.2 Time accurate turbulence simulation techniques  

In general, all RANS models have significant shortcomings – there is not a single satisfactory 

model with a versatile validity, particularly there is none for separated flows. Also, solving an 

acoustics problem requires the knowledge of perturbation quantities that cannot be obtained 

directly from RANS and even in most advanced RANS-based acoustic solvers some 

empirical scaling is required. Moreover, with RANS-based CAA methods it is impossible to 

get reliable acoustic predictions where correlations are fundamental to flow behaviour. For 

example, considering the flow over a bluff body such as a circular cylinder, where the 

accuracy of broadband noise prediction would be largely influenced by span-wise 

correlations and tonal noise by the shedding frequency – neither can be predicted by 

RANS/URANS methods. Therefore, clearly, there is a need for developing high-fidelity 

methods that will ultimately yield the physically accurate and reliable solution.  

From the Kolmogorov analysis it is evident that for sufficiently high Reynolds number flows 

typical in engineering applications the grid resolution and the associated time-step    

requirements in explicit models are truly demanding. For resolving the smallest scales down 

to the Kolmogorov scale the minimum number of mesh points required would approximately 

scale with      . By definition, the smallest length scale known as the Kolmogorov scale is 

    ⁄      and expressing the dissipation rate using dimensional analysis,        where   is 

the reference length scale, the ratio of a typical length   to the smallest eddy size can be 

defined as                . Hence, in three dimensions the minimum number of points 

required to represent a fluctuation is of order      . The Direct Numerical Simulation (DNS) 

methods are designed to explicitly resolve all turbulent scales present in the simulation, thus, 

offering the most accurate solution with only discretisation errors being the source of 

discrepancy between the simulated and real flow. With an exception of work specifically 

dedicated to advanced research (e.g. performing DNS as a validation of turbulence modelling 

approaches at sufficiently low Re number), DNS simulations are not feasible for practical 

cases performed on a reasonable timescale even using the most advanced computational 

facilities as for today. In a high-fidelity turbulent flow simulation the most computational 

effort is dedicated to resolving the smallest scales. Therefore, if those scales could be partly 

modelled or even neglected without any significant loss of information in key areas, 

simulation efficiency can be increased substantially. Also, from the fluid dynamics theory it 

is understood that large scales carry most energy, typically up to 80%. For example, in 

aerodynamic modelling of airframe components the smallest scales are usually found in the 

near-wall region. Hence, a much simplified treatment for achieving a high-fidelity simulation 

would be to model the boundary layer using a RANS approach and simulate the turbulent 

mixing of large eddies away from the wall through a hybrid Detached Eddy Simulation 

(DES) method. [137] Such treatment can be very efficient and powerful, primarily, because it 

is much cheaper than DNS and also, the advantages and disadvantages of RANS modelling 

are explored reasonably well as RANS is now regarded the industry’s workhorse. The 

increased computational cost of DES in comparison with RANS is associated with extension 

of the former to three dimensions and using a fine grid resolution in a wake zone. Main 
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complexity of the DES method is in the switch between RANS and LES and feedback from 

large to small scales.    

 

Large Eddy Simulation (LES) is an alternative class of methods which is based on scale 

separation and filtering procedure where instead of resolving the smallest scales as in DNS 

some statistical model can be used for representation of the fine scales. Such model may be 

referred to as a ‘sub-filter scale’ model. In practice, the finest affordable near-wall grid 

resolution is commonly adopted with a first mesh point being within a viscous sub-layer and 

because computational grid often limits the scales that could be resolved, the cut-off beyond 

which filtering removes length and time scales is termed as ‘sub-grid scale’ (SGS) model. In 

general, the filtering procedure can be explicit where a convolution filter is applied to a DNS 

solution or implicit where it is attempted to remove unresolved scales from the solution and 

filtering is imposed by a computational mesh resolution. Since LES schemes operate in the 

time domain contrary to the frequency domain, filtering also takes place in the time domain 

which takes a form of artificial viscosity. It is also possible to use a combination of explicit 

SGS and implicit for excluding the overlap between the numerical error and effects of SGS.    

In the previous section on RANS methods the assumption was to take the time-average of 

       over a statistically invariant time period as prescribed by Eq. (2.164) below. 

 ̅      
 

 
∫          

 

 
                            (2.164) 

In LES a low-pass filter is applied to       , which is designed to remove length and time 

scales below the cut-off scale. 

 ̅      ∫ ∫    ̅  ̅ |    |                     
  

  

 

  
    ̅  ̅          (2.165) 

where    ̅  ̅ |    |       is the filter kernel. The parameters  ̅ and  ̅ are the cut-off 

length and the cut-off time, respectively. Moreover, by taking advantage of  ̅ parameter, the 

isotropic filter width could be specified. Most authors consider spatial filtering 

only,    ̅ |    | .  Examples of usual spatial convolution filters in physical space as well 

as in spectral space are presented in Table 2.   

Examples of filters    ̅ |    |         

Box / top hat {  
 

 ̅
     |    |   ̅  

             
        ̅        ̅      

Gaussian √
 

  ̅
     (

  |    | 

 ̅
 )     (

     ̅
 

  
)  

Sharp cut-off 
      |    | 

  |    |
  {           

             
  

 

Table 2 – Examples of commonly used spatial convolution filters in LES,       ̅. 
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Applying the convolution filter to the non-linear conservation law yields [18]: 

  ̅ 

  
    (     )

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                          (2.166) 

where   is the non-linear flux function with a quadratic behaviour in terms of  . In Eq. 

(2.166) bar denotes filtered quantities. Leonard (1974) [138] proposed the following 

decomposition of the non-linear convection term consisting of    ̅    where  ̅ is the 

filtered quantity. 

    ̅̅ ̅̅ ̅    ̅    
   ( ̅    

 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   ̅  ̅ ̅̅ ̅̅ ̅   ̅   
 ̅̅ ̅̅ ̅   ̅   

 ̅̅ ̅̅ ̅    
   

 ̅̅ ̅̅ ̅̅                (2.167) 

There are 4 RHS terms in Eq. (2.167) with the first term being resolved, the following two 

are the cross terms and the last one is the Reynolds stress. The resolved term is further 

decomposed through the expression of the Leonard’s stress. 

   ̅  ̅ ̅̅ ̅̅ ̅   ̅  ̅  {   
 }              (2.168) 

where the resolved part contains the Leonard’s stress tensor    
 , defined as { ̅  ̅ ̅̅ ̅̅ ̅   ̅  ̅ },  

representing fluctuations of the interaction between resolved scales. The cross terms in Eq. 

(2.167) form the cross-stress tensor which accounts for direct interaction between resolved 

and unresolved scales. Note, the cross-stress tensor and the Leonard’s stress tensor are zero 

for RANS, meaning that the Reynolds stress term is the only remaining part as one would 

expect. For LES, Eq. (2.166) can be re-written by substituting the Leonard’s decomposition 

into the non-linear flux term and keeping the resolved part on the LHS.  

  
  ̅ 

  
    ( ̅   ̅ )

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅     ( ( ̅    
 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   (  

   ̅ )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   (  

    
 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)           (2.169) 

Since it is difficult to solve for fine scales and the purpose of LES is to apply some sort of 

filtering to the sub-grid scale terms, the unresolved stresses are grouped on the RHS of Eq. 

(2.169) and expressed as a residual stress which is then modelled by SGS. Typically, there is 

little energy contained in these small scales if the cut-off is set sufficiently far down the 

energy cascade. Hence, the SGS model may only represent a small amount of TKE. For that 

reason, in some cases the SGS model does not need to be very accurate to produce physical 

and reliable results as, for example, in the case of free jets where the smallest scales do not 

have large influence on the bulk flow. On the other hand, small scales are crucial for 

predicting separation where selection of a particular SGS model may play a significant role.  

2.6.2.1 MILES concept as a special class of implicit SGS 

As mentioned previously, implicit LES methods use numerical dissipation as a low-pass filter 

for removing high wavenumbers from the solution. In addition to turbulence modelling, a 

small amount of dissipation is necessary in all LES algorithms to guarantee stability and in 

1992 Boris et al. [139] proposed a concept of monotonically integrated LES (MILES) where 

the role of the near-wall model is replaced by viscosity-like dissipation. In essence, no 
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additional SGS model is required and LES results could be obtained by solving the Navier-

Stokes equations. However, as discussed by Grinstein and Fureby [40] the application of 

MILES for low-speed high-Reynolds number flows is very challenging due to excessive 

numerical dissipation. Moreover, in most cases the dissipation does not occur only at the 

desired location which makes MILES methods based on conventional second order schemes 

unsuitable for many problems.  

For solving the problem of inherent numerical dissipation typical of many MILES methods, 

the non-dissipative CABARET scheme introduced in Section 2.5.2 is implemented in the 

framework of MILES and its application to benchmark cases is demonstrated and discussed 

in Chapter 4. As with any pure LES, such as those that do not employ any boundary layer 

modelling, the simulation of high Reynolds number flows near the boundary is extremely 

challenging for the MILES method. Hence, in this work we proceed with the validation of the 

MILES CABARET solver step by step. First, considering a mildly compressible solution 

around a cylinder and then the scheme is applied in the context of the Navier-Stokes 

equations for solving the flow over an aerofoil where we find that there is a need for tripping 

the boundary layer in a similar way as done in the experiment.  

2.6.2.2 Synthetic turbulence methods   

In contrast to LES, synthetic turbulence methods discussed in Chapter 3 do not solve the 

Navier-Stokes equations but re-create turbulent fluctuations through local scaling of mean 

flow data using appropriate length and time scales. As a result, these methods are 

considerably less computationally expensive but require calibration and can be quite 

laborious to implement. Synthetic turbulence methods find their applicability ranging from 

generating inflow turbulence in the LES or DNS simulations with taking into account more 

realistic flow physics to re-producing stochastic turbulence fields, leading to acquisition of 

acoustic sources, as discussed in this work. For this purpose, the capability of the synthetic 

turbulence method should be validated first by reproducing physically accurate turbulence 

data. It often means that for obtaining reliable results the method has to be carefully 

calibrated for a particular class of problems. For example, in this work only the application to 

aerofoil noise modelling is considered. A review on synthetic turbulence methods and in 

particular, the Fast-Random-Particle-Mesh (FRPM) method first proposed and implemented 

by Ewert et al. [53-57] can be found in the next chapter.       
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Chapter 3 

Synthetic turbulence 
 

Main aspects of the acoustics background theory and numerical methods used in this work 

were reviewed in Chapter 2. A numerical approach for source modelling usually consists of a 

3D simulation in a reference space where a turbulent flow is resolved using non-linear 

Navier-Stokes equations down to acoustic scales. However, the computational expense grows 

rapidly with increasing Reynolds number, making the application of high-fidelity method 

such as LES unsuitable for obtaining a global solution of problems of interest found in 

industry. Synthetic turbulence methods have been developed as an alternative to solving the 

Navier-Stokes equations for source acquisition and quickly gained popularity due to their 

ability to provide rapid yet accurate broadband noise prediction. There are two distinct groups 

of commonly applied synthetic turbulence methods. One method is based on Fourier modes 

reconstruction and the other adheres to white noise filtering. These approaches are based on 

different underlying principles. Section 3.1 provides a brief historic overview on the 

development of both stochastic approaches.        

In this work, the focus is on the Fast-Random-Particle-Mesh (FRPM) synthetic turbulence 

method [55] which is based on digital filtering. Special attention is given to the procedure of 

obtaining the turbulent velocity field from RANS mean flow data. Subsequently, acoustic 

sources which follow the definition of the vortex sound (see Section 2.4.3) are derived via 

augmenting turbulent velocities with the local mean flow parameters. The novel approach 

presented in Section 3.3 discusses a mechanism for tonal noise prediction which is 

implemented in a framework of the stochastic FRPM method. In this work, the tonal noise 

mechanism relies on the scale separation assumption where large scale fluctuations are 

obtained by means of a modified input which can accept URANS data. Previously, it was 

necessary to search for some alternative techniques when applying any of the existing 

synthetic turbulence methods to the problem where tones are part of the acoustic solution. 

Thus, a simple yet effective mechanism implemented in this work now allows for all-in-one 

broadband and tonal noise prediction. 

At first, it is often difficult to establish the connection of processes involved in recovering 

missing data with the aid of synthetic turbulence. The complexity involved with method’s 

implementation is a compromise for rapid yet physical acoustic source modelling. For this 

purpose the classic FRPM method developed by Ewert et al. [55] [56] is reviewed in Section 

3.2 in the context of vortex sound theory. The method is applied for simulating noise sources 

in the vicinity of an aerofoil’s trailing edge in Chapter 4. Appendix B shows the algorithm 

outline which serves as a link between equations and numerical implementation, allowing to 

see how FRPM fits into the framework of the ‘Altus’ CAA code.   
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3.1 Overview of stochastic methods for synthetic 

turbulence generation in CAA applications 

The aim of synthetic turbulence methods is to reproduce unsteady source information from 

time-averaged data via realistic representation of integral turbulence length and time scales. 

One point statistics available from RANS is insufficient for determining the flow 

correlations. Thus, the integral length scale definition involves a calibration parameter, which 

selection and range for trailing edge noise cases is discussed in Chapter 5. Methods based on 

digital filtering reconstruct a fluctuating velocity field which is used to calculate noise 

sources in the time domain. In FRPM, stochastic velocity fluctuations are reproduced locally 

on an auxiliary grid. These velocity fluctuations contribute to a sound source vector in 

accordance with the vortex sound theory. The remaining mean flow information required to 

assemble a source vector Eq. (2.99) is readily available from a RANS simulation. For 

accurate derivation of fluctuating components the acoustic model has to include convection. 

Therefore, several options for representing temporal correlations are discussed in Section 3.2. 

Specifically for airframe noise, a frozen turbulence concept may represent a simple yet 

effective solution of temporally evolving stochastic field. The characteristics of the synthetic 

velocity field can be analysed from contours of the time-averaged turbulent kinetic energy 

field that has been recovered from the stochastic simulation, whose statistics should match 

the target TKE input from RANS. Thus, these methods can offer quick noise prediction 

without the knowledge of the reference turbulence length scales from the corresponding 

experiment or from a high-fidelity simulation, being solely based on the RANS simulation 

instead. 

Early attempts to obtaining the stochastic velocity fluctuations for acoustic source generation 

relied on expressing the fluctuating field as a finite sum of Fourier modes with random 

amplitudes. In other words, the resulting velocity field is periodic, which is made up of 

weighted sinusoidal functions, containing a discrete number of frequencies. Increasing the 

number of modes of the solution leads to a well-defined spectral content but at the increased 

computational cost. In 1970, Kraichnan [140] formulated the stochastic method based on 

Fourier modes, which was applied to reproduce the diffusion of fluid particles. Kraichnan’s 

formulation can be regarded as a predecessor to the Stochastic Noise Generation and 

Radiation (SNGR) method. (See Bailly et al. [141]) Also, Béchara et al. [142] extended the 

method for CAA applications to simulate jet noise by evaluating the finite sum of sinusoidal 

functions but with the addition of a random phase. Other subtle differences from the original 

method include the definition of the scaling amplitude, where instead of being a random 

variable for each mode it is deterministically prescribed in accordance with the von Kármán 

energy spectrum, which was selected instead of a simple Gaussian representation. Moreover, 

the method in [142] has evolved to account for the mean flow convection effects as found in 

later works of Bailly et al. [20] [143]. Notably, the modified equation for a random velocity 

field features the angular frequency term for each Fourier mode as well as the convection 

term. Billson et al. [144] introduced a modification to SNGR method, where an exponential 

temporal correlation was added to the stochastic velocity field. As a result, Billson et al.’s 



 
 

68 
 

[144] method could employ fewer Fourier modes to achieve similar accuracy to that of Bailly 

et al.’s method, since at every time step the velocity field is a weighted sum of previous 

velocity fields. This came at the expense of additional storage required for time-dependent 

stochastic velocities in the modified method. In the field of LES simulations, Smirnov et al. 

[145] extended the SNGR method for anisotropic turbulence generation that is advantageous 

for 3D simulations via a transformation of the velocity correlation tensor. The transformation 

proposed by Smirnov et al. [145] was also adopted in the later work of Billson et al. [146]. 

Other notable publications that contributed to stochastic methods development based on the 

summation of Fourier modes include but are not limited to [147], [148], [149]. Up to date, 

SNGR methods remain popular in industry but are not considered any further in this work. 

Instead, a relatively new approach based on digital filtering in the time domain is applied to 

aerofoil trailing edge noise benchmark cases. Also, in this work the method is further 

developed to incorporate the tonal noise mechanism. 

Stochastic methods based on digital filtering generate fluctuating velocities through spatial 

weighting of a convecting white noise field using the appropriate area-weighted filter 

function which properties are discussed in details in Section 3.2. Integration of the white 

noise field is performed on the auxiliary grid resulting in a stream function that satisfies 

conservation laws. The numerical realisation of a convective white-noise field is based on 

random particles that are advanced in a mean flow through area-weighting from neighbouring 

mesh points. Unlike with the Fourier modes method, the resulting turbulent signal is not 

monochromatic but rather presents a broadband spectral content. Also, the CAA approach 

based on a numerical simulation of a sound propagation allows to obtain the solution for all 

frequency bands with a single computation. To achieve this, an unsteady source is modelled 

via the Fast-Random-Particle-Mesh (FRPM) method [56] [57] which realises two-point 

space-time correlations. FRPM is a natural extension of the Random-Particle-Mesh method 

presented in earlier works by Ewert et al. [54]. Main difference of the former more recent 

version of the method is performing the acoustic source calculation on a Cartesian auxiliary 

grid. Thus, the FRPM method is computationally more efficient than the original RPM, easier 

to modify and introduce additional features, such as computing correlations for data analysis. 

Over the last decade quick CAA methods gained popularity and wide recognition and their 

applicability to industrial problems is expanding. Nevertheless, several drawbacks associated 

with the FRPM method still remain. Due to temporal correlations of the fluctuating velocity 

field a natural choice is to perform the acoustic wave propagation in the time domain, where 

a filtered source field is supplied to the right-hand-side of the APE equations at every time 

step as was described in Sections 2.4.3 of Chapter 2. Numerical computation of acoustic 

wave propagation for industrial-type problems can be significantly beyond a tolerable 

expense. Therefore, a simplified 2D propagation model is used to reduce the cost. Normally, 

a large acoustic domain, which must encompass the source and the observer, in conjunction 

with high-order propagation methods bears a substantial impact on computational cost, 

potentially comparable to efforts required for the acoustic sources derivation via LES 

methods. Thus, the benefits of quickly obtaining the stochastic sources with the FRPM 

method can be outweighed by a time-consuming propagation method. Typically, only several 

computational cores are sufficient for performing the FRPM simulation on its own on a scale 
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usually associated with industrial problems. On the other hand, dozens or even hundreds of 

cores have to be attributed to CAA propagation to keep up with a realistic time frame for 

aero-acoustic design. One may argue that because of a superb efficiency of acoustic sources 

calculation in the framework of the FRPM method and a possibility of anisotropic turbulence 

generation it can be attractive to couple a 3D problem to some other acoustic analogy, e.g. the 

FW-H similar to that used with LES methods. Indeed, this approach can be selected in 

preference to simulating wave propagation. However, all limitations of the FW-H method, 

such as those associated with the control surface placement, source simplification tailored for 

a specific formulation and other assumptions may apply. To save on the computational time, 

a 2.5D cylindrical domain is used as a trade-off in sound propagation modelling. Therefore, 

the amplitude correction has to be taken into account which adds further complexity to the 

method and at least one extra empirical scaling. In fact, the correction may account for more 

than just 3D effects, but also, other effects that can become inseparable in such formulation. 

In this work a Mach number correction for airframe noise applications proposed in [62] is 

performed and discussed in Chapter 5. Fundamentally, the validation of obtained noise 

predictions reverts to the source calculation and scaling at the source level according to the 

definition used in the FRPM method. For aerofoil trailing edge noise simulations this 

problem is addressed in Chapter 5, where noise sources are compared between LES and 

FRPM methods. The near-field comparison with the experiment is presented in Chapter 4. 

The data is analysed at several trailing edge locations highlighting some modelling problems 

incurred with the FRPM and MILES methods. This analysis also includes comparison of the 

near-field contours and velocity correlations, inspiring greater confidence in acoustic source 

derivation for aerofoil trailing edge noise problem. Furthermore, the far-field acoustic spectra 

comparison for different source models used in the vortex sound theory is presented in 

Chapter 5.  

Thus far, a computational expense has been a pivotal point when a quick stochastic source 

generation method is coupled to a costly propagator in the time domain. However, there are 

more issues associated with general applicability of stochastic sound generation methods to 

various problems. All synthetic turbulence methods were originally designed to simulate 

broadband noise only. It has proven to be a significant achievement as in digital filtering 

methods, such as FRPM, generated fluctuations can reproduce very accurately 

autocorrelations and statistics which match a RANS simulation. Main advantage of stochastic 

source generation methods is that they are based on solving a simple convection equation 

which is much faster than solving Navier-Stokes equations by the scale resolved methods 

such as LES. However, since the FRPM method is based on the time-averaged turbulent flow 

from RANS its velocity correlations do not include any large scale unsteadiness of the actual 

flow. For that reason, there have been previous attempts in the literature to combine the 

FRPM method with a URANS solution for improved broadband noise predictions. Recently, 

Wohlbrandt et al. [150] extended the FRPM method to periodic turbulent flows for improved 

fan broadband noise prediction. The work presented in [150] focuses on the influence in far-

field noise predictions when introducing unsteady quantities for scaling of a Gaussian filter. 

On the other hand, the main focus of the approach discussed in this thesis is on the possibility 

of integrating a tonal noise mechanism, where large scale unsteadiness is utilised to 
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reformulate the velocity component of acoustic sources obtained at the source level. The 

application of unsteady FRPM model for a centrifugal fan noise problem can be also found in 

[151]. However, the underlining acoustic formulation used in that work remains unclear. For 

example, in [151] the U-FRPM approach uses the technique of simply adding up squares of 

two far-field pressure amplitudes, one being the broadband signal from FRPM and the other 

is the tonal signal from a separate steady-state model, for obtaining the final power spectral 

density amplitude at the far-field observer location. Thus, first of all, this approach requires 

two acoustic calculations of the sound propagation to the far-field for a single flow case that 

may be expensive. Moreover, such simplified treatment does not only ignore any possible 

nonlinear source interaction but also neglects any acoustic interference of the different source 

components that are assumed to be uncorrelated at the far-field despite sound propagation 

effects, which assumption needs to be verified.  

  

3.2 Fast-Random-Particle-Mesh method  

3.2.1 Theoretical background  

FRPM method is a stochastic method for synthetic turbulence generation designed to locally 

reproduce the two point space time correlation                          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  of a 

stochastic variable       . The method specifically focuses on acoustic source generation 

where the broadband noise sources Eq. (2.99) are evaluated via differentiation of the 

fluctuating stream function       , which combines source convection with a temporal 

cross-correlation model. Due to a combination of temporal and spatial properties the method 

is known to realise a 4-D synthetic turbulence model. [57] 

Firstly, we shall review the theoretical background of the fluctuating stream function        

in the context of a white noise field and the resulting cross-correlation model. Secondly, the 

particle representation used for discretising analytical equations is briefly discussed to give 

the idea on numerical implementation of the FRPM method. 

The fluctuating stream function of a continuous convolution is expressed analytically via 

filtering integral which for   dimensional space reads:      

       ∫  ̂
  

 

 
      |    |     

                                    (3.1) 

In Eq. (3.1)  ̂ is the amplitude of the filter that is the function of the local kinetic energy and 

position,   indicates the dimension of the problem, and    is the considered source region in 

which unsteady sources are generated. G is the filter kernel that is a function of a separation 

distance |    | and also, a function of the position-dependent integral length scale   . The 

filter kernel is normalised to unity             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    for  ̂   . All quantities of Eq. (3.1) 

are attributes of spatial filtering apart from a spatiotemporal white noise field   which 

properties are described in details in [57] [62]. In short, the random field has a zero mean and 

when   is convected frozen its covariance                has a result of a delta function. 
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The frozen turbulence concept means that convection effects only are accounted for in a 

model, leading to a temporal correlation of a white noise field being expressed as 

               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅           where   is the relative separation time. Temporal 

properties are discussed in further details at the end of the section. Overall, the unique 

spatiotemporal white noise field properties are briefly summarised below: 

      ̅̅ ̅̅ ̅̅ ̅̅ ̅                        (3.2) 

                     
 

  
∫                      

 

  
               (3.3) 

 

  
                                                               (3.4) 

Eq. (3.4) introduces convection into the model where               is a material 

derivative. In context of a frozen turbulence a white noise field passively convects with a 

mean flow    and remains locally static. [55] In Eq. (3.3)      is a multi-dimensional delta 

function, e. g. in 2D                . The correlation of the white noise field,        

              ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, can be obtained by using the form of Eq. (3.1) together with the property 

of Eq. (3.3). 
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             (3.5) 

where the covariance of the white noise field can be simply represented by           which 

leads to the core property of the method where the correlation of the white noise field, 

      , is represented by the convolution of the filter kernel with itself as shown in Eq. (3.6) 

below. Let        to be the relative separation distance between points   and   , 

      , also assuming      is an even function, where            then the above 

integral in Eq. (3.5) becomes, 

       ∫        |   |   
 

  
                        (3.6) 

Then, the spatial correlation can be expressed through a Gaussian filter kernel having half the 

width as:  

        [ 
 | | 

   
 ]                 (3.7) 

where | | is the relative separation distance,    is the integral length scale derived by scaling 

the mean turbulent kinetic energy, k, and the dissipation rate,  , from a RANS simulation 

through the following relationship: 

     
 
 
 

 
          (3.8) 
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In the above equation    is a calibration constant. In accordance with [62] its recommended 

value for trailing edge noise problems is in the range of 0.5 - 0.75. The turbulent viscosity of 

the     and the     models is related so that       , where         and in case if 

    is used the relationship of the integral length scale simply becomes: 

   
  

  

 
 
 

 
          (3.9) 

The scaling amplitude,  ̂      in Eq. (3.1) that scales the Gaussian Eq. (3.7) must be chosen 

such that fluctuating velocities that are derived from the stochastic stream function Eq. (3.1) 

achieve a local turbulent kinetic energy           〈                 〉, in accordance to 

[56] [62] for a 2D case the scaling amplitude becomes:   

 ̂         √
 

  
 

 

           (3.10) 

Thus far the focus has been on spatial properties controlled by the Gaussian filter where the 

length scale is proportional to the filter width. On the other hand, temporal properties of 

synthetic turbulence are solely controlled by a white noise field  . The autocovariance of the 

convective white noise field can be expressed as         〈               〉. In the 

classic FRPM method turbulence is convected frozen by assumption as defined in Eq. (3.4), 

meaning that the integral time scale of turbulence would tend to infinity and the time 

correlation of   is independent of the temporal separation  , resulting in the model only 

accounting for convection effects. In general, the time correlation can be described using a 

Taylor’s hypothesis 〈               〉               , where    is the convection 

velocity which can be supplied, for example, from a RANS simulation. Following [152], 

turbulence is a chaotic mixing process and for some jet noise cases (see [144] [153]) a time 

de-correlation model was proposed, where instead of simulating a convected frozen velocity 

pattern a turbulent evolution is modelled using Langevin equations, ultimately resulting in 

   ⁄       condition. Originally, Langevin stochastic differential equations were derived 

to represent the Brownian motion. [154] In the field of aero-acoustics a similar model applied 

for the time evolution of a stochastic field was of a natural choice. For example, as described 

by Ewert et al. [55] in application to the Random-Particle-Mesh (RPM) method. In such 

modified description, the characteristic time of evolving turbulence gives the temporal scale 

of relaxation of the velocity fluctuations, potentially resulting in a more physical 

representation of the synthetic turbulence. As a result, temporal properties of the stochastic 

field   are modelled via the equation of the form, 

 

  
                          (3.11) 

where   and   are the Langevin equation coefficients and   is the uncorrelated Langevin 

force, e.g. 〈              〉                  The first part     is deterministic, 

which is related to the departure of the solution from initial conditions and normally, 

represented by an exponential decay. The second part,    is stochastic which accounts for the 
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inertial diffusion process with   influencing the strength of the Langevin force term, which 

has a vanishing average 〈    〉   .  

There are several issues associated with solving Eq. (3.11). As pointed out in [155] the 

diffusion process may not be continuous and cannot be represented as a conventional 

function of time. Thus, being analogous to a Wiener process, Eq. (3.11) should be regarded as 

a stochastic differential equation, meaning that when coupled to partial differential equations, 

such as Eq. (2.98) it can be problematic to perform time differentiation. Secondly, the   

coefficient has to be expressed in terms of a physical temporal correlation which is not trivial.  

For simplicity, consider      as a function of time only and where a total derivative is taken 

along the stream function moving with the mean flow, which would be an appropriate 

assumption in a Lagrangian frame of reference such as used in the RPM method and the total 

derivative simply reduces to    ⁄ {    }. Then, the exact solution of Eq. (3.11) follows: 

[154]          

        
         ∫       

 
              (3.12) 

where         at the initial time. Then, using the properties of   in Eq. (3.12), the 

variance of a random process is expressed as [155]: 

 〈     〉  (〈  
 〉  

  

  
)       

  

  
               (3.13) 

In order to ensure 〈     〉 remains constant in time, the condition   √  〈  
 〉 must be 

satisfied. Another constraint is related to the time correlation       〈           〉 

where it is logical to assume that it decays in time as        and    denotes the integral time 

scale of the flow. This condition yields        and Eq. (3.11) can be re-written as: 

 
 

  
    

 

  
  √

 

  
〈  

 〉                      (3.14)       

In addition to the above, the correlation of white noise field could be expressed also, as a 

function of position as considered previously, 〈               〉           
      

where             . It can be verified that for a frozen turbulence      and the right-

hand side of Eq. (3.14) vanishes, and only the convection effects are left in place. In essence, 

the flow convection can be included in the correlation of the white noise field as shown 

below. 

            [ 
 |     |

 

   
 ]                    (3.15) 

The time scale of turbulence,   , is a function of the turbulence dissipation rate,  , and a weak 

function of the Reynolds number. The definition of    relies entirely on the empirical scaling 

procedure [95] and its validity remains rather questionable. For example, as suggested in 

[155]            where        is an empirical constant. Moreover, due to lack of 
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smoothness, modelling the time-dependence of vortex sound sources with a standard 

Langevin model may give rise to spurious oscillations and therefore, realisation of a modified 

treatment could be preferred, such as using the second order Langevin model instead. Thus, 

in [156] Eq. (3.14) is modified by introducing a stochastic source   that is a continuous 

function and also assumed to be correlated with the white noise field  . The second order 

Langevin model is given by:  

{

 

  
    

 

  
   

 

  
        √  〈  

 〉 
                                      (3.16) 

Following the derivation in [156],             where    is the characteristic time scale 

of  ,       and is of the order of Kolmogorov time scale. The initial condition,    

      and the Langevin force   is still uncorrelated with   and  . If the frozen turbulence 

is assumed, both    and    tend to infinity and the right-hand side vanishes, making the 

formulation consistent with simplified definitions Eq. (3.2-3.4).  

Notably, the results presented in [156] in application to fan noise are in very close agreement 

between considering frozen and evolving turbulence concepts, where in the latter case a 

calibrated time correlation having a smooth solution was employed that produced a marginal 

difference if any, judging from far-field SPL spectra comparison. For the benefit of the doubt, 

it is thought that for airframe noise applications it can be advantageous to use a frozen 

turbulence assumption, the correlation Eq. (3.15), which would not only eliminate extra 

complexity brought in with the use of the Langevin equation but importantly, abolish the 

supplemental empirical scaling    and   , thus, making the model rely on the minimum 

number of fine-tuning parameters where at this stage only the length scale augmentation in 

Eq. (3.8) through empirical scaling applies. 

The unsteady perturbation quantities    and    necessary for a source description Eq. (2.99) 

can be derived from the fluctuating stream function Eq. (3.1): 

               (3.17)  

Considering a source calculation on a 2D plane, 

   
   

  
,      

   

  
       (3.18)  

and the z-component of the fluctuating vorticity,   
 , is the vorticity in x-y plane, is evaluated 

via second order differentiation, which for a 2D source representation reads: 

  
   

    

    
    

                  (3.19) 
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3.2.2 Numerical discretisation  

In order to obtain the fluctuating stream function component        in Eq. (3.1) numerically, 

a random white-noise field   is represented by Lagrangian particle tracers which carry 

random numbers.  

      ∫           
   

               (3.20) 

In Eq. (3.20)    is a random component and     is the  th control volume of the source 

domain. Furthermore, the continuous integral Eq. (3.1) is approximated through a finite sum 

over   non-overlapping control volumes 

       ∑  ̂         
 
   〈  〉              (3.21) 

where 〈  〉         represents the average of the white noise field over     and in the limit 

of infinitely small subdomains      , the above equation is a consistent approximation to 

Eq. (3.1).    

Collectively, the stochastic particles follow the definition of Eq. (3.2) and are evenly seeded 

over the mesh in the region not occupied by the geometry. In essence, when the concept of a 

white noise field is put into a discrete form, the range of a random value becomes associated 

with a particle volume. [57] Since the number of particles per cell required to realise the 

concept of a white noise field and dimensions of a Cartesian grid are user-prescribed, the 

particle volume,   , is computed as the volume of the fluid domain divided by the total 

number of particles. In the following step, random values are generated in the range 

proportional to  √    . Assuming, the particle volume is constant, the mean square of all 

random values assigned to particles should equal the particle volume. This represents an 

ensemble average which value is verified by conducting a simple comparison test. As the 

simulation progresses, these particles are convected with the local mean flow inside the 

defined FRPM source region. During run-time, particles that leave the domain due to the 

mean flow convection are substituted by new particles at the in-flow boundary to preserve the 

same particle density in the flow domain. At every time step, a set of random values are 

interpolated onto the neighbouring Cartesian mesh node (as shown in Figure 10). This 

represents an approximation to the convective white-noise field. Information on the source 

scaling amplitude, Eq. (3.10), the length scale, Eq. (3.9), which is used in the correlation 

model Eq. (3.15), as well as the mean flow velocity is stored on the background mesh. At this 

point one may choose to strictly follow the theoretical model when discretising a stochastic 

stream function Eq. (3.1) and thus, evaluating  ̂      and   (  ) at the    location for 

weighting a random field. Alternatively, it is possible to perform filtering using data stored at 

the nodes,  ̂    and      . In this work the latter option, given by Eq. (3.21), is preferred 

which is computationally more efficient but the results between two formulations can differ, 

especially if a fundamental mean quantity used in the cross-correlation, such as the length 

scale, is not a smooth function in space.        
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Figure 10 – Random particles on mesh and area-weighting, denoting a bi-linear interpolation 

from particle to the grid point and vice versa.                , where      denotes the 

cell centred area related to lower left point   and          is the depicted solid area that is a 

function of space related to cell’s area.  

It is worth noting that a Gaussian scaling amplitude given by Eq. (3.9), which 2D and 3D 

definition is provided, e.g. in [56] is specified for the unity scaling             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    for 

 ̂   . As a result of area weighting, shown in Figure 10, an additional mesh related scaling 

must be enforced. The FRPM method employs an auxiliary Cartesian grid, meaning that 

scaling can be performed as function of the mesh width  . Hence, there are two successive 

convolutions, first with a {  | |  ⁄ } function for | |    followed by Eq. (3.9) and the 

result of that is convolved with a Gaussian subsequently giving a filtered field. In summary, 

the amplitude in Eq. (3.9) needs to be adjusted to account for the first   convolution, which 

for 2D is a factor of     , so that in a simulation the turbulent kinetic energy does not vary 

with the FRPM grid density.    

In this work, the FRPM method is used as an acoustic source generator in the framework of 

the Altus code and a few words on implementation of specific details deserve attention. 

Primarily, the maximal integral length scale         for which a Gaussian can be supported 

by the FRPM domain
5
 is calculated using dimensions of the auxiliary mesh together with a 

user-specified value for the Gaussian cut-off amplitude,   . A small constant value, usually in 

the range               , is used to improve computational efficiency and cut-off the 

unwanted “tail” of a Gaussian function, which influence is considered negligible. At this 

point it is convenient to introduce anisotropy that can be used as additional length scale 

weighting in each direction, if necessary. Using the above measures, the parameter   is then 

derived as shown in Eq. (3.22), denoting a cut-off radial distance for which Gaussian 

amplitude is negligible. Subsequently, the parameter         (evaluated as the integer value 

+ 1) is introduced denoting a number of auxiliary cells to consider in each direction for which 

Gaussian amplitude would not be negligible.  

  √ 
   

 

 
               (3.22) 

                                                           
5
 During the initialisation of the acoustic solver,         serves as a guide. 
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Finally, the distance squared between points of interest,   and   , is evaluated in each 

direction and used in the numerator of the Gaussian filter, Eq. (3.7). As discussed in [57], 

using a Gaussian type filter one can take advantage of a Gaussian separation property in 

discretised equations. Thus, it is possible to compute the Gaussian kernel as a product of 

kernels in each direction of a problem. By using a pre-computed area-weighting kernel on a 

background mesh that incorporates the statistics of the local mean flow solution, and applying 

the additional weighting with the amplitude  ̂    one can obtain the corresponding 

solenoidal velocity field as a required input for the acoustic sources. Stochastic noise sources 

are calculated from the fluctuating stream function by following a standard procedure 

described by Eq. (3.17-3.19) and then the sources are interpolated onto a CAA grid. Figure 

11 presents a diagram showing the FRPM method for source generation being part of a 

hybrid CFD/CAA approach for airframe noise computation.   

 

Figure 11 – Diagram of a hybrid CFD/CAA approach where airframe noise sources are 

obtained via the FRPM method.  
 

3.2.3 Implementation using a Gaussian energy spectrum  

In order to verify that the result of Eq. (3.21) after performing a Gaussian convolution yields 

the correct statistics a simple simulation test case was carried out. A Cartesian grid of 

arbitrary cell width and spatial dimensions was generated to represent a source domain and 

the flow parameters were set to constant values. A one point turbulent statistics was collected 

over a period of time for a chosen variable,   , in Eq. (3.18) which is the fluctuating velocity 

in  -direction. Figure 12 presents the analytical plot, showing normalised Gaussian 

correlations where     is the correlation size. The time correlations obtained from the FRPM 

match very closely with the analytical Gaussian profile plotted using Eq. (3.7). A small 

discrepancy for large   values is associated with fluctuations about zero for the real solution.                

Figure 13 shows synthetic turbulent velocity fields obtained via the FRPM method by 

prescribing constant flow settings for the mean velocity and turbulent kinetic energy, used for 

convection and the Gaussian amplitude scaling respectively, and a constant length scale.  
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Figure 12 – Comparison of correlations obtained from the FRPM method with a Gaussian 

function, Eq. (3.7). 

Despite that turbulent fields in both Figure 13(a) and Figure 13(b) are isotropic in nature, a 

directional pattern can be clearly recognised. This effect is observed since a two-point 

correlation of the fluctuating velocity field follows a relationship between lateral and 

longitudinal correlation functions which derivation could be found in Appendix D(II.). 

Hence, turbulent fluctuations seen in Figure 13 are purely artificial. The test values used for 

generation of the stochastic velocity fields follow the length scale,           , condition. 

This condition ensures that turbulent fragments fit inside the domain of interest.    

a)      b)      

      

Figure 13 – Instantaneous stochastic velocity fields    (a) and    (b) 

Following the result generated in Figure 13, we may try to control the turbulent field 

generated by FRPM via changing its input parameters. The resulting stochastic amplitudes 

are a function of kinetic energy as it is used to scale the Gaussian function. Therefore, a 

realistic estimate of a turbulent kinetic energy (TKE) can be provided. For example, for low 

Mach number airframe noise problems it is not unusual to find the mean TKE value of 20 

    ⁄  so it can be picked for this test case. Then, adjusting the cell size according to the 

smallest length scale of choice should approximately represent the realistic case. The cell 
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width   selection is explained in Chapter 5 for the trailing edge noise benchmark problem. 

For simplicity, the length scale value is simply reduced in comparison to the one used in 

Figure 13, which allows keeping the same source domain size. Figure 14 shows the resulting 

synthetic turbulence fields for the entire FRPM domain which also correspond to the test used 

to determine autocovariance in Figure 12, which was conducted using constant flow settings 

as described and without a solid body.        

b)      b)      

           

Figure 14 – Instantaneous stochastic velocity fields    (a) and    (b) of typical nature to be 

found in airframe noise cases 

For an airframe noise problem such as in the trailing edge noise case, stochastic velocity 

fields    and    may not necessarily be of the equal magnitude and will depend on scaling 

using RANS data. In fact, it is often possible to judge if stochastic fluctuations correctly 

reflect the physics of a particular problem by qualitatively comparing the contour plots that 

show amplitudes of reproduced fluctuations for different velocity components and 

corresponding source vector strength. For the test case shown in Figure 14, the amplitude of 

velocity fields was arbitrarily adjusted only to display stochastic fields of a test case with user 

specified input. Also, the size of turbulent fragments depends on the characteristic turbulence 

length scale which in the second test case (Figure 14) was set to a typical value to be found in 

airframe noise cases.       

Similarly, the two point spatio-temporal correlations could be obtained by recording turbulent 

statistics at a specified separation distance. In Chapter 5 of this work, the two point space 

time correlations are evaluated for a real problem that is at the aerofoil’s trailing edge 

including the comparison of both, streamwise and normal velocity components with the 

available experimental validation data. 

For qualitative discussions, it may be useful to represent the two point correlation, such as 

       defined in Eq. (3.5), in terms of the wavenumber spectrum. Consider the velocity 

tensor          which represents the contribution to the covariance                of 
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different velocity modes with the wavenumber vector  . Naturally,          could be 

defined as the Fourier transform of the two point correlation. 

          
 

     
∭        

  
                  (3.23) 

Then, the energy spectrum follows [95]: 

       ∭
 

 

 

  
          | |             (3.24) 

Integrating Eq. (3.24) over scalar wavenumbers,  , and applying Parseval’s theorem yields:  

∫       
 

 
   

 

 
       

 

 
    ̅̅ ̅̅ ̅               (3.25) 

Eq. (3.25) shows that the energy spectrum in wavenumber space,       , could be 

represented via the turbulent kinetic energy contribution from all scales.  

The correlation of the velocity field in the FRPM method can be expressed as following: 

       〈  
         

        〉          (3.26) 

where brackets denote an ensemble average and   | |. Since the velocities are derived 

from the stochastic stream function, Eq. (3.1), similarly to Eq. (3.26), it is possible to define a 

stationary two-point correlation in terms of the stream function,  : 

     〈               〉          (3.27) 

As the next step, transforming the correlation Eq. (3.27) into a wavenumber space and 

following the definition given in Appendix D we arrive at the formulation, Eq. (3.29).  

     
 

     
∭  ̂          

  
              (3.28) 

     
 

   ∫   ̂   
 

 
[∫     

  

 
               ]     (3.29) 

where   and   are expressed in polar coordinates. In Eq. (3.29)   | |,   | |, and 

    [    ]. Moreover, by looking at the integral in Eq. (3.29) above, there is an apparent 

similarity with the Bessel function of order 0, defined as: 

      
 

  
∫            

  

 
              (3.30)  

If the phase    , which is claimed to be a valid assumption for isotropic turbulence, Eq. 

(3.24) can be expressed in terms of the Bessel function (See Appendix D): 

     
 

  
∫   ̂   

 

 
                   (3.31) 
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The energy spectrum could be related to the correlation tensor        and normally, for 

convenience, the trace of the correlation is considered. Then, by inserting the definition of    

(Eq. (3.17)) into Eq. (3.26) using component indices    : 

              〈
 

   
     

 

   
      〉      (3.32) 

Applying properties of partial derivatives in the correlation where the limits of integration 

depend also on   at infinity it can be assumed     ⁄            ⁄       , yields:  

               

   
〈

 

   
           〉      (3.33) 

For locally homogeneous flows by hypothesis     ⁄ 〈           〉     and Eq. (3.33) is 

equivalent to: 

                 

   
〈    

 

   
       〉         (3.34) 

                  

      
               (3.35) 

Performing the second order partial derivative of      with respect to    and    using the 

chain rule gives: 

  

      
        

 

 

 

  
     

    

  

 

  
     

    

  

  

            (3.36) 

After some re-arrangements, half the trace of the correlation        is given by: (Also, see 

[52] and Appendix D (II.)) 

     
 

 
[             ]   
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    ]                  (3.37) 

The relation between the correlation of velocity field and the correlation of the stream 

function     , Eq. (3.32) can be obtained in a wavenumber space by using the properties of 

Fourier transform of the Bessel function as in Eq. (3.26):   

     
 

  
∫    

 
 ̂   [

 

  
                    ]        (3.38)  

where   ,    and    are Bessel functions of zero, first and second order respectively with the 

following relation:          [             ]    where ‘2’ is the dimension. 

     
 

  
∫    

 
 ̂                      (3.39) 

 ̂    
 

 
   ̂                 (3.40) 
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Eq. (3.40) above is obtained when comparing to Eq. (3.31) which is given for 2D following 

the formulation in Eq. (3.29). The Fourier transform of half the trace,     [      ]  is 

 ̂               and comparing to Eq. (3.40), the velocity tensor is: 

           ̂                  (3.41) 

Using the definition for the energy spectrum, Eq. (3.24): 

     ∮
 

 
                              (3.42) 

In general, ∮           for a sphere in 3D with the radius  . Here, a 2D definition must 

be used because the result of Eq. (3.41) is obtained for Eq. (3.40) that uses a 2D formulation. 

Hence, the closed loop integral is a circle,    . Also, the integral Eq. (3.42) is scaled with 

     . Then, the energy spectrum defined in term of the velocity spectrum follows:  

     
 

  
                     (3.43)  

As a final step, inserting the definition in Eq. (3.41) into Eq. (3.43) we get the relation 

between the correlation of the stream function and the energy spectrum: 

     
 

  
   ̂                   (3.44) 

By using the properties of a Gaussian filter function, Eq. (3.6) one can re-write Eq. (3.44) in 

terms of  ̂    giving the energy spectrum relation: 

     
 

  
  | ̂   |

 
              (3.45) 

When comparing Eq. (3.45) to Kraichnan’s definitions of the energy spectrum [140],      

   for a 2D formulation and         for a 3D case. This is an important result of the 

analysis where according to Kraichnan the three-dimensional formulation reads:  

     
 

     
       (

     

 
)       (3.46) 

and a 2D formulation: 

     
 

    
       (

     

 
)       (3.47) 

where   is turbulent kinetic energy and   is the integral length scale.  

The respective filter in the physical domain,     , is obtained by taking the integral of     . 

The definition of Eq. (3.45) makes use of the Gaussian spectrum where terms are re-arranged 

and compared with a respective 2D formulation, Eq. (3.47). This analysis leads to the 

definition of the Gaussian filter Eq. (3.7) which when convolved with a white noise field 

yields meaningful statistics of a fluctuating field.     



 
 

83 
 

3.3 Scale decomposition approach for tonal noise 

mechanism in FRPM  

In the previous section, the benefits of the frozen turbulence assumption implied in the FRPM 

model have been examined when compared to an exponential time de-correlation for the 

RPM approach in the sense that in the former case an extra empirical scaling procedure is 

omitted. For the condition in Eq. (3.4),    ⁄      , the random field is frozen in time and 

simply convects along the mean flow path. Furthermore, the FRPM model is inherently 

steady, hence, cannot account for the unsteady effects such as vortex shedding and the 

resulting acoustic model is not suitable for tonal noise. Wohlbrandt et al. [150] have 

implemented the unsteady model for the sources calculation in FRPM by adjusting Gaussian 

filter width and amplitude in accordance with URANS as simulation progresses. For turbo-

machinery applications a mean flow is expected to vary significantly at the noise sources 

location as the problem is inherently unsteady. Therefore, in contrast to using a steady RANS 

input for turbo-machinery applications, the proposed alteration is seen as a natural 

progression towards accurate broadband noise prediction where accounting for the mean flow 

unsteadiness potentially yields a more physical realisation of source scaling. Around the same 

time an unsteady FRPM model was implemented in Altus [93] but with a focus on all-in-one 

broadband and tonal noise simulations, applying the new mechanism on a NACA 0012 

aerofoil with a blunt trailing edge. This work includes a core part of analysis, which consists 

of the near-field results in Chapters 4 and the corresponding far-field acoustics in Chapter 5. 

To account for the tonal noise sources with the FRPM model, the present work uses the idea 

of scale separation and considers of a total velocity fluctuation consisting of the two parts: 

     
    

                                         (3.48) 

where   
  is the ‘fine-scale’ fluctuating velocity component obtained from stochastic particles 

in accordance with the original FRPM scheme and   
  is the ‘large-scale’ fluctuating velocity 

component. The latter can be obtained from a vortex-shedding resolving unsteady RANS 

(URANS) solution as a fluctuation of the time mean:  

  
              ,                       (3.49) 

where           is the unsteady URANS flow solution and               is its 

corresponding time-averaged field. 

From the resulting velocity fluctuation field Eq. (3.48), the fluctuating vorticity is obtained 

via a numerical differentiation as in Eq. (3.19) that by definition will also incorporate the   
  

term. The resulting velocity and vorticity fields are then manipulated into the governing 

acoustic source equations, Eq. (2.99). 

In a classic approach when considering a RANS solution input, problem solving is sub-

divided into two parts – source generation performed on the FRPM side and acoustic wave 

propagation on the CAA side. By using a URANS input instead, the source generation 
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problem gains an additional temporal dependence associated with ‘large-scales’, which could 

be thought of in terms of a CFD time step. At every CFD time step   
  is evaluated following 

Eq. (3.48) in accordance with the updated           flow solution. This adds further options 

in terms of filter scaling. For example, the integral length scale    in Eq. (3.9) and the 

amplitude  ̂ in Eq. (3.10) could be evaluated from URANS. Essentially, the mean flow used 

for FRPM source calculation has to be substituted (re-mapped) at every CFD time step, 

where quantities such as the local turbulent kinetic energy,  , and the specific dissipation, , 

which influence the filter amplitude and width, could be chosen as the time-averaged or 

instantaneous values from URANS. By assumption, in the vicinity of a blunt trailing edge the 

fine scale fluctuations,   
 , would be more physically represented in a changing velocity field, 

i.e. using URANS flow data. However, this assumption has to be verified by conducting 

simulations with one changing parameter at a time. Since this approach is novel, the influence 

of time-varying amplitude  ̂ as well as time-varying filter width on trailing edge noise 

sources has to be established first. Then, results are compared to a classic FRPM model 

where filter scaling is based on time-averaged data from RANS. After gaining confidence in 

modelling, the all-in-one broadband and tonal noise mechanism is tested on the blunt trailing 

edge aerofoil noise problem. In the final modification presented in this work, besides a 

vortex-shedding calculation on an auxiliary Cartesian grid, which is sufficient for obtaining 

large scale fluctuations, unsteady flow data is efficiently used accomplishing new capabilities 

of a Gaussian filter.  

For low Mach number flows of interest in the current work, the acoustic propagation velocity 

is much larger compared to the hydrodynamic velocity. In application to the FRPM model 

this means that the acoustic time scale is very small as compared to the time scale required 

for the stochastic particle to travel any appreciable distance, in particular to traverse between 

the FRPM Cartesian grid cells. The same applies to the vortex shedding effect which scales 

with the local mean flow velocity rather than sound speed, allowing the URANS solution to 

march in time with a very large time step as compared to the acoustic wave propagation 

solution. To exploit the difference in the time scales, following [11], further computational 

savings are achieved by keeping the time step of the effective noise source computation an 

order of magnitude, 10 times larger in this case, in comparison with the acoustic propagation 

time step and using a linear interpolation to obtain the acoustic source distribution at the 

intermediate time steps. Following this procedure for 2D aerofoil cases, the acoustic source 

generation part of the model takes only a fraction of a cost of the entire run time, most of 

which is spent on computing the acoustic wave propagation. Therefore, the new modification 

for tonal noise presented in this section has not affected the run-time significantly. For 

trailing edge noise problems implemented in this work, it was discovered that wall clock 

times are consistent with FRPM simulation runs performed in [62]. In this work, a 2.5D 

acoustic grid consisting of 3~4M degrees of freedom and the auxiliary Cartesian grid with 

approximately          (     ) points were used. Computational times ranged between 

40 and 60 hours per case depending on achieved frequency resolution on a small cluster of 64 

computational cores where only 4 cores were attributed to FRPM. It must be noted that for 

problems presented in Chapter 5, wave propagation is resolved up to an observer meaning 
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that wall clock time estimates also depend on the distance between the source and the 

observer. An initial stage of the simulation is called the spin-out time which is defined as the 

time period required for reaching a statistically stationary acoustic solution. For trailing edge 

noise problems presented in Chapter 5, the spin-out time takes several through-flow times of 

acoustic wave propagation across the domain and the pressure data recorded at the observer’s 

location from the beginning of the simulation, while the acoustic wave has not reached the 

microphone, is simply cut out from the analysis.  
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Chapter 4 

Flow solutions to the benchmark 

cases 

This chapter presents flow solutions to the benchmark cases reviewed in Chapter 1. First, a 

comparison of the ideal flow past a circular cylinder using CABARET and ANSYS Fluent 

solvers is presented in section 4.1 following with the discussion of issues faced when solving 

this challenging case using the MILES method in Section 4.2. Using the experience gained in 

solving the cylinder problem in the second part of Chapter 4 aerofoil flow simulations are 

computed with the CABARET MILES method where various boundary layer tripping 

techniques are used for overcoming the grid resolution limitation with modifications 

discussed in details. Also, RANS/URANS methods are used for computing the mean flow 

past aerofoils with both sharp and blunt trailing edges. Numerical simulations are set up in 

accordance to the flow settings of corresponding experiments where both experimental cases 

make use of tripping devices located on a leading edge for triggering an early flow 

separation. In the RANS simulation a fully turbulent boundary layer assumption applies and 

no transition modelling was attempted so that mean flow results could be more easily 

reproduced by other researchers. To compensate for modelling inaccuracy, the shedding 

frequency obtained from the URANS simulation was adjusted by slightly changing the 

trailing edge thickness. Finally, the reconstruction of the unsteady flow field using the FRPM 

method which statistics are based on the RANS input is demonstrated for sharp and blunt 

trailing edge cases. Properties of the FRPM solution are presented and discussed. These 

include the analysis of an instantaneous signal in the wake zone behind the blunt trailing edge 

to support the hypothesis of scale separation presented in Section 3.3. Also, for the flow 

solution validation, velocity correlations are compared with available experimental data for 

the sharp trailing edge case.  

          

4.1 Ideal flow past a circular cylinder (CABARET vs. 

standard second order density-based finite-volume scheme 

from Fluent) 

In this Section, the ideal flow test is performed to give an indication of the numerical 

dissipation within the applied schemes. Initially, the least dissipative scheme available in the 

commercial solver has to be identified among several options. The two popular Fluent 

schemes tested include SIMPLE which is pressure-based and Roe Flux-Difference Splitting 

(Roe-FDS) which is density-based. The flow around the cylinder is mildly compressible with 
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a Mach number of 0.2. The absence of excessive numerical entropy generation means the 

method is low dissipative. This is a major requirement on accuracy, especially for acoustic 

sensitive simulations, as discussed by Hirsch. [24] The pressure coefficient for an ideal flow 

around a cylinder can be calculated analytically by using the Joukowski transformation in the 

complex plane, then expressing the velocity components through velocity potential and using 

Bernoulli’s theorem results in the following equation: 

   
    

 
 ⁄    

                    (4.1) 

Test cases are evaluated on a computational mesh, featuring an LES-type near-wall 

refinement. The mesh has an O-grid topology with a wall resolution               

and a single mesh layer in the span-wise direction, which is sufficient for the Euler flow test 

cases. Figure 15 presents the comparison of the surface pressure coefficient between selected 

Fluent schemes and theoretical distribution, described by Eq. (4.1). From symmetry of the 

problem and ideal flow conditions only one half has to be considered, either the top or bottom 

side of a cylinder. The leading edge is referred to as the frontal part of the cylinder facing the 

flow which is labeled 0° and the trailing edge corresponds to 180° respectively. In Figure 15 

the plot depicted by green markers which represent Roe-FDS returns to the value of just 

below 1 at the trailing edge with sufficiently low dissipation. However, a different result is 

found for the SIMPLE scheme where the flow has separated at  150° and the pressure 

coefficient does not return to the initial value. The separation would be clearly visible from 

contours of velocity, which has occurred due to the artificial viscosity that gets introduced for 

stability in the SIMPLE pressure-based scheme implemented in Fluent. This test 

demonstrates that low numerical dissipation can play a crucial role in capturing the correct 

flow effects without generating a spurious energy transition from acoustic pressure to 

vorticity waves. 

 

Figure 15 – Plot of the surface pressure coefficient against the azimuthal position shown for 

top half of the cylinder immersed in the Euler flow; the comparison between selected Fluent 

models and theory. 
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Figure 16 shows the velocity trailing edge contours for the Fluent density-based solver Roe-

FDS, which has been established to have a superior performance over the SIMPLE scheme, 

and it is compared to the CABARET scheme. Since both algorithms, Roe and CABARET 

had not encountered a flow separation the surface pressure comparison alone is insufficient to 

differentiate between the two. Figure 16 shows contours of velocity for the same number of 

levels. As part of the initial validation, dissipation levels could be judged qualitatively by 

examining the trail behind the cylinder where the flow merges. Figure 16 shown the apparent 

difference between two numerical methods under consideration where the CABARET 

scheme keeps the symmetry of the velocity profile downstream of the cylinder much better 

without any notable spurious trailing wake generation in comparison with the Roe scheme 

solution.  

 

Figure 16 – Contours of u velocity for the Euler flow in x-y plane with the flow direction left 

to right; Fluent Roe-FDS (left), CABARET (right) 

In addition, it is possible to compare the pressure profiles obtained via numerical modelling 

with theoretical values derived for the ideal flow. This comparison is essential for both 

schemes before proceeding with viscous flow or acoustic simulations as it first ensures that 

idealised numerical solutions agree well with the flow theory. Figure 17 shows the plot of 

vertical pressure profiles for both numerical schemes in key areas of the field. The pressure 

profile ‘P1’ at         lies within the region of accelerating flow and it also corresponds to 

the typical experimental measurement location. [59] The midline profile is given for a 

reference as it starts from the point of a largest pressure drop, which occurs at 90° for the 

ideal flow. Both solvers are in good agreement with theory for predicting the overall pressure 

field as found in this test case.     

Theoretical results for the pressure distribution around the cylinder, such as plotted in Figure 

17 are calculated using the perturbation theory [152] and the potential equation for a mildly 

compressible flow case (M ~ 0.2) for an ideal gas.  
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with the following coefficients: 
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where   is the distance measured from the centre of the cylinder,   is the polar angle, taken 

from the direction of the flow and   is a constant equal to 1.4.  

 

Figure 17 – Vertical pressure profiles comparison of theory and CABARET, ‘P1’ at     
     and ‘midline’ at         with the origin at the LE of the cylinder. 

 

4.2 Modelling the flow past a circular cylinder using high-

resolution MILES method 

Following the encouraging results obtained in the previous section with the Euler CABARET 

scheme the unsteady flow modelling past the circular cylinder is attempted. A low numerical 

dissipation in the CABARET scheme is an advantage for modelling the evolution of vortex 

shedding and for accurately resolving vortical structures at a relatively large distance behind 

the cylinder, of the order of 10d for the rod-aerofoil benchmark case in diameter units (d). 

The main difficulty in application of MILES to a circular cylinder case is predicting a 

floating separation point at the correct location. Mainly fine scales are responsible for the 

separation mechanism. Hence, it is most challenging to achieve a suitable near-wall grid 

resolution which is required to resolve these fine scales. At such fine resolutions the 

computational time step can be a bottleneck. Section 1.3.2 introduced the reference 

publications from other researchers on this benchmark. For the flow regime considered, 

currently there is no comparison to a solution which employed implicit LES without the SGS 
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model. On the other hand, where a SGS model was employed, e.g. in [157], the near-wall 

resolution of the mesh is estimated to be far too coarse for MILES CABARET. It should be 

noted that the choice of a SGS model may heavily influence the flow solution past a circular 

cylinder since the flow separation mechanism on a coarse grid is purely empirical. To remain 

within the class of high-fidelity methods, our only estimate for the required grid resolution to 

resolve all scales comes from the Reynolds scaling which indicates that a maximum 

permitted wall  +,  + and  + required to resolve the smallest eddy should be approximately 

equal 0.3.                 

In the current simulation set-up the rod diameter is equal to 0.01 m. The inflow velocity is 72 

m/s which corresponds to the free-stream Mach number of about 0.2. The flow case is 

conducted for the standard atmospheric pressure and temperature    293 K, and the 

Reynolds number of the simulation is circa 48,000. The rod shedding frequency that is the 

characteristic frequency of the problem is expected to be in the region of 1.3 kHz. 

The problem is sub-divided into two parts according to the pursued strategy that is firstly, 

investigating whether the method of choice is capable of predicting the separation point 

correctly via resolving ‘enough’ of the fine scales which are ultimately responsible for the 

separation mechanism. Secondly, the wake zone can be incorporated when a sufficient near-

wall resolution is determined. In the first case, a simple O-grid is specifically designed to 

resolve vortices only within a close proximity of the cylinder, which is within  1d behind the 

trailing edge. Consequently, the vortex pair formation and re-circulation is simulated which 

affects the shear layers and the floating separation. Therefore, for the first part of 

investigation, the vortex shedding does not need to be fully resolved over a large distance and 

following this strategy allows saving on the total number of elements which is particularly 

important as this problem is computationally demanding.  

Alongside the numerical investigation into the required grid resolution for capturing the 

correct separation point a mesh incorporating a wake zone has been developed. Alterations in 

the near-wall region were introduced step-by-step constantly referring to the first part of the 

problem. Figure 18 shows the final version of the computational domain in x-y plane 

designed for capturing a vortex street. The domain extends from -15d to 25d in the 

streamwise direction and from -15d to 15d in the crosswise direction. The extent of the 

computational domain in the spanwise z-direction, which is assumed to be the homogeneous 

direction of the problem, is up to 5d for the biggest simulation tested. The spanwise extension 

was selected in accordance with recommendations in [59] where experimentally measured 

pressure coherence function for the peak frequency was found to be correlated for over 5-7 

rod diameters. For the simulation which includes the wake, the x-y computational domain is 

covered by a multi-block 2D C-grid which is body-fitted around the rod and is roughly 

Cartesian in the wake region in all three dimensions. The 3D grid is generated by stacking the 

2D slices in z-direction and the mesh is generated using the standard CFD package (ICEM). 

However, it has been quickly recognised that for the first mesh cell requiring y+   1 it is 

nowhere near affordable to maintain the aspect ratio of 1, which is assumed standard for 

‘LES-type’ grids. For this problem it has been a significant restriction when using a large 
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cylinder span length required for simulating fine scale three-dimensional structures so it is 

regarded as a compromise.  

 

Figure 18 – Computational grid in x-y plane 

Table 3 shows the wake zone grid comparison with meshes used in [83] for a similar flow 

case. The “check point from central axis” column denotes distances measured from the 

midpoint of the cylinder in x-y plane, followed by the actual diameter used and the largest 

cell width Δ with reference to the diameter independent of the direction. The last column in 

Table 3 shows the number of mesh points per diameter in y-direction which is where the 

reference profiles are to be measured. [59] The reference points for the LES solution also 

apply to the mesh used for testing the separation apart from the three ‘U-profiles’ where the 

computational mesh was deliberately coarsened. It could be noted that the grid resolution in 

the wake region of the LES case is much finer than that of DES, mainly because of the x+ 

requirement which then enforces extra constraint to the wall normal resolution when the cell 

is maintained roughly Cartesian. For the largest simulation with the wake zone, y+ ~5 is 

achieved in the wall-normal coordinates and Δx   3Δy next to the wall. There were 256 mesh 

points in the spanwise direction over 5 diameters with Δz   4Δx to maintain a low aspect 

ratio cuboid shape in the wake zone. The total grid size was around 52 million cells.     
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 * DES simulation cases of Travin et al. [83] 

 ** Corresponds to the largest simulation having 5d in z-direction.   

Table 3 – Computational grid comparison with a well-documented case [83] at the specified 

check points.         

Finally, for the first part of the numerical investigation that is related to modelling the 

separation a mesh with a target y+ of 0.3 has been put to the test using GPU computing. 

However, it was still nowhere near as affordable to use the comparable x+ as it would almost 

approach the DNS resolution. In our case the finest x+  1 and a limited span width (    

     had to be used due to reaching the limit of computational resources. The computational 

time step was less than 1/2 of a nano-second.         

Figure 19 shows instantaneous contours of velocity in a close proximity of the cylinder where 

separated shear layers form turbulent eddies after a short transition. Following a laminar 

separation, instability in the shear layers grows, resulting in a burst of turbulence. Afterwards, 

the recirculation and shedding of vortices takes place. A sequence of slides is reproduced 

from the animation for the finest simulation run with a wall y+ of 0.3. In Figure 19(a) the 

formation of two counter-rotating large vortices can be observed. The stage depicted in 

Figure 19(a) is associated to an early stage of the simulation. As vortices keep on rotating 

inwards due to a pressure drop in the separated region their size increases reaching the point 

when one vortex displaces the other as seen in Figure 19(b) and convection effects carry one 

of the two vortices downstream. From Figure 19(c) it can be seen that the bottom vortex has 

left and the area behind the cylinder becomes solely occupied by the top vortex. Since it is no 

longer supported by the bottom fluid layers, following further growth, the trailing edge vortex 

rapidly follows the previously departed vortex, convecting downstream.               

a)     b)     c)  

   
  

 

 

 

 

Simulation run Re Grid Check point from central axis (x,y ) Ref. d (m) Δ/d mesh pnts./d

DES LS2* 50,000 Medium  0.75, 0.5 1.0 0.048

DES LS3* 50,000 Fine  0.75, 0.5 1.0 0.034

 0.0075, 0.005 0.01 0.017

0.025, 0 (2d behind ) 0.01 0.023 43

0.013, 0 (ref. U profile ) 0.01 0.017 82

0.0745, 0 (second U profile ) 0.01 0.053 22

MILES Wake**48,000
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 d)     e)    f) 

   
Figure 19 – Instantaneous contours of velocity showing key flow evolution stages within one 

vortex shedding period past a circular cylinder. 

At this moment in time simulated flow instability is observed as depicted in Figure 19(d) and 

the flow swings to one side. The flow around the cylinder acts on the separated layers 

attempting to line them up in the direction of the mean flow and the new vortex pair 

formation takes place as seen in Figure 19(e) with the trail from the recirculating vortex being 

still visible on the outmost right side of Figure 19(e). The trail can be regarded as the 

connection between vortex pairs. (For example, see Figure 20) Finally, Figure 19(f) shows 

the vortex swing the other way depicting the sliding separation point throughout the flow 

evolution stages. This visualisation further confirms that for the considered flow regime the 

formation of laminar shear layers is influenced by the simulated vortex pair.       

Figure 20 shows instantaneous contours of vorticity magnitude obtained on the wake-

resolving grid previously shown in Figure 18. It can be seen that for propagating vortices the 

highest magnitude is found at a vortex midpoint being the part with a quickest rotation. This 

is physical due to the vortex scale. In the close proximity behind the trailing edge the flow is 

highly turbulent with the smaller size eddies mixing and forming large scale circulating 

eddies.      

 

Figure 20 – Instantaneous contours of vorticity magnitude shown on the wake-resolving grid. 
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The plot in Figure 21 shows the comparison for the time-averaged surface pressure 

coefficient between numerical simulations and experimental data of Norberg et al. [158]. The 

DES simulation of Travin et al. [83] which mesh details are provided in Table 3 (see LS3 

case) achieved an excellent agreement to the experiment. An attempt to reproduce similar 

results using the Spalart-Allmaras DES model available in ANSYS shows that it is no match 

for the in-house code of Travin et al. [83]. Figure 21 clearly shows that    is over-predicted 

for the part where the largest pressure drop is seen. This difference could be due to model 

calibration specifics.    

In the experiment it was reported that the average separation point is situated at  80° [158] 

and the range of sliding of the separation point for this flow regime should be within 70° 90° 

as discussed by Zdravkovich [84]. In the CABARET simulation on the finest grid the average 

separation point was closer to 90° with approximately the same range for the sliding point 

centred about the separation, meaning that the separation is slightly delayed in comparison to 

the experiment.      

 

Figure 21 – Plot of the surface pressure coefficient against the azimuthal position shown for 

top half of the cylinder for MILES CABARET on the finest grid, ANSYS DES SA and DES 

of Travin et al. [83] compared to the experimental data of Norberg et al. [158]. 

The investigation into grid resolutions which ultimately led to the finest affordable grid 

producing the closest separation point to the experiment just shows how challenging this case 

is for the MILES CABARET method. The time averaged velocity profiles measured 

downstream would be sensitive to the azimuthal location of the separation point as the slight 

shift in the vortex formation (e.g. in Figure 19) due to the behaviour of separated shear layers 

will affect the resulting profile. Moreover, the vortex shedding frequency increases with 

increasing azimuthal angle of the separation point. For the finest MILES CABARET 

simulation run it was only affordable to resolve the turbulent wake in a close proximity of the 

cylinder where beyond  1d behind the trailing edge the grid density has been rapidly 

increased. Hence, it has not been possible to produce reliable mean and rms-velocity profiles 

at this stage which is left for the future work. Also, with a relatively large x+ the aspect ratio 

of the first cell has been far from ideal affecting the accuracy of the calculation of small 

scales with the MILES method. The resolution has turned out to be simply insufficient even 
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on the finest grid. With the development of GPU computing it may be possible to use even 

finer near-wall mesh resolution and in that case x+   y+   0.3 should be considered first, at 

least for the frontal part where the flow is attached, before reducing the wall-normal 

resolution any further as the wall-normal refinement can be sufficient already. Another 

possibility is using a larger span length which should benefit the separation and the formation 

of turbulent flow structures according to correlations data reported in [59]. In the publication 

of Travin et al. [83] for the reference DES simulations it is also acknowledged that span-wise 

correlations are known to be important, especially for predicting the flow over bluff bodies.  

Main strength of the CABARET solver for airframe flow and noise problems is attributed to 

superior wake preservation due to non-dissipative properties. This could be particularly 

important when the benchmark case is extended to the rod-aerofoil setup by placing an 

aerofoil in the wake 10d downstream. For the rod-aerofoil case, maintaining the correct 

physics while accurately transporting vortices over a large distance could prove crucial for 

accurate flow and noise calculation. According to experimental measurements, vortex impact 

on the leading edge generates the most noise for such setup. [59] Experience gained with the 

cylinder flow modelling will be used in application to a tripped aerofoil benchmark case in 

the following section. From the modelling viewpoint, a fixed separation point which is 

prescribed on the leading edge of an aerofoil according to the experiment should eliminate 

the necessity of predicting the separation location from the first principles which appeared to 

be the most challenging part of modelling in the cylinder case.    

4.2.1 Boundary layer tripping technique for overcoming 

insufficient near-wall grid resolution  

In this work, the advanced tripping method which is based on principles of stochastic white 

noise has been put to the test where a fine-scale disturbance is thought to provide a flow 

separation mechanism. A point sink/source stationary stochastic white noise which is 

correlated in space (along the wall) has been employed trying to overcome the grid resolution 

limitation in the cylinder benchmark case. (See Eq. (4.3)). The tripping has been applied to 

the cell boundary face in a form of a Gaussian function over a defined portion of the wall, 

selected to extend from 70° to 90° which corresponds to the experimental range of the 

floating separation point for both top and bottom halves of the cylinder.      

    
  ∑  

  

√ 
                               (4.3) 

In Eq. (4.3),   is the number of   test frequencies,   is the time and    [   ] is a random 

phase. Additional quantities, namely the arc length,  , and   coefficient (    ||  are 

introduced, where  || is a wall-parallel flow velocity.    is a Gaussian function composed of 

  azimuthal angles over which tripping is active and of the constant   and the peak amplitude 

   is shown below: 
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where the constant   helps to prescribe the desired Gaussian shape. The boundary layer 

tripping initiated by stochastic fluctuations gives greater control over the tripping mechanism 

and also, reproducing fine scale fluctuations that are otherwise absent due to the grid 

resolution limitation as discussed in Section 4.2. The application of Eq. (4.3) for initiating 

earlier separation in the cylinder case has indeed resulted in the mean separation point shift 

towards 80° which matched the experimental location. However, the behaviour of the 

separated shear layers was still incorrect as the flow over the cylinder remained overly 

accelerated judging from experimental velocity profiles. Thus, the fine scale effect that 

contributes to creating ‘drag’ can be assumed important over the entire frontal area from the 

leading edge up to the separation point and cannot be easily reproduced even by such 

sophisticated tripping approach. Nevertheless, the white noise stochastic tripping proved to 

be worth considering as a tripping technique. The tripping technique which incorporates the 

spatial correlation, given by the second term in brackets in Eq. (4.3), has been discovered to 

have a more pronounced effect in comparison to using the uncorrelated white noise for 

boundary layer excitation. Hence, relatively low peak amplitude    can be selected which in 

some cases can prevent causing an adverse effect on acoustics.  

        

4.3 Aerofoil flow simulations  

4.3.1 Description of the test case with a sharp trailing edge and 

RANS flow solution validation 

First, the benchmark NACA 0012 aerofoil case with a sharp trailing edge and zero incidence 

angle of attack from the workshop on Benchmark problems for Airframe Noise Computations 

(BANC) [68] is considered. The aerofoil chord length is 0.4 m and the free-stream velocity is 

56 m/s, which correspond to a Reynolds number of about 1.5 10
6
 and a free-stream Mach 

number of 0.1664. In this section the CFD part of a problem is solved with a 2D RANS 

simulation using the k – ω SST turbulence model in the framework of ANSYS CFX.  

A C-type mesh with 216 grid points per side of the aerofoil has been generated paying special 

attention to the wake resolution zone behind the trailing edge. The grid resolution in wall-

normal units, y+ is of the order of 1, the far-field domain boundaries are placed 25 chords 

from the aerofoil leading edge and the total count of grid elements is approximately 70 10
3
. 

The mesh is shown in Figure 22(a). In addition, the grid refinement was performed in the 

stream-wise direction using twice as many points per side of the aerofoil to demonstrate that 

trailing edge velocity and turbulent kinetic energy profiles are not sensitive to the aspect ratio 

of the near-wall elements in the RANS solution. As RANS solutions are to be used for 

acoustic modelling in Chapter 5 it is important to mention that in the framework of FRPM, 

the source modelling consists of two parts. One part is the RANS solution and the other is the 

FRPM particle emulation with the use of the corresponding auxiliary stochastic particle grid. 

The auxiliary grid is made consistent with the RANS solution which defines the 

corresponding filter length scale and amplitude of the stochastic particle distribution function 

as discussed in Chapter 3 as well as the particle convection speed. Hence, for consistency of 
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the source modelling in the FRPM method, it is important to establish a low sensitivity of the 

statistical parameters to the RANS grid resolution. 

Figure 22(b) shows the numerical solution for the Mach number distribution around the 

aerofoil and the location of the “numerical probe” at 1.0038     from the leading edge. The 

latter location is typical of the trailing edge noise sources and this is where the experimental 

flow data from the Institute of Aerodynamics & Gas Dynamics (IAG) at University of 

Stuttgart is also available for comparison with the modelling as provided in [68]. 

a)                        b) 

   

Figure 22 – Computational grid in x-y plane (a) and the Mach number contours with the 

numerical probe location (b). 

Figure 23 compares the computed profiles of the mean flow velocity, turbulent kinetic 

energy, and the integral turbulence length scale, which characterise the convection speed, the 

amplitude and the filter length scale of the FRPM model for two RANS grid resolutions, with 

experiment at the ‘numerical probe’ location just downstream of the trailing edge. The mean 

flow profile is in an excellent agreement with experimental data including the inflection point 

being at y/c ~ 0.035-0.04 in the simulation, which is at the same location as reported in the 

BANC workshop for comparison [68]. The profile of the turbulent kinetic energy shows a 

good agreement with the experiment too with only minor excursions close to the centreline. 

a)            b)    c) 

       

Figure 23 – Comparison of the RANS solutions on the standard grid and the grid that was 

refined in the stream-wise direction with the experiment downstream of the trailing edge: 

mean flow velocity (a), turbulent kinetic energy (b), and integral turbulence scale profile (c). 

Notably, the definition of the integral turbulence scale length as applied in the experiment 

would require the determination of velocity auto-correlation function that is not available 
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from the RANS simulation. Therefore, consistently with the RANS-based acoustic source 

modelling, the turbulent scale is defined from a combination of variables involving the 

turbulent kinetic energy and the energy dissipation rate with a calibration coefficient. (See 

Eq. (3.6)) As a starting point of the present benchmark the calibration length scale parameter, 

   equal to 0.72 is used. This value shows a reasonable match with the experimental profile in 

Figure 23(c) of the integral turbulence length scale apart from small distances by the 

centreline. The same characteristic turbulence length scale is then used for the FRPM source 

model where it corresponds to the characteristic width of the FRPM filter that is applied on 

the random particles to generate the stochastic velocity field. The filter width amounts to the 

second-order velocity correlation length scale in case of the Gaussian filter used. 

 

4.3.2 MILES CABARET flow solution 

For LES simulations the same flow setup as in the BANC Workshop Case 1 aerofoil with a 

sharp trailing edge and zero incidence angle of attack has been investigated. In the 

experiment, a tripping device with a rectangular cross section of 0.36 mm in height and 1.5 

mm in width, centred at     0.05 on both the Suction Side (SS) and the Pressure Side (PS) 

was used. In LES simulations, there are two tripping techniques tested: (1) the rectangular 

“step” tripping device as in the experiment and (2) a steady suction/blowing numerical 

tripping technique from [64]. 

4.3.2.1 Boundary layer tripping techniques   

Steady suction/blowing 

For the numerical tripping mechanism, one possibility is using a steady suction/blowing in a 

form of a step function with no net mass injection applied over the portion of the leading 

edge. Specifically, in this case, steady suction is applied over the region 0.015 <     < 0.040 

and steady blowing over the region 0.040 <     < 0.065 acting as outlet/inlet boundary 

condition. Suction/blowing has been applied over the entire length of the span with the 

magnitude of the suction/blowing velocity chosen to be 1.5% of the free-stream velocity, 

whereas 3% was reported in [64]. In the present LES simulations it was noticed that with 

increasing span length keeping the suction/blowing magnitude at the same level makes 

tripping more aggressive, which can be judged by comparing velocity profiles behind the 

trailing edge. In a similar way, the numerical tripping effect is also dependent on the 

numerical grid resolution. For example, the increased tripping magnitude can be part of the 

strategy for overcoming the grid resolution limitation. Naturally, by using finer near-wall 

grids than those commonly reported in the literature in application to LES, the required 

magnitude of suction/blowing may be less than 3% of the free-stream velocity. Hence, the 

boundary layer modelling strategy adopted in this study has been based on using a suitable 

boundary layer tripping with the best numerical grid resolution that is found feasible for 

simulations presented in this chapter.  
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Step tripping device which corresponds to the experimental set-up 

Another possibility for implementing a boundary layer tripping is using the same 

methodology that is undertaken in the experiment, which means physically including a 

tripping device in the simulation. In some experiments tripping is performed by gluing 

sections of sandpaper which then causes turbulence transition and it makes it difficult in 

replicating this type of tripping accurately in a simulation. If that is the case, some form of 

numerical tripping such as suction/blowing can be more appropriate. Fortunately, for this 

benchmark case the exact dimensions of the rectangular “step” tripping device are known as 

well as its location on the Suction Side (SS) and the Pressure Side (PS). Thus, by exactly 

replicating the tripping device it is possible to eliminate an empirical assumption which 

would be otherwise necessary, for example, when initially estimating the magnitude of 

suction/blowing. However, since the main interest is at the trailing edge the LES mesh type 

quality has to be maintained over the entire surface of an aerofoil. Following the transition to 

turbulence which then develops as vortices roll along the surface, the near-wall mesh 

resolution requirements can be very demanding. As with the suction/blowing technique, 

overcoming the grid resolution limitation can be achieved by making the tripping more 

aggressive with modifications to the tripping device. Figure 24 shows the effect of 

modification of the tripping device on the boundary layer turbulence. It can be seen that the 

size of the turbulent wake is clearly affected as a result of changing height of the ‘step’ 

tripping device. Hence, it should be possible to fine tune the simulation by selecting an 

appropriate height of the rectangular ‘strip’ with a reference to the trailing edge velocity and 

turbulence intensity profiles obtained from the experiment.                    

 

Figure 24 – Contours of instantaneous velocity magnitude for a NACA 0012 aerofoil with a 

tripped boundary layer showing the effect of modifying height of the tripping device 

(increasing height from bottom to top contour). 
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4.3.2.2 Computational grid and the flow solution   

Various grid refinements and span lengths have been investigated. Following the new 

methodology proposed in [50], a fine near-wall resolution suitable for LES is achieved by 

using a snappy hex mesh in all LES aerofoil simulations. The mesh incorporates a fine near-

wall layer which is merged with ordered hexahedra where the thickness of the first mesh 

layer is        m which translates to a maximum       . The maximum aspect ratio is 

1:30 where 30 being in the direction of the chord, rapidly turning into 1:2 for the 8
th

 mesh 

layer. Figure 25 shows the snappy hex mesh around the aerofoil including the step tripping 

device for the largest height tested which is by far the trickiest part to mesh with regards to 

maintaining good mesh quality with this approach. However, the snappy hex technique 

allows to significantly reduce the computational cost by quickly expanding the grid beyond 

the boundary layer and in areas of less importance.  

 

   

Figure 25 – Snappy hex mesh over the aerofoil. 

Various span resolutions have been tested out starting from     0.1 with 32 mesh cells across 

the span up to simulating a full experimental span,     1.0, with 128 mesh cells for which 

results are presented in this paper but in general, span resolutions comparable to    and     
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are still not affordable for relatively large spans. For the largest simulated span the aspect 

ratio of the first mesh layer was 1:30:300, turning into 1:2:20 for the 8
th

 mesh layer. The total 

number of mesh elements for a biggest simulation run was in the range of       . Figure 

25 also shows the computational mesh around the aerofoil’s leading edge from various angles 

and zoom levels, where every 10
th

 element is displayed in the span-wise direction. LES 

simulations were performed on NVidia GeForce GTX1070 (single precision) GPU card with 

typical speeds of 15 Time Units (TU) per day based on the aerofoil’s thickness and the free-

stream velocity. 

Figure 26(a) shows a close up view of instantaneous contours of velocity magnitude for a 

tripped boundary layer with a step-like rectangular cross section tripping device placed at the 

same location on the leading edge as in the experiment. As a result of tripping, turbulent 

wake begins to develop which increases in thickness towards the trailing edge. Figure 26(b) 

shows contours of instantaneous  -vorticity for the suction/bowing tripping method. At the 

beginning of a mesh refinement process it had been recognised that in absence of very fine 

near-wall mesh resolution along the entire side of the aerofoil, especially in the  -direction, 

turbulent vortices become artificially stretched downstream of the leading edge and mostly 

dissipate towards the trailing edge. Therefore, for a reliable trailing edge acoustic source 

reproduction from first principles with LES most efforts had gone into keeping the wake 

resolved, which in this work became possible only with a snappy grid methodology. The 

image of Q-criterion in Figure 26(c) shows that high flow turbulence development starts at 

around a maximum thickness point which is expected in a tripped boundary layer case 

contrary to an untripped case where turbulent vortices develop much later towards the trailing 

edge. The flow is still not of a completely 3D nature and turbulent vortex streaks are not 

visible along the surface of the aerofoil due to insufficient mesh resolution in the span-wise 

direction. In this case, with a large span length equivalent to that in the experiment, the limit 

of affordability of the near-wall mesh quality is quickly reached.     

a)                b)                                                c)  

   

Figure 26 – Contours of instantaneous velocity magnitude for a step-tripped boundary layer 

(a), contours of instantaneous vorticity (b), Q-criterion (c); (b) and (c) are produced with the 

suction/blowing tripping method. 

4.3.2.3 Near-field results  

The velocity profiles behind the trailing edge serve as an important indicator of the quality of 

the simulation because with LES in particular, the flow behaviour at the trailing edge region 
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differs between tripped and untripped cases. For example, when the flow is untripped it 

remains mostly laminar over the entire surface of an aerofoil with a narrower boundary layer 

and the flow does not decelerate behind the trailing edge as much as it will be in case of 

turbulent mixing. In Figure 27 the velocity and turbulent kinetic energy profiles obtained 

from the numerical simulations are compared to the experiment and to the digitised
6
 LES 

results of George & Lele [64]. It can be seen that a reasonably good agreement is obtained for 

the velocity profile in both cases, with rectangular step and suction/blowing tripping 

techniques apart from the centreline location where LES results of George & Lele [64] show 

a closer match, yet the slope at     ~ 0.2…0.3 deviates from experimental data more than 

results obtained with MILES CABARET. The peak for the turbulent kinetic energy is over-

predicted for both numerical simulations in comparison to the experiment. Distinctly, over-

prediction of the peak turbulent kinetic energy close to the centreline is associated with over-

predicted stream-wise root-mean-square (rms) velocity component. This is true for both 

tripping methods tested and the discrepancy of          close to the centreline is well visible 

in Figure 28 where 3 velocity components are shown individually for the ‘step’ tripping 

method. For the suction/blowing technique the profiles are quite sensitive to the magnitude of 

the tripping, the area over which tripping is acting and the span length. For consistency with 

other researchers the same suction/blowing tripping location on the leading edge was used as 

in [64] but with a lower suction/blowing magnitude of only 1.5% of the free stream velocity. 

By applying the MILES CABARET method on a fine grid and having a large span length it 

has been determined that 3% is slightly aggressive, resulting in over predicted boundary layer 

thickness at the trailing edge. In case of a rectangular step tripping the same location as in the 

experiment has been used too but with a varying height of the tripping device as shown in 

section 4.3.2.1.  

   

Figure 27 – Comparison with the experiment and LES results from [64] downstream of the 

trailing edge: mean flow velocity and turbulent kinetic energy profiles. 

In LES methodology a type of the near-wall treatment plays an influencing role as well as 

many other factors such as mesh quality, boundary layer tripping implementation and 

transition to turbulence modelling which in turn affects the development of the turbulent 

                                                           
6
 Results from the three fluctuating velocity profiles presented in [64] are combined to form the turbulent kinetic 

energy profile which is a key comparison parameter in the FRPM source derivation.    
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boundary layer. Also, it appears that a stream-wise component of fluctuations is frequently 

found to be over-predicted when LES is applied to aerofoil flow modelling.     

In the experiment the height of the tripping device with a rectangular cross section was 

reported to be 0.36 mm, which corresponds to the ‘small step’ profiles in Figure 28(a). It can 

be seen that all profiles in Figure 28(a) are much narrower than in the experiment due to 

insufficient growth of the boundary layer caused by insufficient grid resolution. The velocity 

profiles in Figure 28(a) look more similar to an untripped case. Therefore, for overcoming the 

grid resolution limitation the height of the tripping strip was increased. As a result, the 

medium tripping device where the height of the step was twice the experimental height but 

keeping the same width of the rectangular strip produced numerical velocity profiles in 

Figure 28(b). 

a)     b)    c)  

 

Figure 28 – Comparison of the mean flow velocity and intensity profiles with the experiment 

for fine-tuned tripping device height: experimental tripping device height, ‘small step’ (a), 

   experimental height ‘medium step’ (b) and    experimental height ‘large step’ (c).  

For the medium step tripping, the mean velocity and turbulent intensity profiles turned out to 

be in very good agreement to the experiment with an exception of the over-predicted peak for 

the streamwise         component. This problem is common between all simulation runs as 

evident from Figure 28, regardless of the chosen tripping device height. For comparison 

purposes, trailing edge profiles of a third simulation that employed further twice the height 

increase of a medium step are shown in Figure 28(c). By examining these numerical profiles 

it can be seen that in the simulation employing the ‘large step’ velocity profiles appear wider 

as a result of over-predicted boundary layer thickness. It can be concluded that the tripping is 

too aggressive for the case with the ‘large step’. Therefore, out of three tested heights the 

‘medium step’ tripping produced the closest match to experimental data and this simulation 

will be further examined for acoustic sources comparison in Chapter 5. Also, instantaneous 

contours in Figure 24 give a qualitative representation of the boundary layer development 

which corresponds to tripping step sizes analysed by means of profile comparison in Figure 

28. Particularly, it can be seen how the size of the wake grows with the increasing height of 

the tripping device.  

Figure 29 shows the plot of the skin friction coefficient,   , comparison between RANS and 

LES simulations for the medium step tripping. Unlike the pressure coefficient,   , which is 
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not representative for zero incidence angle on a NACA 0012 at this flow regime, the skin 

friction coefficient comparison at the trailing edge is substantially more important being the 

prime location of noise sources derived from turbulent velocities in the vortex sound method. 

From Figure 29 it can be seen that for two simulations with identical flow conditions, the skin 

friction coefficient beyond         is in good agreement, meaning that the velocity 

gradient of a boundary layer at the trailing edge is very similar between RANS and LES. 

Thus, for the trailing edge source terms comparison in Chapter 5,    provides one additional 

validation. A difference at around the mid-chord between RANS and LES comes from a 

reaction to boundary layer tripping in the latter case. Unfortunately, there is no experimental 

validation for    reported for this benchmark case. However, as mentioned earlier a similar 

tripping method to the experiment was used in LES with the same tripping location and 

therefore, some reaction to tripping which will affect the skin friction coefficient profile can 

be also expected in the experiment.       

 

Figure 29 – Skin friction coefficient comparison between RANS and LES with medium step 

tripping simulations. 
 

4.3.3 Description of the benchmark case with a blunt trailing edge 

and URANS flow solutions 

The second benchmark aerofoil noise problem considered in this work is the experiment of 

Brooks and Hodgson [92], for an aerofoil with a blunt trailing edge. The chosen case employs 

the largest trailing edge thickness of 0.0025 m available which exhibits pronounced tonal 

noise. The aerofoil used in the experiment is a NACA 0012 symmetrical aerofoil section with 

a chord length of 0.6096 m and a span of 0.46 m at zero incidence to the flow. The free-

stream velocity is set to U=69.5 m/s and the corresponding Reynolds number based on the 

chord length is 2.77 10
6
 with a free-stream Mach number equal to 0.2. The blunt trailing 

edge leads to vortex shedding at 3 kHz which corresponds to a Strouhal number of around 0.1 

based on the free-stream velocity and the trailing edge thickness.  
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Similarly to the sharp trailing edge case, the problem is solved with the 2D         

turbulence model but in this case an unsteady RANS model is used to capture the vortex 

shedding. A second-order accurate scheme in space and time was applied for numerical 

solution on a C-type grid of approximately the same resolution in comparison with the sharp 

trailing edge case.  

Two unsteady RANS simulations have been performed for the blunt trailing edge problem. 

The first calculation was conducted for the same geometry as reported in the experiment 

while assuming a fully turbulent boundary layer condition on the aerofoil boundary. 

Compared to the experiment, where the transition to turbulence occurred due to the flow 

tripping on both sides of the aerofoil, the numerically predicted shedding frequency was 

approximately 2750 Hz which is more than 10% short of the experimental value.  

Reproducing the correct transition to turbulence within the URANS model to replicate the 

boundary condition used in the experiment is very challenging and is likely to involve several 

calibration parameters of questionable validity since modelling of flow separation within the 

standard (U)RANS framework could be questionable. Hence, no attempt to model the 

transition from a laminar to turbulent boundary layer is undertaken here. Instead, a simpler 

method to capture the correct shedding frequency is chosen for the second URANS 

simulation, where a slightly elongated aerofoil shape with the trailing edge thickness reduced 

by 20% is considered. This slight shape modification resulted in capturing the experimental 

shedding frequency of 3 kHz numerically.   

a)       b) 

    

Figure 30 – Comparison of the current RANS solutions with the available flow data for a 

similar NACA0012 aerofoil case from the literature [159]: pressure (a) and skin friction 

coefficient distributions (b). 

Figure 30 compares the time-averaged URANS solution having the blunt trailing edge for 

pressure and skin friction coefficient,    and    distributions with the experimental data of 

Gregory and O’Reilly [159] and Langley CFL3D RANS calculation. In comparison to the 

reference configuration of Brooks and Hodgson, the experiment of Gregory and O’Reilly 

together with Langley CFL3D solution correspond to the same aerofoil profile except for the 

sharp trailing edge, the same free-stream Mach number and a similar Reynolds number 

(2.8 10
6
 vs. 2.77 10

6
). As can be seen the current URANS simulation is in very close 

agreement with data reported in the literature, where for this benchmark case the blunt 

trailing edge is only a small percentage of the aerofoil’s thickness and therefore, the overall 
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geometry could be deemed as almost identical. Notably, in the reference experiment Brooks 

and Hodgson reported a    value of approximately 0.002 at the trailing edge, which is also in 

a good agreement with the current URANS simulation. 

 

4.3.4 Reconstruction of the unsteady flow field with the FRPM 

method for trailing edge noise simulations 

Following the RANS/URANS simulations for benchmark cases this section discusses the 

implementation of an acoustic source model presented in Chapter 3, to be used later for 

broadband and tonal noise simulations. As sound sources are deducted by ameliorating the 

RANS/URANS flow data it is important to verify that a re-created unsteady flow field 

matches experimental measurements and is consistent with time-averaged input data. For 

example, it is important to verify that a time-averaged TKE field which scales the Gaussian 

kernel and the recovered TKE field obtained from FRPM velocities are equivalent. Also, an 

integral length scale plays an important part in the model so its implementation with the    

constant scaling has to be taken into consideration for accurately re-creating the unsteady 

flow field.   

In order to minimise errors related to the filter scaling operation, the size of the Cartesian 

FRPM grid cell is kept much smaller than the smallest considered characteristic scale of the 

acoustic source. The latter scale is of the order of the turbulence length scale in the region of 

significant source amplitudes. In the current 2D simulations a cell size of 4 times as small as 

compared to the minimal value obtained by Eq. (3.8) in Chapter 3 for the source field is used. 

Where zero values of turbulence scales are present in the source domain, for example next to 

the wall, a sufficiently small value thought to be of importance is picked as a reference scale 

due to resolution limitations. For the aerofoil trailing edge noise simulation with a blunt 

trailing edge considered in this work this smallest scale within the source region is estimated 

to be in a range of        with reference to the chord  , resulting in a cell size of     

        , where   is a Cartesian cell width. In addition, 10 stochastic particles per each 

Cartesian grid cell are specified. It was demonstrated that a sufficient number of particles are 

required within the FRPM domain [55] such that their area-weight contribution would 

achieve the target root-means-square rms values and therefore, yield a close approximation to 

Eq. (3.1). This ensures that parameters of the distribution of random particles vary slowly as 

compared to the convection scale of individual particles so that the particle contributions to 

the source are statistically converged. Importantly, in [55] converged statistics were obtained 

with an increase in the total number of particles beyond approximately 5 particles per cell for 

a sufficiently large domain. 

Furthermore, in order to smoothly insert and eliminate particles without spurious noise 

amplification effects, a numerical decay function is built into the inlet and outlet zones of the 

FRPM domain which gradually attenuates the amplitude of the filter function after computing 

noise sources. 
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When a tone is present in addition to broadband fluctuations, it becomes an additional source 

of flow solution unsteadiness and consequently contributes to the overall noise. For source 

modelling, an unsteady flow solution obtained from the URANS is mapped on to the same 

FRPM Cartesian grid where synthetic turbulence is generated. Figure 31(a) shows a time 

averaged velocity magnitude field on to the FRPM grid which is required when evaluating   
  

at every CFD time step. (  
  is shown separately in Figure 31(b)). Vortex shedding obtained 

in URANS is deterministic in nature where a sequence of CFD time steps may describe one 

complete period of shedding. Then, after the period is identified it may be looped over to 

represent continuous vortex shedding. The parameters of interest which include turbulent 

kinetic energy, turbulent eddy frequency, mean and instantaneous URANS velocities along 

with the mesh information and a CFD time step are recorded into a separate input file that are 

later used as an input for the acoustic solver.   

a)       b) 

   

Figure 31 – URANS solution provides an additional fluctuating velocity source for the blunt 

trailing-edge problem: mean velocity magnitude (a) and its fluctuation field mapped onto the 

FRPM Cartesian grid (b).  

Figure 32 shows the time history of cross-stream velocities in the wake zone normalised with 

a local mean kinetic energy at the numerical probe placed downstream of the trailing edge.  

 

Figure 32 – Time-domain behaviour of various velocity components behind the blunt trailing 

edge. The analytical function corresponding to the pure tonal velocity signal is included for 

comparison. √  is a characteristic turbulent kinetic energy obtained from a 2D RANS 

solution. Time Units (TUs) are based on the free-stream velocity and the chord length, 

        . 
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Figure 32 encompasses the reference    FRPM velocity signal obtained from purely 

broadband stochastic sources as well as the modified        velocity that incorporates the 

tonal noise harmonic. On the same plot,     alone that is at the core of the tonal noise 

mechanism, shown with markers, represents large scale fluctuations which are a result of Eq. 

(3.49). Besides, the analytical harmonic function of 2750 Hz with an arbitrarily calibrated 

amplitude and phase is plotted to approximately fit the shedding frequency of the wake 

corresponding to the URANS solution. It is interesting to observe how the stochastic part of 

the solution gets superimposed on the deterministic wave solution corresponding to the 

vortex shedding and results in the total signal which looks very much like a velocity 

fluctuation measured in a real experiment where tidal currents were recorded. [160] 

In the current method based on the URANS solution there are two possibilities for realisation 

of turbulent kinetic energy and turbulent length scales on the FRPM grid. The choice is 

between using mean or instantaneous quantities for scaling the filter kernel in Eq. (3.8-3.9). 

Investigations with the current aerofoil benchmark vortex shedding case show that acoustic 

predictions remain similar and consistent for both options. For the results discussed in 

Chapter 5 instantaneous fields for   and   are used which are directly obtained from 

parameters of the URANS simulation. 

After turbulent velocities are obtained they could be validated, first, for the benchmark case 

with a sharp trailing edge where near-field velocity data are available from the experiment as 

well as from the tripped LES simulation. The comparison starts with the TKE field, judging 

whether it is consistent with the RANS input data as outlined in the beginning of this section. 

In Figure 33 the time resolved turbulent kinetic energy of the FRPM simulation is compared 

to the target CFD input statistics. A close examination reveals that the TKE field which was 

calculated from stochastic velocities has a greater magnitude, particularly in the wall region 

and down the centreline, with values at the trailing edge peaking ~30     ⁄  in FRPM. The 

range of the displayed contour is re-scaled in comparison to ~20     ⁄  due to the highest 

reference value seen in the RANS simulation. Ideally, the recovered turbulent kinetic energy 

should match the one obtained from RANS and the difference in Figure 33 comes from the 

Gaussian filter kernel scaling used in the FRPM method. The contours in Figure 33 clearly 

demonstrate the over-predicted time-averaged TKE recovered from FRPM velocities. 

a)                        b) 

     

Figure 33 – Contours of mean turbulent kinetic energy from RANS (a), time averaged 

turbulent kinetic energy from FRPM velocities,          (b). 
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In the FRPM simulation a length scale parameter has a major influence on the acoustic 

sources calculation and for the reference, in Figure 34 we recall the profile of the integral 

length scale which was obtained when scaling the Gaussian kernel by the constant calibration 

parameter        , which value arguably produced the closest match to the experiment.  

 

Figure 34 – Integral turbulent length scale agreement between    0.5, 0.72 and the 

experiment. 

Figure 35 shows the profile comparison between the experiment, LES and FRPM for 

different    values where using a lower    value of 0.5 resulted in the closest match to the 

mean TKE obtained from RANS. Peak values of the recovered TKE within the FRPM 

domain had a maximum magnitude of approximately 22     ⁄  for     0.5, which are 

within 10% to the target input of the RANS simulation. For TKE profiles reported in [161] 

over-prediction was approximately 15% for a    value of 0.54 which appears to be in line 

with current findings.  

 a)     b) 

    

Figure 35 – Turbulent kinetic energy profiles for different    values comparison to the 

experiment and LES at            (a), between LES and FRPM for          (b). 
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Figure 36 shows the integral correlation length scales derived from the two point correlations 

obtained for the FRPM solutions with constant    values of 0.5 and 0.72 compared to the 

available ‘Rnoise’ numerical data [162] [163] in the stream-wise direction and to the 

experimental flow data from the Institute of Aerodynamics & Gas Dynamics (IAG) at 

University of Stuttgart. [68] The integral length scales are derived as following: 

         ∫
〈                 〉

〈  
      〉

  

 
                 (4.5) 

In Eq. (4.5) above, the index ‘    ’ denotes the length scale component of fluctuation 

velocities ‘  ’ for probe separation in ‘ ’ direction and    is the cut-off length scale chosen as 

0.1 for FRPM profiles. 

    

    

Figure 36 – Integral correlation length scales derived from two point correlation velocity 

profiles. 

It is worth noting that ‘Rnoise’ results are obtained with the aid of anisotropic scaling 

integrated into the numerical model while with the FRPM method no anisotropy has been 

used and the    parameter simply scales the entire field. Generally, a good match to 



 
 

111 
 

experimental data is found for integral length scales apart from       which is a stream-wise 

velocity component in x-direction. For       the FRPM integral length scales, especially 

obtained for    of 0.5, tend to follow the shape of the experimental integral length scales 

closer than ‘Rnoise’ simulations that used anisotropic scaling. However, in the FRPM case 

      component is under-predicted as the Gaussian scaling was derived from a RANS field. 

The     FRPM reference location for       and       corresponds to the closest Cartesian 

grid point available in comparison to           in the experiment. Moreover, in the 

FRPM simulation       and       profiles were also checked using the next available grid 

point (          ) as a reference, which resulted in a marginal difference only to profiles 

seen in Figure 36. 

   

4.4 Discussion on the main outcomes of the numerical flow 

simulations when applied to benchmark cases of interest  

In section 4.1 the results for the ideal flow past a circular cylinder have been presented using 

the CABARET numerical scheme and compared to some popular schemes used in the 

commercial software ANSYS Fluent. Encouraging results were obtained for the CABARET 

scheme where not only the flow remained fully attached which is entirely in agreement with 

the Euler flow theory for a circular cylinder but also, the scheme produced very small amount 

of dissipation in comparison to the Roe-FDS scheme which has been a preferred scheme in 

Fluent. Figure 16 illustrates this fine difference. Ultimately, this result provided the 

motivation for implementing the MILES method based on the high-fidelity CABARET 

scheme for solving challenging aero-acoustics benchmark cases.  

In section 4.2 the solution of the flow past a circular cylinder at Re 50,000 has been 

attempted using the MILES CABARET method. By far the most challenging part of the 

problem at this flow regime is modelling the separation point accurately. The near-wall grid 

resolution was established to be insufficient for accurately resolving the fine scales for the 

benchmark case at sufficiently high Re number with the rapid turbulent transition in 

separated shear layers, which is thought to be the most challenging flow regime for numerical 

modelling. In the CABARET simulation the flow separation was slightly delayed which also 

resulted in over-prediction of the shedding frequency. Therefore, applying the stochastic 

white noise tripping to initiate earlier separation has been regarded as a possible solution. 

Despite predicting the separation at  80° which corresponds to theory an overly accelerated 

flow still affected the formation of separated shear layers. The time-averaged wall pressure 

coefficient produced a good indication on the near-wall flow behaviour. Even though using a 

stochastic tripping with the MILES method has not allowed to correctly resolve the flow over 

the circular cylinder, room for improvement in modelling the separation point with the 

MILES method exists by applying the new snappy hex meshing technique as demonstrated 

for the aerofoil case. Possible solution to the problem is eliminating the elongated near-wall 

cells by only refining the first few layers of the computational grid in the streamwise 

direction. The current best MILES CABARET simulation was performed within a week on a 
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single GPU card. Therefore, with the application of the modern computational method, 

simulation time remains realistic for such a challenging problem. On the other hand, 

application of the MILES CABARET for resolving the wake can be regarded as one of the 

strengths of the method. For example, extending the cylinder benchmark to the rod-aerofoil 

case should not present a problem as long as the physically accurate flow behaviour could be 

obtained around the cylinder itself. On the other hand, due to the sufficiently large Reynolds 

number this problem still remains a challenge for other methods including a hybrid RANS-

LES. For example, the DES simulation performed in ANSYS Fluent was not close to 

producing similar results obtained in [83] which closely resembled the theory and 

experimental measurements. One possible reason for such deviation could be that DES model 

requires a specific calibration.      

In Section 4.3 a comparison of near-field flow solutions has been presented for the two 

benchmark aerofoil cases with sharp and blunt trailing edges. Numerical flow solutions have 

been first evaluated by the RANS/URANS methods and supplied to the FRPM for obtaining 

turbulent flow quantities, which were then compared to LES solutions and to the experiment. 

By assuming a fully turbulent boundary layer in the RANS simulation, the near-field mean 

quantities showed encouraging agreement when compared to experimental flow data 

available. For the blunt trailing edge case the trailing edge has been modified which resulted 

in the correct shedding frequency as recorded in the experiment. Moreover, surface pressure 

and the skin friction coefficient showed an excellent agreement at the trailing edge with 

independently obtained numerical data. For the blunt trailing edge, Brooks & Hodgson [92] 

reported the    value that was also found at the same location in simulations.    

LES simulations have been performed with two boundary layer tripping techniques, one that 

copied the experimental step tripping and the other was a suction/blowing numerical 

technique, which has been extensively tested in this work and also in [64]. The skin friction 

coefficient at the trailing edge shown in Figure 29 was found to be in good agreement 

between LES and RANS methods. Also, the velocity profiles recorded in the vicinity of the 

trailing edge showed a reasonable agreement with experimental data for both tripping 

techniques used with LES. For turbulent intensity profiles the best agreement has been 

obtained for the ‘medium’ step tripping. (See Figure 28) The results of this simulation have 

been used for derivation of the effective sources of trailing edge noise as will be discussed in 

Chapter 5 which are then compared to sources obtained in FRPM. Additionally, for the 

FRPM solution, the re-constructed TKE profiles are shown at the two     trailing edge 

locations for chosen values of the    calibration parameter and the value that gives the best 

agreement to LES data has been determined. Finally, the comparison for the integral 

correlation length scales between the FRPM solution, ‘Rnoise’ results found in the literature 

and the experiment has been presented.    
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Chapter 5 

Acoustic modelling  
 

This chapter presents the comparison of acoustic sources between LES and FRPM 

simulations obtained by reconstructing the noise sources in the vicinity of the trailing edge in 

accordance to the vortex sound formulation discussed in Chapter 2. After presenting the near-

field flow validation and discussing LES and FRPM methodologies in the previous chapter, 

the acoustic sources obtained via both methods will be compared at the source level. 

Effective sources comparison is performed by taking a root-mean-square of instantaneously 

evaluated acoustic sources in the vicinity of a trailing edge over a sufficient period of time so 

that converged statistics is obtained. Subsequently, a calibration of the FRPM model based on 

LES is discussed. As far as the far-field acoustic predictions are concerned, in Section 5.2 the 

APE propagator is tested on a monopole benchmark problem and compared with the 

analytical solution. Then, in Section 5.3 noise predictions for the sharp trailing edge are 

obtained and discussed following with application of the scale decomposition approach 

proposed in Chapter 3 for obtaining acoustic predictions for the blunt trailing edge case.   

    

5.1 Reconstruction of the effective noise sources from 

FRPM and LES methods in accordance to the vortex 

sound formulation 

This work includes the analysis of individual source terms outlined in Eq. (2.99) in Chapter 2 

that are obtained from FRPM and LES simulations. Notably, the FRPM sources involve the 

calibration length scale parameter,   , which value has been discussed in the previous chapter 

with the reference to the near-field trailing edge flow quantities. Moreover, bearing in mind 

that the recommended value for the    constant in airframe noise is somewhere in the range of 

0.5 … 0.75 as reported in Chapter 3, the two selected values based on the near-field flow 

results (0.5 and 0.72) turned out to roughly represent both ends of the range. For that reason it 

has been decided to compare the FRPM vortex sound sources for both values.    

For FRPM simulations the source calculations are performed in two dimensions where, for 

example, in Eq. (2.99)       term II matrix consists of two velocity components and a z-

vorticity which is the vorticity in x-y plane. For the acoustic source terms comparison like for 

like 2D terms are obtained from the LES simulation. It should be noted that from LES one 

can obtain a full non-linear acoustic source matrix as prescribed by Eq. (2.99), including all 

three types of source terms in 3D.  
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      ̅̅̅̅   ̅  
      

 }      (5.3) 

The terms in Eq. (5.1-5.3) include mean and fluctuating components where depending on 

assumptions different parts could be used to describe a simplified acoustic source as would be 

discussed in the following sections where a trailing edge comparison is drawn. Thus, Eq. 

(5.1-5.3) serve as a reference for a complete vortex source model used in trailing edge noise 

computations.       

 

5.1.1 Source term II comparison  

The acoustic source term II in Eq. (2.99), which can be represented by the       matrix is 

regarded as the dominant source term contributing to the far-field pressure in trailing edge 

noise simulations. Figure 37 and Figure 38 shows the RMS of    and    components 

obtained for a 2D source model, where    { ̅  
 } and    {  ̅  

 }. The x-y dimensions of 

the comparison area are equal between FRPM and LES that is also the size of the FRPM 

auxiliary grid patch which extends from     0.9 to 1.1 and     from -0.06 to 0.06.  

  

Figure 37 – MILES CABARET RMS contours of the acoustic sources    and    for term II 

in Eq. (2.99). 

  

Figure 38 – Altus FRPM RMS contours of the acoustic sources    and    for term II in Eq. 

(2.99) 
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In the FRPM model, a Cartesian cell width is chosen               that is 4 times 

smaller than a minimal reference integral length scale of importance ~0.002 from Figure 

23(c). A total of 151050 particles were used to discretise Eq. (3.1), so that the recommended 

particle density [55] was achieved with 10 particles per cell. A rectangular decay function 

that ranges from zero to 1 is applied to acoustic sources at the sides of the FRPM domain as 

can be seen from Figure 38 to avoid possible spurious sources generation in an acoustic 

simulation, whereas contours in Figure 37 are calculated directly on the LES grid. The last 

percentage of the area over which a decay function acts in the FRPM domain affects the 

overall source volume. Hence, it should be taken into account when comparing acoustic 

predictions between different runs. In FRPM the wall boundary condition is automatically 

prescribed by the mean flow from RANS. In this case no special treatment is applied when 

evaluating near-wall gradients on a Cartesian grid and nodes which fall inside the boundary, 

by definition, have zero velocity. It can be seen that at the trailing edge    RMS is much 

stronger than    RMS which holds true for both LES and FRPM simulations. In the LES 

simulation, Figure 37, strongest sources are found in a close proximity to the wall upstream 

of the trailing edge. Vortex sound sources become weaker moving downstream towards the 

tip of the trailing edge where flow merges. From theory, it is expected to find the strongest 

acoustic sources in a close proximity of a trailing edge tip. High upstream magnitudes in 

Figure 37 may have resulted due to boundary layer tripping artifacts or hydrodynamic 

contribution to the vortex source term. In the FRPM simulation, strongest sources are also 

found in a close proximity to the wall with a decreasing magnitude towards the trailing edge 

but despite having comparable maximum RMS values to those calculated from LES, in 

FRPM sources are spread along the entire surface of the aerofoil’s trailing edge, apart from 

the upstream portion where a decay function gradually kills all of the source.  

  

Figure 39 – Comparison of the trailing edge profiles between LES and FRPM (with different 

   coefficients) at          and            locations, showing the magnitude of source 

q-rms for term II normalised by the chord and the square of free-stream velocity. 

The chord-normal contour pattern is different between the two simulations – in LES there is a 

consistent decrease in the acoustic source strength in a wall normal direction, whereas in the 

FRPM method a second amplification is observed within the zone of high acoustic sources 
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concentration. Figure 40 illustrates the non-physical kink at           present in the vorticity 

component of the FRPM simulation which is further amplified for the source term. This non-

physical effect is caused by the rapid variation of the integral length scale around the trailing 

edge, whereas the implemented FRPM source model relies on smoothly varying length scale 

gradients. The    value has some control over the length scale field which in turn influences 

the FRPM source contour pattern seen in Figure 38 for         at the stage when turbulent 

perturbations are derived. 

Figure 39 shows the trailing edge profiles of the source RMS derived from LES and FRPM 

simulations at two comparison locations. All source profiles shown for LES results in this 

section are derived from the simulation which employed the medium step tripping which 

showed the closest agreement to the near-field experimental data in Chapter 4. In Figure 39 

the distinctive difference between FRPM simulations for different    values tested mainly is 

in profiles’ shape, where for the highest    value of 0.72 the second peak at                

is well pronounced that is smoothed out with a decreasing    coefficient to a lower value. The 

source averaging has been taken over the entire acoustic simulation. RMS source 

convergence into symmetric looking contours as well as convergence in terms of magnitude 

was achieved approximately at 1/5 of time into the simulation run. In terms of the source 

magnitude, the best agreement between LES and FRPM was found for the    value of 0.5 for 

which the turbulent kinetic energy profiles in Figure 35 also showed the closest match. 

The mean velocity profiles were validated against the experiment at the trailing edge location 

            in the previous chapter. Hence, for the term II matrix       the 

instantaneous vorticity is the only remaining component derived from the simulation which 

validation should close the source derivation in Figure 39 and also, for better arguing the 

effect of an integral length scale. Figure 40 shows the comparison for the vorticity term 

which concludes the validation for the entire source term II in 2D.        

 

Figure 40 – Comparison of the trailing edge profiles between LES and FRPM (with different 

   coefficients) showing the RMS of z-vorticity normalised by the chord and the free-stream 

velocity. 
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5.1.2 Source term I comparison  

The source term I in Eq. (2.99) reads:      , meaning this time velocity perturbations are 

combined with the mean vorticity. By using Eq. (5.1-5.3) with a 2D assumption results in the 

sources    {    ̅̅̅̅ } and    {     ̅̅̅̅ }, where in the FRPM simulation   ̅̅̅̅  may be supplied 

directly from RANS and instantaneous velocities are evaluated by the FRPM method in a 

usual way. Figure 41 shows the mean  -vorticity profiles comparison between LES and 

RANS at the two trailing edge locations. There is a slight discrepancy between peak 

amplitudes which is seen right next to the wall/centreline for both     locations. Although, 

the mean vorticity is roughly in the same range up to     ~ 0.2 between the two simulations 

but the rate at which it reduces when moving away from the wall/centreline is different, 

where the RANS simulation profiles clearly show the inflection. Most vortical structures are 

extinct beyond approximately     of 0.3 which is true for both simulations.        

  

Figure 41 – Comparison of the trailing edge profiles between LES and RANS at          

and            locations, showing the mean vorticity normalised by the chord and the 

free-stream velocity. 

The profiles presented in Figure 42 show the magnitude of the RMS source term I for two 

FRPM simulations when compared to the result from LES. Also, for            where 

the experimental data is available, the additional source term is derived using the combination 

of the mean vorticity from the LES shown in Figure 41 and experimental rms velocities at the 

nearest probe location. In Figure 42 for            location it can be seen that by using 

the experimental stream-wise velocity component values to compile the source term instead 

of         velocities from the LES, which were slightly over-predicted close to the 

centreline, the resulting peak magnitude of the source term I is very close to magnitudes seen 

in the FRPM method. By comparing results in Figure 42 with the term II sources in Figure 39 

it becomes evident that the peak amplitudes for the RMS source term I are several times 

lower than those for the RMS source term II. This finding supports the hypothesis discussed 

in [57], where the vortex source term II is stronger than term I for trailing edge noise 

simulations. Nevertheless, it cannot be assumed negligible, especially at the near-wall region 
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where the source interaction, possibly, may have an influence on the far-field acoustic 

predictions. 

  

Figure 42 – Comparison of the trailing edge profiles between LES, combination of LES/Exp. 

and RANS at          and            locations, showing the magnitude of source q-

RMS for term I normalised by the chord and the square of free-stream velocity. 
 

5.1.3 Source term III comparison  

The source term III in Eq. (2.99) is a non-linear source which is comprised of       matrix 

where for the 2D source model    {    
 } and     {    

 } reads according to Eq. (5.1-

5.2). The comparison between term III obtained from LES and RANS is presented in Figure 

43.  

  

Figure 43 – Comparison of the trailing edge profiles between LES and RANS at          

and            locations, showing the magnitude of source q-RMS for term III 

normalised by the chord and the square of free-stream velocity. 
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The peak RMS amplitude of the quadrupole source term is found to be greater in the FRPM 

simulations which are considerably more difficult to validate since the source term III 

involves multiplication of instantaneous quantities first and only then the average effect is 

evaluated. The peak values have a comparable magnitude to the source term I. However, one 

must note that the sound power of the quadrupole term at the far-field scales with     while 

the sound power of the dipole scales as    . Hence, the non-linear source term III is 

typically ignored for low Mach number flows. In Figure 43 the comparison is presented to 

completely analyse the vortex source term given by Eq. (2.99).   

After comparing all three terms which are part of the vortex source model Eq. (2.99) at the 

two trailing edge locations it is possible to conclude that noise sources are similar enough 

between LES and FRPM simulations. First of all, the mean flow velocity obtained in the 

RANS simulation showed an excellent agreement to experimental measurements. (See Figure 

23) The remaining part of the source term II is a vorticity fluctuation which comparison has 

been presented in Figure 40. The apparent similarity in magnitude and shape of the RMS 

plots obtained via different numerical techniques inspire confidence in the FRPM method. 

Secondly, velocity fluctuations which are part of term I are also available from the 

experiment and were analysed for the numerical simulations in Chapter 4. Overall, source 

term I is found to be in very good agreement between FRPM and LES simulations. A slight 

inflection seen in the FRPM results for term I can be traced back to the z-component of the 

mean vorticity (see Figure 41) which is ultimately the artifact of the RANS simulation. The 

agreement for the non-linear term is less convincing than for the two linear terms. 

Fortunately, term III is considered to be insignificant for the far-field acoustic predictions in 

the trailing edge noise case. The wave propagator which is a core part of the Altus solver is 

considered next where a representative case may help to assess the validity of noise 

predictions at an observer location.        

 

5.2 Testing the APE propagator on the monopole 

benchmark problem 

After presenting the source terms comparison with LES data for the sharp trailing edge in the 

previous section, wave propagation techniques into the far-field are to be considered. So far it 

has been established that the FRPM model gives similar enough results to LES for linear 

sources (term I & II) in the context of the vortex source model. Also, having established a 

low sensitivity of the FRPM source model on the CFD numerical grid resolution in Chapter 

4, the remaining step is to verify the performance of the numerical propagation model. 

Hence, the test problem which permits an analytical solution is considered first.  

For a monopole propagation test, zero mean flow conditions are used for comparison with the 

analytical problem. However, where APEs are employed for obtaining an acoustic solution of 

more complicated cases, such as aerofoil’s trailing edge noise, presented in the following 

section, the RANS mean flow is mapped to the acoustic grid for the purpose of providing 

local density and velocity information. The flux reconstruction at the faces of control 
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elements is achieved using the Roe flux-splitting scheme. The governing equations are 

integrated in time using the 4
th

 order explicit ADER method [82] of Titarev and Toro. All of 

these features are available in the framework of Altus solver which is used together with the 

FRPM method as discussed in Chapter 3.  

For solving the acoustic propagation problem the computational domain is covered by a 

triangular prism grid with the numerical “microphone” inserted at the far-field. The prismatic 

layer has one element in the span-wise direction that is the homogeneous direction of the 

problem. A symmetry plane condition is used in the span-wise direction and far-field 

characteristic boundary conditions are imposed at all other open-domain boundaries. The 

acoustic grid is generated with the goal to resolve frequencies up to 10 kHz, which is 

designed with an aerofoil problem in mind, with at least 2 elements of order 6 per acoustic 

wavelength in the coarse grid region. In the current implementation a P6 element has 56 

degrees of freedom for a prism wedge, where in general the number of degrees of freedom 

per element follows the equation               where    stands for the polynomial 

order. A monopole source is located in the rectangular source region of the same type as used 

for trailing edge noise simulations which is covered by the first order elements, which are of 

the smallest size comparing to higher order elements in the rest of the domain.      

A cylindrical wave propagates from a point harmonic force at frequency  , which 

corresponds to the fluctuating force, f in the momentum equations so that        

      , where                ,   and   are the observer and the source coordinates, 

respectively, and   is the time in the source reference frame. The resulting acoustic 

propagation problem is governed by the familiar non-homogeneous linear wave equation: 

(
 

  
 

  

   
   )                   (5.4) 

where                    is the effective source as expressed through the 

fluctuating force. Eq. (5.4) can be solved in cylindrical coordinates       centred at the 

source with the appropriate radiation condition at the far field (    ). The resulting 

solution for the Fourier wave amplitude of the acoustic pressure wave derived in [164] [165] 

is given by: 

   
 

 
   

       
   

 
                           (5.5) 

where        and   
        is the Hankel function of the 2

nd
 kind. At large distances from 

the source,       the asymptotic solution is valid. 

       
 

√  
 

 

               

                         (5.6) 

which at a 90
0
 observer angle leads to a scaling of the pressure amplitude with frequency so 

that | |  
 

   
 

 .  
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For zero flow conditions, the acoustic propagation equations are solved with a localised 

source in the momentum equations which approximate the fluctuating point source         

by a Gaussian profile                  : 

                   
    

|   | 

                          (5.7) 

where the characteristic size of the numerical source distribution,  , was taken to be around 

4-5 grid elements. The latter choice was a compromise between the grid resolution required 

to capture the source function numerically and making sure that the source remains compact, 

e.g.      . 

Figure 44 shows the result of comparison between the calculations and the theory in terms of 

the far-field sound pressure amplitude when increasing the sound frequency,   while keeping 

all other test parameters the same. The observer location corresponds to a typical position of 

the far-field microphone in the trailing edge noise experiments at a 90
0
 observer angle to the 

chord. The amplitude of the numerical solution is Fourier transformed from the 

corresponding pressure signal. The amplitude of the analytical solution is calibrated so that it 

exactly matches the numerical solution at the lowest sound frequency corresponding to 2 kHz 

and then scaled in accordance with theory so that | |  
 

 . The numerical solution is within 

5% from the analytical solution up to frequencies around 12 kHz, which demarcates the limit 

of the numerical resolution. Eventually, propagation errors become larger as one would 

expect beyond the frequency resolution limit of the grid where for 16 kHz the average peak 

amplitude drops significantly in comparison to the expected value. However, even at the 

highest frequency considered, 16 kHz, the numerical solution deviates within 10% of the 

analytical solution meaning that in terms of the acoustic power on the Decibel scale, this is 

still within 1 dB. 

 

Figure 44 – Comparison with the analytical solution for the acoustic wave propagation 

problem. 
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5.3 Acoustic predictions for the sharp trailing edge case 

In this section we shall begin with discussing some details for obtaining an acoustic solution 

via solving APEs which are coupled to the FRPM method in Altus. First of all, in the existing 

implementation there are two different numerical grids employed for the acoustic simulation. 

The trailing edge noise sources discussed previously are evaluated on the FRPM grid nodes, 

which are part of an auxiliary Cartesian grid (see Chapter 3). Then, the sources are mapped to 

an acoustic grid where the wave propagation takes place, using an unstructured prism grid as 

described in Section 5.2 for solving the monopole benchmark problem. Therefore, due to the 

difference in mesh types where source interpolation from a Cartesian FRPM to an 

unstructured 2D prism acoustic grid takes place, the resolution of the latter in the source 

region should be roughly the same as that of the FRPM grid for an improved accuracy of 

interpolation and accurate spatial representation of source terms. Secondly, mean flow 

quantities extracted from a CFD solution are mapped to the acoustic grid so that the mean 

flow effects can be taken into account by the APE propagator.     

Figure 45(a) shows an example of an acoustic grid in x-y plane which is comprised of prism 

elements and this grid is used for acoustic propagation of the trailing-edge noise sources to a 

far-field. It can be seen that the centre of the grid in Figure 45(a) is slightly offset 

downstream from the aerofoil’s trailing edge location. This offset is calculated based on the 

mean flow velocity which is used to improve the numerical efficiency of the far-field 

boundary conditions, as in this configuration, the far-field boundary is normal to the direction 

of the acoustic wave propagation. Hence, possible numerical reflections are minimised. At 

the aerofoil boundary, a no-slip wall ghost point boundary condition is applied.  

a)       b) 

  

Figure 45 – An example of the computational acoustic grid used for solving sound 

propagation problem (a), mean flow velocity at the trailing edge mapped on both FRPM and 

CAA grids (b) 

Figure 45(b) shows the mean velocity magnitude in the vicinity of the sharp trailing edge, 

mapped to both the Cartesian domain shown as a patch over the trailing edge and the 
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surrounding acoustic grid which is body-fitted around the aerofoil having the refined region 

inside the Cartesian source grid, i.e. the two grids overlap in the source zone. The acoustic 

grid rapidly expands away from the source region and the aerofoil wall, reaching the order 6 

elements in the far-field with the goal to resolve frequencies up to 10 kHz same as for the 

monopole benchmark. 

  

Figure 46 – Contours of an instantaneous acoustic pressure field shown together with the 

instantaneous acoustic sources at the trailing edge obtained via FRPM method. 

The acoustic data available for the sharp trailing edge experiment from the BANC workshop 

[68] provided by DLR corresponds to a microphone location at 1 m distance or 2.5 chord 

units from the aerofoil trailing edge and a 90° observer angle. Figure 46 shows the snapshot 

of the Lamb vector {     } as a patch over the sharp trailing edge representing noise 

sources which are displayed over the instantaneous acoustic pressure field on the grid shown 

in Figure 45(a). 

Figure 47 compares the DLR data for the Sound Pressure Level (SPL                  ) 

1/3 octave band noise spectra with the current FRPM numerical predictions. The reference 

pressure level is taken as 20    . Results for two implementations of the FRPM source 

model are shown: one is the complete source model including the non-linear source in Eq. 

(2.99) and the other includes just the first two linear terms. Notably, for the current 

benchmark problem, the full source model including the nonlinear terms and the linear source 

model produce virtually the same noise spectra. This agreement is consistent with findings 

reported in [57] which discussed FRPM model results for broadband aerofoil noise 

predictions with the assumption that the nonlinear source terms are not important. 

For comparison with the experiment which corresponds to a finite span size, the amplitude 

correction has been applied to noise predictions of the current 2D numerical model to account 

for 3D effects. Overall, the 2D source model implemented is thought to give a very close 

approximation to the sound sources found in the vicinity of the thin trailing edge where 

fluctuating quantities become quickly uncorrelated along the aerofoil’s span. However, at low 

frequencies, the spanwise correlations which are not reproduced by the RANS or the 2D 

source model may have an impact on the far-field acoustics. Due to two-dimensionality of the 

current FRPM-based predictions the current model is not applicable for low frequencies, 
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estimated below ~850 Hz, where the span length of the aerofoil section becomes comparable 

to the acoustic wavelength. On the other hand, the noise behaviour at low frequencies 

requires further investigation since the experimental data in the low frequency range is not 

available and accuracy of the empirical Brooks-Pope-Marcolini (BPM) model for the blunt 

trailing edge in Section 5.4 for these frequencies is questionable too. Following the 2D FRPM 

model framework by Ewert et al. [62], the absolute levels of the numerical power spectra are 

adjusted by the same value to match the peak frequency of the experimental data. 

The sound pressure levels were scaled with           for 2D to 3D correction originally 

proposed for the FRPM method, where   is the free-stream Mach number and   is a 

calibration parameter to match the required amplitude. In the present work the empirical 

calibration offset corresponds to n ~ 1.5. This amplitude correction has been performed only 

once for the full source model corresponding to the sharp trailing edge experiment. The same 

amplitude calibration is then applied for all other models including the blunt trailing edge 

noise predictions considered in the following section. In essence, it can be argued that this 

amplitude correction can be agglomerated in the definition of the filter amplitude scaling 

based on the RANS flow solution as described in Eq. (3.10). Such agglomeration then leads 

to the RANS-based aerofoil noise prediction scheme to be dependent only on two calibration 

parameters. Overall, the shape of the noise spectra is captured well including the roll-off at 

high frequencies which are within 3-4 dB from the experiment. Note that the empirical 

amplitude correction applied appears to be case sensitive and needs to be re-evaluated. For 

cases with complicated geometries another wave propagation strategy shall be used, primarily 

to account for 3D effects.  

 

Figure 47 – Comparison with the DLR experiment for the sharp trailing edge case: Sound 

Pressure Level (SPL) 1/3 octave band noise spectra predictions with and without including 

the non-linear sound source term. 
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Figure 48 compares contributions of different noise sources to the far-field noise spectra. 

Except for the low frequencies at which the current quasi-2D acoustic modelling is less valid, 

the source term II,      , remains dominant compared to all other terms for the sharp 

trailing edge noise case. Again, this finding is consistent with [57].  

 

Figure 48 – Sound spectra predicted by simulations employing individual noise source terms, 

Term I, II and III of Eq. (2.99) respectively and the full source model consisting of all source 

terms in comparison with the DLR spectra for the sharp trailing edge case. 

After analysing the contribution of individual source terms for a reference case with the    

parameter equal to 0.72 it is necessary to compare a 1/3 octave band spectra calculated for a 

   value of 0.5 which had a better agreement to LES near-field results. Figure 49 compares 

noise predictions obtained using source term II for different    values previously analysed. 

For the calibration constant     0.5 the peak noise is lower at low frequencies than for the    

value of 0.72 and for the former results are closer to the experimental curve consistently 

using the same amplitude scaling. Also, findings in Section 5.1 indicate that higher turbulent 

velocities have been recorded in the latter case, with the    value of 0.72, which can be the 

cause of slightly amplified noise levels. For high frequencies the difference between the two 

simulations is marginal with a similar roll-off slope. It should be pointed out that in our 

simulations the length scale limiters have not been applied meaning that the calibration 

constant    scales the entire turbulent length scale field originally derived from RANS data, 

contrary to the FRPM trailing edge noise modelling shown in [57] and [62]. It is thought that 

without lower or upper limit adjustments a finer assessment is presented when comparing the 

trailing edge sources with those from LES. In this case the lower cut-off scale is prescribed 

entirely by the FRPM grid, which dimensions were discussed in Section 5.1.1.     
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Figure 49 – Comparison with the DLR experiment: SPL 1/3 octave band noise spectra 

prediction for source term II using two different    calibration constants. 

Having established the sensitivity of the FRPM noise predictions to the length scale 

calibration parameter with all other identical inputs an investigation into parameters that can 

affect the amplitude has been carried on. As there is no strict reference for the FRPM domain 

size several simulations were performed with alterations to the overall FRPM source volume. 

After such investigation it is proposed that the amplitude calibration should also take the 

FRPM source region into account. It has been discovered that the far-field acoustics is 

sensitive to the source volume in the vicinity of the trailing edge over which the FRPM 

simulation is performed. For example, by expanding the source calculation zone, and thus, 

capturing the newly exposed area of high velocity gradients in the near-wall region, which 

inevitably results in the stochastically generated noise contributing to the overall acoustic 

source volume, produces amplification of noise at the far-field. A decay function built into 

the FRPM source region has a similar effect of changing the overall source volume. 

Arguably, the strongest dipole source should be found behind the trailing edge tip and by 

expanding the source volume, i.e. including the upstream portion of sources, should not 

greatly affect the noise levels at the observer location. For this matter, Figure 50 shows the 

sensitivity of the FRPM method to the increased source zone by narrowing the effective area 

of the decay function from the last 30 down to the last 10 per cent of the FRPM source region 

which dimensions were provided in Section 5.1.1. The noise spectrum shown in Figure 50 is 

also obtained for the source term II with a    calibration parameter of 0.72 and all other inputs 

identical to the ones used for acoustic predictions in Figure 49. It can be seen that the roll-off 

slope and high-frequency noise are clearly affected. Moreover, such augmentation of the 

FRPM source zone led to empirical calibration amplitude offset being adjusted to n ~ 2.8 to 

counteract the noise amplification due to increase of the effective source zone. Hence, as the 

best practice, when comparing between different FRPM simulations the calibration constant 

and the source region should remain unchanged. 
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Figure 50 – Comparison with the DLR experiment: SPL 1/3 octave band noise spectra 

prediction for source term II showing the sensitivity to the FRPM source calculation zone. 

For LES simulations an integral method for obtaining far-field acoustics has been used 

instead of solving APEs. There are a few aspects that need attention regarding the 

implementation of the FW-H integral method when coupled to a high-fidelity solver for low 

Mach number flows. In general, resolving boundary layer flow features with LES requires a 

fine near-wall grid which in turn is a limiting factor for a computational time step as it was 

discussed in Chapter 4. Usually, in airframe noise problems the strongest acoustic sources are 

found in the close proximity to a solid body which is also true for the trailing edge noise 

problem considered in this section. Therefore, in LES simulations an impermeable control 

surface S is placed in the highest source concentration region that is next to a wall. As a 

consequence, for the size of problems typically found in engineering, data storage of 

variables recorded over time often becomes an issue. It is possible to overcome this constraint 

by processing acoustic data ‘on the fly’ during the simulation run. [50] In either case, for a 

rapidly changing turbulent field, for example, in the zone of intensive turbulent mixing, 

selecting relatively large time integration intervals presents a risk associated with obtaining 

incorrect time derivatives of the turbulent quantities. Moreover, for a low Mach, near-wall 

perturbation density and pressure signals may appear excessively noisy, inevitably leading to 

non-physical pressure amplification, which in the worst case results in errors dominating over 

genuine fluctuations. Figure 51 shows a raw data for density, three components of velocity 

and energy being collected over a time period at the trailing edge location, which shows that 

the noisiest signal is found for the density and energy being the second noisiest. This problem 

is particularly evident for high frequencies on a sound pressure spectrum which has a direct 

impact on acoustic predictions shown in Figure 52.     
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Figure 51 – Raw data showing fluctuations of turbulent quantities recorded over a time 

period at the trailing edge of a NACA 0012 aerofoil in MILES CABARET simulation. 

 

Figure 52 – Comparison with the IAG and DLR experiments: PSD (dB/Hz) noise spectra 

prediction for MILES CABARET using the FW-H integral method. 

The far-field narrowband PSD results seen in Figure 52 are normalised to the 1 m span 

following the procedure undertaken in [64] and to 1 Hz. In general, the LES acoustic results 

are in very good agreement with the experiment for most parts of the spectrum, where only 

beyond 10 kHz a slight amplification is observed. The spectrum shows that the deviation of 

the peak amplitude is only 1 2 dB at the experimental peak location and the roll-off slope is 

accurately captured. Overall, such close agreement with experimental measurements for the 

far-field sound pressure level inspires confidence in the FRPM source scaling at the source 

level which was adjusted according to the source information of the LES simulation.         
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5.4 Acoustic predictions for the blunt trailing edge case 

Following the scale decomposition approach proposed in Section 3.3 of Chapter 3 the 

acoustic results are obtained for the blunt trailing edge benchmark problem in the framework 

of the FRPM method. Large scale fluctuations are derived from the URANS solution 

presented in Section 4.3.4. For noise predictions the 2D aerofoil profile is considered 

following the same methodology as for the sharp trailing edge. The domain is meshed using a 

variable order of the finite elements, starting from the first-order elements in the finest grid 

region close to the aerofoil boundary and in the source region around the blunt edge while 

using the 6
th

 order elements in the far-field region. Figure 53(a) shows an acoustic grid in the 

vicinity of the blunt trailing edge. 

a)        b) 

  

Figure 53 – Computational acoustic grid in x-y plane. Grid elements in the vicinity of a 

trailing edge (a) and the far-field showing high order elements over an instantaneous acoustic 

pressure wave (b). 

For the blunt trailing edge experiment of Brooks & Hodgson [92], the observer location is 

again at 90° to the free stream and the distance to the far-field microphone corresponds to  

        m which is approximately 2 chords lengths. Figure 53(b) shows the high order 

elements over instantaneous acoustic pressure waves in the far-field zone roughly at the 

observer’s location where dots represent degrees of freedom. 

Figure 54 shows the comparison of noise spectra predictions from various computations 

based on the first URANS simulation, which slightly under-predicts the vortex shedding 

frequency of the experiment as discussed in Section 4.3.4. Results of the empirical Brooks-

Pope-Marcolini (BPM) solution from [66] are shown on the same plot for comparison. There 

are two solutions for noise spectra shown. The first solution is based on the standard FRPM 

formulation where the velocity source fluctuation includes only the stochastic turbulence 

component defined through the time-local URANS scale. The other solution is based on 

using the full velocity fluctuation including the tone as discussed in Section 3.3. For 

comparison, the acoustic prediction corresponding to the isolated tonal part of the source 

(without the broadband part) which exhibits a secondary weak tone at ~5 kHz, is shown in 

the same figure. The secondary peak is not visible for the combined URANS solution due to 
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overwhelming impact of broadband noise at 5 kHz. It can be noticed that unlike either the 

pure broadband FRPM solution or the pure tonal noise solution, the prediction of the new 

unified approach includes both elements and is within 3dB agreement from the experiment 

apart from some offset of the tone. As expected, the numerical tone prediction is shifted 

towards a lower frequency within 2-3 kHz range in accordance with under prediction of the 

shedding frequency by the first URANS simulation. 3dB is approximately the same error bar 

as demonstrated by the FRPM method implementation in the previous sharp trailing edge 

noise test. 

 

Figure 54 – Comparison with experiment and the reference empirical model [66] for the 

blunt trailing edge case: Sound Pressure Level (SPL) 1/3 octave band noise spectra 

predictions based on the first URANS model with and without including the tonal noise 

source component and also for the pure tonal noise component. 

To address the question of correlation between the broadband signal and the tonal noise at the 

far field, Figure 55 compares the spectra prediction of the model that accounts for both noise 

components, broadband and tonal, at the source level and the synthetic spectra obtained by 

simply adding squares of the acoustic pressure amplitudes of the pure broadband and the pure 

tonal noise signals in the far-field at the post-processing stage. The difference between the 

two spectra for the relevant frequency range is within 2dB which is within the accuracy of the 

current FRPM model and the two far-field signals are found to be uncorrelated in this 

particular case. 
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Figure 55 – Sound Pressure Level (SPL) 1/3 octave band noise spectra comparison between 

the full term including the broadband and the tone at the source and the synthetic spectra 

obtained by simply adding squares of the acoustic pressure amplitudes of the pure broadband 

and the pure tonal noise signals in the far-field. 

Figure 56 shows the spectra predicted using the current URANS model with the tone 

included which are broken down into individual linear and non-linear source contributions in 

accordance with Eq. (2.99) :       (term I),       (term II), and       (term III) as 

well as the total spectra. 

It can be observed that while term II remains dominant for the broadband part of the spectra 

as compared to the other terms, term I is equally important in the region of the tonal peak. 

The importance of term I for the blunt trailing edge case is a clear distinction as compared to 

the sharp trailing edge flow, where the noise mechanism was purely broadband. 

Interestingly, for the tonal peak, the noise contribution from source terms I and II are of a 

similar magnitude to the total signal. This means that the sound pressure powers produced by 

the two sources do not simply add up to produce the total since acoustic source interference 

of the two source terms is not negligible in contrast to the broadband and tonal noise 

components in Figure 54. Instead, the phase difference between the corresponding pressure 

signals produced by the two sources is close to    . The latter is consistent with relating the 

tonal noise mechanism to a linear shear wave transport where velocity and vorticity 

fluctuations are offset in phase by    . For the blunt trailing edge aerofoil case, the 

contribution of the non-linear term III remains insignificant in comparison with the linear 

sources as observed for the sharp trailing edge aerofoil problem. This further reconfirms that 

in this case the interference of the tonal and broadband noise sources is not important. 
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Figure 56 – Sound level predicted by simulations employing individual noise source terms, 

Term I, II and III of Eq. (2.99) respectively and the full source model for the blunt trailing 

edge case. 

 

Figure 57 – Comparison with experiment [92] for the blunt trailing edge case: Sound 

Pressure Level (SPL) 1/3 octave band noise spectra predictions based on the modified 

URANS flow solution. 

Figure 57 shows the total noise spectra predictions obtained with the second URANS 

solution, which was fine-tuned in accordance with the description in Section 4.3.4 to 

reproduce the correct shedding frequency of the experiment where the blunt trailing edge was 

slightly elongated, thus, reducing its thickness. As a result of such alteration the wake 

shedding frequency increased compensating for inaccuracy of the URANS model. The 
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acoustic predictions based on this second URANS solution are in excellent agreement with 

the experiment including both the broadband and the tonal part of the spectra. Overall, the 

current predictions are in agreement within 2-3 dB to the measurements. Importantly, except 

for the modified URANS solution, there was no other calibration used for obtaining the 

improved acoustic predictions with the FRPM model. 
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Chapter 6 

Conclusions and future work 
 

For the aerofoil trailing-edge noise applications a Fast Random Particle Mesh (FRPM) 

method combined with solving the time-domain Acoustic Perturbation Equations (APE) are 

used in the framework of the BAE Altus solver. The simulations were performed for a 2D 

model setting which made them amenable to a 48 hour run time per case on 64 computational 

cores running double precision. 

Comparison of the aerofoil trailing-edge RMS noise sources between the FRPM method and 

Large Eddy Simulations (LES) has been presented for the sharp trailing edge case considered 

in the Benchmark problems for Airframe Noise Computations (BANC) workshop. LES 

simulations were performed with two boundary layer tripping techniques, one that imitated 

the experimental tripping device and the other was implemented by introducing boundary 

conditions in the form of a suction/blowing numerical approach. For the Reynolds-Averaged 

Navier-Stokes (RANS) method a fully turbulent boundary layer assumption was used. 

Numerical flow results for all cases were then compared against experimental data and a 

good agreement for mean quantities was reported.  

The calibration length scale parameter    used in the FRPM method was adjusted with the 

help of LES data. The difference between the two ends of the recommended range, which in 

general for airframe noise is 0.5 … 0.75 as suggested in the literature, is found to be within 

several dB on the noise spectra for the sharp trailing edge. (See Figure 49) However, for 

obtaining accurate acoustic sources using the FRPM method a RANS simulation has to be 

closely examined first. As discussed in Chapter 3 the turbulent integral length scale derived 

from the two-equation RANS model consists of a turbulent kinetic energy (TKE) and a 

turbulence dissipation rate. For the aerofoil benchmark case, the RANS model produced an 

excellent agreement of the TKE with the experiment. On the other hand, there was a large 

deviation of the integral length scale close to the centreline when comparing to the BANC 

workshop data as a result of incorrectly predicted turbulence dissipation rate. This side of the 

problem deserves attention where for y/c up to   0.01 the length scale has a direct influence 

on noise sources and it also happens to fall within a highest source concentration zone. It is 

worth emphasizing that despite an excellent agreement found for the velocity and TKE 

quantities, the two-equation RANS model failed to give a credible ‘epsilon’ prediction up to 

y/c   0.01.        

To further improve the accuracy of noise sources prediction with the FRPM method which is 

based on a stochastic stream function one option can be to fine tune the RANS model for 

improved dissipation rate prediction. However, this would not automatically solve the 

problem of missing anisotropic turbulence length scales which are not obtainable from 
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RANS. In general, it is possible to assign different dimensional scaling of turbulence. 

However, such mechanism will be based on the additional empirical scaling which is 

complicated to perform correctly for cases containing rich physics. Since the FRPM method 

is efficient with regard to obtaining acoustic sources on a Cartesian grid and it takes only a 

fraction of the computational expense, the problem could be naturally extended to model 3D 

sources. However, the information on flow correlations cannot be simply obtained from the 

RANS/URANS methods. Possibly, one has to look into methods that are much cheaper than 

LES but at the same time can provide the correlation information. For addressing this issue, 

the stochastic realisation of turbulent sources could be performed using a Forced Linear 

Advection-Diffusion-Dissipation (FLADD) equation [166] which concept is regarded as 

promising, leading to further development of the FRPM method.       

In the FRPM simulation the TKE field can be recovered from stochastic velocities and 

because an excellent agreement was found for the mean data with the experiment in the case 

of flow past a NACA 0012 aerofoil, this parameter is also used for comparison with LES 

data. If the FRPM method is to be used under a ‘blind test’ condition, as an initial check, it 

should be ensured that the recovered TKE matches the target input from a RANS simulation. 

For the sharp trailing edge simulation it was determined that a statistical convergence is 

reached by averaging the near-field data over time equivalent to approximately 1/5 of the 

total acoustic simulation run time. Hence, performing the calibration of the    parameter only 

takes a fraction of the total simulation time.  

As far as the wave propagation is concerned, solving APEs in the time domain has been a 

preferred technique used in conjunction with the FRPM method. Initially, for an analytical 

problem of a fluctuating point force provided to the right-hand side of the governing acoustic 

equations and using a zero mean flow conditions, the accuracy of the current numerical wave 

propagation method for a grid resolution typical of the trailing edge noise problems of 

interest has been verified in comparison with the theory. For the trailing edge noise 

predictions, simulations showed an encouraging agreement (2-3 dB) with the experiment for 

both broadband and tonal noise. All model predictions are essentially based on RANS 

simulations with just two calibration parameters: one for the correlation length scale and the 

other for the amplitude correction. However, the wave propagation method based entirely on 

APEs is found to be the bottleneck in the current methodology as not only a two-dimensional 

propagation restriction applies but importantly, the amplitude correction which involves the 

second empirical scaling coefficient is found to be of a questionable validity. There is a 

possibility that such correction accounts for more than just 2D to 3D effects. In addition, the 

acoustic spectra are found to be sensitive to the FRPM source region as shown in Figure 50. 

Therefore, in the context of the current model only the relative difference in noise levels can 

be judged, providing the two FRPM far-field acoustic predictions are obtained using the same 

amplitude scaling and for the equivalent source volume. For the future work, employing an 

integral method such as Ffowcs-Williams and Hawkings (FW-H) also coupled to APEs or the 

Linearised Navier-Stokes (LNS) equations in the near-field may be considered, which should 

allow efficiently extending the source model and wave propagation to 3D.    
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Generally, a good agreement is found for the trailing edge vortex sources obtained via the 

FRPM method when comparing to those in LES at the source level. The ability of the FRPM 

method to reproduce similar looking source terms to LES with only one    calibration 

parameter which has quite a narrow range is the significant finding.         

For the flow over a bluff body, flow quantities are normally correlated over a large distance 

as for example, seen in the case of the flow past a circular cylinder where the pressure 

coherence is recorded over 5 cylinder diameters in the span-wise direction in the benchmark 

experiment. [59] These fluctuations are the underlying mechanism for broadband and tonal 

noise and for that reason the current FRPM model cannot give reliable source predictions for 

a cylinder benchmark. For overcoming one of the disadvantages of the method, the original 

FRPM technique has been extended to include tonal noise sources based on the idea of scale 

separation by combining the large-scale flow solution available from URANS with the fine-

scale FRPM solution. This modification allows for a unified treatment of the broadband and 

tonal noise sources at the source level, consistently accounting for source interference and 

possible nonlinear source interaction effects. 

For the new model validation the benchmark aerofoil case has been selected featuring a 

NACA 0012 aerofoil with a blunt trailing edge since similar modelling experience is gained 

having a sharp trailing edge. The benchmark problem investigated corresponded to the blunt 

trailing edge experiment conducted in 1980s by Brooks & Hodgson [92] for which the far-

field acoustic data is available. A zero incidence flow angle at a high Reynolds number of the 

order 2 10
6
 has been used assuming fully turbulent boundary layer conditions as for the first 

benchmark case. For the blunt trailing edge benchmark, two CFD simulations were 

performed. First, the simulation was performed using the reference trailing edge geometry 

and then with a 20% reduced trailing edge thickness, thus, accounting for the URANS 

modelling inaccuracy to reproduce the vortex shedding frequency of the experiment. Main 

accent was on the development of the stochastic source model which reflected this change in 

frequency showing that the model is sensitive to the CFD input. No modelling of the 

laminar/turbulent boundary layer transition occurring in the experiment was attempted. 

The importance of including a separate tonal noise source in the original broadband FRPM 

model as well as having an appropriate flow model that captures the relevant tonal scale is 

investigated. By comparing the predictions of the new unified model with the synthetic 

spectra obtained by simply adding squares of the acoustic pressure amplitudes of the pure 

broadband and the pure tonal noise signals in the far-field, it is shown that the broadband and 

the tonal sources are virtually uncorrelated for the test case considered. However, not to 

mention its generality, the new unified approach is approximately two times computationally 

more efficient since otherwise, the calculation of the synthetic spectra from the individual 

broadband and tonal signals requires 2 solutions of the far-field sound propagation problem. 

Using the current modified FRPM model it is shown that while the linear source term II 

associated with the vorticity fluctuation is dominant for the broadband noise both linear terms 

I and II which involve the fluctuating vorticity and the fluctuating velocity can be significant 

for tonal noise. In the latter case the total far-field spectra resulted from the acoustic 
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interference of sources I and II which cannot be simply added up because of the phase 

difference. It is also confirmed that for the current benchmark cases the effect of the 

nonlinear source is negligible as compared to the linear sources. 

For LES simulations the MILES CABARET method has been extensively tested on 

benchmark problems leading into investigation and implementation of various tripping 

techniques employed for overcoming the grid resolution limitation. In the aerofoil benchmark 

case with a Re number of 1.5M based on the chord a reasonably good agreement of the near-

field data has been reported. Moreover, it was possible to achieve a good match of the trailing 

edge flow quantities with experimental data using both the numerical suction/blowing 

boundary layer tripping and technique which involved simulating the actual step tripping 

device. The calibration of the boundary layer tripping was also discussed and once the time-

averaged flow results have been validated against the experiment, it led to the LES simulation 

providing a valuable insight into trailing edge noise sources. 

On the topic of MILES, for the flow over a circular cylinder considering the laminar 

separation (LS) case it has been anticipated that the biggest challenge is capturing ‘enough’ 

of the small scales responsible for the flow separation. A stochastic white noise boundary 

layer tripping technique has been applied to initiate a slightly earlier separation and although 

the tripping has been successfully implemented which produced the average separation point 

at a target 80° azimuthally, the flow over a cylinder remained overly accelerated. By 

operating without any SGS some influence on the boundary layer was likely required over the 

entire frontal area of the cylinder where the flow is attached to the wall and further 

implementation of the complicated enough tripping was discontinued. Further suggestions 

were outlined at the end of Section 4.2. In an attempt to accurately simulate the boundary 

layer for the finest simulation discussed in Chapter 4 the time step was only a fraction of a 

nanosecond. Nevertheless, the simulation was performed on a single GPU card and 

approximately 50 TUs based on the cylinder diameter that are required for obtaining the near-

field comparison were achieved within a week. It is predicted that by using a new technique 

which is applied in this work for simulating the flow over a NACA 0012 aerofoil which 

employs a snappy-hex grid and asynchronous time stepping [50] may significantly boost the 

performance in comparison to the finest cylinder simulation run presented in this work. 

Hence, it may be possible to determine the threshold for a maximum cell size that yields the 

accurate flow solution for a cylinder benchmark at Re 50,000 in the near future.                  
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Appendix A 

Monopole source  

When the sound pressure is expressed in the form: 

                            (A.1) 

where      is the magnitude of pressure and    is the phase in space and   √  . Note, 

       . From Euler’s equation: 

       

  
  

 

  

  

  
              (A.2) 

Hint: a quick way to evaluate the pressure gradient and velocity: 
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)}                     (A.4) 

where        from Eq. (A.1) and when    is expressed through   , re-calling that 

      will result in     ⁄  constant in Eq. (A.4). Also, while the first term in brackets Eq. 

(A.4) is in phase with the pressure Eq. (A.1) the second term is 90° out of phase.  

 

Dipole source  
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)       (A.5) 

Let two sources be located on the   axis and the midpoint between the two        . Then, 

defining    and   : 

  
                            (A.6) 

   
                             (A.7) 

Eq. (A.5) could be expanded using Taylor series with high order terms neglected, which 

yields the following expression: 
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It follows that the first term in Eq. (A.8) can be neglected and the second term remains: 
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When    ,    and    become    Hence,  
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                                              (A.10) 

And two remaining derivatives are simplified using the assumption in Eq. (A.6-A.7), such as: 
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Let   represent the dipole-moment amplitude vector, so     . Then, using Eq. (A.10-

A.12) and rearranging terms, the equation for the dipole sound pressure follows: 
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)                (A.14) 

In a spherical coordinate system, with angles   and   where the convention is: 

         

              

             

Using Euler’s equation for obtaining velocity by taking the time integral of the pressure 

gradient which is determined from Eq. (A.14) yields:   
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)                 (A.15) 

Then, as a final step dividing Eq. (A.14) by Eq. (A.15) gives the impedance in the   direction: 
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Quadrupole source  
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If            and            relations are substituted in Eq. (A.17) we get: 
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Rearranging terms in a neat way: 
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As a next step, expanding the above expression using Taylor series as previously done for a 

dipole source, yields: 

            
   

   {
 

   
[
 

  
          

      ]
   

  
|
   

 
 

   
[
 

  
          

      ]
   

  
|
   

} 

(A.21) 

where  
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Appendix B 

Altus solver algorithm    
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Appendix C 

In [131], Spalart-Allmaras (SA) one equation RANS model is claimed to perform well for the 

attached boundary layer flows as well as being able to deal with adverse pressure gradients. 

One additional benefit of the SA model is the enhanced wall treatment, meaning that the 

model can be insensitive to y+ resolution
7
, as long as the boundary layer is resolved with 

adequate number of cells. Figure 58(a) shows the lift coefficient against the angle of attack 

(AoA) and Figure 58(b) shows the lift versus drag comparison for a NACA 0012 aerofoil 

simulated using the SA turbulence model. The flow Reynolds number is          and 

Mach number is 0.17, typical to the take-off condition for a full size aeroplane wing. 

Simulations were performed using the open source CFD package OpenFOAM v.2.2.2 and the 

commercial ANSYS Fluent solver v.14.5 which were then compared with a free-transition 

and mild tripped experimental data of Ladson [167] (NASA). For mildly tripped experiments 

the flow tripping has been initiated by abrasive “80” grit strip where the number refers to a 

sandpaper labelling system, which is proportional to the mean particle size. Although, none 

of the RANS models can predict the flow separation, the SA model has performed reasonably 

well in comparison with the experiment for low angles of attack where the flow remains 

mostly attached. Arguably, the comparison with a free-transition flow data may not be the 

best for evaluating the accuracy of a RANS model since the RANS uses a fully turbulent 

boundary layer assumption which usually means that predictions tend to be similar to tripped 

experimental cases where earlier separation as well as higher induced drag is observed.  

a)       b) 

        

Figure 58 – NACA 0012 SA model simulations of lift coefficient,    against AoA (a) and    

vs.    (b) comparison with experimental data. 

The appropriate mesh resolution at the wall (y+ spacing) has to be estimated when applying 

most CFD methods, including the     SST model. Some RANS models offer a wall 

function option where large spacing of the first mesh element, falling within the log-law 

                                                           
7
 y+ is the target spacing for the first mesh cell next to a wall. Eq. (C.4) shows how y+ is related to physical 

spacing of the first cell,   . 
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region, is permitted. This is done for several reasons, primarily, to save on computational 

resources and sometimes to aid convergence. For example, the classic     model needs 

coupling with a low-Re model for fine meshes as it may not converge otherwise. However, if 

the scheme allows, it is be best to include the linear sub-layer (y+ < 5) for an improved 

accuracy since most RANS calculations are relatively inexpensive. In order to estimate the 

maximal size of the first element at the trailing edge where the boundary layer is the thickest 

for a symmetric NACA 0012 wing section, a suitable approximation can be obtained using a 

flat plate analogy. The same flow conditions as in Figure 58 are used where the Re number is 

calculated as following: 

   
    

 
 

   

 
 

              

               
                     (C.1) 

Assuming the analogy with a flat plate, the skin friction coefficient can be determined 

empirically: 

   
   

   
         

                       (C.2) 

The wall shear stress,    and the corresponding friction velocity,    can be evaluated using 

the estimated value for   :  
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                 (C.3) 

The spacing of the first element,    with the y+ target value of 5 is then:  

   
   

   
              

      
                              (C.4) 

Fortunately, with RANS methods,    to    ratio of near-wall cells can be fairly large [168], 

apart from areas with a strong change. Particularly, when calculating the time-averaged flow 

over a wing section the refinement normal to the symmetry plane (in the span-wise direction) 

is not required because in this case the flow is inherently two dimensional. However, as 

briefly mentioned previously, the number of mesh points required to resolve the boundary 

layer has to be estimated as well as determining whether or not the element stretching ratio is 

acceptable. For simplicity,    is set to equal         , estimated within        zone, the 

allowed stretching could be roughly estimated as: 
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)            (C.5) 

There would be at least 63 elements in the boundary layer with 10% stretching ratio,  . 

Usually, experienced modellers have a good judgement for the mesh requirements which are 

tailored for a specific flow case, also, taking into account the numerical method and scheme 

to be used. Figure 59 shows the plot of surface pressure coefficient,    for 0° and 6° AoA 

obtained using one and two-equation RANS models previously discussed. As can be seen the 
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results are in perfect agreement with experimental data. [159] It should be noted that for a 

NACA 0012 wing profile    is quite insensitive to the computational mesh refinement and as 

discussed in [64] this characteristic may not be used as an indication of the simulation 

quality. On the other hand, for the accurate prediction of skin friction coefficient the 

computational grid has to be designed in accordance to best practice, paying respect to 

parameters such as mesh smoothness, skewness, stretching and the aspect ratio to name the 

few.  Figure 60 shows the plot of    for the upper surface compared to the available Langley 

CFL3D RANS validation data. The independently obtained numerical results presented in 

Figure 60 are in very good agreement for both flow incidence angles considered.               

a)      b) 

  

Figure 59 – Pressure coefficient at 0° AoA (a) and 6° AoA (b) using various RANS models 

compared with experimental data. 

From Figure 61 it could be seen that even for a relatively high AoA of 10° the wall y+ 

obtained in the simulation is ~1 or below for most part including the trailing edge, 

conforming to a target design value. 

a)      b) 

  

Figure 60 – Skin friction coefficient at 0° AoA (a) and 10° AoA (b) for SA and     SST 

models, compared with Langley CFL3D RANS solution. 
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Figure 61 – wall y+ for 10° AoA from a simulation using     SST model. 

Turbulent models described so far rely on eddy viscosity hypothesis which is not ideal for 

complex flows. With the development of RANS, the Reynolds Stress Model (RSM) emerged 

in late 1980s [169] [170], allowing for anisotropic behaviour of turbulence. In RSM, the 

transport equations are derived for individual Reynolds stresses 〈      〉 from Navier-Stokes 

equations and the dissipation, e.g.   or   that provides a length scale of turbulence. The RSM 

equations can be summarised as following: 

 〈    〉

  
 

 

   
〈      〉     〈    〉                        (C.6) 

In order, the terms in Eq. (C.6) are referred to as mean convection, turbulent convection, 

viscous diffusion, production, pressure and dissipation.  

    is the velocity-pressure-gradient tensor: 
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〉         (C.7) 

    is the production tensor: 

     〈    〉
 〈 ̅ 〉

   
 〈    〉

 〈 ̅ 〉

   
                        (C.8) 

    is the dissipation tensor: 

      〈
   

   
 
   

   
〉                           (C.9) 

Considering the normal stress balances,  〈 ̅〉    is usually the only significant velocity 

gradient inside the boundary layer, contributing to the source    . Furthermore, bearing in 

mind the similarities with the turbulent kinetic energy balance, where    appears is in the 

transport term 
 

 
       〈     〉, playing its main role in energy redistribution through 

extraction of energy from 〈  〉 and transferring it to 〈  〉 and 〈  〉,     would be relatively 

small in comparison to    . This redistributive effect is evident from the following 

decomposition:  
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                (C.10) 

In Eq. (C.10),     is the pressure rate of strain tensor, defined as: 
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)〉     (C.11) 

The pressure rate of strain tensor happily vanishes from the turbulent kinetic energy equation 

due to the continuity equation,       but it is of great importance for energy redistribution 

and is most challenging to model accurately in RSM. In most textbooks [95] the RSM model 

is expressed using the Reynolds stress flux and the pressure rate of strain tensor as in Eq. 

(C.10) to obtain:  

 
 〈    〉

  
 

 

   
    

   
                          (C.12) 

The mean flow convection  
 〈    〉

  
 and production tensor     are in closed form while the rest 

of the terms of Eq. (C.12) require modelling, involving a large number of empirical constants. 

In some cases, due to its complexity the RSM model is numerically not well conditioned and 

in most cases, experiences poor convergence. The RSM is not used in this work primarily 

because the results may be difficult to reproduce. Nevertheless, it is briefly outlined in Eqs. 

(C.6-C.12) for a reference as RSM is physically the most complete RANS model that has 

built in triple correlations 〈      〉, potentially offering a better solution for complex flows. 
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Appendix D 

I.) Two-point correlation in wavenumber space 

From theory, the Fourier transform of the correlation      can be defined as: 

     
 

     
∫  ̂           
              (D.1) 

where   stands for the three-dimensional wavenumber vector for    , and  ̂ denotes the 

Fourier transform of  . 

In spherical coordinates,   and   read: 

  (        )                               

  (        )                                

By assumption,   | |,   | |,     [ 
 

 
  

 

 
] and     [    ], we get: 

      [                         ]             (D.2) 

Furthermore, for isotropic turbulence, where the directional information is only dependent on 

the distance, one may assume   and   to be zero. Hence, due to trigonometric properties,  

                           (D.3) 

Then, inserting Eq. (D.3) into Eq. (D.1) with limits set prior to Eq. (D.2) in 3D yields: 
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By using the definition of the Bessel function of order 0: 
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and inserting Eq. (D.5) into Eq. (D.4) gives: 
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where the integral with respect to   in the above equation is: 

∫      
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Then, Eq. (D.6) can be simplified as following: 
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On the other hand, starting from a 2D definition of Eq. (D.1) where 
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with corresponding   and   definitions: 
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  (     )                  

where,   | |,   | |, and     [    ], Eq. (D.9) becomes: 
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           ]                     (D.10) 

Inserting Eq. (D.5) yields: 
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II.) Lateral and longitudinal autocorrelation functions 

The aim is to show the relationship given by Eq. (D.12)  

          
 

 

     

  
                (D.12) 

A stationary two-point correlation of the stream function  , given in Eq. (D.8) in the 

wavenumber space, could be expressed in terms of a Gaussian filter using the convolution 

properties of the FRPM method,      {   }    such as: 
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          (D.13) 

As shown in [52], a stationary two-point correlation of the velocity field,          

〈  
         

          〉, where an incompressibility condition is assumed, i.e.         

 , could be written in terms of the lateral and longitudinal autocorrelation functions,      and 

     respectively. 

         [         ]                 (D.14)   

where    is the unit vector in the direction of the relative separation between points and     is 

the Kronecker symbol. Moreover, due to the incompressibility condition and the restriction 
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∑ {             }      applies and functions      and      and its derivation follows 

below. 
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By expressing    in        in terms of the stream function gives: 
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       〉        (D.16) 

In the above equation,   stands for the Levi-Civita symbol defined by: 
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       (D.17) 

The properties of the correlation function allow taking the Levi-Civita symbols out of the 

ensemble average and, also, using the properties of partial derivatives,     ⁄         

    ⁄         a slightly re-arranged Eq. (D.16) reads: 
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For isotropic flows,     ⁄ 〈             〉      
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Again, using the properties of partial derivatives leads to: 
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In Eq. (D.20),      〈             〉 is the correlation tensor,      {   }| |   . 

Hence, performing the second order partial derivative of      with respect to    and   , 
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Then, Eq. (D.20) becomes: 
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In Eq. (D.22),                     and                          . Hence, 
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(D.23) 

Re-arranging terms in Eq. (D.22) gives: 
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Finally, comparing Eq. (D.23) to Eq. (D.14) the individual lateral and longitudinal correlation 

functions can be deducted:  
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Therefore, it can be shown that the relation between autocorrelation functions is,  
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