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Abstract 
Is the nested sets approach to improving accuracy on Bayesian 
word problems simply a way of prompting a natural 
frequencies solution, as its critics claim? Conversely, is it in 
fact, as its advocates claim, a more fundamental explanation of 
why the natural frequency approach itself works? Following 
recent calls, we use a process-focused approach to contribute 
to answering these long-debated questions. We also argue for 
a third, pragmatic way of looking at these two approaches and 
argue that they reveal different truths about human Bayesian 
reasoning. Using a think aloud methodology we show that 
while the nested sets approach does appear in part to work via 
the mechanisms theorised by advocates (by encouraging a 
nested sets representation), it also encourages conversion of the 
problem to frequencies, as its critics claim. The ramifications 
of these findings, as well as ways to further enhance the nested 
sets approach and train individuals to deal with standard 
probability problems are discussed. 
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A recent meta-analysis (McDowell & Jacobs, 2017) 

conclusively demonstrated that when a Bayesian word 

problem is presented according to natural frequency (NF) 

principles, normative responding increases relative to the 

‘standard probability’ format (SP), with an average accuracy 

of around 24%. Both versions of the classic medical 

diagnosis problem can be seen below (statistical notation 

added). 

 
Standard probability format (individual chance): The chance 

of breast cancer is 1% [P(Ca)] for women at age forty who 

participate in routine screening. If a woman has breast cancer, the 

chance is 80% [P(Po|Ca)] that she will get a positive mammography. 

If a woman does not have breast cancer, the chance is 9.6% 

[P(Po|¬Ca)] that she will also get a positive mammography. A 

woman in this age group had a positive mammography in routine 

screening. What is the chance that she actually has breast cancer 

[P(Ca|Po)]? ____% 

 

Natural frequencies: 10 [F(Ca)] out of 1000 women at age forty 

who participate in routine screening have breast cancer. Out of the 

10 women with breast cancer, 8 [F(Po&Ca)] will get a positive 

mammography. 95 [F(Po&¬Ca)] out of every 990 women without 

breast cancer will also get a positive mammography. Here is a new 

representative sample of women at age forty who got a positive 

mammography in routine screening. What proportion of these 

women do you expect to actually have breast cancer [P(Ca|Po)]? ___ 

% 

                                                           
1 In fact, in some natural frequency versions, the final question is: 

‘How many of these women do you expect to actually have breast 

 

We can see several differences between these 

formats. Most obviously, the NF format uses frequencies 

(indicated by the ‘F’ notation) rather than percentages / 

probabilities (P), but more importantly, the figures are not 

normalized. In the SP format, the figures are normalized by 

the use of a standard denominator (percentages are one way 

of achieving this with a hidden denominator of 100, but 

normalized frequencies with other denominators are also 

possible). This difference in normalization firstly has a 

known effect on the number of computations required to 

solve each problem. In an NF format there are thought to be 

only two computational steps1: (1) summing the number of 

individuals with a positive result and cancer F(Po&Ca) with 

the number of individuals with a positive result but no cancer 

F(Po&¬Ca) and then (2) dividing F(Po&Ca) by this sum. The 

same formula can be used if those same numbers are given in 

percentage or probability format. 

 
𝐹(𝑃𝑜&𝐶𝑎)

𝐹(𝑃𝑜&𝐶𝑎) + 𝐹(𝑃𝑜&¬𝐶𝑎)
 𝑜𝑟

𝑃(𝑃𝑜&𝐶𝑎)

𝑃(𝑃𝑜&𝐶𝑎) + 𝑃(𝑃𝑜&¬𝐶𝑎)
 

  

However, normalized formats require an additional 

pre-step (you won’t see any of these figures in the standard 

probability format to the left). P(Po&Ca) must itself first be 

calculated by multiplying the proportion of individuals with 

cancer who get a positive result (P[Po|Ca]) with the total 

proportion of individuals with cancer P(Ca). Similarly, 

P(Po&¬Ca) must be calculated by multiplying P(Po|¬Ca) 

with P(¬Ca). For example, to calculate the proportion of 

women without breast cancer and a positive result, we 

multiply the percentage of women without breast cancer 

(99%) by the percentage of those women who get a positive 

result (9.6%). This may be a trivial calculation for most, but 

crucially, the solver first has to have an accurate 

representation of the problem in order to know that we (A) 

need to calculate this figure to solve the problem and (B) 

should multiply these two particular values rather than using 

some other figures or operation to compute it.  

As has been noted, in the natural frequency format, 

this figure is provided for us, which has widely been accepted 

as a potential confound by subverting the need for (A) 

entirely (however see Brase & Hill, 2015 for work suggesting 

this may not be an important factor). However, NF 

cancer? ___ out of ___’ This reduces the computational steps 

further, to one only: calculating the total positives. 
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proponents (e.g. Gigerenzer and Hoffrage, 1995) tell the story 

the other way around: normalization is an artificial (and 

relatively recent) human construct which transforms 

problems from a natural and solvable format to an unnatural 

and difficult one. These authors propose that normalization 

adds an additional difficulty by changing the structure of the 

information from that which would be obtained through 

‘natural sampling’ i.e. if we observed 1000 women one by 

one, taking note in each case whether they had cancer and 

whether they got a positive result. This information structure 

of the natural frequency format is thought to replicate the 

natural format that human beings experience in the world, 

and thus are predisposed in some way to work with, which is 

the true reason for the increased normative responding 

(Gigerenzer & Hoffrage, 1995). 

One concrete change however is that when 

information is presented in this way, the denominator of 

F(Po&¬Ca) (990) matches F(¬Ca). Other authors (e.g. 

Evans, Handley, Perham, Over & Thompson, 2000; Sloman, 

Over, Slovak & Stibel, 2003) have therefore claimed that 

rather than this having anything to do with ‘natural’ formats, 

this simply makes the ‘nested sets’ structure of the problem 

transparent (e.g. that women with a positive mammography 

but no breast cancer are a subset of the larger group of women 

without breast cancer). Nested sets advocates argue that this 

set structure revelation should be considered the more 

ultimate cause. They have sought to demonstrate that any 

method which reveals the nested sets structure of the problem 

will be equally successful. One example, using normalized 

percentages for the false positive and negative rates like the 

SP format but framing these in terms of proportions of groups 

(PP) rather than individual chance (an approach developed by 

Macchi [2000]), can be seen below: 

 
Nested Sets (Proportion Percentages): 10 F[Ca] out of 1000 

women at age forty who participate in routine screening have breast 

cancer. Out of the women with breast cancer, 80% [P(Po|¬Ca)] will 

get a positive mammography. Out of those women without breast 

cancer, 9.6% [P(Po|¬Ca)] will also get a positive mammography. 

Here is a new representative sample of women at age forty who got 

a positive mammography in routine screening. What proportion of 

these women do you expect to actually have breast cancer 

[P(Ca|Po)]? ___ % 

 

Macchi (2000) found an improvement in accuracy 

compared to an SP format, and no significant difference to an 

NF format. Following this and similar papers, NF proponents 

(Hoffrage, Gigerenzer, Krauss & Martignon, 2002) have 

argued that nested sets formats simply encourage solvers to 

construct an NF version of the problem for themselves, which 

is the ultimate reason for increased accuracy. This criticism 

seems all the more plausible for Macchi’s format, given that 

unlike the standard probability format, it presented the base 

rate as a frequency. It is important to note however that 

Gigerenzer and Hoffrage (1995) originally theorized based 

on evolutionary grounds that the phenomena of neglecting 

base rates (P[Ca] and P[¬Ca]) during solution should 

generalize to non-NF formats because that information is not 

required for solution in an NF format, which people are 

adapted to: 

 

“Base rate information need not be attended to in 

frequency formats (Result 3). If our evolutionary argument 

that cognitive algorithms were designed for frequency 

information acquired through natural sampling is valid, then 

base rate neglect may come naturally when generalizing to 

other information representations, such as the standard 

probability format (Gigerenzer & Hoffrage, 1995, pp. 29) 

 

While the authors refer specifically to the standard 

probability format here, the key point is that in evolutionary 

history humans have never had to complete the ‘pre-step’ 

required in the normalized format, because information has 

always been presented to them in the natural frequency 

format (and in which they can compute the normative answer 

without using the base rates), and so they may lack the 

capacity to do this, regardless of whether that normalized 

format is presented in the SP way, or in Macchi’s PP way. 

The simple fact that nested sets results defy this has been 

widely overlooked in the field, and in fact suggests a potential 

harmony between the two approaches, rather than a discord, 

at least at the pragmatic level. While people do indeed seem 

more capable of solving a Bayesian word problem in a natural 

frequency format, than in a standard normalized format, 

nested sets results show us that, with the right framing, people 

can solve normalized Bayesian problems too.  

A preliminary aim of this paper is to replicate 

Macchi’s approach, as it has only been demonstrated in a 

single experiment. Furthermore, it needs replication in a 

wider range of more ecologically valid situations, including 

with the base rate presented as a percentage (as mentioned, 

Macchi’s original format used a frequency base rate unlike 

the SP format) and with non-whole numbers. These factors 

may be present in real-world contexts and may add sufficient 

complexity to undermine the value of the format. We also aim 

to test the format in both simple (all women with breast 

cancer get a positive result) and hard (some women with 

breast cancer get a false negative) problems as both versions 

have been used widely in the literature.  

A more ambitious aim of this paper is to assist in 

settling the highly debated connection between nested sets 

and natural frequency formats. Over the past few years 

repeated calls have been made to resolve these differences 

between the two camps (Brase & Hill, 2015; McNair, 2015; 

Johnson & Tubau, 2015; McDowell & Jacobs, 2017). Given 

that these are fundamental questions about cognitive process, 

the same authors have repeatedly called for more process-

focused experiments. While two previous experiments 

(Gigerenzer & Hoffrage 1995; Macchi, 2000) used a ‘think 

aloud’ (TA) approach (where participants record their 

thought processes while solving the problem) in both cases 



this was only used to report the types of errors participants 

make. We aim to make greater use of this data to shed light 

on the following questions. Does the nested sets approach 

work, as claimed by its advocates, by encouraging a 

representation of e.g. P(Po&¬Ca) as a subset of P(¬Ca) at the 

first, de-normalization step? Does the nested sets approach 

encourage individuals to construct a natural frequency 

representation for themselves, as claimed by Hoffrage et al. 

(2002)? Which of these are predictive of success on the 

problem? Finally, what else can we learn about the 

mechanisms by which Macchi’s nested sets approach 

achieves greater accuracy? 

 

Method 
521 participants were recruited through Amazon 

MTurk (55.3% female; mean age = 34.2 [SD = 11.6]). The 

experiment had eight between-subjects conditions, using a 2 

(standard probability [SP] vs proportion percentages [PP]) x 

2 (simple vs hard) x 2 (whole vs decimal) design. The PP-

hard-decimal condition can be seen below (with statistical 

notation, not shown to participants), and further materials and 

experimental data are available at https://osf.io/nd46g/. This 

is considered a decimal version because the product of 

computational step 1 (e.g. 10% x 76% = 7.6%) is a non-whole 

number. 

 
Every year the government advises women to take part in routine 

mammography screening using an X-ray machine to determine if 

they have breast cancer. Among women at age forty who participte 

in this routine screening 10% [P(Ca)] have breast cancer, while 

90% [P(¬Ca)] do not. However, the screening test is not always 

accurate. Specifically, out of those women who have breast cancer, 

only 76% [P(Po|Ca)] will actually get a positive mammography. 

Furthermore, out of all of those women who do not have breast 

cancer, 15% [P(Po|¬Ca)] will also get a positive mammography. 

What percentage of women at age forty who get a positive 

mammography [P(Po)] in routine screening actually have breast 

cancer[P(Ca|Po)]? ___% 

 

Participants were also required to record their 

thought process in an open text box. They could only submit 

their numerical response after they had submitted their 

thought process. All qualitative analysis of the TA data was 

undertaken blind to condition. Analysis was coded by two 

authors separately, with over 90% agreement. Discrepancies 

were resolved through the decision of a third coder. 

Participants were given a ‘normative’ label if their 

numerical response was within 1% of the Bayesian normative 

value. Beyond this however, we found seven participants 

who clearly demonstrated accurate reasoning, including all 

necessary computational steps, but made an arithmetic error. 

These participants were also labelled as normative. One of 

these participants was in the nested sets conditions, while six 

were in the standard probability conditions. 

 

Results 
General Results 
The overall proportion of the sample providing the normative 

response for the experiment was 13.5% with an average of 

9.0% for the SP conditions and 18.1% for the PP conditions. 

In Figure 1, normative proportions for all eight conditions can 

be seen. 

 

 
 

Figure 1. The percentage of participants providing the 

normative Bayesian answers across all eight conditions. Error 

bars represent one standard error. 

 

A binary logistic regression (BLR) using ‘normative 

response’ as the dependent variable and the three condition-

comparisons (SP vs PP; whole vs decimal; simple vs hard) as 

independent variables found a main effect for the SP-PP 

comparison (Wald Χ2 = 8.984, p=.003), no main effect for the 

whole-decimal comparison (Wald Χ2 = .184, p=.668) and no 

main effect for the simple-hard comparison (Wald Χ2 = 

1.350, p=.245). All subsequent analyses on ‘condition’ 

therefore compare SP to PP only. 

 

Nested Sets Representation 
Across all conditions, 87 (16.7%) individuals expressed a 

‘nested sets representation’ of the problem. For this 

classification, participants had to explicitly, in words, depict 

the group of individuals who had both a positive test result 

but not cancer (P[Po&¬Ca]) as a subset of the total 

individuals without cancer (P[¬Ca]). In the hard condition, 

they also had to express the group of individuals who had a 

positive result and cancer (P[Po&Ca]) as a subset of the 

individuals with cancer (P[Ca]). A mathematical formula was 

not sufficient to be assigned this code. An example comes 

from P261 who stated, “Of the 90% who do not have cancer, 

15% will get a positive mammography”. Here we can see a 

word-based representation of the individuals who do not have 

cancer but got a positive test result as a subset of those who 

do not have cancer. This classification was applied 

conservatively. For example, P498 who said “First what is 

15% of 90%, that is 13.5%” did not receive the classification. 

An example from the hard condition which did get this 



classification comes from P138 who said “We know 10% of 

women will have breast cancer in the screen and 80% of those 

will show up positive […] Of the remaining 90 women who 

do not have breast cancer 10% will be given a false positive 

so an additional 9 women.” 

A BLR showed that this representation was 

unsurprisingly more common within the PP (24.0%) 

condition, which expressed the problem in this format, than 

in the SP (9.7%) condition (Wald Χ2 = 18.0, p<.001), which 

used an individual chance format. However clearly some 

individuals in the SP condition re-represented the problem in 

terms of nested sets. Furthermore, in both conditions, this 

representation was highly associated with normativity, as can 

be seen in Table 1. 

A BLR was run with normativity as DV, and 

condition and NS-representation as IV’s, and a unique 

predictive effect of NS-representation (Wald Χ2 = 123.6, 

p<.001) was found, but no unique effect of condition (Wald 

Χ2 = 0.04, p=0.837). 

 

Conversion to frequencies 
Across all conditions, 87 participants (16.7%) 

also converted the base rate in the problem from a 

percentage into a frequency before attempting solution 

(i.e. before providing an NS-representation or completing 

the first computational step). For this classification, a 

‘sample’ or ‘population’ of individuals as a frequency 

rather than a percentage or probability had to be expressed. 

For example, P105 said ‘To make my math easier, I am 

going to assume there are 100 women.’ and P186 began 

‘Out of 100 women, 10 have breast cancer, while 90 do 

not.’ Out of the 87 participants who converted the problem 

to whole numbers, 73 converted to a population of 100 

women. The number of individuals who made this 

conversion in each condition, crossed with those providing 

the NS-representation and the proportion of these 

subgroups providing the normative response can be seen 

in Table 1. A BLR with conversion as DV and condition 

as IV showed a predictive effect (Wald Χ2 = 7.3, p=.007). 

A BLR with normative response as DV and condition and 

conversion as IV’s showed a unique effect of conversion 

(Wald Χ2 = 128.9, p<.001) and a potential unique effect of 

condition (Wald Χ2 = 5.2, p = 0.041). 

To simultaneously test the impact of condition, NS-

representation and conversion upon normativity, a BLR was 

run. No main effect of condition was seen (Wald Χ2 = 0.172, 

p=0.68), but a unique effect of NS-representation (Wald Χ2 = 

93.2, p<.001) and of conversion (Wald Χ2 = 8.3, p=0.004) 

was seen. A table depicting these relationships can be seen 

below. 

 

Table 1. Percentage of individuals providing the normative 

answer organized by condition, NS-representation and 

conversion (total number of individuals in each subgroup 

regardless of normativity in parentheses). 

 
 Standard Probability Proportion Percent 

 No NS-
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NS-
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1.4 
(221) 

69.2 
(13) 

5.1 
(234) 

2.8 
(176) 

45.8 
(24) 

8.0 
(200) 
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5.0 
(20) 

84.6 
(13) 

36.4 
(33) 

5.9 
(17) 

78.4 
(37) 

55.6 
(54) 

  
  

  
  

  
  

T
o

ta
l 

1.7 
(241) 

76.9 
(26) 

(267) 
3.1 

(193) 
65.6 
(61) 

(254) 

 

From the raw data, we can see that in the absence of 

the NS-representation, conversion only appears to be 

associated with a small (~3%) increase in normativity, while 

in the presence of the NS-representation, converting appears 

to be associated with a much larger (~15-30%) increase. To 

check this, we ran two BLR’s, predicting normativity from 

conversion. Within those who did not produce an NS-

representation, no predictive relationship was seen (Wald Χ2 

= 0.81, p=0.21) while within those who did produce an NS-

representation, a predictive relationship was seen (Wald Χ2 = 

6.4, p=0.011). Dependency of this sort was not seen for the 

NS-representation, which was a significant predictor of 

normativity among those who did not convert (Wald Χ2 = 

69.3 p<.001) as well as those who converted (Wald Χ2 = 27.6, 

p<.001). For some individuals their process could not be 

determined (e.g. if they just provided a mathematical 

formula) but a few individuals were able to solve the problem 

without converting and also while apparently using a chance 

representation, such as P40: 

 
“There is a 10% chance that any woman over 40 has breast 

cancer [and] there is a 10% chance that a woman who does not have 

breast cancer over 40 gets a positive result. This means there is a 

9% chance of [a false positive] and a 19% chance that someone 

tests positive for breast cancer. Out of this there is a 10/19% chance 

that the diagnosis is correct meaning there is a 52.63% chance.” 

 

Errors 
The most common error within the SP condition 

(21.7%) was to provide the complement of the false 

positive rate, (1-P[Po|¬Ca]). This was much less common 

within the PP condition (5.5%). The TA data was coded 

for insight into common reasoning and a single piece of 

reasoning was highly prominent (45.8% of cases). This 

was the confusion of P(Po|¬Ca) with P(¬Ca|Po). 

Following this confusion, the subsequent accurate 



deduction was made that 100% minus this value would 

give P(Ca|Po). For example, P228 said ‘The fact that 15% 

of positive mammographies are invalid means that 85% 

are valid. She therefore has an 85% chance of actually 

having breast cancer’, P20 said ‘I guess since 10% of 

positive tests are inaccurate, that means there’s a 90% 

chance of her having cancer’ and P133 said ‘Also of all 

the women who get a positive mammogram, 15% will not 

have breast cancer, so I think it is 85%.’ Each of these 

participants use language reflecting P(¬Ca|Po) but 

accompanying the percentage value representing 

P(Po|¬Ca), strongly suggesting a confusion between the 

two. P177 expressed this confusion more explicitly, saying 

‘But there is a 10 percent chance that a woman without 

breast cancer will get a positive mammogram [true, 

P(Po|¬Ca)], so 10 percent of the positive mammograms 

are not accurate [false, P(¬Ca|Po)]’. In the remainder of 

these participants’ TA data, the reasoning could not be 

extracted from the data. For example, many participants 

simply provided mathematical notation. 

 

Computational Steps 
A cumulative graph depicting the proportion of individuals 

reporting each of the three computational steps, step 1 the 

calculation of P(Po&Ca) and P(Po&¬Ca), step 2 the 

summing of these and step 3 the division of P(Po&Ca) by the 

sum as well as whether the participant provided the normative 

numerical value can be seen below for both conditions. For 

both conditions, the majority of individuals do not achieve 

step 1, with further substantial but smaller drop-off between 

this and step 2, and no substantial subsequent drop-off 

between these and step 3 or the normative response. In short, 

highly similar curves were seen for both the SP and PP 

conditions. The major difference between the two conditions 

was the number of individuals reporting step 1 (with more 

individuals reporting this in the PP condition). Similar 

proportional drop-off was subsequently seen in both 

conditions. Indeed, while condition was predictive of step 1 

(Wald Χ2 = 15.3, p<.001), when controlling for step 1, 

condition was not predictive of step 2 (Wald Χ2 = 0.19, 

p=.891), step 3 (Wald Χ2 = .988, p=.320) or the normative 

response (Wald Χ2 = 0.076, p=.783). 

 
 

Figure 2. Drop-off graph for each computational step. Error 

bars represent one standard error. 

 

Discussion 
We replicated Macchi’s (2000) finding in a larger 

sample, and across a range of different format types, 

including with percentage base rates with and without the 

possibility of false negatives and with whole numbers and 

non-whole numbers. In each case, Macchi’s proportion 

percentage format improved normativity over and above the 

SP format, with an overall increase from 9.0% to 18.1%. 

We found that normativity is highly associated with 

the individual reporting a representation of P(Po&¬Ca) as a 

subset of P(¬Ca) in their think aloud data, and in the hard 

condition, also P(Po&Ca) as a subset of P(Ca). This finding 

is not surprising within the proportion percentage group, as it 

could be argued that these individuals are simply 

regurgitating the text from the problem. However, crucially, 

this relationship also held within the standard probability 

format, where an ‘individual chance’ probability format (i.e. 

‘If a woman has cancer, her chance of …) was presented. This 

observational finding should also be considered in the context 

of previous experiments (e.g. Evans et al, 2000; Sloman et al, 

2003) showing that attempts to assist individuals in creating 

exactly this representation of the problem have been 

successful in increasing accuracy. Here we show that some 

individuals, without any prompt to do this, spontaneously 

adopt this representation, and this correlates highly with 

normativity. We also found some evidence that the NS-

representation may have a mediating effect on the impact of 

the NS format. This provides some complementary evidence 

to those papers that the mechanism by which nested sets 

formats achieve greater accuracy is at least partially that 

which they have espoused: by encouraging a nested sets 

representation of the structure of the problem. 

We also found that many individuals make a further 

spontaneous re-representation of the problem, and that this 

also correlates highly with normativity. This is the 

conversion of the problem from a percentage format into a 

frequency format. Interestingly, conversion alone seemed not 

to be predictive of normativity, however in combination with 

the NS-representation it was associated with higher rates of 

normativity than the NS-representation alone. The same was 

not true of the NS-representation. This was still highly 

predictive of normativity with or without conversion. 

Importantly, the majority of individuals who converted did so 

to a base of 100, making no mathematical change to the 

problem. This therefore seems to demonstrate a preference 

among our sample for working with frequency values over 

percentages, even when the absolute numbers (e.g. 20% vs 

20 women out of 100) and therefore calculations, are 

identical. Of course, we cannot resolve the ultimate reason 

for this, be that a greater evolutionary exposure towards 

frequencies or a current greater exposure to frequencies 

during our participants’ lives. We tentatively suggest a third 



possibility. It may be difficult to mentally represent a 

percentage, abstract as it is, without it being a percentage of 

something tangible. Imagining 100 women may simply 

provide a concrete mental image which can be divided and 

sub-divided according to the percentages. It may also provide 

a platform for a simple internal narrative about these women 

and what happens to them. Whatever the ultimate reason 

however, this result does partially confirm Hoffrage et al’s 

(2002) conjecture. 

These findings have some relevance to the question 

of whether the elements that are thought to comprise the 

natural frequency format are separable, and if so, which 

elements are doing the ‘work’ in improving accuracy. Nested 

sets advocates have argued that the nested sets structure is 

doing all the work, and the frequencies are superfluous. 

Natural frequency advocates have argued that the two are 

inseparable. Here we find some tentative evidence that the 

two are separable (individuals who form a nested sets 

representation but do not convert to frequencies are still more 

successful than those who do not form that representation). 

However, even if separable, both the nested sets structure, 

and the use of frequencies (as opposed to percentages) appear 

to uniquely contribute to success, with the combination of 

both being more strongly associated with success than either 

alone. Importantly, without the nested sets structure, 

conversion to frequencies did not predict success, which may 

mirror findings that normalized frequency formats are no 

better than the standard probability format (e.g. Evans et al., 

2000). 

In terms of further investigation into the 

mechanisms of Macchi’s nested sets format, we presented 

evidence that relative to the SP format, more individuals 

achieve step 1 (de-normalization). However, controlling for 

this, the proportion of participants achieving subsequent steps 

is not different to the SP format. Related to this, an analysis 

of errors between conditions has shown that the classic 1-

P(Po|¬Ca) error was drastically reduced from 21.7% of total 

responses in the SP format to 5.5% in the PP format. This 

error, in line with previous theorizing (e.g. Braine and 

Connell, 1990) has been found here to principally stem from 

a confusion between the false positive rate P(Po|¬Ca) and 

P(¬Ca|Po). As has been mentioned, the clarification of the 

false positive rate (and the true positive rate in the hard 

condition) by encouraging individuals to see it as a subset of 

P(¬Ca) has long been theorized to be the mechanism by 

which nested sets formats work. The reduction of this error 

in the PP condition therefore seems to further support this 

theory. Given that the false positive rate is required for step 

1, it also provides further evidence that the impact of 

Macchi’s format is principally achieved at this step. 

As noted, Macchi’s format does not appear, upon 

the current evidence, to provide any additional support in the 

later stages of solution, most notably in getting from 

computational step 1 to step 2. At this step individuals need 

to recognize (A) that they require the total number of positive 

results, and (B) that they need to combine the false positives 

with the true positives to achieve this. So far, research has 

been principally focused on helping solvers form a 

representation of e.g. P(Po&¬Ca) as a subset of P(¬Ca). 

However, success on the final two steps may instead be a 

product of recognizing a different set relation, that of 

P(Ca&Po) and P(¬Ca&Po) as subsets of P(Po). We can 

clarify this distinction by displaying two tree structures of the 

medical diagnosis problem below. The top shows the classic 

structure, widely published, with the hypothesis, ‘Cancer’ as 

the first ‘division’, or first set of child nodes. However, the 

opposite structure is also possible, shown at the bottom, with 

the data, ‘Positive’ as the first set of child nodes. 

 

 
 

Figure 3. ‘Hypothesis First’ and ‘Data First’ tree diagram 

representations of the medical diagnosis problem. 

 

While perceiving the set relations in the hypothesis-

first version seems key to step 1, steps 2 (calculating total 

positives) and 3 (dividing cancer & positive by total 

positives) would seem to require an understanding of the set 

relations in (at least the left half) of the data-first diagram. For 

step 2, the addition, one must understand that P(Ca&Po) and 

P(¬Ca&Po) are subsets of P(Po). It seems to us that step 3, 

the division, should require only that same set relation i.e. that 

P(Ca&Po) is a subset of P(Po). To our knowledge this 

distinction has not been made before. We believe that in order 

to improve framing methods further, focus should be on 

helping individuals form these latter set representations at the 

most appropriate time to facilitate steps 2 and 3. 

In the medical diagnosis problem, the information 

related to steps 2 and 3 are contained within the question. In 



our nested sets format, this is changed into a proportion form 

i.e. ‘What percentage of women at age forty who get a 

positive mammography…’, unlike the SP format, which is 

chance framed. While plausibly this could have helped 

solvers form exactly this latter subset representation, the 

current evidence suggests this did not have an impact. Future 

work may look to combine Macchi’s format with a question 

form used by Girotto and Gonzalez (2001) which was divided 

into two parts: first explicitly requiring the calculation of step 

2, and only then requiring calculation of step 3. 

Finally, it should be noted, that the accuracy 

percentage for participants in our NS group was lower than 

the average from the recent meta-analysis for natural 

frequency (~24%). It is difficult of course to make confident 

comparisons but given that we have found that the nested sets 

approach works via very similar mechanisms to the natural 

frequency approach, but requires one extra step (de-

normalization), and in some versions two extra steps, and 

furthermore that we have found a unique beneficial effect of 

frequencies, some greater accuracy on natural frequency 

versions seems plausible to us. Pragmatically therefore we 

would still advocate for natural frequencies as the primary 

method for communicating Bayesian problems to the public 

where that is possible, with proportion percentages as a 

backup where it is not. 

However, unfortunately when individuals do 

encounter Bayesian problems in the real world, they are often 

in the standard probability format. Sedlmeier & Gigerenzer 

(2001) have investigated the merits of preparing individuals 

via training to convert these into natural frequency versions 

themselves when they encounter them. This however requires 

considerable training. Our findings suggest that solvers can 

do more of the work themselves than was assumed by that 

research (i.e. can de-normalize the problem themselves) and 

therefore may only need to remember fewer ‘conversion’ 

steps. This may be valuable where the brevity of the training 

is important. In fact, our findings tentatively suggest 

substantial accuracy gains may be obtained by training 

people to following two simple rules when faced with an SP 

problem: 

 

1. Imagine 100 women (or whatever unit you’re dealing 

with). 

2. Imagine the percentages you’ve been given as 

proportions of these 100 women. 
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