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Abstract 

 
According to differential susceptibility theories, individuals vary in the extent to which 

they are impacted by the quality of their environment, with some individuals identified 

as generally more sensitive than others making them more susceptible to develop 

psychopathology in adverse contexts but also more likely to benefit from positive 

environmental contexts such as psychological interventions. Such individual differences 

in environmental sensitivity are hypothesised to have a genetic basis.  

 

This thesis had three main objectives: first, to examine the heritability of environmental 

sensitivity; second, to identify the molecular genetic variants associated with 

environmental sensitivity; third, to examine the moderating effects of genetic sensitivity 

on the impact of negative and positive environmental contexts on mental health. 

 

First a new measure of environmental sensitivity was developed for use with children. 

Applying this measure, the heritability of environmental sensitivity was estimated via 

twin modelling and its molecular genetic basis was explored using candidate genes, 

genome-wide data, gene-based analyses and polygenic scoring. Longitudinal mixed 

effect regression models were used to examine polygenic score-by-environment 

interactions involved in predicting psychopathology and treatment response. The 

samples for all studies comprised of children and adolescents (N= 1,000-2,800). 

 

The results indicated that environmental sensitivity is heritable (47%, CI = 30-53) and 

genetically correlated with neuroticism, extraversion, depression and anxiety. Candidate 

gene and GWAS failed to identify molecular genetic factors that were significantly 

associated with sensitivity, but polygenic scores of personality, depression and 

wellbeing predicted variations in sensitivity (~ 3%). Genetic sensitivity was found to 

moderate the outcomes of environmental exposures, with more sensitive children at 

higher risk of psychological distress in response to poor quality childhood psychosocial 

environment, but lower risk of distress later in life. High genetic sensitivity was 

associated with better response to more individualised type of treatment.  
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1.1 Individual differences in response to environmental influences 

Individuals differ in their responses to both adverse as well as enriching environments. 

This heterogeneity in the psychological and physiological responses to environmental 

factors has been well documented in psychological and psychiatric research  (Rutter, 

1985). For example, although maltreatment is an established risk factor for depression 

in adulthood, not all those exposed to it develop the disorder (Cicchetti, 2013; 

Collishaw et al., 2007). Individual differences in psychopathology in the context of 

adverse environmental influences has been commonly studied under a person-by-

environment interaction model, in which inherent individual characteristics are thought 

to moderate the impact of a negative environmental influence. The most widely 

embraced model of such person-environment interaction is the diathesis-stress model 

(Monroe & Simons, 1991). According to the diathesis-stress model, some individuals, 

as a function of inherent characteristics (e.g. genes, temperament, personality, 

physiology) are more vulnerable to the negative impact of adverse influences. 

Individuals who carry such vulnerability characteristics are thus more likely to succumb 

to the adverse effects of environmental stressors such as childhood traumas, and, 

consequently, develop psychopathology. In the absence of such vulnerabilities, 

however, adverse environmental influences, in and by themselves, my not have the 

same negative effects. Furthermore, the vulnerability itself may not be detrimental to 

the individual in the absence of adversity. Hence, the risk for the development of 

psychopathology is understood to differ as a function of the interaction between the 

vulnerability and environmental adversity.  

This person–by-environment interaction perspective has been influential in the field of 

individual differences, not only for psychiatric disorders but also in research on 

resilience (Cicchetti & Toth, 2016; Rutter, 2012). According to this view, individuals 

who do not follow the expected trajectory from exposure to adversity to disorder are 

deemed resilient – due either to the absence of the inherent characteristics that make 

other individuals vulnerable to the effects of adverse exposures, or to the presence of 

other characteristics that protect them against those effects.  

The diathesis-stress model has been important in emphasising the interaction between 

adversity and individual vulnerability/resilience in the risk of developing 

psychopathology. However, it does not readily explain individual variations in 

prosperity/flourishing in response to positive/health-promoting aspects of the 

environment. Apart from a biased focus on risk, adversity and psychopathology, the 
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main limitation of the diathesis-stress model lies in its apparent lack of consideration of 

evolutionary-developmental processes. Specifically, with regards to natural selection, 

what would be the advantage of maintaining traits and their underlying genes/biological 

processes that infer only vulnerability to environmental stressors? 

Over the last two decades, three related but different theoretical frameworks have been 

developed that emphasize individual differences in general sensitivity to (both positive 

and negative) environmental influences. These evolutionary-inspired developmental 

models consider both potential disadvantages as well as advantages in relation to 

sensitivity to environmental influences. These three frameworks include biological 

sensitivity to context (Boyce & Ellis, 2005; Ellis, Essex, & Boyce, 2005), sensory-

processing sensitivity (Aron & Aron, 1997) and the differential susceptibility hypothesis 

(Belsky, Bakermans-Kranenburg, & van IJzendoorn, 2007; Belsky & Pluess, 2009). All 

three frameworks build on the underlying dynamic of the diathesis-stress model, 

whereby variability in developmental/mental health outcomes is considered the result of 

the interaction between environmental factors and individual characteristics. However, 

rather than considering these individual characteristics as vulnerability factors that 

increase susceptibility to the detrimental effects of adverse environments, they consider 

these factors as sensitivity markers that predispose the individual to be more responsive 

to both negative and positive environmental influences. From this perspective, 

heightened sensitivity to environmental influences infers advantages when these 

influences are positive in valence, but disadvantage when they include stressors/risk. 

It must be emphasised that the diathesis-stress model and the more recent models of 

sensitivity, as mentioned above, all fall under a general category of person-by-

environment interactions that aim to explain individual differences in 

reactivity/responsivity/sensitivity to environmental influences, and may thus be 

considered models of environmental sensitivity (Pluess, 2015). However, a distinction 

is made in this thesis, and elsewhere (e.g. Pluess, 2015; Pluess et al., 2017), between the 

diathesis-stress model and the more recent models, due to two principle differences: a) 

differences in their proposed interaction pattern with the environment (fan shaped in 

diathesis-stress model vs. cross-over for the other three), and b) differential emphasis on 

the notion of vulnerability/sensitivity to risk (diathesis-stress model) versus general 

sensitivity to both risk and enrichment. Therefore, for the remainder of this thesis, 

differential susceptibility theories refer to differential susceptibility hypothesis, sensory 

processing sensitivity and biological sensitivity to context theories, all exemplified by 
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their core similarity with each other (i.e. cross-over interaction). The term 

environmental sensitivity is used to refer more broadly to individual differences in 

general sensitivity to environmental influences of both negative and/or positive valence. 

Although there are differences in how differential susceptibility theories conceptualise 

and index environmental sensitivity (see Sections 1.1.2 and 1.1.3), they all suggest that 

individual differences in environmental sensitivity have a genetic basis. This 

proposition is supported by growing evidence from candidate gene studies showing that 

certain genetic variants moderate the impact of a large range of environmental 

influences in the proposed “for better and for worse” manner. Specifically, they have 

found that the same genotypes that are associated with worse outcomes in adverse 

contexts are also associated with better outcomes/no difference in risk in positive/low 

risk contexts. However, there remain certain limitations and gaps in research on genetic 

studies of environmental sensitivity. The main aim of this thesis was therefore to 

address some of the unknowns in the genetics of environmental sensitivity and its 

moderating effects on mental health outcomes. In this vein, three main goals were 

pursued. First, to develop and use a psychometrically valid measure of environmental 

sensitivity for children and adolescents, the main age group of the samples used in the 

current thesis. Second, to examine the proposed genetic basis of environmental 

sensitivity, by estimating its heritability for the first time, and exploring the molecular 

genetic factors associated with it, using candidate and genome-wide approaches. Third, 

to examine the effect of genetic sensitivity in susceptibility to psychological problems 

and response to psychological treatment, using longitudinal cohort, as well as, clinical 

samples. 

This introductory chapter is organised into three sections. The first section describes the 

theoretical aspects of environmental sensitivity, starting with an overview of the 

differential susceptibility theories, including a review of the proposed mechanisms 

underlying variations in environmental sensitivity. The second section presents an 

overview of research in environmental sensitivity, followed by an evaluation of the 

limitations and gaps in current research on the genetics of environmental sensitivity. 

The third section details the aims of the current thesis as examined in each chapter.  
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1.1.1 The differential susceptibility theories 

The differential susceptibility hypothesis (DS; Belsky, Bakermans-Kranenburg, et al., 

2007; Belsky & Pluess, 2009, 2013a) postulates that individuals differ in the extent to 

which they are affected by environmental influences due to individual differences in 

general susceptibility—and not just vulnerability. Importantly, DS proposes that those 

individuals who are more susceptible to the effects of negative environments are also 

more sensitive to the beneficial effects of positive environmental exposures. The 

inherent general sensitivity thus functions in a “for better and for worse” manner 

(Belsky, Bakermans-Kranenburg, et al., 2007). DS was initially proposed on the basis 

of evolutionary theory, according to which the primary goal of all living beings is to 

pass on their genes to future generations. From this perspective, developmental 

strategies that enhance the chances of reproductive fitness are considered optimal even 

if they infer psychological maladjustment. For example, whereas heightened levels of 

aggression are considered maladaptive in most societies, an evolutionary-developmental 

view may suggest that aggression in a context of low resources may be an adaptive and 

optimal strategy that increases the chances of obtaining resources and, hence, promote 

reproductive fitness. Developmental plasticity/high sensitivity – the ability to adapt the 

phenotype to environmental conditions – may increase reproductive fitness through 

optimal adaptation to the prevailing context. However, since the future is inherently 

unpredictable, high sensitivity would not always prove to be adaptive—specifically in 

environments where the early environment is not predictive of what is to come. In 

addition, heightened sensitivity to contexts increases the probability of something going 

wrong in a more complex system that facilitates more interactions with environmental 

stimulations. Thus, higher sensitivity to environmental stimulations, or developmental 

plasticity, is associated with both risks and opportunities. Consequently, drawing on 

evolutionary theory, it is proposed that there should be variation in such environmental 

sensitivity, where natural selection would have led to propagation of at least two 

sensitivity types: high and low phenotypic sensitivity (Belsky, 1997b, 2005). Following 

on from this line of reasoning, DS maintains that individual differences in 

environmental sensitivity are predominantly genetically-determined; recently, however, 

it has been suggested that high susceptibility may also be shaped by early environmental 

influences (Pluess & Belsky, 2011). 

Vulnerability, as captured in the diathesis-stress model, reflects the “dark side” of 

differential susceptibility. The term ‘vantage sensitivity’, on the other hand, has been 
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used to refer to the “bright side” of differential susceptibility (Pluess & Belsky, 2013a). 

Vantage sensitivity is the disproportionate advantage a highly susceptible individual 

may gain in the context of a supportive environment, as opposed to the disproportionate 

disadvantage in an adverse environment. Failure to benefit from positive environmental 

influences has been termed vantage resistance. Importantly, although vantage 

sensitivity describes primarily the positive end of differential susceptibility, in some 

cases a sensitive individual might be especially responsive to the effects of positive 

environments but not necessarily to the effects of negative environments. Similarly, a 

vantage-resistant individual may be resistant to the effects of positive environments but 

not necessarily resilient to the negative impact of adverse experiences.  

The biological sensitivity to context (BSC; Boyce & Ellis, 2005; Ellis et al., 2005), 

similar to DS, suggests that some individuals are generally more, and others less, 

physiologically reactive to their environments; elevated reactivity is thought to 

moderate the outcomes of both ‘positive’ and ‘negative’ environmental exposures. Like 

DS, BSC is also concerned with development from an evolutionary perspective. 

However, the BSC model focuses mainly on ‘conditional adaptation’, proposing that 

individuals’ degree of environmental sensitivity is dependent on the conditions of their 

specific context. Notably, BSC suggests that individual differences in physiological 

reactivity—reflected in stress-response systems—reflect individual differences in 

environmental sensitivity. According to this model, children in especially positive 

environmental contexts, as well as those in acute adverse conditions, will both develop 

higher physiological reactivity, a marker of high environmental sensitivity. Specifically, 

stressful childhood environments are thought to up-regulate biological sensitivity to 

adverse contexts in order to better detect and respond to future environmental threats; 

supportive early environments also up-regulate biological sensitivity, increasing their 

ability to benefit from the positive features of their environment. Environments that are 

not particularly adverse or supportive, on the other hand, down-regulate biological 

sensitivity to context, with physiological reactivity patterns that are less biased and less 

responsive to environmental influences, as is the case for the majority of individuals. 

Exploratory analyses of this model have supported the BSC model by showing that the 

lowest prevalence of highly reactive children were found in conditions of moderate 

stress, whereas higher prevalence-rates were found at both tails of the distribution of 

environmental quality (Ellis et al., 2005; Gunnar, Frenn, Wewerka, & Van Ryzin, 

2009). 
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The sensory processing sensitivity theory (SPS; Aron & Aron, 1997) is also 

concerned with individual differences in environmental sensitivity. However, in contrast 

to DS and BSC, SPS was originally less concerned with developmental processes and 

more focused on explaining individual differences in sensory sensitivity and the depth 

of processing in adults. Most importantly, SPS theory approaches the notion of 

individual differences in environmental sensitivity from a personality perspective, 

suggesting that heightened environmental sensitivity is reflected in a highly sensitive 

personality type. SPS, similar to DS and BSC, proposes that individuals characterized 

as highly sensitive are more influenced by both negative and positive environmental 

influences. According to SPS, the highly sensitive personality trait is characterised by 

greater awareness of sensory stimulation, behavioural inhibition, higher emotional and 

physiological reactivity and deeper cognitive processing of environmental stimuli. 

Based on this concept of sensitivity, Aron and Aron (1997) have developed the Highly 

Sensitive Person (HSP) scale, which indexes an individual’s propensity for higher 

sensitivity to their physical and psychological context (more details on the highly 

sensitive personality trait, the measure and relevant traits are presented in Chapter 2). 

High sensitivity is hypothesised to have a genetic basis and to emerge in infancy, but is 

further shaped by the environmental contexts that the individual is exposed to during 

early development (Aron & Aron, 1997; Aron, Aron, & Davies, 2005).  

1.1.2 An integrated environmental sensitivity perspective 

The three differential susceptibility theories each emphasise different aspects of 

sensitivity. Thus, the differential susceptibility hypothesis focuses on natural selection 

and individual differences in developmental processes; biological sensitivity to context 

focuses on conditional adaptation and variations in the HPA axis; and sensory 

processing sensitivity focuses on phenotypic manifestation of sensitivity and stable 

variations in processing of environmental stimuli. 

Importantly, the three theoretical models reflect two distinct perspectives on individual 

differences in environmental sensitivity: one concerned with how environmental 

sensitivity is implicated in developmental processes, whilst the other conceptualises 

environmental sensitivity as a distinct phenotype. The developmental perspective is 

reflected in biological sensitivity to context and the differential susceptibility 

hypothesis. Both of these models are mainly concerned with the way environmental 

sensitivity operates in interaction with environmental influences to impact 

developmental outcomes (the ‘operational’ perspective). However, they do not provide 
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a phenotype of environmental sensitivity. For example, children characterised as having 

a more reactive temperament in infancy (a sensitivity marker) are shown to develop into 

children with consistently more or less aggression depending on the early care 

environment (Belsky & Pluess, 2012; Pluess & Belsky, 2009, 2010b). The SPS theory, 

on the other hand, considers environmental sensitivity as a relatively stable personality 

trait present across different contexts (Aron & Aron, 1997), allowing phenomenological 

exploration of environmental sensitivity, and examining its aetiology and nomological 

network as a psychological phenotype. 

Accordingly, research exploring these different perspectives has tended to focus on 

different markers of sensitivity to examine the potential moderating effects of sensitivity 

on environmental influences. For example, researchers using the differential 

susceptibility hypothesis have mainly concentrated on infants’ difficult temperament or 

specific genetic variants as markers of environmental sensitivity; those working under 

the BSC or SPS framework have, respectively, tended to focus on physiological 

reactivity and the highly sensitive personality trait as their sensitivity markers of choice. 

Despite clear conceptual differences between the DS and BSC (Del Giudice, Ellis, & 

Shirtcliff, 2011) and SPS in how sensitivity is indexed in each model, it is possible to 

integrate all three, by considering that difficult temperament, certain genetic variants, 

physiological reactivity and highly sensitive personality all reflect environmental 

sensitivity at different levels of analysis (Pluess, 2015). For example, environmental 

sensitivity to the effects of parenting in predicting behavioural problems has been 

demonstrated as a function of children’s sensitivity genotype (Lahey et al., 2011), 

difficult temperament (van Zeijl et al., 2007), physiological reactivity (El-Sheikh et al., 

2009), and highly sensitive personality (Slagt, Dubas, van Aken, Ellis, & Deković, 

2018). The moderating effect of these markers in a for better and for worse manner, 

therefore, has identified them as sensitivity markers at different levels of analysis, from 

the more distal genetic factors to the more proximal personality trait. Although these 

independent research findings suggest that these markers reflect the same underlying 

construct to different degrees, there is no empirical evidence linking these various 

markers of sensitivity. Further research is therefore required to determine whether a 

difficult temperament in infancy is associated with a highly sensitive personality in 

adulthood, or whether the same sensitivity genes are related to physiological or 

phenotypic markers of sensitivity.  

All three of the models described above converge on three key aspects. Firstly, there 
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exist significant individual differences in general sensitivity to environmental 

influences. Second, this environmental sensitivity functions in a for better and for worse 

manner in moderating the outcomes of environmental influences; more sensitive 

individuals, compared to less sensitive ones, are at higher risk in adversity, but are more 

able to flourish in positive contexts. Thirdly, all three models suggest that individual 

differences in environmental sensitivity have a genetic basis. The next section details 

the specific underlying mechanisms proposed by each model in explaining 

environmental sensitivity.  

1.1.3 Mechanisms of environmental sensitivity  

The exact mechanisms of environmental sensitivity are currently unknown, though the 

three prominent differential susceptibility theories have proposed potential biological 

mechanisms. Sensory processing sensitivity theory (Aron & Aron, 1997) has suggested 

the brain regions/processes involved in awareness of and attention to subtle stimuli, 

emotional responsivity, empathy to others' affective cues, and depth of processing of the 

stimuli as the underlying mechanism of heightened sensitivity to environmental 

influences. Biological sensitivity to context proponents (Boyce & Ellis, 2005; Ellis et 

al., 2005) have emphasized the role of stress response systems such as autonomic, 

adrenocortical, or immune reactivity in response to psychosocial stressors, and propose 

that variations in such psychobiologic reactivity reflects individual differences in 

sensitivity/responsivity to environmental influences. Differential susceptibility 

hypothesis proponents (Belsky & Pluess, 2009) have mainly emphasized the 

involvement of dopaminergic and serotoninergic circuitry that is implicated in 

responsivity to reward and punishment, and amygdala reactivity as one of the several 

central nervous system mechanisms. Variations in these systems are suggested to relate 

to reward threshold, differences in attention, orientation of response, response 

regulation, and emotional reactivity, all-important domains in the extent of 

responsivity/reactivity to environmental stimuli.  

Indeed, there is growing evidence to support the involvement of the various 

hypothesised systems in individual differences in environmental sensitivity. For 

example, Acevedo (2014) found that high sensitive individuals showed greater 

activation in regions of brain involved in attention and action planning, awareness, 

integration of sensory information, empathy (e.g. cingulate and premotor area [PMA], 

cingulate, insula, inferior frontal gyrus [IFG], middle temporal gyrus [MTG]), while 

viewing photos of their romantic partners and of strangers displaying positive, negative, 
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or neutral facial expressions. In another study, Jagiellowicz et al. (2011) found that high 

sensitive individuals showed stronger activation in visual processing and attention 

processing brain regions when they were tasked with noticing subtle differences in 

photographs of landscapes. Other studies have found that variations in serotoninergic 

and dopaminergic system genes are associated with individual differences in amygdala 

reactivity and toddler’s salivary cortisol levels in response to environmental influences 

(Bakermans-Kranenburg, Van, Pijlman, Mesman, & Juffer, 2008; Munafo, Brown, & 

Hariri, 2008). 

In an attempt to integrate the suggested mechanisms, Belsky and Pluess (2013a) have 

suggested that heightened environmental sensitivity may be the function of a generally 

more sensitive central nervous system. This heightened sensitivity of the central 

nervous system may be reflected in various biological, physiological and psychological 

markers found to increase sensitivity to both negative and positive aspects of the 

environment. According to this hypothesis of “neurosensitivity”, genetic and 

environmental factors influence physiological structures and functions of organs, 

including the central nervous system, which may result in a brain that is generally more 

reactive to environmental influences.   

1.2 Review of environmental sensitivity research  

Depending on the research interests of the investigators, environmental sensitivity has 

been studied using genetic (e.g. serotonin transporter gene polymorphisms), 

physiological (e.g. cortisol reactivity) or psychological (e.g. infant temperament, highly 

sensitive personality) markers. In molecular genetics studies, associations between a 

genetic variant (sensitivity marker), an environmental variable (e.g. life events) and a 

psychological outcome (depression) are examined in so-called gene-environment 

interaction (GxE) studies. These studies usually test whether a given genetic marker 

moderates the association between an environmental variable and the psychological 

outcome in crossover interaction as would be expected based on theory. On the 

physiological level, skin conductance reactivity is used, for example, as a marker of 

environmental sensitivity, which has been found to moderate the relationship between 

marital conflict and child externalizing (El-Sheikh et al., 2009). On the 

psychological/behavioral level, environmental sensitivity has been tested, for example, 

as a function of infant temperament, which has been found to moderate the effects of 

maternal discipline on child externalizing behavior, for better and for worse (van Zeijl 

et al., 2007). Regardless of the selected sensitivity marker, the main purpose of most 
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research in the field has been to test the hypothesised crossover interaction pattern of 

general environmental sensitivity in response to various environmental influences, with 

much of the research finding consistent evidence in support of the theoretical 

proposition. 

On the behavioral level, some of the most consistent evidence is found in 

developmental studies on parenting and infant temperament. Much of the research 

indicates that the negative emotional dimension of infant temperament moderates the 

effects of quality of care on various indices of children’s psychosocial development 

(Dopkins Stright, Cranley Gallagher, & Kelley, 2008; Pitzer, Jennen-Steinmetz, Esser, 

Schmidt, & Laucht, 2011; Pluess & Belsky, 2010a, 2010b; Stright, Gallagher, & Kelley, 

2008). Generally, children with more negative emotionality in infancy have been found 

to be more adversely affected by unresponsive parenting, as well as benefiting 

substantially more from responsive parenting, in comparison to those children with less 

negative emotionality (Obradovic, Bush, Stamperdahl, Adler, & Boyce, 2010; Pluess & 

Belsky, 2009). In one of the largest of these studies (N = 1,259), Raver, Blair, and 

Willoughby (2012) examined the effects of chronic poverty and poverty-related risks, 

such as family financial strain and housing quality, and the moderating role of infant 

temperament, on variability in executive function. They found that, in children with a 

high reactive temperament, chronic exposure to financial strain was associated with 

lower executive function at 4 years, while lower exposure to financial strain was 

associated with higher executive functioning. For children with a low-reactive 

temperament, however, financial strain was not related to differences in executive 

functioning. Hence, the more reactive children were more affected by both high and low 

levels of financial strain, compared to children with a less reactive temperament. The 

effects were robust, even after controlling for demographic differences, including 

ethnicity, geographic location and mother’s age and educational level. 

Studies using the Highly Sensitive Person (HSP) scale (Aron & Aron, 1997) as a 

measure of sensitivity have evidenced similar interaction patterns. For example, in an 

experimental study by Aron et al. (2005), undergraduates were asked to complete a 

cognitive task, with participants being randomly assigned to a condition that either 

implied they were doing much better (low stress) or much worse than the peers sitting 

around them (high stress). Participants with high scores on the HSP scale reported more 

negative affect than others in the high stress condition, but also the least negative affect 

in the low stress condition. Those scoring low, on the other hand, did not differ 
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significantly in negative affect regardless of condition, suggesting they were generally 

less affected by their context.  In another, recent study, Rubaltelli, Scrimin, Moscardino, 

Priolo, and Buodo (2018) examined whether exposure to terrorism-related pictures 

interacted with individual differences in HSP and psychophysiological response to 

stress (i.e. heart rate variability) to explain individuals’ risk perception (i.e. perceived 

likelihood of a terrorist attack) and willingness to trade off one's privacy to increase 

national security. Participants were randomly assigned to one of the two conditions 

(terrorism-related vs. neutral pictures), with their risk perception being assessed after 

having watched the pictures. Results showed that terrorism risk-perception was 

moderated by psychophysiological reactivity to stress and willingness to trade off one's 

privacy to improve national security was moderated by HSP, with highly sensitive 

individuals particularly affected by terrorism-related pictures. Similar interaction 

patterns have been found in studies with children (Nocentini, Menesini, & Pluess, 2018; 

Pluess & Boniwell, 2015; Slagt et al., 2018). Slagt et al. (2018) for example, in their 

longitudinal multi-informant study of 264 kindergarten children, found that highly 

sensitive children were more susceptible to changes in both negative and positive 

parenting in predicting externalizing behaviour. 

Research concerning genetic markers of environmental sensitivity can be divided into 

two main groups. The first group includes early GxE studies, the results of which 

support the differential susceptibility theories, but which have not been conducted from 

the differential susceptibility perspective from the outset (e.g. Caspi et al., 2002; Caspi 

et al., 2003; Eley et al., 2004). The second group includes more recent GxE studies 

(from 2009 onwards), which have been conducted from the outset to test environmental 

sensitivity from a differential susceptibility perspective. The first group of studies have 

been used as initial evidence, supporting the rationale for the following, second group of 

studies. With regards to the first group of studies, Belsky and Pluess (2009) draw on 

evidence from GxE research to show that individual differences in sensitivity to 

environmental influences exist and that the same gene variants are associated with 

elevated response(s) to both positive and negative environmental influences. 

Importantly, they highlight that, whilst these GxE studies suggest, at first sight, that the 

examined candidate genes represent genetic vulnerability/risk factors for the 

development of psychiatric disorders in response to environmental adversity, it appears 

to have gone unnoticed that those individuals carrying the “risk” variant often show less 

negative outcomes compared to those without this variant in the absence of adversity. 
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For example, while the s-allele in the earliest GxE studies of 5-HTTLPR by Caspi et al. 

(2003) and Eley et al. (2004) was associated with higher risk for depression in the 

context of stressful life events and adverse family environment, the same genotype also 

inferred lower risk of these problematic outcomes in the absence of stressful life events 

and family problems. A closer look at the GxE studies with MAOA (e.g. Caspi et al., 

2002; Widom & Brzustowicz, 2006) showed a similar pattern: the putative vulnerability 

allele (i.e. low-MAOA-activity) infers high risk for conduct disorder/antisocial 

behaviour in the context of childhood maltreatment but lower risk in the absence of 

maltreatment.  

It appears that the evolutionary perspective of differential susceptibility theories may 

also be better able to account for the observation that many of the genetic variants 

studied in candidate GxE psychiatric studies are “common” variants (i.e. they have a 

high frequency in the general population). If there were gene variants that are associated 

exclusively with an increased risk for the development of psychopathology when faced 

with adversity, one would expect that the frequency of these genes would decrease over 

time (and that the gene variants associated with resilience would increase). However, 

the observation that many of these genes are common, with some even appearing to be 

under positive selection (Ding et al., 2002), suggests that these gene variants may have 

benefits that counteract the negative effects of heightened vulnerability;  an observation 

that is more in line with general susceptibility to context, rather than mere vulnerability 

(Belsky & Pluess, 2009; Pluess & Belsky, 2013a).  

The second group of studies conducted under the differential susceptibility framework, 

have often supported the notion of general sensitivity (For meta-analyses of these 

studies, see:  Bakermans-Kranenburg & van IJzendoorn, 2011; van IJzendoorn, M. H., 

Belsky, J., & Bakermans-Kranenburg, M. J., 2012). For example, the 5-HTTLPR s-

allele has been found to moderate for better and for worse, the impact of perceived 

racial discrimination and child maltreatment on conduct problems and antisocial 

behaviour (Cicchetti, Rogosch, & Thibodeau, 2012). With regards to COMT, Baumann 

et al. (2013) found, in their sample of 782 adults, that COMT Val158Met genotype 

moderated the effects of childhood adverse experiences on anxiety sensitivity in 

adulthood, with the Met allele inferring greater risk of anxiety for those who were 

exposed to adverse experiences but also lower scores in the absence of such events. The 

proposition that these, and many other candidate genes (For a review, see Belsky & 

Pluess, 2009, 2013a), reflect general sensitivity to environmental influences is further 
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supported by studies showing that these genes moderate the influence of a large range 

of environmental effects that are relevant to normal development. For example, 5-

HTTLPR has been found to moderate, for better and for worse, the impact of maternal 

responsiveness on children’s moral development (Kochanska, Kim, Barry, & Philibert, 

2011), the effect of parenting practices on children’s positive affect (Hankin et al., 

2011) and perceived racial discrimination and maltreatment on children’s behavioural 

conduct (Cicchetti et al., 2012). Similarly, the DRD4 7-repeat variant has been found to 

be associated, for better and for worse, with variations in attention in the context of 

early maternal care (Berry, Deater-Deckard, McCartney, Wang, & Petrill, 2013), the 

development of social competence in the context of quality of child-care (Belsky & 

Pluess, 2013b), pre-schoolers’ enhanced literacy following a literacy improvement 

programme (Kegel, Bus, & van Ijzendoorn, 2011) and pro-social behaviour in the 

context of parenting quality (Knafo, Israel, & Ebstein, 2011).  

Furthermore, experimental GxE studies, in which response to manipulations in 

environmental contexts or exposures (e.g. interventions to enhance parenting skills or 

therapeutic interventions) is examined as a function of genotype, show results consistent 

with differential susceptibility theories (For meta-analysis see: van Ijzendoorn & 

Bakermans-Kranenburg, 2015). Bakermans-Kranenburg et al. (2008) provided video-

feedback to mothers on their parenting practices as part of a randomised intervention to 

promote sensitive parenting to mothers of 1-3-year-olds scoring highly for externalizing 

problems. They found that the intervention effect led to improvements in child 

behavior, but only for those children carrying the DRD4 7-repeat allele.  

Other, more recent studies, embracing the shift in the psychiatric genetic field by 

examining the cumulative effects of several to thousands, rather than single candidate 

genes (polygenic score) in GxE designs, have found similar results. For instance, 

evidence from studies using multiple-gene composites have shown that genetic 

sensitivity moderates the links between sexual abuse and adolescent depression/anxiety 

(Cicchetti, Rogosch, & Sturge-Apple, 2007), family environment hostility/support and 

aggression in early adulthood (Simons et al., 2011) and parenting and adolescent self-

control (Belsky & Beaver, 2011). It must be noted that, although these recent studies, 

using a polygenic approach, capture more of the variation in genetic sensitivity, they 

still rely on just a few selected candidate genes, typically less than 10 variants.  In light 

of the widely-acknowledged limitations of candidate GxE approaches (e.g. selecting 

candidate genes without sufficient knowledge of the biological mechanisms of the 
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studied phenotype), the psychiatric genetic field has moved on to examining genetic 

associations using hypothesis-free approaches, such as genome-wide association studies 

(GWAS), genome-wide-environment interaction study (GWEIS) and Polygenic Score-

Environment interactions (PGSxE). However, these genome-wide approaches have not 

yet been commonly applied in studies of environmental sensitivity, with only one study 

to date having used the PGSxE approach to conduct an a-priori test of the differential 

susceptibility hypothesis. In this study, using a genome-wide polygenic score of 

sensitivity, Keers et al. (2016) examined if higher sensitivity was associated with 

differential response to CBT treatment in a sample of 1000 children diagnosed with a 

range of anxiety disorders. They found that, consistent with theory, the more genetically 

sensitive children showed more discriminate response to the type of therapeutic 

treatment they received, compared to those who were less genetically sensitive.  

It is important to note that, although a large number of empirical studies support the 

notion of individual differences in environmental sensitivity, not all a-priori studies of 

differential susceptibility theories provide evidence consistent with its predictions (see, 

e.g., for genetic studies: Cicchetti et al., 2012; Felmingham, Dobson-Stone, Schofield, 

Quirk, & Bryant, 2013). These contradictory findings may partly reflect the conceptual 

and methodological limitations of candidate GxE studies, which are discussed in the 

following sections. 

1.2.1 Evaluation of findings in environmental sensitivity research  

Environmental sensitivity research conducted from the perspective of differential 

susceptibility theories provides empirical support for the hypothesised crossover 

interaction pattern of general environmental sensitivity in response to environmental 

influences. GxE research conducted or interpreted from a differential susceptibility 

perspective also suggests that many of the so-called genetic vulnerability variants reflect 

sensitivity to both risk and enrichment, since they are associated with increased risk of 

psychopathology in response to environmental stressors, but also enhanced benefits in 

the context of positive environmental exposure or the absence of risk. Hence, it may be 

more appropriate to consider these variants as markers of sensitivity to environmental 

influences rather than mere risk factors for psychopathology (Belsky et al., 2009; 

Rutter, 2012). This view, of course, does not negate the possibility that some of these 

gene variants infer risk in specific contexts for some domains of functioning, or the 

existence of other variants that exclusively increase vulnerability for disorders without 

inferring advantages in positive environmental contexts (diathesis-stress interaction 
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model). The research findings, at the very least, call for questioning the implicit 

assumption underlying the majority of GxE studies in the psychiatric genetic field, and 

the interpretation of results solely from a diathesis-stress perspective. 

Whilst the research evidence has, to date, addressed the main theoretical proposition of 

differential susceptibility theories, i.e. the cross-over interaction pattern, there are 

several areas of research that are yet to be explored and which are important caveats for 

understanding environmental sensitivity. Firstly, whilst research indicates that elevated 

sensitivity moderates the impact of a wide range of environmental influences on a 

variety of developmental outcomes, it is currently not clear whether this can be 

interpreted to mean that highly sensitive individuals are responsive/reactive to all 

environmental inputs and with respect to any and all developmental outcomes. In other 

words, is general sensitivity domain-specific or domain-general (Belsky, Bakermans-

Kranenburg, et al., 2007)? The difficulty in answering this question is partly due to the 

fact that most research has examined specific environmental factors in the context of 

specific disorders (e.g. stressful life events in response to depression), and within GxE 

studies, certain genetic factors are commonly studied in relation to specific outcomes 

(e.g. 5-HTTLPR and depression). Using a phenotype of sensitivity, such as highly 

sensitive personality, that reflects an individual’s general tendencies for sensitivity to 

environmental influences, may provide a step forward in testing this question, though 

research using this approach is too sparse still to make inferences at this stage. 

Secondly, the cross-sectional nature of all of the differential susceptibility-related work 

cited herein essentially presumes that children and adults who share the same sensitivity 

characteristics, be they temperamental, physiological or genetic plasticity factors, would 

function in a manner opposite to what was observed were they also observed under 

contrasting conditions. In order to empirically assert this assumption, longitudinal 

studies with repeated measurement of environmental contexts, sensitivity and outcomes 

are required; none currently exist, however.  

Thirdly, notwithstanding the contribution of the large body of research conducted on 

environmental sensitivity since the publication of the first SPS, DS and BSC papers in 

the late 1990s, our understanding of the aetiology of general sensitivity to 

environmental influences as a phenotype remains limited. This is because most research 

inspired by these concepts has been, and still is, examining the main assertion of DS, 

which posits that inherent general sensitivity to environmental influences functions in a 

for better and for worse manner, such that sensitivity to the effects of environmental 
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influences can be extended from negative environments to positive ones. While the 

results of these studies provide strong support for the existence of individual differences 

in general environmental sensitivity, and how it may moderate a range of outcomes, 

they are not specially informative with regards to the underlying factors that contribute 

to variations in the phenotype of sensitivity, other than indicating that genetic factors 

may play a role in its aetiology. 

The gap in research on genetics of environmental sensitivity is an important area of 

research worthy of further investigation. A better understanding of the aetiology of 

environmental sensitivity, its genetic architecture and which genetic variants contribute 

to individual differences in this trait are essential first steps in elucidating the biological 

mechanisms. Additionally, it is also important to explore how these genetically driven 

differences may impact the trajectory of mental health outcomes in response to 

environmental influences. Accordingly, the main aim of this thesis is to examine some 

of the ‘unknowns’ in the genetics of environmental sensitivity; the next section 

specifically focuses on the discussion of the unknowns and limitations of research in 

this area. 

1.2.2 Limitations and current gaps in research on the genetics of environmental 

sensitivity 

As noted in the previous section, there are many unknowns in the environmental 

sensitivity research – such as the exact mechanism of sensitivity, domain-specificity 

versus a domain-general nature of sensitivity and the aetiology of environmental 

sensitivity. Five main limitations and gaps in the research have been identified, which 

the present thesis intends to address empirically. 

First, one of the main contentions of the differential susceptibility hypothesis, and at the 

core of its evolutionary rationale, is that individual differences in sensitivity have a 

genetic basis. Indeed, GxE research assumes this to be the case, by showing that the 

genes in these studies reflect variations in sensitivity to environmental influences. 

However, no studies to date have examined the heritability of environmental 

sensitivity. Heritability estimates indicate to what extent variations in a trait are due to 

genetic or environmental factors. In the absence of such research, it is impossible to 

determine how important genetic factors are for individual differences in general 

sensitivity to environmental influences, and if sensitivity is mainly a function of 

additive or dominant genetic effects, for example. In addition, it is currently unclear to 
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what extent the genetic factors underlying environmental sensitivity are different or 

similar to the ones underlying other, related traits. This is of particular interest because 

of the observed genetic correlation between comorbid disorders and correlated traits 

(Cross-Disorder Group of the Psychiatric Genomics, 2013; Trouton, Spinath, & Plomin, 

2002; Waszczuk et al., 2015). Although previous studies of the highly sensitive 

personality trait have shown consistent correlations with other personality traits, such as 

neuroticism and extraversion (Smolewska, McCabe, & Woody, 2006; Sobocko & 

Zelenski, 2015), and depressive symptoms (Aron et al., 2005; Liss, Timmel, Baxley, & 

Killingsworth, 2005), no studies to date have examined their shared aetiology.  

Second, all genetic studies of environmental sensitivity so far have used an operational 

view of sensitivity, wherein sensitivity is implied through a genetic variant’s observed 

interaction pattern with the environment. Although the results may implicate these 

candidate genes as relevant to the aetiology of environmental sensitivity, no studies to 

date have examined how these candidate sensitivity genes relate to the phenotype 

of environmental sensitivity (i.e. highly sensitive personality trait). This is an 

important gap in research, because it cannot be assumed that the genes involved in 

response to the specific range of environmental factors currently studied are the same 

ones that contribute to significant variations in the phenotype of general sensitivity to all 

environmental influences. Specifically, as noted earlier, much of the currently 

nominated sensitivity genes have been studied within specific outcomes (e.g. DRD4 and 

ADHD, 5-HTTLPR and depression), and therefore may reflect specific sensitivities in 

response to specific events, rather than general sensitivity to contexts, as differential 

susceptibility theories propose. The empirical question therefore remains as to which 

genetic factors contribute to the observed individual differences in environmental 

sensitivity.  

Third, despite research in the field of psychiatric genetics having moved on to 

exploratory genome-wide examination of genetic associations, the entirety of 

environmental sensitivity genetic research is based on candidate gene approaches, 

rather than genome-wide methodology (with the exception of a recent study by Keers 

et al. (2016)). This is despite the known limitations of a candidate gene approach. 

Specifically, while the main requirement of a candidate gene approach is the selection 

of candidate genes based on their biological relevance to the trait, current knowledge 

regarding the specific biological mechanisms underlying complex psychological traits 

including sensitivity remains limited. This is an important limitation, especially for 
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candidate gene research in environmental sensitivity, whereby the initial sensitivity 

genes have been identified based on their interaction pattern with environmental factors, 

rather than biologically established mechanisms underlying the trait as a first step (e.g. 

see: Belsky & Pluess, 2009, 2013a). Relatedly, research in the field of molecular 

genetics suggests that common traits are usually influenced by many thousands of gene 

variants, each of very small effect, rather than by a few variants of large effect 

(Culverhouse et al., 2017; Manolio et al., 2009). In other words, the genetic architecture 

of common behavioural traits are highly complex and polygenic (Donnelly, 2008).  In 

addition, most genetic studies of environmental sensitivity have examined SNP level 

variations, rather than considering other units of genetic differences, such as at the gene-

level or the gene-system level. This rather new approach in the field of psychiatric 

genetics allows the examination of genetic differences at a level more proximal to the 

biological differences underlying traits.   

Fourth, while environmental sensitivity GxE research has examined a range of mental 

health outcomes, very few have investigated the role of environmental sensitivity in 

predicting clinical disorders in response to relevant environmental risk factors. The 

same paucity of research is observed when examining experimental/treatment response 

studies of environmental sensitivity and clinically diagnosed outcomes. It is therefore 

difficult to ascertain, by looking at current research using disorder symptoms, whether 

or not the same trajectories are to be expected with regards to clinically diagnosed 

disorders. This is an important gap in research, considering the debate on how common 

psychiatric disorders should be best defined: as extreme ends of a normally distributed 

phenotype (e.g. depression symptoms) or qualitatively distinct phenotypes (Kendell & 

Jablensky, 2003; Widiger & Simonsen, 2005). Genetic research suggests that 

qualitative disorders can be interpreted simply as being the extremes of quantitative 

dimensions (Plomin, Haworth, & Davis, 2009). Regardless of the specific 

perspective, both concepts of disorder make a distinction between extreme versus 

average symptoms, occurring, respectively, in the clinical population versus the 

general, non-clinical population. Whilst genetic sensitivity, in its interaction with 

adverse environmental factors, seems to contribute to variations in the ‘middle section’ 

of a quantitatively defined disorder, it may not explain variations at the extreme ends of 

this distribution. It is possible that elevated sensitivity in adverse contexts impairs 

functioning to some extent, but not to the extent that would contribute to the 

development of qualitatively different outcomes, i.e. clinical diagnosis. In order to be 

able to extend the relevance of sensitivity to psychopathology, empirical tests of its 
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association with clinically diagnosed disorders are essential. In addition, all GxE studies 

of environmental sensitivity to date have used candidate sensitivity genes in their 

design, rather than Genome-wide nominated or the polygenic score of a phenotype of 

sensitivity in predicting susceptibility to clinical disorder or treatment response; an 

important gap in research considering the previously-discussed polygenic nature of 

complex traits and using a phenotype of general sensitivity. 

Fifth, there are to date to no life-span studies of sensitivity, only cross-sectional and 

limited longitudinal data; no existing studies span across multiple developmental stages 

of childhood, adolescence and adulthood. Research has consistently shown the negative 

impact of early adverse environmental influences to stretch beyond childhood and into 

adulthood and old age; yet it is unclear how individual differences in environmental 

sensitivity may moderate these effects at different developmental stages. This is an 

important consideration, not only for environmental sensitivity but for other GxE 

studies, because the effects of environmental and genetic factors on an outcome may 

differ as a function of the interaction between the two, but also as a function of 

developmental stage. Specifically, should we expect that the interaction between genetic 

sensitivity and environmental influences in childhood to infer a for better and for worse 

outcome throughout the life span, or do these effects change? Since environmental 

sensitivity has not been studied longitudinally from a life-span perspective, it is 

currently impossible to determine which model may best represent its function. 

1.3 The aims of the thesis 

The main aims of this thesis are to i) investigate the genetic basis of environmental 

sensitivity, by examining its heritability; ii) identify genetic variants related to 

individual differences in environmental sensitivity; and iii) examine how genetic 

sensitivity may be implicated in mental health outcomes via its interaction with 

environmental influences. The hypotheses are guided by both the theoretical 

propositions of the differential susceptibility theories, as well as current research in the 

field. The aims of the current thesis were examined using secondary data analysis; no 

data were collected by the author personally. The scope of the thesis and the planned 

analyses therefore had to take into consideration access to and availability of the data. 

The analytical approaches include a range of quantitative and molecular genetic 

methodologies as appropriate to the aims of each study, and included twin models to 

derive heritability estimates, candidate gene association study, GWAS, gene-based and 

polygenic score analysis. Psychometric analyses were also conducted to develop the 
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phenotypic measure of environmental sensitivity for use with children and adolescents.  

Chapter 2 aimed to develop a new developmentally-appropriate measure of highly 

sensitive personality for use with children and adolescents, an age group that comprise 

the majority of the samples used in the current thesis. This was an important first step, 

because currently the only available measure is for use with adults only. The 

development and validation of the new scale was conducted via a large, multi-site study 

in the UK, comprising four independent samples (N= 1,931). The validation process 

included first selecting developmentally-appropriate items that capture the highly 

sensitive personality concept in line with the equivalent adult measure and confirming 

this via principal component and confirmatory factor analyses; second, establishing the 

construct validity of the new scale via examining its associations with other relevant 

constructs, personality traits and phenotypes; third, examining the reliability of the scale 

via test-re-test; and finally, examining the factor structure and associations with 

expected outcomes in another, independent sample. The resulting Highly Sensitive 

Child (HSC) scale was then used to index environmental sensitivity in the subsequent 

chapters. The analyses and results in this chapter address a gap in the current research 

into environmental sensitivity, by providing a valid measure of sensitivity in 

adolescents and children, facilitating future research within this age group. 

Chapter 3 aimed to examine the hypothesised genetic basis of sensitivity, by 

investigating, for the first time, the heritability of environmental sensitivity. Heritability 

estimates were obtained by using classical twin design in a large sample of twins from 

the UK (N= 2,868). In addition to examining the heritability of environmental 

sensitivity, multivariate twin analyses were conducted to explore the genetic 

architecture of sensitivity: first, the genetic overlap between the three factors of the 

sensitivity scale were examined in order to determine whether the genetic basis of 

sensitivity is comprised of three correlated but rather distinct components, reflecting its 

factor structure; second, the genetic overlap between sensitivity, the Big Five 

personality traits, depression and anxiety were examined, in order to determine the 

extent of shared genetic aetiology between environmental sensitivity and these other 

related phenotypes. The analyses reported in this chapter address the current gap in 

research on environmental sensitivity, by providing the first heritability estimate for 

environmental sensitivity, as well as providing an indication of its genetic architecture 

and how its aetiology relates to other traits and outcomes. 
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Chapter 4 aimed to identify the molecular genetic factors associated with individual 

differences in environmental sensitivity. This was done via analysis of molecular 

genetic data and the HSC measure in three independent adolescent samples from the 

UK (N= 395 and N= 642) and Belgium (N= 913), using two main methodological 

approaches. In the first part, a candidate gene approach was taken, to examine the 

associations between environmental sensitivity and candidate sensitivity genes 

identified in the literature. The associations were examined from a single nucleotide 

polymorphism level of variation, as well as variations at gene level. In the second part, 

an exploratory, genome-wide approach was taken: first, GWAS was conducted on two 

independent samples, followed by meta-analysis of the results, in order to identify SNPs 

significantly associated with environmental sensitivity. These analyses were then 

followed up by genome-wide, gene-level and system-level association analysis. Finally, 

polygenic score analyses were conducted to predict sensitivity across the two 

independent samples, as well as using a cross-trait approach, by using publically 

available summary statistics data from large GWAS of thirteen other phenotypes 

relevant to environmental sensitivity. The analyses in this chapter address the main 

limitations of genetic studies of sensitivity to date, by examining the candidate genetic 

associations with the phenotype of environmental sensitivity and also conducting the 

first exploratory genome-wide search for genetic variants and biological pathways 

associated with this trait.   

Chapter 5 aimed to investigate the impact of genetic sensitivity on mental health in 

response to environmental influences. This was done via three separate studies, each 

examining genetic sensitivity-x-environment interactions, using the polygenic scores of 

sensitivity obtained in the previous chapter. The first study includes longitudinal data 

for 2,863 individuals from a prospective longitudinal cohort study from the UK, and 

examined, for the first time, the interaction between a polygenic score of sensitivity and 

quality of psychosocial environment in childhood in predicting psychological distress 

across life span (ages 7 to 50). The second study used cross-sectional data to examine 

the interaction between the polygenic score of sensitivity and childhood maltreatment, 

and stressful life events, in the prediction of clinical depression case/control status in a 

sample of 2,434 adults. The third study included cross-sectional data from a clinical trial 

study of response to CBT treatment for paediatric anxiety disorders. This study 

examined whether and how genetic sensitivity moderated response to the three different 

types of Cognitive Behavioural Therapy (CBT) treatment (individual CBT, group CBT, 

guided self-help CBT) in a sample of 913 children with clinically-diagnosed anxiety 
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disorders. The analyses in this chapter address the main limitations of previous GxE 

studies by using a polygenic score of sensitivity, rather than relying on candidate genes 

as an index of genetic sensitivity. In addition, each study addresses other specific 

limitations: the first study addresses the current gap in research on the impact of genetic 

sensitivity across life-span, of which there are no studies to date; the second study 

addresses the gap in research on the relevance of environmental sensitivity to clinical 

disorders (i.e. major depression), where the majority of current studies have used 

symptoms rather than clinical diagnosis outcomes; the third study examines treatment 

response to intervention, using a polygenic score of sensitivity derived from a 

phenotype of sensitivity that represents general sensitivity to contexts. 

Chapter 6 provides an overview of the results of empirical investigations in this thesis 

and offers a discussion on the findings in the context of the stated aims of this chapter. 

The findings are also interpreted for their implications for research on environmental 

sensitivity, as well as in the wider field of psychiatric genetics.  
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Chapter 2 

Development and psychometric validation of a 

measure of environmental sensitivity for use with 

children and adolescents: the Highly Sensitive 

Child scale 
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2.1 Introduction 

The three differential susceptibility theories (i.e. sensory processing sensitvity: Aron & 

Aron, 1997; differential susceptibility hypothesis: Belsky & Pluess, 2009; biological 

sensitivity to context: Boyce & Ellis, 2005) all suggest that individuals differ in their 

general sensitivity to environmental influences. According to these theories, heightened 

sensitivity to environmental exposures is not, in and by itself, a marker of vulnerability. 

Instead, it reflects the inherent tendency for greater sensitivity to environmental 

influences. These theoretical models propose that high sensitivity functions in a for 

better and for worse manner, such that it infers higher risk for negative outcomes in the 

context of adversity, but also renders the individual more susceptible to profit from the 

beneficial features of positive environmental influences. As detailed in Chapter 1, the 

three different susceptibility theories have proposed and studied different markers of 

environmental sensitivity. For example the differential susceptibility hypothesis 

emphasises genetic factors and infant temperament, while biological sensitivity to 

context focuses on physiological markers such as stress-reactivity. Research evidence 

reviewed in Chapter 1 suggests that these markers reflect variations in 

response/reactivity to a large range of environmental influences, consistent with the 

proposed for better and for worse interaction pattern. However, none of these markers 

provide a quantifiable measure of inter-individual differences in general levels of 

sensitivity to environmental influences, in other words, a phenotype of environmental 

sensitivity. This is an important consideration, since quantification of individual 

differences in environmental sensitivity on a population level, studying its nomological 

network, and understanding its biological underpinnings require a phenomenologically 

ascertained measurable phenotype. The sensory processing sensitivity theory by Aron 

and Aron (1997) does exactly this: exploring, formulating and providing a phenotypic 

measure of environmental sensitivity via the Highly Sensitive Person scale (HSP; Aron 

& Aron, 1997).  

While the HSP scale has been considered and studied as a promising phenotype of 

environmental sensitivity in adults (see Chapter 1), there is currently no validated self-

report measure for use with children and adolescents. The main aim of the current 

chapter was therefore to report on the development and psychometric properties of a 

new measure of environmental sensitivity, based on HSP, for use with children and 

adolescents. Developing a valid measure of environmental sensitivity for this 

developmental stage is an important first step towards the main aim of this thesis, 
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because the data used throughout this thesis comprises of children and adolescent 

samples. Having a developmentally appropriate measure of environmental sensitivity is 

a fundamental prerequisite in order to be able to estimate the heritability of this trait and 

identify the molecular genetic factors in subsequent chapters.  

The remainder of the introduction to this chapter is organised in three main parts. The 

first part includes an overview of sensory processing sensitivity theory and a detailed 

description of the conceptualisation of the underlying highly sensitive personality trait. 

The second part includes a review of empirical research on this phenotype and examines 

how it relates to other traits and outcomes. The third part summarises the specific aims 

of the presented analyses. 

2.1.1 The sensory processing sensitivity theory and the highly sensitive personality 

trait  

Sensory processing sensitivity theory was put forward by Aron and Aron (1997) based 

on their observations in clinical settings, of some individuals exhibiting generally higher 

sensitivity to environmental influences, a specific pattern of responsivity to emotional 

and physical environmental stimuli consistent with Jung’s concept of innate 

sensitiveness (Aron, 2004). In their seminal paper, Aron and Aron (1997) describe a 

subset of individuals, termed highly sensitive persons, who tend to be generally more 

affected by their environmental context as a function of differences in sensory 

processing sensitivity, characterised by (a) greater awareness of sensory stimulation, (b) 

behavioural inhibition (c) deeper cognitive processing of environmental stimuli, and (d) 

higher emotional and physiological reactivity (Aron, Aron, & Jagiellowicz, 2012). 

These characteristics may manifest as psychological and behavioural tendencies such as 

lower threshold for reactivity to stimuli, being easily overwhelmed by sensory and 

psychological stimuli, pausing to reflect when faced with novel situations, greater 

attention to detail, and greater intensity in feelings of pleasure or discomfort. Aron and 

Aron (1997) suggest that the tendency for a lower threshold of reactivity to sensory 

stimuli and higher attention capture by a larger number of salient stimuli, results in a 

larger processing load that may lead to overstimulation and temporary pauses and 

behavioural inhibition, and a more complex and discriminating stimuli-processing style 

that results in deeper processing of emotions and cognitions (i.e. more reflective).  

The tendency to inhibit response in the face of novel stimuli or uncertainty, by pausing 

and evaluating information prior to initiating behaviour is suggested to reflect the 
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function of the behavioural inhibition system (BIS) and the behavioural activation 

systems (BAS) (McNaughton & Gray, 2000). While BAS is the source of goal-directed 

behaviour, and reflects sensitivity to conditioned and unconditioned signals of reward, 

BIS reflects sensitivity to punishment, non-reward and novelty (Carver & White, 1994). 

Aron and Aron (1997) argue that a highly sensitive person’s behavioural inhibition due 

to high levels of physiological arousal in novel situations, reflects the BIS.  

Aron and Aron (1997) also suggested that the highly sensitive personality is reflected 

in, and sometimes masked by, what other researchers call inhibitedness in children (e.g. 

Kagan, Reznick, & Snidman, 1988), introversion in adults (e.g. Eysenck, 1990; 

Stelmack, 1990), innate shyness (e.g. Cheek & Buss, 1981; Daniels & Plomin, 1985), 

and reactivity (Rothbart, 1989; Strelau, 1983). Specifically, it is suggested that low 

sociability (including inhibitedness, introversion, shyness) and negative affect 

(including neuroticism, anxiety) are characteristics that may be emphasised in highly 

sensitive individuals (Aron et al., 2005). They reason, that this is because sensory 

processing sensitivity can, in some highly sensitive individuals, manifest itself as low 

sociability and neuroticism, with the former as a strategy to avoid overstimulation and 

the latter as a consequence of the interaction between sensitivity and aversive 

experiences. Specifically, it is proposed that while low sociability can be a consequence 

of aversive social and attachment experiences, it can also be a consequence of high 

sensitivity, whereby low sociability develops over time as an adaptive response to avoid 

overstimulation. This is because the social situations most associated with 

shyness/introversion, such as groups and meeting strangers, can be highly stimulating 

contexts due to their aspects of novelty, unpredictability and complexity. Higher arousal 

due to higher sensitivity to stimulation may overwhelm the individual and lead to poor 

performance in such situation, leading to discomfort in and avoidance of social 

situations. High sensitivity in the contexts of adverse environmental experiences can 

lead to neuroticism/negative affect/anxiety, since highly sensitive persons experience 

the same adverse environment as more negative, and retrospective evaluations of the 

negative experience is conducted more deeply and in greater detail. This can lead to 

greater awareness of potential threat cues in prospective evaluation of danger and 

ensuing preoccupation with danger and mitigating actions, resulting in chronic anxiety, 

negative effect and introversion.  

Aron and Aron (1997) developed a 27-item self-report questionnaire, the Highly 

Sensitive Person scale (HSP; Aron & Aron, 1997), to index the core features of highly 
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sensitive personality, as a function of variations in threshold of sensory stimulation (e.g. 

being easily startled by louse noises), and depth and breadth of processing of sensory 

and emotional stimuli (overwhelmed when having a lot going on, attention to detail, 

intensity of pleasure and discomfort). (See Appendix 2.1 for the HSP questionnaire). 

The development of the scale included a qualitative study with interviews of self-

identified highly sensitive individuals to examine the subjective phenomenon, followed 

by six studies that included quantitative psychometric analyses of the scale in order to 

establish its convergent and divergent validity by examining its associations with the 

hypothesised traits and outcomes (Aron & Aron, 1997).  

2.1.2 The highly sensitive personality and its association with other traits  

HSP has since been examined in a range of studies using both correlational and 

experimental designs, including brain-imaging studies. The results confirm the 

theoretical proposition that highly sensitive individuals are generally more sensitive to 

their environmental contexts compared to less sensitive individuals, and that this 

sensitivity is exhibited in response to both negative and positive influences.  

For example, in a behavioural experiment, Aron et al. (2005) assigned undergraduates 

randomly to a situation that either implied they were doing much better or much worse 

than their peers when performing a cognitive task. Participants with higher scores on an 

abbreviated version of the HSP scale reported more negative affect than others after the 

task if they were led to believe they did worse than others, but also the least negative 

affect in the condition where they were led to believe they had done better. Those 

scoring low, on the other hand, did not differ significantly in negative affect regardless 

of condition, suggesting they were generally less affected by the experimental 

manipulation. Other research has shown that higher scores on the HSP scale are 

associated with higher risk for adult depression and negative emotionality following 

adverse childhood experiences, but also lower risk for such problems in response to 

more favourable childhood contexts (Aron et al., 2005; Liss et al., 2005). More recently, 

Booth, Standage, and Fox (2015b) tested in a cross-sectional study whether scores on 

the HSP scale in adulthood moderated the effects of retrospectively reported childhood 

experiences on adult life satisfaction. They found a significant interaction, suggesting 

that more sensitive individuals were more negatively affected by negative childhood 

experiences compared to less sensitive individuals. In another study, Jagiellowicz, 

Aron, and Aron (2016) examined the valence and arousal levels of individuals rating 

high or low on the HSP scale (25 percentile), when viewing emotionally evocative 
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(positive, negative) and neutral pictures. They found that highly sensitive individuals 

(compared to low sensitive) rated emotional pictures, especially positive ones, as 

significantly more intense. More specifically, the arousal in response to positive pictures 

was greater for highly sensitive individuals (vs. low) if they had reported a history of 

high-quality parenting as children.  

Adding further evidence to the validity of the scale, is research applying fMRI 

methodology to investigate the link between HSP and variations in brain activity in 

response to environmental stimulations. These studies provide evidence that higher 

scores on the HSP scale are associated with an increased neuronal responses to subtle 

changes in visual scenes (Gerstenberg, 2012; Jagiellowicz et al., 2011), greater neuronal 

activity in regions associated with attention and working memory in a task requiring 

attending to context to visual scenery (Aron et al., 2010), and stronger activation of 

brain regions involved in sensory integration, awareness, empathy, and self-other 

processing in response to positive, negative, or neutral facial expressions (Acevedo, 

Bianca P. et al., 2014).  In a follow up study on the results of an earlier behavioural 

experiment by Jagiellowicz et al. (2016), Acevedo, Jagiellowicz, Aron, Marhenke, and 

Aron (2017) examined if the reactivity to emotionally evocative positive and negative, 

or neutral images was associated with variations in brain activity for high versus low 

sensitive individuals. They found that for all images, highly sensitive individuals (vs. 

low), showed more activation in areas of brain associated with emotional memory 

processing, learning, physiological regulation, awareness, reflective thinking, and 

integration of information (e.g. hippocampus, entorhinal area, hypothalamus, and 

temporal/parietal areas) and greater activation in areas involved in reward processing 

(ventral tegmental area, substantia nigra, caudate), self-other integration (insula and 

inferior frontal gyrus), calm (periaqueductal gray), and satiation (subcallosal anterior 

cingulate) for positive images. When viewing negative images, having experienced 

higher quality parenting in childhood was associated with more activation in areas 

involved in emotional regulation and self-control in highly (vs. low) sensitive 

individuals, indicating highly sensitive persons are more sensitive to the effect of 

quality of childhood parenting. Although the sample sizes in brain imaging studies are 

typically small (N < 50), these studies provide preliminary evidence for the proposed 

differences in the processing of environmental stimuli in high versus low sensitive 

individuals. Considering these studies alongside other behavioural studies, the findings 

suggest that the HSP scale captures the tendency to be generally more affected by the 

environmental context, as would be expected from the differential susceptibility 
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theories. 

Although Aron and Aron (1997) conceptualised the HSP measure as reflecting a single 

factor, recent factor analyses in several independent samples (Booth et al., 2015b; Liss, 

Mailloux, & Erchull, 2008; Smolewska et al., 2006; Sobocko & Zelenski, 2015) 

revealed three distinct components underlying the HSP scale, which have been labeled 

by Smolewska et al. (2006) Ease of Excitation (EOE), Aesthetic Sensitivity (AES), and 

Low Sensory Threshold (LST). The EOE factor is represented by items that relate to 

being easily overwhelmed by external stimuli (e.g. “finding it unpleasant to have a lot 

going on at once “). LST is reflected in items that relate to unpleasant sensory arousal 

(e.g. “being easily overwhelmed by things like bright lights, strong smells, coarse 

fabrics, or sirens close by”). Finally, AES is represented by items that relate to aesthetic 

awareness (e.g. “being aware of subtleties in your environment” and “being deeply 

moved by the arts or music”). All three components tend to be positively correlated with 

each other, although to different degrees, with relatively high correlations between EOE 

and LST (ranging from r = .60 to .73), and more modest correlations between AES - 

LST (ranging from r = .17 to .45) and AES - EOE (ranging from r = .24 to .40) (Booth 

et al., 2015b; Smolewska et al., 2006; Sobocko & Zelenski, 2015). Smolewska et al. 

(2006) investigated correlations between the HSP scale and personality measures in 

adults, including the Big Five personality traits and BIS/BAS scales by Carver and 

White (1994), and found that the HSP total score was significantly and positively 

correlated with neuroticism (r = .45) and openness (r = .19), as well as both BIS (r = 

.32) and BAS (r = .16 for the reward-responsiveness subscale). When investigating 

associations with the three HSP subscales, they found that while neuroticism and BIS 

were correlated with all three factors, openness had a significant association only with 

aesthetic sensitivity (r = .37), low sensory threshold with lower extraversion (r = -.12), 

and ease of excitation, and aesthetic sensitivity with the BAS reward-responsiveness 

scale (r = .19 and r = .18, respectively) (for similar findings, see Gerstenberg, 2012). At 

first sight this correlation pattern appears to suggest that aesthetic sensitivity may reflect 

environmental sensitivity to more positive experiences, whereas ease of excitation and 

low sensory threshold reflect sensitivity to more negative experiences (Smolewska et 

al., 2006; Sobocko & Zelenski, 2015).  
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2.1.3 Aims  

The main aim of the study was to develop a new measure of highly sensitive personality 

appropriate for use with children and adolescents based on the original HSP scale, and 

establish its psychometric properties in independent samples. This was done through 

four studies across four independent samples of children and adolescents from the UK, 

ranging in age from 8-19 years (total sample N = 1,931).  Study 1 describes the creation 

of a 12-item scale, from a pool of 38 self-report questions, using a sample of 334 

children. In Study 2, the psychometric properties of the new 12-item scale were tested 

in an independent sample of 11-year olds (N= 258), by examining its associations with 

related constructs of behavioural inhibition and activation, temperament. In study 3, the 

test-retest reliability of the 12-item scale was examined in a different sample of 10-year 

old children (N= 155). The psychometric properties of the 12-item scale were examined 

in a large sample of 17-years old adolescents (N= 1,174).   
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2.2 Methods & Results 

The aims of the current chapter are examined in four studies across four independent 

samples. Details on the methods, analysis and results are presented separately for each 

study. 

2.2.1 Study 1 

2.2.1.1 Study 1: Methods 

The main objective of Study 1 was to create a short and psychometrically robust Highly 

Sensitive Child (HSC) scale drawing on 38 existing sensitivity items for children, which 

have been adapted from the 27 items included in the adult HSP scale. Besides being 

brief and psychometrically sound, the self-report measure should be suitable for 

children and adolescents and reflect the same factor structure as the adult version. Once 

the HSC scale was created, it was then tested for its psychometric properties as well as 

for its associations with related constructs of behavioural inhibition and activation, 

temperament, and affect. 

Sample: The sample included 334 children (251 girls and 83 boys) with a mean age of 

12.06 years (range = 11-14 years; SD = 0.67) recruited from two secondary schools in 

East London, United Kingdom (one of the school was a girls-only school which 

explains the higher proportion of girls in this particular sample). The sample was 

ethnically diverse with 55.4% of Asian, 15.9% of African/Caribbean, 8.1% of 

White/European, 2.1% of Middle Eastern, and 18.6% of mixed ethnicity. 

Procedures: Children were asked to complete all questionnaires on a computer at 

school during class. In order to create a short and psychometrically robust HSC scale 

that is comparable in content and structure to the adult scale, the factor structure of the 

adult scale was consulted (see Appendix 2.1 for the HSP adult scale). As reported by 

Smolewska et al. (2006) a three factor structure seemed to fit the data collected with the 

adult HSP scale best, with 12 items loading on the factor “ease of excitation”, 7 items 

on “aesthetic sensitivity”, and 6 items on “low sensory threshold” (two items did not 

load clearly on any of the three factors and were excluded). In order to create a HSC 

scale that is comparable to the HSP scale, we first selected among the remaining 25 

HSP items from Smolewska et al. (2006) factor analysis, those that had a factor loading 

of  > .5 and could be easily adjusted for the use with children. Twelve items met these 

criteria. Then, a principal component analysis (PCA) was conducted, constrained to 
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three components (given that the HSP scale reflects three factors) across a pool of 38 

sensitivity items for children (HSC-38, provided in Appendix 2.2). This was done to 

test whether the HSC-38 items would reflect similar factor loadings as those adult HSP 

items with the highest factor loadings for each of the three factors as reported by 

(Smolewska et al., 2006). The final 12-item HSC scale included 5 Ease of Excitation 

items, 4 Aesthetic Sensitivity items, and 3 Low Sensory Threshold items (see Table 2.1 

for a list of the specific items).  

Measures: Children completed 38 items from an unpublished sensitivity scale (HSC-

38, see Appendix 2.2) which has been developed initially to measure sensory-

processing sensitivity in Dutch school-aged children (Walda, 2007). The 38 items aim 

at capturing the same information as the adult HSP scale (Aron & Aron, 1997). Items 

such as “When someone is sad, that makes me feel sad too”, “I find it unpleasant to 

have a lot going on at once”, and “When I am hungry, I get in a bad mood” were rated 

by children on a scale from 1 = “not at all”, to 7 = “extremely”, with higher scores 

indicating higher levels of sensitivity. The internal reliability of the 38 items was good 

with Cronbach’s α = .92.  

Behavioural inhibition and activation was measured with the 24-item Behavioural 

Inhibition and Behavioural Activation scales (BIS-BAS; Carver & White, 1994). The 

Behavioural Inhibition scale (BIS) is based on 7 items (e.g. “Criticism or scolding hurts 

me quite a bit”, “I worry about making mistakes”) whereas the Behavioural Activation 

scale (BAS) features three subscales (i.e. “Reward Responsiveness”, “Drive”, and “Fun 

Seeking”). For the current study, all 17 BAS items (e.g. “It would excite me to win a 

contest”, “I'm always willing to try something new if I think it will be fun”) were pooled 

into one scale. BIS-BAS items are rated on a Likert scale ranging from 1 = “very false” 

to 4 = “very true”. Higher scores indicate higher levels of behavioural inhibition (BIS) 

and activation (BAS). In the current sample the internal reliability of BIS and BAS were 

α = .80 and α = .91, respectively.  

Temperament was measured with the 65-item Early Adolescent Temperament 

Questionnaire-Revised (EATQR; Capaldi & Rothbart, 1992) which assesses 12 aspects 

of temperament (i.e. activation control, affiliation, attention, fear, frustration, high-

intensity pleasure, inhibitory control, perceptual sensitivity, pleasure sensitivity, 

depressive moods, aggression, and shyness). Items (e.g. “I feel shy about meeting new 

people”, “I feel pretty happy most of the day”, “When I am angry, I throw or break 

things”) are rated on a 5-point Likert scale, ranging from 1 = “almost always untrue of 
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you”, to 5 = “almost always true of you”. For the current study, we combined these 

subscales—as recommended by others (Putnam, Ellis, & Rothbart, 2001; Snyder et al., 

2015)—into three superordinate dimensions of temperament: (a) effortful control (EC; 

based on attention, activation control, and inhibitory control), (b) negative emotionality 

(NE; based on fear, frustration and shyness), and (c) positive emotionality (PE; based on 

surgency, pleasure sensitivity, perceptual sensitivity and affiliation). Higher scores on 

each subscale indicate higher levels on that temperament dimension. The internal 

consistency of the scales were acceptable with α = .86 for EC, α = .69 for NE, and α = 

.84 for PE. 

Positive and negative affect were measured with the child version of the Positive and 

Negative Affect scales (PANAS; Laurent et al., 1999). The Positive Affect (PA) scale 

includes 12 items (e.g. “Interested”, “Excited”) and the Negative Affect (NA) scale 15 

items (e.g. “Upset”, “Guilty”). All items are rated on Likert scale, ranging from 1 = 

“not at all” to 5 = “almost every day”. Higher scores indicate higher state levels of 

positive or negative affect. The internal consistency of the PANAS was good with α = 

.92 for PA and α = .93 for NA.  

Data analysis: In order to create the HSC scale, principal component analyses (PCA) 

were conducted on the 38 sensitivity items (applying Varimax rotation with Kaiser 

normalization). For the first PCA the number of components was defined by Eigen 

values >.1, and in a second analysis the model was constrained to three components, 

informed by the 3-factor structure of the adult HSP scale (Smolewska et al., 2006). 

Twelve items were then selected out of the 38 items, that were most similar to the 

highest loading items of the adult HSP scale as reported by Smolewska et al. (2006). 

The PCA was then repeated with the 12 selected items in order to verify whether items 

would load on the specific component they had been selected for. Next, confirmatory 

factor analyses (CFA) were applied to the 12-item scale in order to test two competitive 

models (see Figure 2.1 for an illustration of the difference between the two models): (a) 

a 3-factor model with five items in factor 1 (ease of excitation), four items in factor 2 

(aesthetic sensitivity) and three items in factor 3 (low sensory threshold); and (b) a bi-

factor model which includes a shared general factor in addition to the three separate 

factors, based on recent findings which suggest that the adult HSP scale fits a bi-factor 

model better than a 3-factor model (Lionetti et al., 2018). In order to test the bi-factor 

model, one of the factor loadings in the general factor and one of the loadings in each of 

the domain specific factors were set to 1 (Chen, West, & Sousa, 2006). The robust 
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maximum likelihood was used as estimation method. Two relative fit indices were 

considered for the evaluation of goodness of fit for each model: the Tucker Lewis index 

(TLI) and the comparative fit index (CFI), both of which perform well with small and 

large samples (the χ2 statistic is extremely sensitive to sample size and not well suited 

for the current analysis). CFI and TLI values of > .95 and > .97, respectively, were 

considered as acceptable and good fit (Schermelleh-Engel, Moosbrugger, & Müller, 

2003). The root mean square error of approximation (RMSEA) and the standardized 

root mean square residuals (SRMR) were also used. For RMSEA, values < .05 were 

considered as a good fit and values ranging from .05 and .08 as an adequate fit. For 

SRMR, values less than .08 were considered to reflect good fit (Schermelleh-Engel et 

al., 2003). The 3-factor and bi-factor models were compared according to three criteria: 

(a) qualitative evaluation of the fit indices of each model; (b) the CFI criterion 

according to which the null hypothesis of no differences between the two competing 

models should not be rejected if the difference in the CFIs between two nested models 

is smaller than |0.01| (Cheung & Rensvold, 2002); and (c) the scaled χ2 difference test 

according to which the null hypothesis (i.e. no differences between the two competing 

models) should not be rejected if the associated p value is greater than .05 (Satorra, 

2000) with lower χ2 reflecting better model fit. 

Internal reliability of the HSC scale was measured with Cronbach’s α. A one-way 

ANOVA was conducted to test for ethnic differences in HSC and an independent 

samples t-test to investigate gender differences. The bivariate correlations were then 

tested between the mean of the 38 child sensitivity items, the mean of the newly created 

12-item HSC scale and its subscales, as well as behavioural inhibition and activation, 

temperament, and affect. Furthermore, multivariate regression models were run to 

investigate convergent validity and to estimate how much of the variance in HSC was 

explained by related measures, including all HSC scales simultaneously as dependent 

variables in the same model and thus taking the interdependence among variables into 

account. Finally, divergent validity of the HSC scale was tested with the heterotrait-

monotrait (HTMT) ratio of correlations (Henseler, Ringle, & Sarstedt, 2015). The 

HTMT ratio represents the average of the correlations of items across different 

constructs (e.g. HSC, BIS, PA etc.) relative to the average of the correlations of items 

within the same construct (e.g. the 12 HSC items). HTMT ratio values that are equal or 

lower than .85 indicate that divergent validity is met.  
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The level of significance for all analyses was set at a = .05. Analyses were conducted 

using R software and related packages (Rosseels, 2016; semTools Contributors, 2016). 

All other analyses were conducted with SPSS version 20 (IBMCorp., 2011). 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Graphical illustration of two competitive factorial models of HSC and 
subscales. 
A) 3-factor model: EOE, LST and AES factors; B) bi-factor model: EOE, LST and AES 
factors plus a HSC general factor 

A) B) 
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2.2.1.2 Study 1: Results 

Principal component and confirmatory factor analyses: Principal component 

analysis (PCA) of the HSC-38 resulted in nine principal components that accounted for 

61% of the cumulative variance. However, the scree plot pointed towards a three-

component solution. After constraining the PCA to three principal components, 40% of 

the variance was explained (see Appendix 2.3 for detailed results). PCA of the 12 

selected items suggested that the three principal components explained 55% of the 

cumulative variance. Table 2.1 shows the 12 selected items and their loadings on the 

three principal components, reflecting the same three factors as reported with the adult 

HSP scale (Smolewska et al., 2006). The confirmatory factor analysis (CFA) of the 3-

factor model showed acceptable model fit with χ2 = 106.84, df = 51, p <. 001; RMSEA= 

.06, 90% [C.I = .05, .08]; CFI/TLI = .907/ .880; SRMR = .06. Similar model fit indices 

emerged for the bi-factor model (χ2 = 94.804, df = 46, p < .001; RMSEA = .06, 90%, 

CIs [.05, .08]; CFI/TLI = .919/ .884 SRMR = .06). However, although the two models 

showed comparable fit indices the CFI difference (CFI [DIFF] = .012) and the scaled χ2 

difference (χ2 [DIFF] = 11.8, df = 5, p = .04) between them suggests that the bi-factor 

model is the better fitting solution (more details of the CFA are provided in the 

Appendix 2.4). 
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Table 2.1 HSC rotated component matrix  

Items 
Factor 

1  
(EOE) 

2  
(AES) 

3  
(LST) 

     
1 I find it unpleasant to have a lot going on at once .53 .07 .15 
2 Some music can make me really happy .04 .79 -.02 
3 I love nice tastes .18 .83 .00 
4 Loud noises make me feel uncomfortable .35 .02 .67 
5 I am annoyed when people try to get me to do too many 

things at once 
.71 .26 -.02 

6 I notice it when small things have changed in my 
environment .29 .44 .03 

7 I get nervous when I have to do a lot in little time .66 .26 .23 
8 I love nice smells .13 .79 .24 
9 I don’t like watching TV programs that have a lot of 

violence in them 
.05 .04 .66 

10 I don’t like loud noises .10 .06 .86 
11 I don’t like it when things change in my life .48 .22 .45 
12 When someone observes me, I get nervous. This makes me 

perform worse than normal 
.70 

 
.00 

 
.14 

 
EOE= Ease of Excitation; AES=Aesthetic Sensitivity; LST=Low Sensory Threshold 

 

Descriptive statistics and internal reliability. The mean values and standard 

deviations for the mean of the 38 child sensitivity items (HSC-38), the HSC total scale, 

the three HSC factors (Ease of Excitation, Aesthetic Sensitivity, and Low Sensory 

Threshold), and all other measures used in this study are shown in Table 2.2. The HSC 

scale showed adequate internal consistency with α = .79, 90% CIs [.75, .82]. HSC 

subscales showed acceptable but lower internal consistency which was to be expected 

considering the low item numbers in each subscale with α = .71, CIs [.65, .76] for Ease 

of Excitation, α = .73, CIs [67-78] for Aesthetic Sensitivity, and α = .66, CIs [.58, .72] 

for Low Sensory Threshold. There were no significant differences in HSC as a function 

of ethnicity (F (51) = 1.21, p = .45). A small gender difference was observed, with 

females (M = 4.41, SD = .93) scoring significantly higher than males (M = 4.07, SD = 

1.08) with t (283) = -2.55, p < .05. 
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Table 2.2 Means and standard deviations of all measures (Study 1, 2, 3 and 4) 
  

Study 1 Study 2 
Study 3 

Study 4  Session 1 Session 2 
HSC-38 4.15 (.90) - - - - 
HSC 4.33 (.98) 4.68 (.93) 4.01 (.86) 4.04 (.84) 3.98 (.96) 
HSC-EOE 4.13 (1.18) 4.59 (1.21) 3.70 (1.26) 3.67 (1.14) 3.81 (1.37) 
HSC-AES 5.15 (1.23) 5.56 (1.08) 5.15 (1.02) 5.23 (0.91) 5.16 (1.00) 
HSC-LST 3.58 (1.53) 3.67 (1.68) 3.01 (1.32) 3.10 (1.29) 2.70 (1.38) 
BIS 18.88 (4.04) 19.66 (3.58) - - - 
BAS 37.36 (7.51) 39.11 (6.68) - - - 
EC 3.14 (.60) 3.30 (.57) - - - 
NE 3.00 (.58) 3.06 (.62) - - - 
PE 3.09 (.54) 3.26 (.52) - - - 
PA 44.54 (9.95) - - - - 
NA 27.70 (10.7) - - - - 
Neuro - - - - 15.97 (4.37) 
Extra - - - - 21.75 (3.92) 
Open - - - - 21.70 (3.66) 
Agree - - - - 21.94 (3.52) 
Cons - - - - 22.41 (3.65) 
HSC-38 = Mean of 38 Highly Sensitive Child items; HSC = HSC-EOE = Ease of Excitation; HSC-AES = 
Aesthetic Sensitivity; HSC-LST = Low Sensory Threshold; BIS = behavioural inhibition system; BAS = 
behavioural activation system; EC = effortful control; NE = negative emotionality; PE = positive 
emotionality; PA = Positive Affect; NA = Negative Affect; Neuro= neuroticism; Extra=extraversion; 
Open= openness; Agree=agreeableness; Cons=conscientiousness 
 
 

Bivariate correlations. Bivariate associations between all variables are reported in 

Table 2.3. Most importantly, the mean of the12-item HSC scale is highly correlated 

with the mean of the 38 child HSP items (r = .93). BIS and BAS are correlated with 

HSC and the three subscales except for Low Sensory Threshold, which was not 

associated with BAS. Regarding temperament, effortful control, negative and positive 

emotionality were correlated with HSC and all subscales except for Low Sensory 

Threshold, which was not correlated with Positive Emotionality. Finally, positive affect 

was positively correlated with Aesthetic Sensitivity (r = .41) and negative affect with 

Ease of Excitation (r = .16) and Low Sensory Threshold (r = .13).  
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Table 2.3 Bivariate correlations (Study 1) 
  1 2 3 4 5 6 7 8 9 10 11 12 13 

1 HSC-38 —             

2 HSC .93** —            

3 HSC-EOE .80** .86** —           

4 HSC-AES .68** .71** .43** —          

5 HSC-LST .63** .69** .44** .18** —         

6 BAS .42** .41** .31** .50** .11 —        

7 BIS .55** .55** .49** .38** .36** .62** —       

8 PE .29** .27** .17** .37** .08 .40** .32** —      

9 NE .38** .37** .36** .19** .26** .21** .40** .61** —     

10 EC .29** .27** .18** .29** .15* .39** .33** .82** .71** —    

11 PA .16** .14* -.01 .41** -.06 .38** .14* .34** .08 .33** —   

12 NA .15* .09 .16** -.09 .13* -.08 .10 .04 .19** -.02 -.38** —  

13 Age -.10 -.10 -.04 -.17** -.02 -.18** -.19** -.18** -.12* -.21** -.15** .30** — 
14 Gender .18** .15* .10 .10 .15* .06 .19** .09 .13* .10 -.08 .08 -.01 

HSC-38 = Mean of 38 Highly Sensitive Child Items; HSC = Highly Sensitive Child Scale; HSC-EOE = Ease of Excitation; HSC-AES = Aesthetic Sensitivity; HSC-LST = Low 
Sensory Threshold; BIS = Behavioural Inhibition System; BAS = Behavioural Activation System; EC = Effortful Control; NE = Negative Emotionality; PE = Positive Emotionality; 
PA = Positive Affect; NA = Negative Affect; Gender: 1=male, 2=female; * p < .05; ** p < .01. 
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Multivariate regression. The first model, which included BIS, BAS, EC, PE, NE, PA, 

and NA as predictor variables of HSC explained 34% of the variance. The second 

model with the three subscales as outcomes explained 30% of the variance of Ease of 

Excitation, 35% of Aesthetic Sensitivity, and 17% of Low Sensory Threshold. 

Standardized parameter estimates and associated p-values are reported in Table 2.4. 

 

Table 2.4 Multivariate regression results (Study 1) 

 HSC HSC-EOE HSC-AES HSC-LST 

 β z p β z p β z p β z p 

BAS .13 1.73 .08 .14 1.72 .09 .26 3.56 <.01 -.11 -1.29 .20 

BIS .38 5.36 <.01 .33 4.31 < .01 .16 2.37 .02 .37 4.39 <.01 

PE .01 .09 .93 -.06 -.57 .57 .26 3.29 <.01 -.187 -1.38 .17 

NE .24 3.24 <.01 .34 4.19 < .01 .01 .19 .85 .16 1.57 .12 

EC -.12 -1.20 .23 -.18 -1.76 .08 -.18 -1.89 .06 .12 .89 .38 

PA .10 1.53 .13 -.02 -.22 .83 .28 3.86 <.01 -.01 -.22 .83 

NA .09 1.64 .10 .10 1.52 .13 .04 .70 .48 .07 1.21 .23 

HSC = Highly Sensitive Child Scale; HSC-EOE = Ease of Excitation; HSC-AES = Aesthetic Sensitivity; 

HSC-LST = Low Sensory Threshold; BIS = Behavioural Inhibition System; BAS = Behavioural 

Activation System; EC = Effortful Control; NE = Negative Emotionality; PE = Positive Emotionality. 

Two models were run, the first including the HSC total score as the only dependent variable and the 

second model with EOE, AES and LST simultaneously included as dependent variables. 

 

 

Divergent validity. Heterotrait-monotrait (HTMT) ratio of correlations values for each 

pair of measures ranged from .14 for Ease of Excitation-PA to .67 for Ease of 

Excitation-BIS, suggesting that divergent validity was established. Furthermore, 

associations among the HSC total score and subscales Ease of Excitation, Low Sensory 

Threshold and Aesthetic Sensitivity were consistently higher than associations between 

HSC and other measures (See Appendix 2.5 for detailed results) 
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2.2.2 Study 2 

In order to replicate the findings of Study 1, the same psychometric properties and 

associations with temperament, behavioural inhibition and activation were investigated 

in an independent sample. 

2.2.2.1 Study 2: Methods 

Sample: The sample included 258 children (113 girls and 145 boys) from a secondary 

school in East London, United Kingdom. Children were on average 11.17 years old 

(range = 11-12 years, SD = .38) and were of ethnically diverse backgrounds: White 

(20.9%), African/Caribbean (20.2%), Asian (34.9%), Middle Eastern (4%) and mixed-

ethnicity (23.3%). 

Procedure and measures: Children completed all measures on a computer during 

regular class at school. In order to measure environmental sensitivity, the 12-item HSC 

was used rather than the 38 child sensitivity items. In addition, children also reported on 

behaviour inhibition and activation with the BIS-BAS (Carver & White, 1994) and on 

temperament with the EATQR (Capaldi & Rothbart, 1992). Measures were used exactly 

the same way as described in Study 1. However, positive and negative affect (PANAS) 

were not measured in this sample. 

Data analysis: The same methods and statistical analyses were applied as described in 

detail in Study 1. 

2.2.2.2 Study 2: Results 

Confirmatory factor analysis. The confirmatory factor analysis on the 12 items 

showed good model fit for the 3-factor model (χ2 = 63.019, df = 51, p = .12; RMSEA = 

.03, 90% CIs [.00, .05]; CFI/TLI = .968/.959; SRMR = .05). For the bi-factor model, the 

negative variance of one statistically non-significant Ease of Excitation item was fixed 

to 0 (Chen et al., 2006). The results of the bi-factor model were satisfactory: χ2 = 48.73, 

df = 46, p = .48; RMSEA = .01, 90% CIs [.00, .04]; CFI/TLI = .995/.994; SRMR = .04. 

The 3-factor and bi-factor models showed comparable fit indices with slightly stronger 

support for the bi-factor model. The CFI difference was significant and equal to .027—

confirmed by a significant scaled χ2 difference (χ2 [DIFF] = 13.1, df = 4, p = .01)—and, 

thus, supporting the use of both the HSC total score as well as the individual Ease of 

Excitation, Aesthetic Sensitivity and Low Sensory Threshold subscales (see Appendix 

2.6 for more details). 
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Descriptive statistics and internal reliability. The mean scores and standard 

deviations for HSC, the three HSC subscales and all other measures used in this sample 

are presented in Table 2.2. The HSC scale showed acceptable internal consistency with 

a Cronbach’s α of .72, 90% CIs [.66, .77] while the HSC subscales had slightly lower 

internal consistencies with α = .66, 90% CIs [.59, .72] for Ease of Excitation, α = .62, 

90% CIs [.54, .69] for Aesthetic Sensitivity, and α = .63, CIs [.54, .70] for Low Sensory 

Threshold. Consistent with Study 1 there were no significant differences in HSC as 

function of ethnicity (F(48) = 1.27, p = .13) but the gender difference was only 

marginally significant  (t(245) = -1.93, p = .06).  

Bivariate correlations. Similar to Study 1, all HSC scales were positively correlated 

with both BIS and BAS except for Low Sensory Threshold, which was not associated 

with BAS (see Table 2.5). The strongest associations with BIS/BAS emerged between 

Ease of Excitation and BIS, and between Aesthetic Sensitivity and the BAS (r = .29 and 

r = .35, respectively). Regarding temperament, effortful control, negative and positive 

emotionality were associated with all HSC scales. However, the correlation between 

Ease of Excitation and negative emotionality and between Aesthetic Sensitivity and 

Positive Emotionality stood out (r = .49 and r = .50, respectively).  

 

Table 2.5 Bivariate correlations (Study 2) 
 

 1 2 3 4 5 6 7 8 9 10 

1 HSC —          

2 EOE .83** —         

3 AES .61** .32** —        

4 LST .69** .37** .11 —       

5 BAS .25** .23** .35** -.01 —      

6 BIS .32** .29** .24** .15* .66** —     

7 PE .41** .28** .50** .15* .59** .44** —    

8 NE .50** .49** .25** .31** .37** .50** .39** —   

9 EC .48** .40** .43** .23** .61** .55* .67** .59** —  

10 Age .09 .05 .10 .07 .03 .02 -.08 -.12 -.06 — 

11 Gender .12 .06 .02 .19** .10 .12 .10 .22** .05 .02 

HSC = Highly Sensitive Child Scale; EOE = Ease of Excitation; AES = Aesthetic Sensitivity; LST = Low 

Sensitivity Threshold; BIS = Behavioural Inhibition System; BAS = Behavioural Activation System; EC = 

Effortful Control; NE = Negative Emotionality; PE = Positive Emotionality; Gender: 1=male, 2=female; * 

p < .05; ** p < .01. 
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Multivariate regression. The multivariate regression models included BIS, BAS, EC, 

PE and NE as predictor variables of HSC and subscales. The model predicting HSC 

explained 26% of the variance and the model predicting the subscales explained 26% of 

the variance of Ease of Excitation, 26% of Aesthetic Sensitivity, and 15% of Low 

Sensory Threshold (see Table 2.6). 

 

 

Table 2.6 Multivariate regression results (Study 2)  
HSC HSC-EOE HSC-AES HSC-LST 

 Β z p β Z p β z p β Z p 

BAS -.16 -1.94 .05 -.06 -.63 .53 .07 .84 .40 -.34 -3.71 <.01 

BIS .04 .48 .63 .02 .28 

 

.78 -.07 -1.50 .29 .12 1.31 .19 

PE .24 2.69 .01 .05 .51 .61 .40 5.24 <.01 .13 1.28 .20 

NE .30 4.08 <.01 .39 4.37 <.01 -.03 -.41 .69 .23 2.57 .01 

EC .19 .08 .08 .14 1.21 .23 .15 1.42 .16 .14 1.15 .25 

HSC = Highly Sensitive Child Scale; HSC-EOE = Ease of Excitation; HSC-AES = Aesthetic Sensitivity; 

HSC-LST = Low Sensitivity Threshold; BIS = Behavioural Inhibition System; BAS = Behavioural 

Activation System; EC = Effortful Control. Two models were run, the first including the HSC total score 

as the only dependent variable and the second model with EOE, AES and LST simultaneously included as 

dependent variables.  
 

 

 

Divergent validity. HTMT values for each pair of constructs ranged from .12 for Low 

Sensory Threshold-BAS to .71 for Aesthetic Sensitivity-PE and, hence, confirm 

divergent validity. Associations between the HSC total score and its subscales were 

consistently higher than association with the other measures (see Appendix 2.7 for 

more details). 
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2.2.3 Study 3 

Study 3 aimed at investigating test-retest reliability of the created 12-item HSC measure 

in an independent child sample.  

2.2.3.1 Study 3: Methods 

Sample: Data for this study were obtained from the Pictures and Words Study (PAWS). 

PAWS is a longitudinal study of information processing and mood featuring a sample of 

155 children (Brown et al., 2014). Data were collected across three data waves with 

children recruited from two primary schools in London. For the current study, only data 

from the 12-item HSC scale collected at the third wave of data collection were used. For 

the current study, data were collected during the third wave resulting in a sample of 104 

children (59 girls and 45 boys) at age 9.82 years (range = 8-11 years, SD = .45). Eighty-

one percent of the sample identified as white.  

Procedure and measures: The third wave of data collection comprised of two data 

collection sessions scheduled to take place approximately two-three weeks apart (mean 

interval = 15 days, range 9-22 days, SD = 2.46). Children were seen individually in a 

quiet classroom and completed a computerised version of the HSC scale at both 

sessions (via EPrime 2.0) with responses made using the computer keyboard. Items 

were presented onscreen but also read aloud to ensure comprehension.  

Data analysis: Internal reliability of the 12-item HSC scale was examined with 

Cronbach’s α and test-retest reliability was calculated by correlating scores for HSC and 

the three subscales from Session 1 with scores of repeated measurement at Session 2. A 

test-retest reliability of .70 or higher was considered adequate (McCrae, Kurtz, 

Yamagata, & Terraciano, 2011). 
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2.2.3.2 Study 3: Results 

Descriptive statistics and internal reliability. Mean scores and standard deviations for 

the HSC sum score and the three subscales are provided in Table 2.2, separately for 

each of the two data collection sessions. The HSC scale showed acceptable internal 

consistency with α = .71 and .74 for Session 1 and Session 2, respectively. The 

subscales showed lower internal consistency with α = .73/ .69 for Ease of Excitation, α 

= .49/ .46 for Aesthetic Sensitivity, and α = .49/ .55 for Low Sensory Threshold. 

Test-retest reliability. Test-retest reliability estimates were acceptable, with HSC total 

score r = .68, and the subscales EOE: r = .66, AES= .57 and LST = .78, all with p < .01. 

Furthermore, estimates remained stable when the interval between data collection 

sessions was partialled out.  
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2.2.4 Study 4 

In Study 4 the performance of the developed 12-item HSC scale was tested in a large 

sample of adolescents followed by exploring associations with the Big Five personality 

traits. 

2.2.4.1 Study 4: Methods 

Sample: The sample for the current study included a subset of adolescent twin pairs 

from the Twins Early Development Study (TEDS), a large longitudinal epidemiological 

study of over 16,000 twin pairs born in England and Wales from 1994 through 1996. 

TEDS includes extensive data on various aspects of development, including cognitive 

abilities, personality, behaviour, school and family environment, collected when the 

twins were aged 2, 3, 4, 7, 8, 9, 10, 12, 14, and 6 years of age. The sample is reported to 

be representative of the of the UK population (Kovas et al., 2007). Twins’ zygosity has 

been determined via parental ratings of physical similarity, which is reported to be 95% 

accurate when compared to DNA analysis (Price et al., 2000), as well as DNA testing in 

instances where zygosity could not be determined based on physical similarity. More 

details on the TEDS sample are available from (Haworth, Davis, & Plomin, 2013). The 

data used in the current study were obtained during the planned wave of TEDS data 

collection, when twins were approximately 16 years old. Data on the 12-item HSC scale 

was collected for 2,945 twins. After excluding participants with severe medical 

disorders, history of perinatal complications, or unknown zygosity (n=77), the HSC 

sample consisted of 2,868 individuals. Data on the Big Five personality traits was 

available for a subset of the same sample (N=1,156). For the current study, only data 

from one sibling per twin pair was included (random selection) in order to account for 

relatedness between individuals in this particular sample. The final sample included 

1,431 adolescents (595 males, 836 females) with HSC data and 579 individuals with 

Big Five personality data. Mean age of the sample was 17.06 (range = 15-19 years, SD 

= .88) on return of the HSC questionnaires. The ethnicity of the majority (93%) of the 

sample was identified as Caucasian. 
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Procedure and measures: Data for the measures used in the current chapter were 

obtained by self-report, via web-based questionnaires. 

Environmental sensitivity was measured with the 12-item HSC scale.  

Big Five personality traits of agreeableness, extraversion, neuroticism, openness to 

experiences and conscientiousness were measured with the 30 item Five Factor Model 

Rating Form (Mullins-Sweatt, Jamerson, Samuel, Olson, & Widiger, 2006). Items (e.g. 

“fearful, apprehensive versus relaxed, unconcerned, cool”, “strange, odd, peculiar, 

creative versus pragmatic, rigid.”) were rated on a Likert scale ranging from 1 = “low” 

to 5 = “high”. Higher scores indicate higher levels of the personality trait. Internal 

reliability of the scale was acceptable with α = .73 for neuroticism, α = .70 for 

extraversion, α = .65 for openness, α = .65 for agreeableness, and α = .75 for 

conscientiousness. 

Data analysis: The factor structure (confirmatory factor analysis) and internal 

reliability of the HSC scale were examined by applying the same methodological 

approaches as in Studies 1 and 2. Association between HSC, HSC subscales and the Big 

Five personality traits were investigated with bivariate correlations. Furthermore, 

multivariate regression and heterotrait-monotrait ratio of correlations analysis were 

applied to investigate divergent validity, following the same procedures adopted in 

Studies 1 and 2. 

2.2.4.2 Study 4: Results 

Confirmatory factor analysis. The 3-factor model (Ease of Excitation, Aesthetic 

Sensitivity, Low sensory threshold) yielded good model fit (χ2 = 323.88, df = 51, p < 

.001; RMSEA = .06, 90% CIs [.06, .07], CFI/TLI = .935/.91; SRMR = .05). The bi-

factor model also fit the data well (χ2 = 286.53, df = 46, p < .001, RMSEA = .06, 90% 

CIs [.05, .07], CFI/TLI = 945/921, SRMR = .70). (See Appendix 2.8 for CFA details). 

The two models showed comparable fit indices with slightly stronger support for the bi-

factor model. The CFIs difference was trivial (equal to .01) though in the presence of a 

significant scaled χ2 difference (χ2 [DIFF] = 47.2, df = 5, p < .001).  
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Descriptive statistics and internal reliability. Mean scores and standard deviations for 

HSC, the three HSC subscales, and the Big Five personality traits are presented in 

Table 2.2. Females (M = 4.13, SD = .96) scored significantly higher than males (M = 

3.78, SD = .92) with t(1429) = 6.81, p < .001. Internal consistency was good for the HSC 

total scale (α = .82) and acceptable for the subscales (Ease of Excitation with α = .81; 

Aesthetic Sensitivity with α = .65; Low sensory threshold with α = .71).  

Bivariate correlations. Unadjusted associations between HSC and the Big Five 

personality traits are presented in Table 2.7. HSC was positively associated with 

neuroticism (r = .31) and openness (r = .18) and negatively with extraversion (r = -.18) 

but did not correlate with agreeableness and conscientiousness. While Ease of 

Excitation and Low sensory threshold correlated with neuroticism (r = .38, and r = .22, 

respectively) and extraversion (r = -.28 and r = -.22, respectively), Aesthetic Sensitivity 

was not associated with neuroticism but correlated positively with extraversion (r = 

.20), openness (r = .25), and conscientiousness (r = .16).  

 

Table 2.7 Bivariate correlations (Study 4) 
 1 2 3 4 5 6 7 8 9 10 

1 HSC —          

2 HSC-EOE .89** —         

3 HSC-AES .58** .29** —        

4 HSC-LST .74** .54** .18** —       

5 Neuroticism .31** .38** -.00 .22** —      

6 Extraversion -.18** -.27** .20** -.22** -.36** —     

7 Openness .18** .05 .25** .17** -.05 .27** —    

8 Agreeableness .03 -.03 .04 .08 -.21** .19** .25** —   

9 Conscientious -.01 -.13** .16** .03 -.19* .29** .09* .26** —  

10 Age .02 .01 .07** -.01 -.01* .05 .04 .04 -.02 — 

11 Gender -.18** -.15** -.07** -.18** -.22** .04 -.08 -.12** -.08 -.03 

HSC = Highly Sensitive Child Scale; HSC-EOE = Ease of Excitation; HSC-AES = Aesthetic Sensitivity; 

HSC-LST = Low Sensitivity Threshold; Gender: 1=male, 2=female; * p < .05; ** p < .01. 
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Multivariate regression. The multivariate regression model with the five personality 

traits as predictor variables explained 14% of the variance of HSC. A second model 

with the HSC subscales as outcome variables explained 17% of the variance of Ease of 

Excitation, 10% of Aesthetic Sensitivity, and 14% of Low sensory threshold (See Table 

2.8 for the standardized parameter estimates). 

 

 

Table 2.8 Multivariate regression results (Study 4) 

 HSC HSC-EOE HSC-AES HSC-LST 

 β z p β Z p β z p β Z p 

N .28 6.39 <.01 .31 6.83 <.01 .07 1.44 .15 .18 3.88 <.01 

E -.15 -3.33 <.01 -.17 -3.86 <.01 .14 2.96 <.01 -.25 -5.29 <.01 

O .19 4.31 <.01 .07 1.45 .15 .22 4.62 <.01 .21 5.21 <.01 

A .04 .87 .39 .05 1.11 .27 -.06 -1.26 .21 .07 1.70 .09 

C .04 1.03 .30 -.06 -1.34 .18 .12 2.77 <.01 .10 2.33 .02 

N= neuroticism; E=extraversion; O=openness; A=agreeableness; C=conscientiousness; HSC = Highly 
Sensitive Child Scale; HSC-EOE = Ease of Excitation; HSC-AES = Aesthetic Sensitivity; HSC-LST = 

Low Sensitivity Threshold.  Two models were run, the first including the HSC total score as the only 

dependent variable and the second model with EOE, AES, and LST simultaneously included as 

dependent variables. 

 

 

Divergent validity. HTMT values ranged from .12 for Low sensory threshold–

Conscientiousness to .48 for Ease of Excitation-Neuroticism providing evidence of 

divergent validity. Similar to the previous studies reported in this paper, associations 

among the HSC total score and subscales Ease of Excitation, Low sensory threshold and 

Aesthetic Sensitivity were consistently higher than associations with other measures 

(see Appendix 2.9 for more details). 
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2.3 Discussion 

As detailed in Chapter 1, the highly sensitive personality trait has been suggested to 

reflect a phenotype of environmental sensitivity in differential susceptibility theories 

(Pluess, 2015). The original measure however, has been validated for use in adult 

populations only. The main aim of this study was to develop and validate a brief 

measure of highly sensitive personality for use with children and adolescents, based on 

the adult version. The development and psychometric properties of the new scale were 

conducted via 4 studies. Overall, the newly developed scale showed comparable factor 

structure, internal reliability and convergent and divergent validity, to the adult version. 

The results form each study are discussed separately in the following sections.  

Study 1. The aim of Study 1 was to develop a brief measure of highly sensitive 

personality that reflects the adult HSP scale according to the three factors reported by 

Smolewska et al. (2006). The PCA and factor analysis identified 12 items from a pool 

of 38 items to reflect the same 3-factor structure as the adult scale. Importantly, the 

confirmatory factor analyses suggested that although the measure consists of three 

distinct subscales, these subscales also load on a general factor of sensitivity. Hence, the 

total score of the scale reflects general sensitivity to environmental influences and the 

three subscales reflects specific aspects of environmental sensitivity. Specifically, the 

significant correlations between AES and the behavioural activation system (BAS) and 

positive emotionality and affect seem to reflect the Aesthetic Sensitivity factor’s 

propensity for sensitivity to positive aspects of the environment, whereas Ease of 

Excitation and Low sensory threshold tend to reflect sensitivity to more negative 

contextual factors, as evident by their correlations with the behavioural inhibition 

system (BIS) as well as negative emotionality and negative affect. This may also 

explain why the total score was associated with both negative and positive emotionality. 

Finally, the results of multivariate regression analyses and heterotrait-monotrait ratio of 

correlations analysis established the divergent validity of the measure, indicating that 

environmental sensitivity as measured with the HSC scale does not simply reflect well-

known temperament traits and affect.  

Study 2. The findings of Study 2 further supported the findings from Study 1 in an 

independent sample. Factor analysis results confirmed that the total HSC score captures 

general environmental sensitivity, while the 3 subscales reflect different aspects of 

sensitivity. In addition, while the total score was associated with both positive and 

negative affect, the bivariate correlations provided further suggestive evidence that 
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Aesthetic Sensitivity may reflect sensitivity to more positive environmental aspects, 

whereas Ease of Excitation and Low sensory threshold seem to capture sensitivity to 

more negative contextual factors. The regression results with temperament traits as 

predictors of HSC failed to account for the majority of the variance of HSC, and 

heterotrait-monotrait ratio of correlations findings suggested that environmental 

sensitivity is not fully explained or captured by existing concepts.  

Study 3. The aim of Study 3 was to examine the test-retest reliability of the HSC scale. 

The results suggested that the test-retest reliability of the HSC scale was acceptable in a 

sample of 8-11 year old children. Although there was substantial stability across 

measurements, mean scores did show some variability over time. This suggests that the 

measure may pick up measurement error or short-term changes in self-reported 

sensitivity. It is possible that the reliability of the scale is affected by the younger age of 

this sample, and might be higher at older ages; though this remains to be tested. 

Study 4. The aim of Study 4 was to test the newly developed scale in an adolescent 

sample, and examine its relationship with personality traits. Similar results were found 

in this sample, with factor analyses identifying 3 factors, but also that a bi-factorial 

model fit the data best. This confirmed that the total score reflects general sensitivity, 

with three distinct sensitivity components. Bivariate correlations provided additional 

evidence that the subscales capture different aspects of sensitivity with Aesthetic 

Sensitivity reflecting openness and to a lesser degree conscientiousness. Ease of 

Excitation and Low sensory threshold were found to be associated with higher 

neuroticism and lower extraversion. The results of regression analysis with the Big Five 

personality traits as predictors of sensitivity and heterotrait-monotrait ratio of 

correlations confirmed divergent validity of HSC, with personality traits explaining only 

14% of the variance in HSC.  

2.3.1 General discussion 

Overall, the results from these studies suggest that the newly developed measure of 

environmental sensitivity for children and adolescents reflects the adult version as 

developed by Aron and Aron (1997), and confirmed the same factor structure as 

reported in other studies on this trait (e.g. Smolewska et al., 2006). In addition, observed 

associations with temperament and personality traits provide more insight into the three 

identified factors of the scale. Whereas Ease of Excitation and Low sensory threshold 

seem to be more strongly associated with traits that reflect sensitivity to negative 
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environmental factors (e.g. BIS, negative emotionality, negative affect, and 

neuroticism), Aesthetic Sensitivity correlated with measures that reflect sensitivity to 

more positive experiences (e.g. BAS, positive emotionality, extraversion, openness, 

conscientiousness). The observed correlations between the total score and both BIS and 

BAS as well as both negative and positive emotionality suggests that this phenotype 

encompasses sensitivity to both positive and negative influences, consistent with the 

differential susceptibility theories. Specifically, and as reviewed in Chapter 1, while 

vantage sensitivity (Pluess, 2017; Pluess & Belsky, 2013b) refers to individual 

differences in sensitivity to positive environmental influences, and diathesis-stress 

(Monroe & Simons, 1991) refers to inter-individual variability in sensitivity to negative 

environmental influences, differential susceptibility theories (Belsky, 1997a, 2005; 

Belsky, Bakermans-Kranenburg, et al., 2007; Belsky & Pluess, 2009, 2013a; Ellis, 

Boyce, Belsky, Bakermans-Kranenburg, & van IJzendoorn, 2011) suggest that sensitive 

individuals are more affected by both negative as well as positive environmental 

influences. Examining the findings in light of these theoretical models the total score of 

the scale may capture general sensitivity as described in the differential susceptibility 

theories model, while the Ease of Excitation and Low sensory threshold subscales 

reflect diathesis-stress and Aesthetic Sensitivity subscale reflect vantage sensitivity. 

Although this interpretation may seem plausible in light of the discussed theoretical 

models and observed empirical findings, further research is required to empirically 

validate if these subscales do moderate the outcomes of environmental influences in the 

suggested ways. In the absence of such empirical confirmation, caution is warranted 

when trying to use the subscales as distinct aspects of sensitivity to positive and 

negative environmental influences, given that the original scale was not developed with 

having separate subscales in mind (Aron & Aron, 1997).  

2.3.2 Strengths and limitations 

The main strengths of the current chapter on the development of a new measure of 

environmental sensitivity for children and adolescents were the availability of 4 large 

samples which enabled replication of results as well the application of sophisticated 

statistical procedures. However, findings should be considered in light of 

methodological limitations. First, all studies used here are based on self-report, and the 

scale was not examined for its association with other more objective measures of 

environmental sensitivity. Second, all data were provided by children and adolescents 

residing in the United Kingdom. Although some of the included samples were highly 
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diverse, the results require replication across other populations to test whether similar 

findings would emerge in other populations. Finally, although the HSC scale has been 

designed to reflect the same factor structure as the adult HSP scale, measurement 

invariance between child and adult samples has not been established yet. 

2.3.3 Future studies 

Future research should continue to investigate the hypothesised moderating function of 

environmental sensitivity regarding the effects of various environmental factors (e.g. 

parenting quality, education etc.) and psychological intervention. This provides a more 

stringent test of whether this newly developed brief measure appropriately captures 

environmental sensitivity, including whether and how its three components interact with 

environmental influences to moderate outcomes. In addition, future studies could aim to 

develop other non-questionnaire based measures of environmental sensitivity, as well as 

developing measures to assess sensitivity at even younger ages. Future work should also 

aim at identifying the specific psychological and biological mechanisms underlying 

individual differences in environmental sensitivity, including neuroimaging studies, as 

well as molecular genetics studies. Considering the observed associations with 

personality traits and temperament, future research should also explore the shared 

aetiology of environmental sensitivity with these traits. Finally, since environmental 

sensitivity has been developed based on a western cultural concept of sensitivity, future 

studies could investigate the validity of this measure and its application across other 

cultures. 

2.3.4 Conclusions 

The newly developed measure of the Highly Sensitive Child scale is a psychometrically 

valid measure for use in children and adolescents that is able to characterise 

environmental sensitivity in these developmental stages. While environmental 

sensitivity as measured by this scale is related in meaningful ways to other temperament 

and personality traits as proposed by the sensory processing sensitivity theory (Aron & 

Aron, 1997), it is distinct from them. Furthermore, recent studies using the newly 

developed HSC scale further validate this measure of environmental sensitivity, by 

providing empirical evidence that HSC moderates the outcomes of environmental 

influences in response to a wide range of environmental influences, consistent with the 

differential susceptibility interaction pattern (e.g. Donley, Fine, Simmons, Pluess, & 
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Cauffman, submitted; Nocentini et al., 2018; Pluess & Boniwell, 2015; Slagt et al., 

2018).  
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Chapter 3 

Heritability of environmental sensitivity and its 

genetic overlap with personality, depression, and 

anxiety
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3.1 Introduction 

As presented in Chapter 1, differential susceptibility theories (i.e. sensory processing 

sensitivity:  Aron & Aron, 1997; differential susceptibility hypothesis: Belsky & Pluess, 

2009; biological sensitvity to context: Boyce & Ellis, 2005) suggest that there exist 

individual differences in general sensitivity to environmental influences, with some 

individuals more sensitive to the effects of both negative and positive environmental 

influences. Whilst the three prominent differential susceptibility theories differ in the 

hypothesised mechanisms underlying this variation (see Chapter 1, Section 1.1.3), and 

regarding what characteristics may best reflect environmental sensitivity (e.g. genetic 

variation, infant temperament, physiological processes, personality, etc.), they all 

converge on the proposition that genetic factors play a significant role (Aron & Aron, 

1997; Belsky & Pluess, 2009; Boyce & Ellis, 2005). However, no studies to date have 

examined the heritability of environmental sensitivity in order to empirically test the 

proposed contribution of genetic influences to variations in sensitivity. The main aim of 

this chapter is therefore to estimate, for the first time, the heritability of environmental 

sensitivity as measured by the Highly Sensitive Child scale, developed in the previous 

chapter. The second aim of this chapter was to examine the genetic architecture of 

environmental sensitivity, informed by the findings on its factor structure and 

associations with other traits. Specifically, this chapter examines the genetics of 

environmental sensitivity as a function of its three underlying factors, as well as its 

overlap with the Big Five personality traits, anxiety and depression.  

Growing evidence supports the hypothesis of differential susceptibility theories that 

heightened environmental sensitivity increases reactivity/responsivity to both negative 

and positive environmental influences (see Chapter 1, Section 1.2 for a review). 

Specifically, heightened environmental sensitivity is proposed to influence the impact of 

environmental influences in a “for better and for worse” manner, with more sensitive 

individuals being more negatively affected by adverse experiences (e.g. stressful life 

events) but also benefiting more from the nurturing aspects of positive environmental 

influences (e.g. psychological interventions) (Belsky, Bakermans-Kranenburg, et al., 

2007). The evidence base includes studies featuring different markers of environmental 

sensitivity, including children’s difficult temperament (e.g. Pluess & Belsky, 2008), 

genetic variants (e.g. Hankin et al., 2011), physiological reactivity (e.g. Obradovic et al., 

2010) and highly sensitive personality trait (e.g. Acevedo et al., 2017) all showing that 

these markers moderate the impact of a wide range of environmental influences 
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consistent with a “for better and for worse” interaction pattern. Evidence in support of 

the genetic basis of environmental sensitivity is predominately drawn from gene by 

environment interaction (GxE) studies. Such studies typically test whether specific 

genetic variants (e.g. 5-HTTLPR) interact with environmental risk factors (e.g. 

childhood maltreatment) in the prediction of an outcome (e.g. depression). 

Comprehensive reviews of GxE literature by Belsky and Pluess (2009, 2013a), and 

subsequent research using the differential susceptibility framework, have identified a 

number of genetic variants as markers of environmental sensitivity (see Chapter 4, 

Section 4.1.2.2). For example, the short allele of the 5-HTTLPR and the DRD4 7-repeat 

allele have been consistently found to influence psychological outcomes not only “for 

worse”, in response to adversity, but also “for better”, at the positive ‘end’ of the 

environmental quality spectrum (For meta-analysis of studies with these variants, see:  

Bakermans-Kranenburg & van IJzendoorn, 2011; van IJzendoorn, M. H. et al., 2012). 

The 5-HTTLPR short allele has, for instance, been found to moderate the impact of 

maternal responsiveness on children’s moral development (Kochanska et al., 2011), the 

effect of child maltreatment on children’s antisocial behavior (Cicchetti et al., 2012) and 

the benefit of supportive parenting on child positive affect (Hankin et al., 2011), both 

for better and for worse. There are, however, at least two caveats that have to be 

considered when interpreting research findings from GxE studies as evidence for the 

genetic basis of environmental sensitivity. First, such studies indicate that these genetic 

factors moderate the impact of the examined environmental influences on the measured 

outcomes, but they have not been tested for their direct associations with individual 

differences with phenotypic environmental sensitivity. Therefore, it is difficult to 

determine whether these genes are relevant for the aetiology of the environmental 

sensitivity phenotype, an empirical question that is the focus of Chapter 4. Second, 

even if we were to assume that these genetic factors are relevant for the aetiology of 

phenotypic environmental sensitivity, these GxE results do not provide an estimate of 

how much of the variability in environmental sensitivity might be explained by genetic 

influences. Examining the heritability of environmental sensitivity is therefore an 

important first step.  

Heritability is commonly defined as the proportion of variance in a trait explained by 

genetic influences in a specific population, at a specific time. Genetic influences may be 

defined as the combined effect of all loci (additive effects), including possible allelic 

interactions within loci (dominance) and between loci (epistasis). Heritability estimates 

for a phenotype mainly include narrow-sense heritability, defined as h2 = VA/VP, where 
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the estimate h2 captures the proportion of phenotypic variation due to additive genetic 

effects only (VA); or Broad-sense heritability, defined as H2 = VG/VP, where the 

estimate captures the proportion of phenotypic variation due to genetic influences that 

may include dominance and epistasis effects, as well.  

There are two main approaches in obtaining heritability estimates. The older, family-

based approach takes the genetic relatedness between individuals in family, sibling, 

adoption or twin samples into account, and the heritability estimate is derived based on 

the ratio of variance components that include environmental or genetic effects (Plomin, 

DeFries, Knopik, & Neiderheiser, 2013). In twin designs, one of the most widely used 

methods (Polderman et al., 2015), the heritability of a trait is estimated by comparing 

the correlations between monozygotic (MZ) and dizygotic (DZ) twin pairs. Briefly, it is 

assumed that, since the pre- and post-natal environments of MZ and DZ twin pairs are 

similar but MZ pairs share all and DZ pairs share approximately half of their genome, 

the higher similarity between MZ twin pairs on a trait can be attributed to their genetic 

similarity and implies genetic influences on the examined trait (see Section 3.3.2 for 

more details on this approach). The more recent approaches, called SNP-based 

heritability, use molecular genetic data, typically from large samples of unrelated 

individuals, to estimate the heritability of a phenotype. For example, in the Genome-

wide Complex Trait Analysis (GCTA) method (Yang, Lee, Goddard, & Visscher, 

2011), this is done by obtaining the probability of genetic similarity between unrelated 

individuals and comparing this to their measured phenotypic similarity. (i.e. plotting 

prediction error against observed relatedness). If two unrelated individuals are 

genetically similar, and their measured phenotypes are also correlated, this indicates that 

those genes affect the phenotype.  

While the SNP-based approaches allow estimation only of additive genetic effects 

(narrow sense heritability), and provide a more conservative/lower estimate of 

heritability, twin models can estimate heritability due to both additive and non-additive 

effects. However, twin models rely on certain assumptions, which may be violated, such 

as no gene-environment correlation or interactions, assortative (non-random) mating, 

twins being representative of the general population (i.e. singletons), and MZ twin pairs 

and DZ twin pairs sharing equally similar environments. Violation of the latter 

assumption (i.e. the equal Environments assumption or EEA) is considered to contribute 

to inflated heritability estimates (Fosse, Joseph, & Richardson, 2015). Multiple tests of 

this assumption have been carried out, for example, by testing whether MZ twins are 
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treated more similarly based on their physical similarity (Hettema, Neale, & Kendler, 

1995). The results have generally not found a significant difference, suggesting that 

violations of EEA may not be as problematic as suggested, but nevertheless inflating 

heritability estimates by about 10% (Felson, 2014). Regardless of the limitations of both 

approaches, one advantage of twin designs is that the requirement for sufficiently 

powered sample sizes is more easily met (1000 vs. > 10,000 for GWAS approaches), 

sustaining their relevance as an important methodological tool in behavioural genetics. 

Although twin designs are not able to provide information on the specific molecular 

genetic factors underlying the phenotype of interest, they can provide insight into the 

genetic architecture of it. The multivariate twin design approach, for example, is able to 

test whether and to what extent the correlation between two or more phenotypes is due 

to their correlating genetic influences. The insight into the genetic architecture of 

correlating phenotypes, via multivariate twin modeling, is valuable, especially if the 

genetic aetiology of one of the phenotypes is little-known. It is possible to use the 

knowledge of the molecular genetics of the better-known correlating phenotypes to 

advance understanding of the genetics of the lesser-known phenotype of interest.  

As presented in Chapter 2, environmental sensitivity is associated with certain 

personality traits and outcomes, such as neuroticism, extraversion, depression and 

anxiety (e.g. Acevedo, Aron, Pospos, & Jessen, 2018; Aron & Aron, 1997; Hofmann & 

Bitran, 2007; Liss et al., 2008; Smolewska et al., 2006). Using multivariate twin 

models, it is possible to provide a first glimpse into the relationship between 

environmental sensitivity and these phenotypes. In addition, multivariate twin models 

can be used to provide further insight into the genetic architecture of environmental 

sensitivity, by determining the extent to which correlations between composite 

components of the psychometric measure are due to shared and distinct 

genetic/environmental influences. Specifically, as reported in Chapter 2, factor analysis 

of the HSC scale has identified three factors, each tapping into different aspects of 

environmental sensitivity; Low Sensory Threshold (LST) captures variations in the 

threshold for reactivity to sensory stimuli; Ease of Excitation (EOE) manifests in being 

easily overwhelmed by contextual emotional psychological stimuli; and Aesthetic 

Sensitivity (AES) is characterised by greater attention to contextual details and aesthetic 

appreciation. In addition, the results indicated that a bi-factorial solution was the best 

fitting model, so that whilst the component correlated to form a general factor, they 

retained specific variance. Importantly, it was found that AES may capture variations in 
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sensitivity to more positive aspects of the environment, while EOE and LST capture 

variations in sensitivity to more negative contexts. This was evidenced through a 

distinct pattern of associations between these factors and other traits. For example, 

whilst Ease of Excitation and Low Sensory Threshold were more strongly associated 

with behavioural inhibition, negative emotionality, negative affect and neuroticism; 

Aesthetic Sensitivity correlated more strongly with behavioural activation, positive 

emotionality, extraversion, openness and conscientiousness. Considering these findings, 

it is possible that the genetic influences underlying variations in environmental 

sensitivity reflect the factor structure of this phenotype. Thus, it is hypothesised that 

there will be evidence of genetic influences that are shared between the three 

components and represent variations in general levels of sensitivity, as well as genetic 

influences that are distinct to each component and reflect specific biological substrate 

underlying sensitivity to more positive or negative influences.  

3.1.1 Aims 

There were three main aims for this chapter. The first aim was to examine the 

heritability of environmental sensitivity, using the Highly Sensitive Child scale (Pluess 

et al., 2018), in a large sample of adolescent twins from the UK (N= 2,868), via twin 

modelling. There are no previous heritability estimates for this phenotype; however, it is 

thought to be moderately heritable, as a recent meta-analytic study of the heritability 

studies from the past 50 years indicates that most human traits are about 50% heritable 

(Polderman et al., 2015). The second aim was to examine the genetic architecture of 

environmental sensitivity as a function of its three identified factors, using a 

multivariate twin design. It is expected that the three factors of environmental 

sensitivity reflect a general factor, but that they also show distinct 

genetic/environmental influences underlying each component. The third aim was to 

further investigate the correlations between environmental sensitivity and the Big-Five 

personality traits and anxiety and depression, using a multivariate twin design. It was 

expected that the correlation between these phenotypes reflects shared genetic and/or 

environmental influences in their aetiology, though the extent to which these influences 

would be each implicated is unclear.  
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3.2 Methods 

3.2.1 Sample and measures  

Sample: The sample for the current study included a subset of twins from the Twins 

Early Development Study (TEDS); this is a large longitudinal epidemiological study of 

over 16,000 twin pairs born in England and Wales from 1994 through 1996, as detailed 

in Chapter 2, Section 2.2.4.1. Briefly, the data for the current study were obtained 

during the planned waves of TEDS data collection, when twins were approximately 16 

years old. The sample for the current study included all individuals (N= 2,945) who 

completed the Highly Sensitive Child scale (Pluess et al., 2017). After excluding 

participants with severe medical disorders, a history of perinatal complications or 

unknown zygosity (n= 77), the final sample consisted of 2,868 individuals 

(Monozygotic twins (MZ) = 1,011; same-sex Dizygotic twins (DZ) = 901; opposite sex 

twins = 956). Depression and anxiety data were available for all 2,868 individuals. The 

Big Five personality data were available for a subset of the sample (N= 1,156), which 

included 445 MZ twins, 354 same sex DZ twins and 357 opposite sex twins. The mean 

age of the participants upon returning the Highly Sensitive Child questionnaires was 

17.06 (SD= .88). Twins’ zygosity in TEDS has been determined via parental ratings of 

physical similarity, which is reported to be 95% accurate when compared to DNA 

analysis (Price et al., 2000), as well as DNA testing in instances where zygosity could 

not be determined based on physical similarity. The ethnicity of the majority (93%) of 

the sample was self-reported as white European.   

Measures: 

Environmental sensitivity was measured with the 12-item self-report Highly Sensitive 

Child (HSC) scale by Pluess et al. (2018), as reported in detail in Chapter 2. The 

internal reliability of the measure in the current sample was good, with α = .81 for the 

main scale (HSC) and acceptable with α = .64, .81 and .70 for the AES, EOE and LST 

subscales, respectively. 

Personality was measured using the Five Factor Model Rating Form (FFMRF), by 

Mullins-Sweatt et al. (2006). This measure contains short descriptors to define the 

personality traits of agreeableness, extraversion, neuroticism, openness to experience 

and conscientiousness. This is the same questionnaire used in Chapter 2, Study 4.  The 

internal reliability of the scale in the current sample was in the acceptable range for each 

of the subscales of neuroticism (α = .71), extraversion (α = .72), openness (α = .63), 
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agreeableness (α = .69) and conscientiousness (α = .77).  

Depression was measured via the Mood and Feelings Questionnaire (MFQ; Angold, 

Costello, Messer, & Pickles, 1995). The questionnaire includes 12 self-report items and 

has been developed to index children and adolescent’s depressive symptoms (e.g. not 

feeling loved, feeling lonely, not enjoying anything). The items are rated on a Likert 

scale (0=not at all to 3=very true), with higher scores on the indicating higher levels of 

depressive symptoms. Questionnaires were sent to the participating families to be 

completed by children and returned by post. The internal reliability of the scale was α = 

.90. 

Anxiety was measured via the Childhood Anxiety Sensitivity Index (CASI; Silverman, 

Fleisig, Rabian, & Peterson, 1991). This questionnaire comprises 18 self-report items 

indexing anxiety sensitivity (e.g. fear of the experience of anxiety, and the belief that 

anxiety has negative consequences). The items are rated on a Likert scale (0=not to 

3=very true), higher scores on the scale indicating higher levels of anxiety sensitivity. 

The data for this measure were collected by sending the questionnaires to the 

participating families to be completed by children and returned by post. The internal 

reliability of the scale was α = .87. 

3.2.2 Data analysis  

Analytical approaches: Univariate and multivariate twin design approaches were used 

to examine the three aims of this chapter. Twin design takes advantage of our 

knowledge about the genetic relatedness of Monozygotic (MZ) and Dizygotic (DZ) 

twins to estimate the contribution of genetic and environmental factors to observed 

phenotypic variations in a trait. Falconer’s Formula (Falconer & Mackay, 1998) has 

been used to arrive at estimates for the contribution of the genetic and environmental 

influences on a trait, using the interclass correlations between MZ and DZ twin pairs 

(Rijsdijk & Sham, 2002). This is done by typically partitioning the total phenotypic 

variance (V) of a trait into additive genetic effects (A), shared/common environmental 

effects (C) and non-shared environmental effects (E), which also includes measurement 

error (Plomin et al., 2013). Shared environmental effects are those environmental 

influences that contribute to the similarity between twins, whereas non-shared 

environments are those environmental influences that make twins dissimilar, such as 

individual-specific life events. The total variance of a trait can therefore be defined as 

V=A+C+E.  
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Since MZ twin pairs share 100% and DZ twin pairs share on average 50% of their 

genome, they have genetic correlations of 1 and .5, respectively. Since both MZ and DZ 

twin pairs share their environments to a very similar extent, such as sharing the same 

prenatal environment and growing up in the same family environment, the correlation 

between twins’ shared environments can be assumed to be 1 for both MZ and DZ twin 

pairs (the equal environments assumption). Similarity/correlation between MZ twin 

pairs (rMZ) therefore can be defined as rMZ = 1A + 1C, and for DZ twin pairs as rDZ = 

0.5*A + 1C. The correlation between the MZ pairs (rMZ) includes all genetic effects 

and all shared environmental effects: rMZ = 1A + 1C. For DZ twins, the correlation 

(rDZ) reflects only half of the genetic effects, but all shared environmental effects: rDZ 

= 0.5*A + 1C. Higher phenotypic similarity within MZ twin pairs, in comparison to DZ 

twin pairs, can therefore be attributed to MZ twins’ higher genetic similarity (A). Using 

A+C+E=V, it is possible to calculate the proportional contribution of A, C and E to the 

total variance in a trait (V=1). The extent of genetic influences on a trait (heritability h2) 

can be estimated broadly by doubling the difference between the MZ and DZ 

correlations: A= 2(rMZ – rDZ). E is what makes twins different from one another and is 

estimated as the difference between the MZ twin correlations and 1: E= 1-rMZ. Since C 

also contributes to the higher resemblance between MZ twin pairs, any variance not 

accounted for by A and E can be attributed to C (C= 1 – A+E). If the MZ correlation is 

more than twice the DZ correlation, non-additive genetic effects, such as dominance (D) 

are indicated. The C component can be replaced by D, where rMZ= 1A+1D and rDZ= 

.5*A+.25*D. Since the heritability estimate is derived as a ratio 

of variance components, the heritability estimate always lies between 0 and 1.  

Commonly, path analyses and structural equations are used to estimate the A, C and E 

components. Using Wright’s rules of path analysis (Wright, 1920), the predicted 

covariance and variance of the phenotype for DZ and MZ pairs are estimated by path 

tracing. The total variance is calculated as the sum of the squared coefficients of the 

latent factors (a2+ c2+e2), and MZ and DZ twin pair covariance is calculated by 

including all A and C paths connecting the pairs (covMZ= a2+ c2, covDZ = .5*a2+ c2). 

The relationship between the A, C and E components for twin pairs are illustrated in 

Figure 3.1. Maximum Likelihood Structural Equation Modelling (MLSEM) is typically 

used to provide ACE estimates and goodness-of-fit statistics. This is done by first fitting 

a saturated model to the data (i.e. a model with no parameter constraints and which 

includes observed means, variance and covariance), before fitting a constrained model 

that tests the assumptions of twin models, by equating means and variance within and 
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across pairs. Next, an ACE model is fitted to the data, estimating the “a”, “c” and “e” 

parameters from predicted variance and covariance. The fit of the ACE model is 

compared to the saturated model to assess its goodness-of-fit, according to their log-

likelihood statistic (-2ll). ACE sub-models can also be constructed by constraining the 

A and/ C parameters to zero, and their fit compared to the full ACE model to determine 

the best fitting model, based on the principle of parsimony (model with fewer 

parameters) and using information criterions such as Bayesian Information Criterion 

(BIC) or Akaike’s Information Criterion (AIC). E parameter is always included because 

it contains measurement error. 
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Figure 3.1 Path diagram representing the relationship between the A,
C, and E latent factors for MZ and DZ twins.
Latent variables: A (additive genetics effects), C (shared environmental effects)
and E (non-shared environmental effects). The single headed arrows indicate causal
pathways from latent factors, denoted as “a”, “c” and “e”. Double headed arrows
show the correlation between the latent factors between the two twins (rMZ and
rDZ). Non-shared environmental factors are unique to each twin and therefore not
correlated between the two twins.
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The ACE models can be further extended to include more than one phenotype, to 

examine whether correlations between phenotypes are due to shared genetic or 

environmental influences. Depending on the specific aim of the researcher, three main 

types of model may be examined for this purpose: Cholesky decomposition, 

independent pathway or common pathway models. In all these bivariate/multivariate 

models, cross-twin cross-trait correlations for the phenotypes of interest are compared in 

MZ and DZ pairs. The Cholesky decomposition-correlated factors model assumes that 

the phenotypic correlation between variables is due to correlating ACE influences. 

Higher cross-twin cross-trait correlations in MZ twins compared to DZ twins indicate 

that genetic effects underlie the phenotypic correlations. On the other hand, if the cross- 

twin cross-trait correlations are similar for both MZ and DZ pairs, shared environmental 

effects are implicated. Significant within-individual cross-trait correlations but non-

significant cross-twin cross-traits correlation indicate that E factors are involved. The 

independent pathway and the common pathway models parse the variance/covariance of 

the phenotypes of interest into two sets of ACE effects: those that are due to shared 

ACE effects and those that are due to specific ACE effects for each phenotype. 

However, the common pathway model assumes that the shared ACE factors influence 

the variables of interest via a single psychometric/latent liability factor.  

Another extension of the classic univariate twin model is to test for differences between 

males and females in the source or extent of genetic and environmental contribution to 

variability in a trait (Neale & Cardon, 1992). To examine this, the sample can be split 

into same sex: MZ male (MZM), MZ female (MZF), DZ male (DZM), DZ female 

(DZF) or opposite sex twin pairs: DZOS. If the observed correlation for DZOS is much 

smaller than the correlation for same sex DZ twins, this may indicate “qualitative” sex 

differences, such that the sources of genetic or environmental effects underlying the 

trait are different for males and females. On the other hand, a different MZM:DZM vs. 

MZF:DZF correlation ratio indicates the presence of “quantitative” sex differences, 

such that the extent of genetic and environmental influences are different for males and 

females.  The qualitative sex differences are tested in a full heterogeneity model, by 

constructing two models, in one of which the shared environmental correlation (rc) 

between DZOS is fixed to its theoretical value (rc=1) and the genetic correlation (rg) is 

left to be estimated freely, and another model the reverse (rc=free, rg= .5), to estimate A, 

C, E. The quantitative sex differences are tested in a heterogeneity model, by fixing both 

rc and rg values and allowing the ACE estimates to be free for males and females. 

Another possible variation between males and females may be due to male and female 
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differences in the phenotypic variance, as indicated by differences in the mean and 

variance. The so called “scalar” sex differences test includes a scalar term, in a 

phenotypic scalar model, to correct for phenotypic variance differences between males 

and females, but no differences in ACE influences. Finally, the homogeneity model 

assumes no sex differences exist by equating all parameter estimates for males and 

females. The fit of these sex-limitation models are compared to each other to determine 

the best-fitting model and the presence of the type of sex differences, if any exist. 

To address the first aim of this chapter, a univariate ACE model was used to estimate 

the heritability of environmental sensitivity and its three components. An ADE model 

was also constructed and examined against the ACE model to determine the best-fitting 

model. In addition, sex differences in the heritability estimates were examined, using 

the main four sex-limitation models as described above: a) qualitative sex differences, 

which examines differences in the sources of variation in males and females; b) 

quantitative sex differences, which examines differences in the extent of influence of 

ACE parameters in males and females; c) no sex differences but with phenotypic scalar, 

which includes a term to correct for phenotypic variance differences between males and 

females, but no differences in ACE influences between males and females; d) 

homogeneity model, a reduced parameter model, where no sex differences exist in ACE 

estimates. 

To address the second aim, a multivariate common pathway ACE model (as well as a 

Cholesky Decomposition ACE model-correlated factors solution, for comparison) was 

constructed to examine the genetic architecture of sensitivity as a function of its three 

components.  

To address the third aim, multivariate independent pathway ACE models were 

constructed to examine the extent to which the phenotypic correlations between 

environmental sensitivity and the Big Five personality traits, and between 

environmental sensitivity and depression and anxiety, are due to common or specific 

genetic influences.  

The structural equation modelling package of OpenMx (Boker et al., 2011) in R 

(www.R-project.org) was used to conduct all twin analyses. Raw data maximum 

likelihood was used for model-fitting and minus twice the log likelihood (-2ll) was used 

to assess the goodness-of-fit of models. To assess the overall fit of the ACE genetic 

model, its -2ll was compared to that of a fully saturated model (a model that describes 
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the raw data using maximum number of free parameters). The best-fitting genetic model 

(AE, CE, E) was examined based on lowest -2ll, the principle of parsimony and AIC by 

comparing it to the full ACE model. A difference in AIC between two models of 2 or 

less provides equivalent support for both models, in which case the most parsimonious 

model (i.e. with lowest number of parameters) was chosen. A difference of 3 indicates 

that the lower AIC model has considerably more support, and a difference of more than 

10 indicates that the lower AIC model is a substantially better fit, compared to the 

higher AIC model (Burnham & Anderson, 2004) 

Data Analysis steps: First, descriptive statistics of the sample were examined by 

selecting a subset of the sample, including only one twin from each pair (randomized 

order).   

Second, all variables were residualised for age and gender (McGue & Bouchard, 1984) 

and the interclass correlation coefficients were obtained for MZ, DZ, DZS and DZO 

twin pairs. ACE univariate twin analysis with the sex limitation models estimated the 

heritability of environmental sensitivity and its three components and investigated sex 

differences in ACE estimates. ACE univariate models were also used to estimate the 

heritability of depression, anxiety and the Big Five personality traits.  

Third, a common pathway model was fitted to the data to examine the relationship 

between the three subscales of environmental sensitivity. A Cholesky decomposition 

correlated factors solution model was also fitted to the data to compare its fit to the 

common pathway model. 

Finally, an independent pathways model was fitted to the data to examine a) the shared 

aetiology of environmental sensitivity and the Big Five, as well as b) the shared 

aetiology of environmental sensitivity and depression and anxiety. 

3.2.3 Power analysis 

Statistical power in twin studies is dependent on several factors, including sample size, 

MZ:DZ twin ratios, type of data (continuous versus categorical) and the proportion of 

variance due to A (additive genetic influences) or C (common environmental 

influences) components (Verhulst, 2017; Visscher, 2004). Verhulst (2017) examination 

of statistical power in univariate ACE twin design indicates a study would have 

sufficient power (> 80%) to detect significant ACE estimates for a moderately heritable 

quantitative trait (~30%) if the sample size is over 1000 twins. Power is evaluated for A 
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and C estimates only, since E is arrived at by subtracting the A+C estimate from total 

variance=1. The MZ:DZ sample ratio of 1:1 provides the best power to detect a 

significant A component. A larger proportion of DZ relative to MZ twins increases the 

power to detect the C component; however, an imbalance towards higher DZ ratio 

reduces the power to detect A.  

As shown in Figure 3.2a (adapted from Verhulst, 2017), with sample sizes of over 500 

twin pairs, there is more than 80% power to detect A influences of .1 and over 90% to 

detect larger A influences. In order to detect similarly-sized C influences, larger samples 

are needed, with sample sizes of 600 twin pairs providing over 80% power and 1000 

twin pairs over 90% power. The effects of MZ:DZ ratios on the power are presented in 

Figure 3.2b (adapted from Verhulst, 2017). The results indicate that a balanced 

(MZ:DZ ratio of 1:1) sample of 600 twins provided over 90% power to detect A 

influences; however, for an imbalanced MZ:DZ ratio (1:5), a larger sample of 700 is 

required to provide over 80% power. Similar ratios provide over 80% power to detect C 

influences in smaller samples of 400 twin pairs. 

 

 

 

 

Figure 3.2a Power analysis for the additive genetic (left panel) and common environmental variance 
components (right panel), as a function of A or C components. Adapted from “A Power Calculator for 
the Classical Twin Design” Figure 2 by B. Verhulst, 2017, Behavior Genetics, 47(2), 255-261. Copyright 
2017 by Springer Nature. 
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Univariate ACE models that incorporate sex limitation models require larger sample 

sizes (>10000). This is especially so if the genetic correlation between males and 

females is high in a qualitative sex differences model, or when the differences for A 

estimates in males and females are small in a quantitative sex limitation model. For 

larger effects, samples of 5000 and above provide sufficient power. An example of 

power in sex limitation models is presented in Figure 3.2c (adapted from Verhulst, 

2017).  

 

Figure 3.2b Power analysis for the additive genetic and common environmental variance 
components as a function of the ratio of MZ to DZ twins. Adapted from “A Power Calculator for 
the Classical Twin Design” Figure 3 by B. Verhulst, 2017, Behavior Genetics, 47(2), 255-261. Copyright 2017 
by Springer Nature. 

Figure 3.2c Power analysis for qualitative and quantitative sex limitation models. Adapted 
from “A Power Calculator for the Classical Twin Design” Figure 6 by B. Verhulst, 2017, Behavior 
Genetics, 47(2), 255-261. Copyright 2017 by Springer Nature. 
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Statistical power to detect a significant genetic correlation (Rg) between two or more 

phenotypes depends on the magnitude of the genetic influence on each trait, as well as 

the magnitude of their genetic correlation. As shown in Figure 3.2d (adapted from 

Verhulst, 2017), power increases as Rg and A increase. When Rg and A estimates are 

medium or large (~ .3 and .5), a sample of 500 twins provide sufficient power to detect 

significant genetic correlations, but for smaller effects (~.1) sample sizes of over 2000 

are required. 

 

Figure 3.2d Power analysis for genetic correlation between two phenotypes. 
Adapted from “A Power Calculator for the Classical Twin Design” Figure 5 by B. 
Verhulst, 2017, Behavior Genetics, 47(2), 255-261. Copyright 2017 by Springer 
Nature. 
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The data in the current chapter included continuous data (HSC scores) on 1434 twin 

pairs with a MZ:DZ ratio of 1:3. The heritability of environmental sensitivity is 

expected to be moderate, given a recent study by Polderman et al. (2015) showed most 

human traits are moderately heritable. The current sample was therefore sufficiently (> 

90%) powered to detect the genetic and environmental influences in a univariate ACE 

model, and medium to large genetic correlations in multivariate models. The sample is, 

however, underpowered to detect small sex differences in the estimates.     

3.3 Results 

3.3.1 Descriptive statistics 

Descriptive statistics, including information on the sample size, mean scores and 

bivariate correlations for all measures, are presented in Table 3.1. Females scored 

significantly higher than males on all sensitivity measures (total score of environmental 

sensitivity: F (1,1435) = 48.58, p < .001; EOE: F (1,1435) = 25.56, p < .001; AES: F (1,1435) = 

14.64, p< .001; LST: F(1,1435)= 54.42, p < .001) and personality measures of neuroticism 

(F(1,561) = .16.93, p < .001), agreeableness (F(1,558)= 11.40, p< .001) and 

conscientiousness (F(1,560) = 7.09, p < .05). Mean differences were not statistically 

significant for openness (F(1,560) = .06, p = .81) and extraversion (F(1,560) = .10, p = .32). 

Anxiety and depression scores were also significantly higher for females than males 

(F(1,1433) = 130.13, p< .001; F(1,1434) = 44.22, p< .001, respectively). Age was not 

significantly correlated with any of the variables, except for AES (r = .09, p < .001).  
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Table 3.1 Descriptive statistics of the study sample and all variables   
  

Sample  
Mean (SD)   Bivariate correlations 

  Male Female   ES EOE AES LST N O C E A Dep 

HSC 2868 45.16 (10.95) 49.23 (10.86) 	           

Ease of Excitation 2868 17.77 (6.57) 19.55 (6.56) 	 .88**          

Aesthetic Sensitivity 2868 20.30 (4.21) 21.11 (3.57) 	 .58** .27**         

Low Sensory Threshold 2868 7.10 (3.70) 8.61 (4.00) 	 .73** .52** .17**        

Neuroticism 1156 14.97 (4.20) 16.42 (4.17) 	 .33** .39** -.02 .24**       

Openness 1154 21.21 (3.90) 21.53 (3.57) 	 .06 -.02 .19** .01 -.02      

Conscientiousness 1150 21.81 (3.73) 22.68 (3.96) 	 -.05 -.13** .14** -.03 -.16** .17**     

Extraversion 1154 21.53 (4.32) 21.45 (3.89) 	 -.18** -.24** .13** -.21** -.38** .27** .29**    

Agreeableness 1152 21.18 (3.89) 22.31 (4.02)  .01 -.04 .07 .04 -.19** .22** .35** .24**   

Depression 2868 3.68 (4.40) 5.49 (5.95) 	 .34** .37** .09** .24** .45** .03 -.17** -.26** -.11*  

Anxiety 2868 24.93 (5.40) 28.58 (6.70)   .42** .42** .17** .32** .37** .08 -.02 -.17** -.03 .49** 
HSC=Highly Sensitive Child scale; EOE = Ease of Excitation; AES = Aesthetic Sensitivity; LST = Low Sensory Threshold; SD = standard deviation; N = Neuroticism; O = Openness; 
C = Conscientiousness; E = Extraversion; A = Agreeableness; Dep= Depression; Means and bivariate correlations represent the data from a sample of one randomly selected twin from 
each pair, to ensure data is not influenced by family relatedness. Bivariate correlations represent variables corrected for age and sex; * p < .01; ** p < .001 
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3.3.2 The heritability of environmental sensitivity  

Cross-twin correlations from the univariate ACE model showed evidence of genetic 

influences on variability in all traits, with MZ twin correlations being larger than DZ 

twin correlations in both males and females (Table 3.2). Twin correlations differed 

across male and female pairs for all variables, but the overlapping confidence intervals 

indicated that these differences may not be significant.  

The univariate ACE analyses, including the sex-limitation model-fitting results, showed 

no significant evidence of sex differences for environmental sensitivity or EOE 

component; a no sex differences model was the best-fitting, when compared to other 

models, according to a lower AIC. A slightly better fit, of the phenotypic scalar model, 

for LST and AES components was found. Table 3.3 shows the model fit summary 

results of all univariate ACE models for HSC and its three components. The results 

indicated no significant differences between sexes in ACE estimates for HSC and its 

three components (see Appendix 3.1 for ACE estimates from all models). The ACE 

estimates from the best-fitting sex limitation model for HSC and its three components, 

as well as estimates for personality traits, depression and anxiety are presented in Table 
3.4. (see Appendix 3.1 for personality, depression and anxiety ACE model fit results). 

The results indicated that the heritability of HSC was 47% (95%CI = 30, 53), with no 

evidence of shared environmental influences. The remaining 53% (95%CI =47, 59) of 

the variation was due to non-shared environmental influences, which also includes 

measurement error.  

Comparing the ACE model fit to its sub models (AE, CE, E) indicated that the AE 

model was the most parsimonious, with no deterioration in fit compared to the full 

model (Δ -2ll =.0004, p= .98). In order to examine dominant genetic effects, an ADE 

model was compared to the ACE model, but it was not found to be a better fit to the 

data (Δ -2ll =.0004, p= .98; parameter estimates: A= .48 95%CI [.42, .56]; D= .00 

95%CI [.00,.27]; E= .52 95%CI [.47, .58]), suggesting additive genetic influences 

sufficiently captured the heritability of HSC. 
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Table 3.2 Univariate cross-twin correlations for HSC and its three components, personality traits, depression, and anxiety  
		 MZ DZ MZM DZM MZF DZF DZOS 
HSC .47 (.41, .53) .24 (.18, .30) .53 (.42, .61) .24 (.10, .37) .45 (.36, .52) .26 (.14, .36) .22 (.14, .30) 
Ease of Excitation .42 (.32, .49) .22 (.15, .27) .48 (.36, .58) .35 (.22, .46) .40 (.30, .48) .27 (.15, .38) .14 (.06, .23) 
Aesthetic Sensitivity .39 (.32, .46) .13 (.09, .20) .42 (.30, .51) .04 (-.10, .17) .37 (.27, .45) .19 (.07, .29) .15 (.06, .24) 
Low Sensory Threshold .41 (.34, .48) .19 (.13, .25) .48 (.36, .58) .26 (.12, .39) .39 (.27, .47) .25 (.13, .35) .13 (.04, .22) 
Neuroticism .33 (.21, .43) .12 (.00, .23) .30 (.01, .50) .19 (-.05, .40) .34 (.21, .45) .13 (-.09, .33) .08 (-.09, .24) 
Openness .40 (.29, .50) .07 (-.04, .19) .32 (.09, .51) .04 (-.20, .26) .43 (.30, .54) .13 (-.06, .31) .06 (-.12, .23) 
Conscientiousness .32 (.19, .43) .04 (-.07, .15) .11 (-.12, .33) .01 (-.27, .28) .42 (.27, .53) .03 (-.14, .20) .06 (-.12, .23) 
Extraversion .35 (.24, .45) .24 (.12, .35) .25 (.02, .44) .20 (-.08, .43) .39 (.26, .50) -.08 (-.31, .17) .39 (.25, .51) 
Agreeableness .27 (.14, .38) .09 (-.03, .20) .15 (-.09, .36) .02 (-.26, .29) .32 (.17, .45) .09 (-.07,.24) .12 (-.08, .29) 
Depression .39 (.32, .46) .22 (.16, .28) .30 (.18, .41) .21 (.07, .34) .44 (.35, .52) .38 (.27, .47) .12 (.03, .21) 
Anxiety .45 (.38, .51) .19 (.13, .25) .43 (.30, .53) .27 (.13, .40) .47 (.38, .54) .21 (.08, .31) .17 (.09, .25) 
MZ = monozygotic twins; DZ = dizygotic twins; MZM = monozygotic male twins; MZF = monozygotic female twins; DZM = dizygotic male twins; DZF = dizygotic female twins; 
DZOS=dizygotic opposite sex twins; CI = 95% Confidence Interval. CIs not including 0 indicate significant estimates and non-overlapping CIs indicate significant difference 
between the estimates; Twin correlations represent variables corrected age and sex. The MZ correlations more than twice the DZ correlations suggest that genetic influences should 
be interpreted as both additive and non-additive effects. 
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Table 3.3 Univariate ACE sex limitation models fit summary for HSC and its three components 

  
Model name (number) 

Model fit 

  Compared to fully saturated Model  Compared to sex limitation models 

  -2ll df AIC Δ -2ll Δ df p   Comparison 
model Δ -2ll Δ 

df p 

HSC  1 Fully saturated 21736.95 2843 16050.95         
2 Constrained  21752.89 2859 16034.89 15.95 16 .46      

 3 Qualitative, rg= free  21752.98 2859 16034.98 16.03 16 .45      
 4 Qualitative, rc= free  21752.98 2859 16034.98 16.03 16 .45      
 5 Quantitative, rg= .5 & rc=1  21752.98 2860 16032.98 16.03 17 .52  3 & 4 .00 1 1 
 6 Scalar 21851.44 2862 16127.439 114.49 19 < .001  5 98.46 2 < .001 
  7 Homogeneity  21756.23 2864 16028.23 19.28 21 .57   6 -95.21 2 1 
Ease of 
Excitation 

1 Fully saturated 18871.71 2843 13185.71         
2 Constrained  18889.26 2859 13171.26 17.55 16 .35      

 3 Qualitative, rg= free  18889.33 2859 13171.33 17.62 16 .35      
 4 Qualitative, rc= free  18889.26 2859 13171.26 17.55 16 .35      
 5 Quantitative, rg= .5 & rc=1  18890.38 2860 13170.38 18.67 17 .35  3 & 4 1.12 1 .30 
 6 Scalar 18898.34 2862 13174.34 26.63 19 .11  5 7.96 2 .02 
  7 Homogeneity  18901.46 2864 13173.46 29.75 21 .10   6 3.12 2 .21 
Aesthetic 
Sensitivity 

1 Fully saturated 15810.66 2843 10124.66         
2 Constrained  15832.27 2859 10114.27 21.60 16 .16      

 3 Qualitative, rg= free  15837.51 2859 10119.51 26.85 16 .04      
 4 Qualitative, rc= free  15837.66 2859 10119.66 27 16 .04      
 5 Quantitative, rg= .5 & rc=1  15837.66 2860 10117.66 27 17 .06  3 & 4 .15 1 .70 
 6 Scalar 15837.89 2862 10113.89 27.23 19 .10  5 .23 2 .89 
  7 Homogeneity  15864.50 2864 10138.50 53.84 21 < .001   6 26.61 2 < .001 
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Table 3.3 Continued 
 

  
Model name (number) 

Model fit 

  Compared to fully saturated Model  Compared to sex limitation models 

  -2ll df AIC Δ -2ll Δ df p   Comparison 
model Δ -2ll Δ 

df p 

             
             
Low Sensory 
Threshold 

1 Fully saturated 15871.03 2843 10185.03         
2 Constrained  15878.88 2859 10160.88 7.86 16 .95      

 3 Qualitative, rg= free  15878.89 2859 10160.89 7.86 16 .95      
 4 Qualitative, rc= free  15878.88 2859 10160.88 7.85 16 .95      
 5 Quantitative, rg= .5 & rc=1  15878.89 2860 10158.89 7.86 17 .97  3 & 4 .01 1 .95 
 6 Scalar 15884.53 2862 10160.53 13.5 19 .81  5 5.64 2 .06 
  7 Homogeneity  15899.83 2864 10171.83 28.8 21 .12   6 15.30 2 < .001 
Fully saturated model=model with maximum number of parameters describing the data; Constrained = sub-model of the fully saturated model, testing the assumptions of twin 
design, with means and variances equated across twins and zygosity; Qualitative ACE  (rg=Free) and Qualitative ACE (rc=Free) = models that allow differences in source of 
variation in males and females, where either rc or rg is free to be estimated for opposite sex twin pairs and can vary below the values assigned to same-sex dizygotic pairs; 
Quantitative ACE =model that allows differences in the extent of influence of ACE parameters in males and females, with rc and rg in opposite sex twins being fixed to 1 and .5 
respectively, estimating the ACE parameters from same sex twin pairs only; Scalar = model with no sex differences in ACE parameters but scalar term on males; Homogeneity= 
univariate ACE model with no difference between males and females;−2ll= minus twice the log likelihood; df= degrees of freedom; AIC= Akaike’s information criterion; Δ -2ll 
=difference in -2ll value; Δ df= difference in degrees of freedom; p= p-value; The best fitting models are marked as bold, selected based on the principle of parsimony and lowest 
AIC and -2ll value.  A difference in AIC between two models of 2 or less, provides equivalent support for both models, in which case the most parsimonious model (i.e. with lowest 
number of parameters) was chosen, a difference of 3 indicates that the lower AIC model has considerably more support, and a difference of more than 10, indicates that the lower 
AIC model is a substantially better fit compared to the higher AIC model. 
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Table 3.4 Univariate heritability estimates for HSC and its three components, 
personality traits, depression, and anxiety 
  

Variance Components (95% CI)   

	 A C E 

HSC .47 (.30, .53) .00 (.00, .13) .53 (.47, .59) 
Ease of Excitation .42 (.23, .48) .01 (.00, .14) .58 (.52, .65) 
Aesthetic Sensitivity .36 (.25, .42) .00 (.00, .07) .64 (.58, .71) 
Low Sensory Threshold .41 (.27, .47) .00 (.00, .00) .59 (.53, .65) 
Neuroticism .31 (.08, .41) .00 (.00, .18) .69 (.59, .79) 
Openness .35 (.24, .45) .00 (.00, .00) .65 (.55, .76) 
Conscientiousness .26 (.10, .37) .00 (.00, .11) .74 (.63, .85) 
Extraversion .22 (.00, .45) .13 (.00, .35) .65 (.54, .76) 
Agreeableness .25 (.01, .35) .00 (.00, .17) .75 (.65, .87) 
Depression .38 (.20, .46) .03 (.00, .16) .59 (.53, .66) 
Anxiety .43 (.31, .49) .00 (.00, .08) .56 (.51, .63) 
A = additive genetic influences; C = shared environmental influences; E = non-shared environmental 
influences; CIs not including 0 indicate significant estimates. 
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3.3.3 The genetic architecture of environmental sensitivity as a function of its three 
components 

The higher MZ versus DZ cross-twin cross-trait correlations, as shown in Table 3.5, 

indicate that genetic influences contribute to the correlation between all three 

components of environmental sensitivity.  

 

Table 3.5 Cross-twin cross- trait correlations for the three components environmental 
sensitivity 
 MZ correlations DZ correlations 
AES - EOE .17 (.12, .31) .10 (.05, .14) 
LST - EOE .26 (.20, .31) .14 (.09, .19) 
AES - LST .13 (.07, .18) .07 (.02, .12) 
HSC: Highly Sensitive Child Scale; EOE = Ease of Excitation; AES = Aesthetic Sensitivity; LST = Low 
Sensory Threshold; MZ = monozygotic twins; DZ = dizygotic twins; 95% Confidence intervals (CIs) are 
presented in brackets. CIs not including 0 indicate significant estimates.  

 

The common pathway model examined how much of the variance in the three 

components of sensitivity are due to common (Ac) versus specific genetic effects (As). 

As expected from the univariate analysis results, the latent factor of environmental 

sensitivity, as captured by EOE, AES and LST, was heritable (51%, 95% CI=  29, 60), 

with EOE loading most strongly on the latent factor (.90, 95% CI= .83, .96), followed 

by LST (.58, 95% CI= .53, .63) and AES (.29, 95% CI = .25 - .33) (see Figure 3.3). The 

proportion of variance explained by common and specific genetic and environmental 

influences on the three components of environmental sensitivity are presented in Table 
3.6. It was found that common genetic influences explained 42% (95% CI=23, 48) of 

the variance in EOE, 17% (95% CI= 10, 22) in LST and 4% (95% CI= 2, 6) in AES. 

Once common genetic influences were accounted for, there was no evidence of genetic 

influences specific to EOE, but 29% (95% CI= 20, 35) and 24% (95% CI= 15, 29) of 

the variation in AES and LST were explained by genetic influences specific to each 

component. This means that, whilst genetic influences on the heritability of EOE 

component were mainly explained by common genetic influences on the latent factor, 

only 12% of the genetic influences on AES (calculated as 4/33) and 41% of the genetic 

influences on LST (calculated as 17/41) were explained by common influences. The 
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remaining heritability in AES and LST was due to genetic influences specific to each 

component (LST: 58% and AES: 88%). 

Common, non-shared environmental influences (Ec) explained 39% (CI= 30, 50) of the 

variance in EOE, and 16% (CI= 13, 21) and 4% (CI= 3, 5) of the variance in LST and 

AES, respectively. Specific, non-shared environmental influences explained 18% (CI= 

9, 27), 63% (CI= 56, 69) and 42% (CI= 37, 48) in EOE, AES and LST, respectively. 

This means that, of the total non-shared environmental influences on each component, 

31% of the variance in EOE (calculated as 18/57), 72% of the variance in LST 

(calculated as 42/58) and 94% of the variance in AES (calculated as 63/67) was due to 

environmental factors specific to each component.  

The small, non-significant effect of shared environmental influences (C) on 

environmental sensitivity was due to common environmental influences in the EOE 

component specific to environmental sensitivity (Cs= .01 95% CI= .00, .14). 

A Cholesky decomposition correlated factors solution was also fitted to the data to 

compare its fit to the common pathway model (See Appendix 3.3 for results). The 

common pathway model showed a better fit, as indicated by a lower AIC value, 

suggesting that a general factor of environmental sensitivity captures the relationship 

between the three components better than three separate correlating factors (see Table 

3.7) 

Overall, the results indicate that there are common genetic and environmental 

influences that underlie all three components of sensitivity, contributing to a general 

factor of environmental sensitivity. At the same time, the results also indicate that there 

are some genetic and environmental influences on the LST and AES components that 

specifically explain variations in these components of environmental sensitivity.  
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Table 3.6 Shared and specific ACE influences on the three components of environmental sensitivity  

  
Common ACE influences Specific ACE Influences Total -

Common 
ACE 

Total- 
Specific 

ACE Ac Cc Ec As Cs Es 

Ease of Excitation .42 (.23, .48) .01 (.00, .14) .39 (.30, .50) 00 (.00, .00) .00 (.00, .00) .18 (.09, .27) .82 .18 
Aesthetic Sensitivity .04 (.02, .06) .00 (.00, .01) .04 (.03, .05) .29 (.20, .35) .00 (.00, .01) .63 (.56, .69) .08 .92 
Low Sensory Threshold .17 (.10, .22) .00 (.00, .06) .16 (.13, .21) .24 (.15, .29) .00 (.00, .01) .42 (.37, .48) .33 .66 
Ac = common A influences; Cc = common C influences; Ec = common E influences; As = specific A influences; Cs = specific C influences; Es = specific E influences; 95% 
Confidence intervals (CIs) are presented in brackets. CIs not including 0 indicate significant estimate; Total common and specific ACE effects are arrived at by adding up all 
common ACE and all specific ACE effects, making up total variance =1 
 

 

Table 3.7 Common pathway and Cholesky correlated factors solution model fit summary 
   Models Fit Compared to Saturated Model   Compared to Cholesky 

	 Parameters -2ll df AIC Δ -2ll Δ df p  Δ -2ll Δdf p 

Fully saturated  135 49427.65 8469 32489.65 	 	 	     
Constrained  48 49504.15 8556 32392.15 76.50 87 .78     
Cholesky correlated factors 26 49544.76 8578 32388.76 117.10 109 .28  

   

Common pathway 23 49550.72 8582 32386.72 123.07 113 .24   5.97 4 .20 
Constrained= The saturated model constrained to have the same mean and SD across twin and zygosity; −2ll= minus twice the log likelihood; df= degrees of freedom AIC= Akaike’s 
information criterion; Δ -2ll =difference in -2LL value; Δ df= difference in degrees of freedom; p= p-value 
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Figure 3.3 Common pathway model, showing shared and specific genetic and 
environmental influences on the three components of sensitivity 
Ac = common additive genetic influences; Cc = Common shared environmental influences; 
Ec = common non-shared environmental influences. As = specific additive genetic influences; 
Cs = specific shared environmental influences; Es = specific non-shared environmental 
influences. The paths from common ACE influences to the latent factor represent the 
standardized ACE estimates for the latent factor of environmental sensitivity (A = .51, C = .
01, E = .48). The paths from the latent factor to the three components indicate the amount of 
variance explained in each component by the latent factor (Ease of Excitation = 90%, 
Aesthetic sensitivity = 29%), Low Sensory Threshold = 58%). The paths from specific ACE 
influences to the components represent the standardized ACE estimates that are specific to 
each component. Dashed lines represent non-significant path  
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3.3.4 Genetic overlap between environmental sensitivity and the Big Five 
personality traits, depression and anxiety 

According to phenotypic correlations (see Table 3.1), HSC was positively correlated 

with depression (r = .34), anxiety (r = .42) and neuroticism (r = .33), and negatively 

with extraversion (r = -.18). Higher MZ: DZ ratios in the cross-twin cross-trait 

correlations between HSC and depression and anxiety indicated that the phenotypic 

correlations are due partly to shared genetic influences (See Table 3.8). Similar 

observations were made for HSC and neuroticism and extraversion. Lower MZ: DZ 

ratios for openness, conscientiousness and agreeableness suggested stronger 

environmental influences on their correlation with HSC. Independent pathway models 

were constructed to parse the proportion of variance on environmental sensitivity and 

personality traits, and depression and anxiety, to those genetic effects that are common 

to all traits (Ac) versus those that are specific to each trait (As), and to those 

environmental influences that are common to all traits (Cc/Ec) versus those that are 

specific to each trait (Cs/Es).  

 

Table 3.8 Cross-twin cross-trait correlations for HSC and personality traits, depression, 
and anxiety 

  
MZ correlations DZ correlations 

HSC  
Neuroticism .29 (.21, .36) .12 (.02, .22) 
Extraversion -.14 (-.06, -.22) -.08 (.02, -.18) 
Conscientiousness -.11 (-.03, -.20) -.07 (.04, -.17) 
Openness .12 (.04, .20) .08 (-.03, .19) 
Agreeableness -.03 (.05, -.12) -.05 (.07, -.15) 
Depression .23 (.18, .28) .13 (.09, .17) 
Anxiety .30 (.25, .35) .12 (.07, .17) 
MZ = monozygotic twins; DZ = dizygotic twins; environmental correlation; 95% Confidence intervals 
(CIs) are presented in brackets. CIs not including 0 indicate significant estimates 

 

Environmental sensitivity and personality traits: The results of independent pathway 

analysis for environmental sensitivity and personality traits are presented in Figure 3.4 

and Table 3.9.  

The results showed that common genetic influences (Ac) explained 36% (95% CI= 26, 

51) and specific genetic influences accounted for 9% (95% CI= 0, 27) of the variation in 
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environmental sensitivity. This means that, of the total 45% heritability estimate (A) for 

environmental sensitivity in this model, 80% (calculated as 36/45) was due to genetic 

effects shared with personality traits (Ac), whereas the other 20% (calculated as 9/45) 

was due to genetic influences specific to environmental sensitivity (As). Common 

genetic influences accounted for the entirety of the genetic influences on neuroticism 

(Ac = 32%, 95% CI= 19, 42) and extraversion (Ac = 12%, 95% CI=2, 27), but did not 

make a significant contribution to the heritability of openness, conscientiousness or 

agreeableness. Therefore, the common genetic influences that explain individual 

differences in environmental sensitivity are mainly shared with the personality traits of 

neuroticism and extraversion (see Figure 3.4). 

Common non-shared environmental influences (Ec) made a significant contribution to 

explaining the variance in all personality traits, but not in environmental sensitivity (Ec 

= .01, 95% CI= .00, .04). Environmental influences that explained the variance in 

environmental sensitivity were almost entirely (51/52=98%) due to non-shared 

environmental effects specific to this phenotype (Es= .51, 95% CI= 46, 59).  

The small, non-significant effect of shared environmental influences on environmental 

sensitivity (C) was due to effects specific to environmental sensitivity (Cs=.02 95% CI= 

.00, .14). 

Overall, these results suggest that the majority of the genetic influences that explain the 

heritability of environmental sensitivity are shared with the personality traits of 

neuroticism and extraversion, while the environmental influences that explain 

individual differences in environmental sensitivity are almost entirely specific to this 

phenotype. Of the total ACE influences on variations in environmental sensitivity, 37% 

was explained by those ACE effects shared with personality traits, and the remaining 

63% were due to ACE effects specific to environmental sensitivity, indicating the 

shared, but largely distinct aetiology of environmental sensitivity and personality traits 

(see Table 3.9). 
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Figure 3.4 Independent pathway model, showing shared and specific genetic and environmental influences on 
environmental sensitivity and personality traits 
Ac= common additive genetic influences; Cc= Common shared environmental influences; Ec= common non-shared environmental 
influences. As = specific additive genetic influences; Cs = specific shared environmental influences; Es= specific non-shared environmental 
influences. The paths from common ACE influences to environmental sensitivity and personality represent the standardized variance 
components explained by common ACE influences in each phenotype. The paths from specific ACE influences to environmental sensitivity 
and personality traits represent the standardized ACE estimates that are specific to each phenotype. Dashed lines represent non-significant 
paths. 
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Table 3.9 Shared and specific ACE influences on HSC and personality traits 

  
Common ACE influences   Specific ACE Influences   Total -

Common 
ACE 

Total- 
Specific 

ACE Ac Cc Ec 		 As Cs Es 		
HSC .36 (.26, .51) .00 (.00, .07) .01 (.00, .04) 	 .09 (.00, .27) .02 (.00, .14) .51 (.45, .58) 	 .37 .62 

Neuroticism .32 (.19, .42) .02 (.00, .11) .06 (.02, .13) 	 .00 (.00, .10) .00 (.00, .00) .60 (.51, .68) 	 .40 .60 

Extraversion .12 (.02, .27) .22 (.08, .33) .09 (.04, .16) 	 .00 (.00, .00) .00 (.00, .00) .57 (.48, .65) 	 .43 .57 

Conscientiousness .02 (.00, .07) .03 (.00, .09) .18 (.11, .27) 	 .19 (.06, .29) .00 (.00, .01) .57 (.46, .69) 	 .24 .76 

Openness .02 (.00, .09) .11 (.04, .20) .09 (.04, .16) 	 .19 (.05, .30) .00 (.00, .00) .59 (.49, .71) 	 .22 .78 

Agreeableness .00 (.00, .04) .03 (.00, .08) .28 (.18, .40) 	 .17 (.01, .27) .00 (.00, .01) .52 (.39, .65) 	 .31 .69 

Independent pathway model fit summary: HSC and personality traits 

 
Model fit 

 
Fit compared to the saturated model 

 
  

Parameters -2ll df AIC  Δ -2ll Δ df p   

Fully Saturated 450 52397.45 8184 36029.45       

Constrained 165 52717.82 8469 35779.82  320.37 285 .07   
Independent Pathway 48 52908.85 8586 35736.85  511.40 402 < .001   
Ac = common A influences; Cc = common C influences; Ec = common E influences; As = specific A influences; Cs = specific C influences; Es = specific E influences; 95% 
Confidence intervals (CIs) are presented in brackets. CIs not including 0 indicate significant estimate; Total common and specific ACE effects are arrived at by adding up all 
common ACE and all specific ACE effects, making up total variance =1. 
Fully saturated= model with maximum number of parameters describing the data; Constrained = the saturated model constrained to have the same mean and SD across twin and 
zygosity; −2ll= minus twice the log likelihood; df= degrees of freedom AIC= Akaike’s information criterion; Δ -2ll =difference in -2LL value; Δ df= difference in degrees of 
freedom; p= p-value 
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Environmental sensitivity and depression and anxiety: The results of independent 

pathway analysis for environmental sensitivity and depression and anxiety are presented 

in Figure 3.5 and Table 3.10.   

The results showed that common genetic influences (Ac) explained 21% (95% CI= 18, 

36) and specific genetic influences accounted for 24% (95% CI= 6, 31) of the variation 

in environmental sensitivity. This means that, of the total 45% heritability estimate (A) 

for environmental sensitivity in this model, 47% (calculated as 21/45) was due to 

common genetic effects (Ac) shared with depression and anxiety, whereas the other 

53% (calculated as 24/45) were due to genetic influences specific to environmental 

sensitivity (As). Common genetic influences accounted for the entirety of the 

heritability of anxiety (Ac = 43%, 95% CI= 28, 49) and explained 22% (Ac = 12%, 

95% CI= 12, 32) of the variance in depression. Therefore, the common genetic 

influences that explain individual differences in environmental sensitivity are mainly 

shared with anxiety and to a lesser degree with depression (see Figure 3.5). 

Common non-shared environmental influences (Ec) explained 5% (CI= 2, 9) and 

specific non-shared environmental influences (Es) explained 48% (CI= 42, 54) of the 

variance in environmental sensitivity. This means that, of the total 53% of variance in 

environmental sensitivity due to non-shared environmental influences (E), 10% (5/53) 

were due to common E effects (Ec) and the remaining 90% due to specific E effects 

(Es).  

The small, non-significant effect of shared environmental influences on environmental 

sensitivity (C) was due to shared environmental effects specific to environmental 

sensitivity (Cs= .03, 95% CI= .00, .14). 

Overall, the results suggest that almost half of the genetic influences that explain 

variations in environmental sensitivity are shared with depression and anxiety, while the 

environmental influences that explain individual differences in environmental 

sensitivity are mainly specific to this phenotype. Of the total ACE influences on 

variations in environmental sensitivity, 29% was explained by those ACE effects shared 

with depression and anxiety, and the remaining 72% was due to ACE effects specific to 

environmental sensitivity, indicating the shared, but largely distinct aetiology of 

environmental sensitivity and depression and anxiety (see Table 3.10). 
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Sensitivity 		 Depression				 Anxiety		

Ac	 Cc	 Ec	

Cs	 Es	As	

√.24	√.00	√.00	

Cs	 Es	As	

√.47	√.00	√.15	

Cs	 Es	As	

√.48	√.00	√.24	

√.21	 √.22	

√.43	 √.00	

√.03	

√.03	 √.05	

√.13	 √.32	

Figure 3.5 Independent pathway model, showing shared and specific genetic and environmental 
influences on environmental sensitivity and depression and anxiety 
Ac= common additive genetic influences; Cc= Common shared environmental influences; Ec= common non-shared 
environmental influences. As= specific additive genetic influences; Cs= specific shared environmental influences; 
Es= specific non-shared environmental influences. The paths from common ACE influences to environmental 
sensitivity and depression and anxiety represent the standardized variance components explained by common ACE 
influences in each phenotype. The paths from specific ACE influences to environmental sensitivity and and 
depression and anxiety represent the standardized ACE estimates that are specific to each phenotype. Dashed lines 
represent non-significant paths.  
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Table 3.10 Shared and specific ACE influences on HSC and depression and anxiety  

  
Common ACE influences   Specific ACE Influences   Total -

Common ACE 
Total- 

Specific ACE Ac Cc Ec   As Cs Es   

HSC .21 (.18, .36) .03 (.00, .14) .05 (.02, .09)  .24 (.06, .31) .00 (.00, .12) .48 (.42, .54)  .29 .72 
Depression .22 (.12, .33) .03 (.00, .16) .13 (.07, .21)  .15 (.02, .22) .00 (.00, .11) .47 (.39, .34)  .38 .62 

Anxiety .43 (.28, .49) .00 (.00, .07) .32 (.21, .55)  .00 (.00, .11) .00 (.00, .06) .24 (.02, .34)  .75 .24 

Independent pathway model fit summary- HSC and depression and anxiety 

 Model 
Model fit   Fit compared to the saturated model     

Parameters -2ll df AIC  Δ -2ll Δ df p 
    

Fully saturated 135 56376.55 8513 39350.55     
  

Constrained 48 56489.60 8600 39289.60  113.05 87 .03   
Independent 
Pathway  24 56720.10 8624 39472.10  343.55 111 < .001     
Ac = common A influences; Cc = common C influences; Ec = common E influences; As = specific A influences; Cs = specific C influences; Es = specific E influences; 95% 
Confidence intervals (CIs) are presented in brackets. CIs not including 0 indicate significant estimate; Total common and specific ACE effects are arrived at by adding up all 
common ACE and all specific ACE effects, making up total variance =1. 
Fully saturated= model with maximum number of parameters describing the data; Constrained = the saturated model constrained to have the same mean and SD across twin and 
zygosity; −2ll= minus twice the log likelihood; df= degrees of freedom AIC= Akaike’s information criterion; Δ -2ll =difference in -2ll value; Δ df= difference in degrees of freedom; 
p= p-value 
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3.4 Discussion 

The current study set out to examine three questions related to individual differences in 

environmental sensitivity. The first aim was to examine whether individual difference in 

environmental sensitivity were heritable, as suggested by differential susceptibility 

theories. The second aim was to examine the genetic architecture of environmental 

sensitivity as a function of its three components: Ease of Excitation (EOE), Aesthetic 

Sensitivity (AES) and Low Sensory Threshold (LST). The third aim was to examine the 

extent to which the commonly reported correlations between environmental sensitivity, 

the Big Five personality traits, depression and anxiety are due to shared genetic or 

environmental influences.  

With regards to the heritability of environmental sensitivity, the results showed that, in 

the current sample of adolescent twins from the UK, genetic influences accounted for 

47% of the variation in sensitivity, while non-shared environmental influences and 

measurement error accounted for the remaining 53% of the variance. The results 

supported differential susceptibility theories’ proposition that environmental sensitivity 

has a genetic basis, whereby genetic variation explained nearly half of the observed 

individual differences in environmental sensitivity. As well as an ACE model, an ADE 

model, accounting for non-additive genetic effects, was fitted to the data, the results 

indicating that additive genetic effects sufficiently explained the heritability of 

environmental sensitivity. The moderate heritability results of environmental sensitivity, 

mainly due to additive genetic effects, are in line with previous heritability estimates for 

common human traits (Polderman et al., 2015). Analyses of sex differences in ACE 

estimates did not yield significant differences between sexes in the source or extent of 

variation in environmental sensitivity.  

In relation to the genetic architecture of sensitivity as a function of its three components, 

the results showed that common genetic and environmental influences underlying the 

three components partly explained the variation in the latent factor of environmental 

sensitivity. However, as expected, part of the variance in LST and AES was explained 

by genetic and environmental influences that were specific to these components. These 

findings suggest that individual differences in environmental sensitivity are a function 

of two sets of genetic and environmental influences. Whilst the shared genetic factors 

underlying the three components of sensitivity may reflect variations in general 

sensitivity to environmental influences, the specific genetic influences on the LST and 

AES component may determine specific aspects of sensitivity: processes involved in 
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variations in the threshold and magnitude of reactivity to adverse stimuli (as reflected in 

LST), and processes involved in attention to detail and reactivity to positive and 

rewarding stimuli in the environment (as reflected in AES). An implication of this 

finding is that the presence or absence of specific genetic factors that contribute to 

different aspects of sensitivity may lead to the existence of different sensitivity types. 

For example, some sensitive individuals may be predominately reactive to adversity and 

threats—but not to positive experiences—due to predominately carrying genes that give 

rise to high EOE and LST, while others are more sensitive to positive—but not 

negative—aspects of the environment as a function of carrying gene variants associated 

with AES but not with EOE and LST. This interpretation is supported by current 

empirical evidence showing distinct associations between the three components of 

sensitivity and behavioral outcomes. Specifically, while EOE and LST have been 

associated with sensory-overstimulation (Liss et al., 2008), anxiety, depression (Bakker 

& Moulding, 2012; Liss et al., 2008), neuroticism and introversion (Sobocko & 

Zelenski, 2015), AES has been found to correlate with conscientiousness, positive affect 

and openness (Sobocko & Zelenski, 2015).  

With regards to the genetic overlap with personality, depression and anxiety, it was 

found that high sensitivity was moderately correlated with higher neuroticism, 

depression and anxiety and lower extraversion, consistent with previous research (e.g. 

Hofmann & Bitran, 2007; Liss et al., 2008; Smolewska et al., 2006). The results of 

independent pathway analysis suggested that the majority of the variance in the 

heritability of environmental sensitivity was explained by the same genetic factors that 

also influence neuroticism and extraversion (80%), and to a lesser extent depression and 

anxiety (50%). In contrast, the majority of environmental influences that explain 

variations in environmental sensitivity are specific to this phenotype, rather than shared 

with personality traits, though they do overlap to some extent with those underlying 

variation in anxiety and depression. Overall, these findings suggest that the phenotypic 

similarities between environmental sensitivity, extraversion and neuroticism were 

largely due to their underlying shared genetic influences, whereas differences between 

these traits are predominately influenced by non-shared environmental factors specific 

to them. The results of depression and anxiety analysis suggest that the phenotypic 

correlation between them is partly due to shared genetic effects, but also, to a smaller 

degree, due to similar environmental factors involved in their aetiology.  
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3.4.1 Strengths and limitations 

The current study has several important strengths. These included the use of a twin 

design to provide a first estimate of heritability of environmental sensitivity in a large, 

representative sample of twins. Furthermore, this is the first study to examine the shared 

aetiology of environmental sensitivity with commonly correlated other traits such as 

personality traits and depression and anxiety. However, the findings have to be 

considered in light of the following limitations. First, all measures are based on self-

report, which may have inflated the observed correlations between the different 

measures. Examining the correlations using information from various informants would 

have been able to account for the overestimation. Second, the findings are based on an 

adolescent sample, which may be affected by the developmental stage of this group. An 

adult population might have been more suitable, given that personality traits tend to be 

more stable and reliable in adulthood (Conley, 1984; Hampson & Goldberg, 2006). 

Third, the subsample with personality measures was smaller than the total sample, 

which may have prevented reliable detection of smaller effects. Fourth, the general 

limitations of twin design analysis (Plomin et al., 2013; Rijsdijk & Sham, 2002) also 

apply to this study, including the difficulty of detecting effects of shared environments, 

which could have inflated the heritability estimates. Fifth, the internal reliability of the 

personality and sensitivity measures were relatively low, which could have led to 

increased measurement error in the current study. However, the personality and 

environmental sensitivity correlations in the current study were similar to previous 

research studies, suggesting a good predictive validity of these measures. 

3.4.2 Implications and future research  

The results of the current study have several implications for future research. Firstly, it 

was shown that individual differences in the phenotype of environmental sensitivity 

have a substantial heritable component. The heritability estimates suggest that future 

molecular genetic studies aimed at identifying the specific genetic variants that 

contribute to individual differences in environmental sensitivity are warranted. It must 

be noted, however, that heritability estimates reflect individual differences in a trait in 

specific population and at the specific time. This is one of the caveats of twin design, 

since the variance component estimates depend on the specific variance of the 

population being studied. Notwithstanding this limitation, research findings from twin 

studies are commonly extended to the general population, regarding twin samples to be 

representative of non-twin populations. Future studies in different samples using twin 
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design, or studies estimating heritability using alternative methodologies, such as SNP-

based methods, could further test the heritability estimates reported herein. Longitudinal 

heritability studies would also be informative in examining whether the influence of 

genetic factors differs across the lifespan. In addition, it was found that environmental 

factors also play a significant role in shaping environmental sensitivity, emphasizing the 

need for future research to examine the specific contribution of environmental 

influences to the development of environmental sensitivity. 

 Secondly, it was found that environmental sensitivity consists of the combination of 

three somewhat distinct genetic systems, one that relates to variations in general 

sensitivity to environmental influences, and others reflected in the specific components 

that reflect sensitivity to either more negative or more positive aspects of the 

environment. Future studies should investigate whether these two latter systems, one 

associated with increased sensitivity to adverse experiences and the other with 

heightened susceptibility to positive exposures, are the function of specific biological 

systems.  

Finally, it was found that there is a substantial genetic overlap between the genetic 

influences involved in individual differences in environmental sensitivity and 

neuroticism, extraversion, depression and anxiety. Future studies on the molecular 

genetics of environmental sensitivity should be encouraged to examine the genetics of 

environmental sensitivity as a function of the overlap between these phenotypes.  

3.4.3 Conclusions 

In conclusion, the reported findings support the theoretical proposition that 

environmental sensitivity has a significant genetic basis, but that environmental factors 

play an equally important role. Furthermore, the findings suggest that environmental 

sensitivity may be best represented as a construct with three genetically distinct 

underlying systems, one that represents variations in general sensitive to environmental 

influences, and two others that reflect sensitivity to more positive or negative aspects of 

environmental exposures. Finally, the substantial genetic overlap between 

environmental sensitivity and neuroticism, extraversion, depression and anxiety 

indicates that related genetic influences are involved in these phenotypes.  
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Chapter 4 
Molecular genetics of environmental sensitivity: 

from candidate gene to genome-wide approaches 
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4.1 Introduction 

The results from Chapter 3 suggest that general sensitivity to environmental influences, 

as reflected in the highly sensitive personality trait, is moderately heritable. Quantifying 

the proportion of variation in a trait attributable to genetic factors is an important first 

step in establishing the genetic basis of a trait. However, classic heritability studies are 

not informative as to which genetic variants or biological systems underlie individual 

differences in sensitivity to environmental influences. The main aim of this chapter is 

therefore to investigate the molecular genetic factors underlying the detected 

heritability, by applying various methodologies. The introduction in this chapter is 

organised into four main parts. The first part briefly explores the propositions related to 

the molecular genetic factors theorised to be relevant to individual differences in 

environmental sensitivity. The second part includes a review of genetic findings from 

research in environmental sensitivity using candidate gene as well as genome-wide 

approaches. The third part includes a critical evaluation of the research findings in the 

field. The fourth part includes the aims of this chapter.  

4.1.1 The hypothesised genetic-biological basis of environmental sensitivity 

As noted in Chapter 1, Section 1.1.5, the exact biological mechanism underling 

variations in environmental sensitivity is unknown; though several potential 

mechanisms have been proposed. Sensory Processing Sensitivity (Aron & Aron, 1997) 

proponents have shown that individual differences in environmental sensitivity is 

associated with brain regions/processes involved in attention and action planning, 

awareness, integration of sensory information, and empathy (Acevedo, B. P. et al., 

2014; Jagiellowicz et al., 2011), therefore implicating the genetic factors that are related 

to these functional/structural differences. Biological Sensitivity to Context (Boyce & 

Ellis, 2005; Ellis et al., 2005) proponents have highlighted variations in stress response 

systems such as autonomic, adrenocortical, or immune reactivity as reflecting individual 

differences in environmental sensitivity, therefore implicating genetic factors 

underlying these systems as relevant to the aetiology of environmental sensitivity.  

Differential susceptibility hypothesis (Belsky & Pluess, 2009) proponents have mainly 

emphasized the variations in amygdala reactivity and central nervous systems related to 

the extent of responsivity/reactivity to environmental stimuli. The authors suggest 

genetic variations related to individual differences in these systems may reflect 

individual differences in environmental sensitivity, specially nominating dopaminergic 



 113 

and serotoninergic system genes based on their review of the genetic literature that 

identifies several variants from these systems as environmental sensitivity candidates. 

The “neurosensitivity” hypothesis, Belsky and Pluess (2013a) integrates these different 

suggested mechanisms, by proposing that heightened environmental sensitivity may be 

the function of a generally more sensitive central nervous system, reflected in various 

biological, physiological and psychological domains. Therefore, the genetic and 

environmental factors that influence these various structural and physiological functions 

of brain and the central nervous system, would be implicated in individual differences 

in general environmental sensitivity. 

With regards to a genetic model of sensitivity, Moore and Depue (2016) provided a 

detailed theoretical biological model of environmental  sensitivity based on their review 

of the environmental sensitivity candidate gene literature and other functional genetic 

studies of these variants in human and animal models. They propose an interactive 

biological-genetic model for the involvement of several neurotransmission (dopamine, 

GBA, norepinephrine, serotonin) and neuropeptide (opiates, oxytocin, corticotrophin-

releasing hormone) gene systems involved in biological reactivity to environmental 

influences.  They suggest that the biological systems that underlie reward sensitivity, 

depth and breadth of processing, neuronal learning and response inhibition, all play an 

important role in the development of individual tendencies for higher or lower 

biological reactivity to environmental stimuli, and the manifestation of a behavioural 

phenotype of general high or low sensitivity. Though their proposed interactive genetic-

biological model has yet to be cexamined empirically, it does provide a potential 

explanation for the role of dopaminergic and serotoninergic genes in the aetiology of 

environmental sensitivity.  

Indeed, research evidence does support the involvement of these systems. For example, 

the serotonin-transporter-linked polymorphic region (5-HTTLPR), a commonly studied 

genetic variation in the Solute Carrier Family 6 Member 4 (SLC6A4) gene, has been 

associated with cognitive performance (Homberg & Lesch, 2011), variations in 

amygdala reactivity (Munafo et al., 2008), and also found to moderate the impact of 

socio-economic status on central nervous serotonergic responsivity (Manuck, Flory, 

Ferrell, & Muldoon, 2004). Variants in the Dopamine Receptor D4 (DRD4) and 

Dopamine Receptor D2 (DRD2), two other sensitivity genes from the dopaminergic 

system, have been found to moderate the effects of parental intervention on toddler’s 

salivary cortisol levels (Bakermans-Kranenburg et al., 2008), family stress on audio-
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spatial ability (Berman & Noble, 1997), and maternal sensitivity on respiratory sinus 

arrhythmia – a measure of stress reactivity (Propper et al., 2008). It must be noted that 

despite supportive evidence, the function of these sensitivity genes is not unique to the 

suggested environmental sensitivity brain structures/functions or bio-physiological 

processes, therefore their specific contribution to variations in general environmental 

sensitivity remains unknown. 

 

4.1.2 Review of genetic association studies of environmental sensitivity  

4.1.2.1 Candidate gene research 

Single Nucleotide Polymorphisms (SNP) or Variable Number Tandem Repeats 

(VNTRs) are two of the most commonly examined types of variation in the human 

genome in genetic associations studies.  In a candidate gene association study, the first 

step is to identify a gene and variant within that gene that is proposed to be involved in 

the aetiology of the examined phenotype. Once the candidate gene variant has been 

selected according to its known or hypothesised biological relevance, the sample is split 

into groups depending on their genotype (i.e. homozygote for common allele, 

homozygote for rare allele or heterozygote) and examined for their association with the 

phenotype/disorder. If genetic variation is significantly associated with the risk for 

disease/trait, the genetic variant is implicated as a risk factor/biologically relevant for 

the trait. This type of association study makes an important assumption: that the 

selected genetic variant has functional consequences in the biological underpinning of 

the trait.  Another approach, Gene x Environment interaction (GxE), makes the same 

assumption about the biological relevance of the selected candidate gene for the trait, 

but hypothesises that genetic variation by itself may not exert a significant effect on the 

trait, rather its effect is through its interaction with an environmental (risk) factor. If the 

impact of the environmental factor (e.g. stressful life events) on the trait (e.g. depressive 

symptoms) is found to be dependent on the genotype (e.g. a moderating effect of 

genotype), the genetic variant is considered as a risk factor for, and relevant to the 

aetiology of the examined trait.  While much of the early GxE studies have been 

conducted with single SNPs or VNTRs, recent candidate approaches have considered 

the cumulative effect of several candidate genetic variants. In these approaches, a total 

score is created for each individual based on the number of risk alleles present. Standard 

GxE models are then used to examine the extent to which this score moderates the 

effects of a measured environmental factor on a given outcome.  
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As detailed in the Chapter 1, much of the evidence for the genetic basis of 

environmental sensitivity, prior to establishing its heritability in the previous chapter, 

comes from GxE studies. The guiding principle for identifying environmental 

sensitivity genes in such studies is their pattern of interaction with the environmental 

factor (Belsky & Pluess, 2009). Under the differential susceptibility framework, the 

environmental factor is expected to be on a continuum ranging from negative/risk to 

positive/protective. Genetic moderation action is proposed to be consistent with a cross-

over interaction, where the variant moderates the outcome for worse at the risky end of 

the environmental factor and for better in the positive context. In addition to the above 

condition, a more stringent benchmark requires that: 1) the slope for the highly sensitive 

group is significantly different from zero; 2) the slope for the highly sensitive group  is 

significantly steeper than the slope for the less sensitive group; and 3) that there are no 

genotype - environmental correlations as they reflect passive and active effects of genes 

on environment and dual-risk for the outcome rather than genetic sensitivity (Belsky, 

Bakermans-Kranenburg, et al., 2007). Presence of such an interaction pattern typically 

identifies the studied gene as a sensitivity gene rather than mere vulnerability gene, and 

the risk allele as a sensitivity allele. Other approaches have since been developed that 

include competitive model testing (Widaman et al., 2012) or regions of significance 

analysis (Roisman et al., 2012), that present yet more stringent criteria for identifying 

crossover interaction patterns. The next section includes an overview of these 

nominated sensitivity genes/genetic variants from differential susceptibility-influenced 

studies and empirical evidence for some of the most consistent findings from candidate 

genes studied so far.  

4.1.2.2 Environmental sensitivity candidate genes 

In their seminal paper on differential susceptibility hypothesis, Belsky and Pluess 

(2009) identified commonly studied variants in 8 genes from previous GxE studies 

(SCL6A4, DRD2, DRD4, Monoamine Oxidase A (MAOA), Catechol-O-

methyltransferase (COMT), dopamine active transporter 1 gene (DAT1), 5-

Hydroxytryptamine Receptor 2A (HTR2A), Tryptophan hydroxylase 1 (TPH1)) as 

environmental sensitivity candidate genes, based on their interaction patterns with 

environmental factors. These studies included a wide range of environmental factors 

and outcomes such as maternal nurturance and depression, birth weight and educational 

achievement, parenting practices and externalising behaviours, childhood emotional 

abuse and anxiety sensitivity, and parental divorce and adult relationship stability. They 
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have noted that the impact of these environmental influences is dependent on the 

genotype and that the interaction pattern is consistent with a cross over interaction, 

whereby a specific variant is associated with increased risk of negative outcomes in 

adverse contexts, but also less risk in the absence of environmental risk factor/in 

positive context. An updated review of the literature by Belsky and Pluess (2013a), 

nominated several additional environmental sensitivity candidate genes based on 

emerging evidence, suggesting variations in Brain-derived neurotrophic factor (BDNF), 

Oxytocin Receptor (OXTR), and FK506 Binding Protein 5 (FKBP5) genes may 

moderate the impact of environmental influences consistent with the differential 

susceptibly hypothesis. More recent studies in the field have moved on from examining 

single gene variants, instead examining the effects of multiple sensitivity genes and how 

their combined or interactive effects moderate the impact of experiences on outcomes. 

For example, Drury et al. (2012) reported on the cumulative effects of the Val66Met 

polymorphism in  BDNF and 5-HTTLPR short allele on response to a foster-care 

intervention study. Specifically, they found that children with the highest number of 

sensitivity alleles across both loci experienced the greatest decrease in indiscriminate 

social behaviour when put into foster care, and the greatest increase in such behaviour if 

they remained institutionalised. Several more candidate sensitivity genes have since 

been identified in GxE research according to their crossover interaction pattern. Table 
4.1a and 4.1b show a list of the older and also newly identified candidate 

environmental sensitivity genes since the Belsky and Pluess (2009) paper.  Though this 

is not a systematic review of the literature in the field, nor a comment on the strength of 

the studies included, these studies include the majority of GxE studies that have been 

published between 2009 and 2017, and in which the interaction pattern is consistent 

with a differential susceptibility model. The sample in all of these studies include more 

than 100 individuals, with findings having been replicated in at least one other study. 
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Table 4.1a Example of candidate environmental sensitivity genes identified from studies showing the GxE interaction pattern consistent with 

differential susceptibility theories * 

Authors (year) Environmental variable Outcome measure Sample 

SLC6A4 (5-HTTLPR VNTR) 

Benjet, Thompson, and Gotlib (2010) Relational peer victimization Mental health Adolescents (N=303) 

Hammen, Brennan, Keenan-Miller, 

Hazel, and Najman (2010) 
Family discord Depressive symptoms Adults (N=346) 

Hayden et al. (2010) Positive emotionality Negative emotionality Children (N=413) 

Jacobs et al. (2011) Maternal depressive history Errors in face-emotion labelling Adolescents (N=123) 

Brody et al. (2011) Perceived discrimination Conduct problems Adolescents (N=461) 

Mileva-Seitz et al. (2011) Mother's early life experiences Maternal behaviour and attitudes Adults (N=204) 

Carver, Johnson, Joormann, Kim, and 

Nam (2011) 
Childhood adversity Impulsivity Adolescents (N=303) 

Hankin et al. (2011) Idiographic stressors Depression symptoms Children (N=220) 

Verschoor and Markus (2011) Exam stress Mood, Perceived stress Adolescents (N=771) 

Fox, Zougkou, Ridgewell, and Garner 

(2011) 
Attention bias modification training Change in attentional bias Adults (N=116) 

Xie, Kranzler, Farrer, and Gelernter 

(2012) 
Childhood adversity PTSD Adults (N=5178) 
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Table 4.1a Continued 

 

Authors (year) Environmental variable Outcome measure Sample 

Wald, Degnan, Gorodetsky, and et al. 

(2013) 
Attentional bias PTSD Adults (N=1085) 

Bogdan, Williamson, and Hariri 

(2012) 
Stressful life events Depressive symptoms Children (N=234) 

Haase et al. (2013) Emotional behaviour Marital satisfaction Adults (N=125) 

Davies and Cicchetti (2014) Maternal unresponsiveness Externalizing problems Children (N=201) 

Beach, Dogan, Brody, and Philibert 

(2014) 
Socioeconomic status Methylation Adolescents (N=338) 

Babineau et al. (2015) Prenatal depression Behavioural dysregulation Children (N=213) 

VanZomeren-Dohm, Pitula, Koss, 

Thomas, and Gunnar (2015) 

Institutional rearing & peer 

victimization 
Depressive symptoms Children (N=489) 

Brett et al. (2015) Foster Care Externalising behaviour Children (N=102) 

Bouvette-Turcot et al. (2015) Maternal childhood adversity Negative emotionality Children (N=154) 

Sumner, McLaughlin, Walsh, 

Sheridan, and Koenen (2015) 
Maternal care Stress reactivity Adolescents (N=113) 

Lei et al. (2016) Relationship satisfaction 
Physiological stress response 

(Thyroid function) 
Adults (N=270) 
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Table 4.1a Continued 
 

Authors (year) Environmental variable Outcome measure Sample 

APOE 

Kring et al. (2010) Caregiver stress Triglyceride in blood Adolescents (N=248) 

Taylor et al. (2011) Flying experience Flight simulator performance Adults (N=139) 

BDNF 

Hayden et al. (2010) Parental depression Negative emotionality Children (N=413) 

Suzuki et al. (2011) Parenting Harm avoidance Adults (N=710) 

Gunnar et al. (2012) Institutional care Attention problems Adolescents (N=612) 

Chen, Li, and McGue (2012) Stressful life events Depressive symptoms Adolescents (N=780) 

Chen et al. (2015) Antenatal maternal anxiety Neonatal DNA methylation Children (N=780) 

Ward et al. (2015) Cognitive Reserve Executive Function Adults (N=433) 

Zhang, L. et al. (2016) Maternal parenting Depressive symptoms Adolescents (N=780) 

Miu et al.  Child maltreatment Reappraisal ability Adults (N=254) 
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Table 4.1a Continued 

 

Authors (year) Environmental variable Outcome measure Sample 

COMT 

Brennan et al. (2011) Prenatal smoking Aggressive behaviour Adolescents (N=430) 

Laucht et al. (2012) Perceived parenting behaviour Alcohol use Adolescents (N=285) 

Kok et al. (2013) Parenting Compliance Children (N=613) 

Baumann et al. (2013) Childhood Trauma Anxiety sensitivity Adults (N=782) 

Hygen et al. (2015) Serious life events Aggression Children (N=704) 

DAT1/SLC6A3 

Lee et al. (2010) Child disruptive behaviour Negative parenting Adults (N=127) 

Lahey et al. (2011) Parenting Conduct disorder Children (N=310) 
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Table 4.1a Continued 
 

Authors (year) Environmental variable Outcome measure Sample 

DRD2 

van Roekel, Goossens, Scholte, 

Engels, and Verhagen (2011) 
Parental support Loneliness Adolescents (N=307) 

(Lee, Brooks-Gunn, McLanahan, 

Notterman, & Garfinkel, 2013) 
Macroeconomic conditions Harsh parenting Adults (N=2612) 

Chhangur et al. (2015) Parental Support Delinquent behaviour Adolescents (N=308) 

Zhang et al. (2015) Negative Parenting Depressive symptoms Adolescents (N=1026) 

DRD4 

Sweitzer et al. (2012) SES Impulsivity Adults (N=546) 

Beach et al. (2012) Contextual stressors Negative arousal Children (N=345) 

Berry et al. (2013) Maternal sensitivity Attention problems Children (N=711) 

Kretschmer, Dijkstra, Ormel, 

Verhulst, and Veenstra (2013); Zohsel 

et al. (2014) 

Prenatal stress Externalizing problems Children (N=308) 

Brody et al. (2014) Intervention Substance use Adolescents (N=502) 

Cho and Kogan (2016) Community disadvantage Risk behaviour Adolescents (N=309) 
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Table 4.1a Continued 

 

Authors (year) Environmental variable Outcome measure Sample 

ESR1 

Hartman, Widaman, and Belsky 

(2015) 
Maternal Sensitivity Onset of menarche Adolescents (N=210) 

Manuck, Craig, Flory, Halder, and 

Ferrell (2011) 
Family environment Menarche Adults (N=455) 

FKBP5 

Xie et al. (2010) Childhood Adversity PTSD Adults (N=2427) 

Zimmermann et al. (2011) Adverse life event Major depression Adults (N=884) 

Bevilacqua et al. (2012) Childhood Trauma Aggressive behaviour Adults (N=583) 

White (2012) Emotional neglect Amygdala reactivity Adolescents (N=139) 

Klengel et al. (2013) Childhood maltreatment PTSD Adults (N=519) 

VanZomeren-Dohm et al. (2015) Peer victimisation Depressive symptoms Children (N=489) 
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Table 4.1a Continued 

 

Authors (year) Environmental variable Outcome measure Sample 

GABRA2 

Enoch, M.-A. et al. (2010) Childhood trauma Addiction vulnerability Adults (N=577) 

Trucco, Villafuerte, Burmeister, and 

Zucker (2017) 
Peer affiliation Externalising behaviour Adolescents (N=504) 

Villafuerte, Trucco, Heitzeg, 

Burmeister, and Zucker (2014) 
Peer delinquency Externalising problems Adolescents (N=244) 

HTR2A 

Salo, Jokela, Lehtimaki, and 

Keltikangas-Jarvinen (2011) 
Childhood maternal nurturance Social attachment in adulthood Adolescents (N=1070) 

Fraley, Roisman, Booth-LaForce, 

Owen, and Holland (2013) 
Maternal Sensitivity Avoidance (Attachment) Adolescents (N=503) 

MAOA 

Enoch, Steer, Newman, Gibson, and 

Goldman (2010) 
Stressful life events Behvarioural disinhibition Children (N=7500) 

Baumann et al. (2013); Wakschlag et 

al. (2010) 
Prenatal exposure to cigarettes Antisocial behaviour Adolescents (N=176) 

Baumann et al. (2013) Childhood Trauma Anxiety sensitivity Adults (N=782) 
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Table 4.1a Continued 

 

Authors (year) Environmental variable Outcome measure Sample 

OXTR 

Johansson et al. (2012) Alcohol use Aggression Adults (N=116) 

Hostinar, Cicchetti, and Rogosch 

(2014) 
Childhood maltreatment 

Social support & 

internalising problems 
Adolescents (N=425) 

Hammen, Bower, and Cole (2015) Family quality 
Borderline personality 

symptoms 
Adolescents (N=385) 

Dannlowski et al. (2016) Childhood maltreatment Ventral striatum volume Adults (N=309) 

*Includes only studies with sample sizes of more than 100 individuals and with genes having been replicated in at least one other study 
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Table 4.1b Example of studies using multiple candidate environmental sensitivity genes, showing candidate polygenic score xE interaction pattern 

consistent with differential susceptibility theories * 

Sensitivity genes Authors (year) Environmental variable Outcome measure Sample 

COMT,BDNF Simons et al. (2009) Daily stress Paranoia experiences Adults (N=621) 

COMT, 5-HTTLPR Nijmeijer et al. (2010) 
Maternal prenatal 

smoking 
ADHD Children (N=646) 

5-HTTLPR, DRD4 Simons et al. (2011) Social environment Aggression Adolescents (N=867) 

DAT1, DRD2, DRD4, 5-
HTTLPR, MAOA Belsky and Beaver (2011) Parenting Self-regulation Adolescents (N=1586) 

BDNF, CREB1 Juhasz et al. (2011) Childhood adversity Depressive symptoms Adults (N=1570) 

5-HTTLPR, STin2 Mitchell et al. (2011) SES 
Postpartum 

depression 
Adults (N=1206) 

5-HTTLPR, BDNF 
Clasen, Wells, Knopik, 

McGeary, and Beevers 

(2011) 

Life Stress Rumination Adolescents (N=273) 

5-HTTLPR, CRHR1 Cicchetti, Rogosch, and 

Oshri (2011) 
Child maltreatment 

Internalizing 

problems 
Children (N=493) 

5-HTTLPR, TPH1, MAOA Cicchetti et al. (2012) Child maltreatment Antisocial behaviour Children (N=627) 

5-HTTLPR, MAOA Priess-Groben and Hyde 

(2013) 
Negative life events Depression Adolescents (N=309) 
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Table 4.1b Continued 

 

Sensitivity genes Authors (year) Environmental variable Outcome measure Sample 

5-HTTLPR, CRHR1, OXTR, 
DRD4 

Cicchetti and Rogosch 

(2012) 
Child maltreatment Resilience Children (N=595) 

DRD2, DRD4, COMT Nederhof, Belsky, Ormel, 

and Oldehinkel (2012) 
Divorce 

Externalizing 

behaviour problems 
Adolescents (N=1134) 

5-HTTLPR, OXTR Sturge-Apple, Cicchetti, 

Davies, and Suor (2012) 
Parental Conflict 

Maternal sensitivity 

& harsh parenting 
Adults (N=201) 

GABRA1, GABRA2 DRD2, 
DRD4, ANKKI 

Brody, Chen, and Beach 

(2013) 
Prevention Program Alcohol use Adolescents (N=900) 

5-HTTLPR, DRD4, DAT1, 
COMT Masarik et al. (2014) Parent-child interaction 

Behaviour in 

romantic relationship 
Adults (N=352) 

BDNF, COMT, SIRT1 Brett et al. (2014) Institutional care 
Neurodevelopmental 

outcomes 
Children (N=193) 

OXTR, FK506 Cicchetti, Rogosch, Hecht, 

Crick, and Hetzel (2014) 

Childhood 

maltreatment 

Borderline 

personality 
Children (N=1051) 

TPH2, HTR1A, HTR2A Pearson, McGeary, and 

Beevers (2014) 

Childhood 

maltreatment 

Behavioural approach 

system (BAS) 
Adults (N=236) 

BDNF, FKBP05, NET, 
CHRH1 

Cicchetti and Rogosch 

(2014) 

Childhood 

maltreatment 

Depressive & 

internalising 

symptoms 

Children (N=1096) 

5-HTTLPR, BDNF Dalton, Hammen, Najman, 

and Brennan (2014) 
Family environment Depressive symptoms Adolescents (N=363) 
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Table 4.1b Continued 

 

Sensitivity genes Authors (year) Environmental variable Outcome measure Sample 

DRD2, DAT1 Ludmer et al. (2015) 
Strange situation 

procedure 
Cortisol reactivity Infants (N=314) 

HTR1A, HTR2A,  

HTR2C, TPH2  
Vrshek-Schallhorn et al. 

(2015) 
Life events Depression Adults (N=387) 

MAOA, COMT Zhang, Cao, Wang, Ji, and 

Cao (2016) 
Parenting Reactive aggression Adolescents (N=1399) 

5-HTTLPR, DRD4 Green et al. (2017) 
Prenatal maternal 

depression 
Negative emotionality Children (N=179) 

5-HTTLPR, DAT1, DRD4 Richards et al. (2016) Maternal warmth 
Neural reward 

sensitivity 
Adolescents (N=443) 

*Includes only studies with sample sizes of more than 100 individuals



 
 

128 

Though most of the research adhering to the differential susceptibility framework has 

found support for these candidates as sensitivity genes, there are some others who have 

found an interaction pattern consistent with diathesis-stress model, inferring only risk, 

rather than general sensitivity (Brody et al., 2012; Kochanska et al., 2011). Meta-

analysis of the GxE studies however has shown some candidate gene findings to be 

robust. For Example, two meta-analyses found consistent effects for 5-HTTLPR (Van 

IJzendoorn, M., Belsky, J., & Bakermans-Kranenburg, M., 2012) and DRD4 7 repeat 

(Bakermans-Kranenburg & van IJzendoorn, 2011), showing the moderating effects of 

these variants is consistent with differential susceptibility theories rather than diathesis 

stress model, in response to a wide range of environmental experiences across 

childhood and adolescence.   

5-HTTLPR is a genetic polymorphism in the promoter region of the serotonin 

transporter gene (SLC6A4) (Heils et al., 1995). The protein product of this gene (5-

HTT) is expressed in the central and peripheral nervous systems and plays a key role in 

transporting the neurotransmitter serotonin from synapses to presynaptic neurons. The 

polymorphism consists of a long (l-allele) and a short (s-allele) variant, based on the 

insertion or deletion of 44 base pairs close to the beginning of the gene’s transcription 

site. The S-allele has been associated with lower and the l-allele with higher levels of 

serotonin transporter mRNA transcription (Lesch, Bengel, Heils, & Sabol, 1996),  and 

the short repeat variant (s-allele) has been identified as the sensitivity allele since it 

often shows less negative outcomes in the absence of adversity/presence of protective 

factors, but more negative outcomes in the context of adversity. For example, studies 

with 5-HTTLPR have found it moderates for better and for worse, the impact of 

maternal responsiveness on children’s moral development (Kochanska et al., 2011), the 

effect of parenting practices on children’s positive affect (Hankin et al., 2011), 

perceived racial discrimination on conduct problems and of child maltreatment on 

antisocial behavior (Cicchetti et al., 2012). The 5-HTTLPR S-allele has also been 

associated with higher neuroticism in the context of negative life events, but also lower 

levels of neuroticism and higher life satisfaction in the context of positive life events 

(Kuepper et al., 2012; Pluess, Belsky, Way, & Taylor, 2010). In one of the largest 

candidate gene studies (N=1,206), Mitchell et al. (2011) studied the effects of 5-

HTTLPR and Serotonin Transporter Intronic VNTR Enhancer (STin2), another 

serotoninergic system VNTR located in the intron 2 region of the SLC6A4 gene which 

is believed to cooperate with the regulatory function of 5-HTTLPR. This study 
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investigated the combined effects of these genes on moderating the impact of SES on 

postpartum depression in the first year after birth. They found that some mothers were 

more genetically sensitive to their environments (higher number of 12 repeat for STin2 

and s-allele for 5-HTTLPR) resulting in a crossover of risks of postpartum depression in 

the context of high and low SES for these genetically sensitive individuals. 

DRD4 encodes the D4 subtype of the dopamine receptor, which is responsible for 

neuronal signaling in the mesolimbic system of the brain, an area of the brain that 

regulates emotion and complex behavior. This gene contains a polymorphic number (2-

10 copies) of tandem 48 repeats. And the 7 repeat polymorphism has been associated 

with decreased efficiency in dopamine reception (D'Souza & Craig, 2006), and 

consistently identified as a sensitivity allele. For example, Berry et al. (2013) found that 

the DRD4 7 repeat was associated with higher inattention in the context of insensitive 

early maternal care, but also with lower levels of inattention in the context of more 

sensitive maternal care. Similar interaction patterns have been observed regarding the 

effects of quality of child-care on the development of social competence (Belsky & 

Pluess, 2013b), effects of parenting on prosocial behavior (Knafo et al., 2011), effects 

of positive changes in parenting practices on children’s externalizing behavior 

(Bakermans-Kranenburg et al., 2008), and of childhood adversity on emerging 

adulthood alcohol dependence (Park, Sher, Todorov, & Heath, 2011). In studies on 

substance use in adolescents, the results have shown that the effects of intervention 

programs for substance use was greater for 7 repeat carriers, even though this genotype 

was associated with higher risk of substance use in the absence of intervention (Beach, 

Brody, Lei, & Philibert, 2010; Brody et al., 2014).  

DAT1 is another gene in the dopaminergic system that has been studied as a single 

candidate or in combination with DRD4 and consistently found to be associated with 

differential susceptibility to environmental influences. The product of this gene is a 

membrane-spanning protein that mediates the reuptake of dopamine from the 

synapse. DAT1 is the primary regulator of dopamine neurotransmission and is 

expressed in the central nervous system, primarily in brain areas that make up the 

dopaminergic circuits (e.g. striatum and nucleus accumbens). In one of the earliest 

larger studies of DAT1, Sonuga-Barke et al. (2009) examined whether the impact of 

maternal expression of positive emotions (a protective factor) on conduct disorder and 

emotional problems in a sample of 5 to 17 year olds (N= 728), depended on children’s 

DAT1 and DRD4 genotype. They found that the protective effects of maternal 
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expression of positive emotions on reduction of emotional and conduct problems was 

evident only for those with 9 repeat variants of the DAT1 (sensitivity allele), whereas 

those without the sensitivity allele did not show alterations in response to this positive 

environmental influence.  In other more recent studies, DAT1 has been found to 

moderate the influence of positive and negative parenting practices on conduct disorder 

(Lahey et al., 2011), and the impact of parents behavioural training on children’s 

attention deficit hyperactivity disorder (ADHD) symptoms (van den Hoofdakker et al., 

2012), consistent with differential susceptibility pattern of for better and for worse 

interaction.  

MAOA is another widely studied sensitivity gene. Although there is currently no meta-

analysis of MAOA studies to show that its interaction pattern is consistent with 

differential susceptibility theories, the low-activity allele has been frequently found to 

reflect a sensitivity genetic variant, usually in larger samples that is typical of studies in 

this field. MAOA gene is located on the X-chromosome (Levy et al., 1989) and encodes 

mitochondrial enzymes that are involved in degrading of other amine neurotransmitters 

such as dopamine, serotonin and norepinephrine (Shih, Chen, & Ridd, 1999). A 

functional VNTR (2, 3, 3.5, 4 or 5 repeats) exists in the promoter region of the gene 

(Sabol, Hu, & Hamer, 1998), with short (3 repeat) versus long (4 repeat) associated with 

low versus high MAOA expression, respectively, and therefore higher or lower levels of 

amine neurotransmitters (Deckert et al., 1999; Sabol et al., 1998). The low-activity 

MAOA alleles have been nominated as sensitivity allele (Belsky & Pluess, 2009), 

following studies showing that, for example, low-MAOA-activity allele infers higher 

risk of conduct disorder in childhood and antisocial behavior in adulthood in the context 

of childhood maltreatment, but lower risks for these problem behaviours in the absence 

of childhood maltreatment (Caspi et al., 2002; Foley et al., 2004; Kim-Cohen et al., 

2006). Much of the subsequent studies on MAOA have been conducted on antisocial 

behavior or its correlates such as aggression and impulsivity and ADHD. In one of the 

largest of MAOA studies, Enoch, M. A. et al. (2010) tested the impact of family 

adversity from pre‐birth to age 3 years and stressful life events from 6 months to 7 years 

on hyperactivity and behavioural problems in 7,500 girls and boys. Although the 

authors did not set out to test the differential susceptibility hypothesis, the interaction 

pattern indicated MAOA low activity as the sensitivity allele, whereby it increased the 

risk of hyperactivity in both boys and girls at ages 4 and 7 in response to stressful life 

events in childhood. However, low activity MAOA was also associated with lower risk 
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at the less risky end of environmental index, compared to those with the high activity 

allele. In another study with 782 adults, MAOA low activity allele was found to function 

in similar differential susceptibility manner when authors tested the impact of childhood 

trauma on anxiety proneness (Baumann et al., 2013). 

4.1.2.3 Genome-wide studies of environmental sensitivity 

Considering the limitations of candidate gene studies, along with the availability and 

affordability of genome-wide genotyping platforms, research in behavioural genetics 

transitioned into a Genome-wide era in the early 2000s. The fundamental difference 

between candidate-gene approaches and genome-wide approaches lies in the 

requirement for a-priori hypothesis for the candidate genes approaches versus the 

hypothesis-free nature of genome-wide approaches. Instead of examining one or a small 

selection of SNPs as in the candidate approach, genome-wide approaches examine the 

associations between several thousand variations from across the genome and the trait 

of interest. This approach makes several assumptions, such as assuming that the 

examined trait is to some extent heritable, and that the genotyping array either directly 

assays, or is in linkage disequilibrium with all of the variants that explain the 

heritability. The heritability assumption may be easily met, since years of behavioural 

genetic research have shown almost all human traits are moderately heritable 

(Polderman et al., 2015). While other DNA structural variations such as rare variants, 

Copy Number variants (CNVs) or insertions and deletions (Indels) have been studied in 

GWAS, most studies of common traits are conducted on common SNPs, in line with 

evidence that common SNPs explain a substantial amount of additive genetic effects in 

common traits/disorder (Visscher et al., 2017) 

One of the first of such approaches is Genome-wide association study (GWAS), where 

commonly the association between a trait and, for example, over 500,000 SNPs is tested 

in a series of t-tests. The SNPs most strongly associated with the trait/outcome, as 

inferred by the lowest p-value, are considered to play an important role in the aetiology 

of the trait. However, acknowledgement of the limitations inherent within the GWAS 

approach, such as stringent correction for multiple testing, and requirements for large 

sample sizes to ensure sufficient power to detect small effects of single variants on 

complex traits, have led to the development of other approaches such as polygenic risk 

scores. Polygenic approaches incorporate GWAS as the first step for estimating the 

extent of association between each SNP and the trait in a discovery sample, followed by 
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construction of a polygenic risk score for each individual in an independent target 

sample, by summing the associated alleles weighted by their effect size (e.g. β- 

coefficient). The polygenic scores are then used to predict variation in the trait in the 

target sample. The polygenic score therefore reflects the additive genetic risk for a trait. 

This approach considers that the genetic basis of common traits is polygenic and that 

even SNPs with small effects on the trait may be involved in its aetiology through 

additive genetic effects (Visscher et al., 2017). Another application of polygenic scores, 

which we call cross-trait polygenic score, incorporates the same methodology, but 

examines the shared genetic influences between different traits, due to pleiotropic 

effects, a situation in which a single variant influences multiple phenotypes (Hodgkin, 

1998). This approach examines this effect by testing whether the variation in a target 

phenotype (e.g. depression) is explained by the polygenic score constructed based on 

GWAS summary statistics of another trait (e.g. neuroticism). Shared genetic effects 

have been commonly observed in genetic studies of human disorders and traits (Bulik-

Sullivan et al., 2015; Cross-Disorder Group of the Psychiatric Genomics, 2013) 

To date, there has been no GWAS of an environmental sensitivity phenotype. However, 

there is one study that has used a genome-wide approach to study environmental 

sensitivity under the differential susceptibility framework. In this study, Keers et al. 

(2016) devised a novel approach to capture variants that infer variable sensitivity to 

environmental influences, taking advantage of the genetic relatedness of MZ twin pairs 

(N= 1,026). Because MZ twin pairs are genetically identical and share the same 

environments, their discordance on any trait/outcome is considered to be the result of 

environmental influences that are unique to each twin. Keers et al. (2016) used this 

principle to propose that greater intra-pair variability on an outcome could be the result 

of the increased sensitivity to non-shared environmental influences. Using this 

approach, they created polygenic score of environmental sensitivity from the MZ 

difference scores on emotional problems and tested the score as a moderator of 

parenting on emotional problems in an independent sample of 1,400 children. They 

found that this polygenic score of sensitivity to environmental influences moderated the 

effects of parenting in a manner consistent with differential susceptibility theories. 

Specifically, for individuals with a low genetic sensitivity score, parenting did not exert 

a significant effect on their emotional problems. In contrast, higher genetic sensitivity 

scores were associated with higher emotional problems in the context of negative 

parenting, but also decreased emotional problems in the context of positive parenting.  
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The results therefore suggest that their polygenic score may reflect individual 

differences in environmental sensitivity.  

4.1.3 Critical evaluation of research findings 

While genetic research on environmental sensitivity has been instrumental in providing 

initial support for the hypothesised genetic basis of environmental sensitivity, they do 

have limitations. Firstly, as noted earlier, all current studies related to genetics of 

environmental sensitivity are conducted using candidate gene methodology, an 

approach that has been the focus of intense scrutiny in the last decade. This is largely 

because, the primary requirement of a candidate gene approach is selection of candidate 

genes based on a biological hypothesis, however knowledge regarding the specific 

biological mechanisms underlying complex psychological traits, including 

environmental sensitivity, remains rather limited. For this reason, the risk of selecting 

inappropriate candidates is high. However, due to the documented publication bias for 

significant novel results over null or negative results (Bosker et al., 2011; Collins, Kim, 

Sklar, O'Donovan, & Sullivan, 2012), the candidate gene literature would give the 

impression that candidate gene studies are a more robust method for detecting 

associations than is the reality. This is an important limitation especially for candidate 

gene research in environmental sensitivity, whereby the initial candidate genes were 

identified based on their observed interaction pattern with environmental factors, rather 

than from biologically established/hypothesised mechanisms underlying the trait as a 

first step. Importantly, the current hypotheses regarding its biological/genetic basis have 

been built partly based on post-hoc interpretation of candidate gene findings themselves 

(e.g. see Belsky & Pluess, 2009). This circular reasoning makes the rational for 

selection of genes in the candidate gene studies of environmental sensitivity even more 

lacking. Despite this main limitation of candidate gene approaches, they are still 

worthwhile in establishing associations between functional genetic variants and a trait, 

especially if there is strong evidence from sufficiently powered studies, and the findings 

are robust in meta-analysis. GWAS would provide an alternative approach by 

facilitating the exploration of the genetic influences on individual differences in 

environmental sensitivity without an a-priori hypothesis, and could be complimentary to 

candidate gene approach by validating the candidate gene findings or nominating novel 

candidates for further investigation; an approach that is yet to be employed in research 

on environmental sensitivity. 



 
 

134 

Second, and related to the previous limitation, is the evidence suggesting that the 

genetic architecture of common traits are polygenic and influenced by many thousands 

of gene variants, each of very small effect rather than by a few variants of large effect 

(Culverhouse et al., 2017; Visscher et al., 2017). While recent GxE research in 

environmental sensitivity has attempted to partly address this point, by including 

several, rather than one candidate gene in their studies, these commonly include less 

than 10 variants of the potential 10 million variants in human genome. Genome-wide 

polygenic scores, capturing additive genetic influences on individual differences on a 

trait, can address this limitation, though there are currently no such studies on 

environmental sensitivity. In addition, all studies in the field have so far only examined 

DNA sequence variation at the SNP level. Other approaches attempt to investigate the 

genetic basis of traits at the level of genes or genetic pathways, rather than SNPs. In 

gene-based approaches, the unit of association is a gene rather than a SNP, with the idea 

that gene-level variations better summarise the functional genetic consequences for a 

trait than its constituent parts (e.g. SNPs) (Neale & Sham, 2004). Pathway models 

emphasise the biological relevance of genes in a trait, by looking at the association 

between a trait and a network of genes (e.g. 200 genes) that are deemed to play an 

important role in specific biological pathways (e.g. serotoninergic) in human 

functioning (e.g. synaptic activity). These alternative analytical approaches offer a 

different prospective in studying individual differences in environmental sensitivity, an 

important gap in research that is yet to be explored. 

Finally, apart from the methodological limitations noted so far, there is a caveat in 

applying the findings from the GxE studies in the field to examining the genetic variants 

related to individual differences in a phenotype of environmental sensitivity. 

Specifically, while candidate genetic variants such as 5-HTTLPR, DRD4, and MAOA 

seem to reflect differential sensitivity to environmental influences through their 

moderating action (operational effects), they may not be as important or relevant to 

aetiology of the phenotype of environmental sensitivity and its formation over time 

(trait effects). This is because, GxE studies examine the response to specific events for 

specific outcomes, whereas the phenotype of environmental sensitivity (e.g. highly 

sensitive personality trait) reflects general tendencies in response to all environmental 

stimuli.  It is therefore not a forgone conclusion that the genetic variants identified 

though GxE studies perpetuate the same response in other environments and for other 

outcomes (i.e. reflect general sensitivity), until there is an empirical test of their 
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association with variations in the phenotype of environmental sensitivity. To date, only 

one study (Chen et al., 2011) has examined the genetic basis of environmental 

sensitivity using the HSC scale. The authors examined whether a collection of 87 SNPs 

in 16 candidate genes from the four subsystems of the dopamine (DA) including DA 

synthesis (Tyrosine hydroxylase [TH], Dopa Decarboxylase [DDC]), Dopamine beta-

hydroxylase [DbH]), degradation/transport (COMT, MAOA, MAOB, DAT1), dopamine 

receptor (DRD1, DRD2, DRD3, DRD4, DRD5), dopamine modulation (Neurotensin 

genes [NLN, NTS, NTSR1, NTSR2]) would explain variations in HSC. They first 

conducted an ANOVA to examine which of the SNPS are significantly associated with 

sensitivity, and then conducted a regression with all the significant SNPs from the first 

step to explain their total and specific contribution to the trait. They found that ten SNPs 

were associated with sensitivity at the first step, and they together explained 10% of the 

variance in a sample of 480 Chinese students. The genes that significantly contributed 

to the explained variance were DBH and DRD2 (DA receptor), and NTSR1, NTSR2 and 

NLN (DA modulation). Interestingly, DRD4, DAT1, COMT and MAOA genes that have 

consistently been considered a marker of environmental sensitivity in GxE studies were 

not found to be significant contributors to trait sensitivity. The lack of associations for 

these candidate genes could partly reflect population stratification effects, since most 

previous studies consisted of Caucasians. Alternatively, this may be due to the two-step 

analytical procedure creating a competitive test of the dopaminergic system genes, 

rather than a straightforward association test with the trait. The results, however, 

underline the point raised earlier, that it cannot be assumed that the same genes from 

candidate GxE studies would be as relevant to the aetiology of the phenotype of general 

environmental sensitivity, and empirical evidence are thus required. The same limitation 

applies to the only genome-wide study by Keers et al. (2016), because the polygenic 

score of environmental sensitivity was constructed based on variation in response to 

environmental factors that bring about a specific outcome (emotional problems), rather 

than a general sensitivity to environmental influences. Apart from these two studies, 

there are no other candidate gene studies to have tested the assumed relationship 

between the phenotype of environmental sensitivity and candidate genes from GxE 

literature, or explored its genetic basis via genome-wide approaches; an important gap 

in research that will be the main aim of this chapter.  
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4.1.4 Aims  

The main aim of this chapter was to identify the molecular genetic factors that 

contribute to individual differences in environmental sensitivity, as measured by the 

Highly Sensitive Personality scale (Aron & Aron, 1997). This was attempted through 

addressing the identified limitations and gaps in current research on molecular genetics 

of environmental sensitivity. As noted earlier, there are currently no hypothesis-free 

genome-wide studies of individual differences in environmental sensitivity, and 

although the candidate GxE studies reviewed so far provide an indication of what 

candidate genes may be involved, none bar one study by Chen et al. (2011) have tested 

their associations with the phenotype of environmental sensitivity. In addition, current 

research in the field has been limited to using candidate gene approaches, or testing 

associations at SNP levels only, and other more recent methods in the behavioural 

genetic field such as genome-wide polygenic risk scoring, gene-based, and gene-system 

analyses are yet to be employed. 

These limitations and gaps in research were addressed in the current study by being the 

first to comprehensively examine the molecular genetics of environmental sensitivity, 

using both hypothesis-driven and hypothesis-free approaches. This was done by first 

using a candidate gene approach to test the associations between environmental 

sensitivity and variations in five VNTRs (5-HTTLPR, DRD4, MAOA, DAT1, STin2), as 

well as gene-based variations in 19 candidate environmental sensitivity genes identified 

from previous GxE studies. Second, an exploratory, hypothesis- free approach was 

taken by conducting a GWAS of environmental sensitivity, as well as using polygenic 

scoring, cross-trait genetic correlation, gene-level, and gene-pathway analyses to 

identify the genetic factors associated with individual differences in environmental 

sensitivity. The planned analyses were conducted in multiple samples. Three samples 

were used for the candidate gene approaches, including one from Belgium (N= 838), 

plus two from the UK (N= 395 and N= 642). Two datasets from the UK were used to 

conduct GWAS, gene-based, gene-system and polygenic score analyses. The polygenic 

score analysis was also used to take advantage of publically available GWAS summary 

statistics for thirteen phenotypes that have been associated with the environmental 

sensitivity phenotype (HSP) or candidate sensitivity genes. The phenotypes included the 

Big Five personality traits, depression and anxiety, as reported in Chapter 2 and 3, 

autism (Liss et al., 2008), ADHD (Brody et al., 2014), loneliness (van Roekel et al., 

2011), and wellbeing/life satisfaction (Booth, Standage, & Fox, 2015). Insomnia and 
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educational attainment GWASs were also included due to their evidenced associations 

with a wide range of mental health outcomes and normal functioning (Bulik-Sullivan et 

al., 2015; Hammerschlag et al., 2017). 

Being able to conduct the same analyses across independent samples ensures that any 

significant findings can be evaluated in light of their replicability. An important 

consideration for the planned analyses, especially because of the high possibility of 

false positive results in candidate gene approaches, due to lack of a robust knowledge of 

the biological relevance of the gene to mechanisms of environmental sensitivity, and 

also since the small samples for the genome-wide approaches makes them 

underpowered. In acknowledging the latter, a meta-analysis of GWAS results and other 

genome-wide analyses were also conducted, in order to enable better assessment of the 

results by increasing power and sensitivity. The large sample size from Belgium 

ensured the candidate gene studies were sufficiently powered to detect similar effect 

sizes as reported in previous candidate gene studies (see Section 4.2.2.6 for power 

analysis). 

4.2 Methods 

4.2.1 Sample, measures and procedures 

Three datasets were used to conduct the planned analyses in this chapter. Details of each 

dataset and the samples, measures, and the procedures used in the current study, are 

presented separately for each dataset in the following sections. 

4.2.1.1 Twins Early Development Study (TEDS) Project 

Sample: TEDS is a large longitudinal study of twins born in the UK between 1994 and 

1996. Data were collected at ages 2, 3, 4, 7, 8, 9, 10, 12, 14, and 16. More information 

about TEDS is provided in Chapter 2, as detailed by Haworth, Davis, and Plomin 

(2012) . For the analyses in the current chapter, the data consisted of 647 individuals 

from TEDS for whom both genetic and phenotype data were available. The current 

sample did not include any twin pairs. Five individuals were later removed during QC 

procedures on the genotype data, as detailed in the next section. The final sample used 

in the analyses included 642 individuals (281 males, 361 females), with a mean age of 

17.08 (SD= .87) at the time of phenotype data collection. The sample was ethnically 

homogenous with all individuals in the sample self-reported as White-British ethnicity. 
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Phenotype data: The 12-item Highly Sensitive Child (HSC) scale (Pluess et al., 2018) 

was used to measure environmental sensitivity. Detail on the development and 

psychometric properties of this scale are presented in Chapter 2. The data from the 

participants was collected via self-report online questionnaires, when participants were 

approximately 16 years old.  

Genotype data: DNA was extracted from buccal swabs collected in two phases 

between 2007 and 2009 when TEDS participants were approximately 12 years old. 

Samples were collected from one member of each twin pair in participating families, to 

ensure that genetic data contained only unrelated individuals. DNA data was genotyped 

using Affymetrix Genome-wide Human SNP Array 6.0, SNPs imputed to 1000 genome 

reference panel using IMPUTE v2 and subjected to quality control following 

established pipelines, with the final imputed dataset of consisting of 5,237,380 SNPs. 

For the analyses in the current chapter, the available genotype data from TEDS were 

subjected to further quality control, using Coleman, Euesden, et al. (2016) protocol, as 

detailed in Section 4.2.2.2. The final dataset after all QC steps included 642 individuals 

and 3,220,761 common autosomal SNPs.  

4.2.1.2 CogBIAS Project 

Sample: CogBIAS is a 4-year longitudinal study of typically developing adolescents in 

Oxford, UK, conducted in three waves when participants were aged 12, 14 and 16 years 

old. The data collected through this study includes assessments on a range of cognitive 

processing tasks (e.g. attention bias, interpretation bias, memory bias) and 

psychological self-report measures (e.g. anxiety, depression, resilience, personality), as 

well as DNA data for those who had consented to contribute to genetic data collection 

(N= 916). More information on the project is detailed elsewhere (Booth et al., 2017) 

For the analyses in the current chapter, the data consisted of a subset of individuals from 

the larger dataset, for whom both genotype and phenotype data were available. HSC 

data was available for 424 participants, however there were no genetic data available for 

12 of those, and 17 individuals were excluded following genotype data quality control 

as detailed in the next section. The final sample included 395 adolescents (177 males, 

218 females), with mean age of 13.03 (SD= .77) at the time of data collection. The self-

reported ethnicity was 83% White-European, 2% African/Caribbean, 1.8% East Asian, 

4.8% South Asian, 0.3% Arab/Middle-Eastern, 3.8% mixed ethnicity and 4.3 % 

unknown. 
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Phenotype data: The Highly Sensitive Child (HSC) scale (Pluess et al., 2018) was used 

as the measure of individual differences in general sensitivity to environments, as in 

Study 1. Children who took part in the 2nd wave of CogBIAS data collection completed 

the questionnaire using pen and paper, in the classroom. 

Genotype data: Saliva samples were collected at the first wave of data collection, using 

DNA Genotek Oragene OG-500 collection kits. The extracted genomic DNA was 

genotyped using the Illumina Human Omni express-24, which tags over 500k common 

SNPs from across the genome. Genotyped data were subjected to quality control using 

an established pipeline (Coleman, Euesden, et al., 2016), and additional SNPs were 

imputed (total SNPs = 5,596,260), using the 1000 Genomes phase 3 reference panel 

(The Genomes Project Consortium et al., 2015). For analyses in the current thesis, the 

available CogBIAS genotype data was subjected to further genotype quality control, 

using Coleman, Euesden, et al. (2016) protocol, as detailed in Section 4.2.2.2. The final 

dataset after all QC steps included 395 individuals and 5,595,637 common autosomal 

SNPs.  

4.2.1.3 Studying Transactions in Adolescence: Testing Genes in Interaction with 

Environments (STRATEGIES) Project 

Sample: STRATEGIES is a cross-sequential design study based on the development of 

internalising and externalising problems in a sample of adolescents (N= 1,111) recruited 

from nine schools in Flanders, Belgium. In the STRATEGIES project, adolescents from 

three age cohorts were assessed once per year during 5 consecutive years. The measures 

included parent, self and peer reports on a range of psychological measures such as 

externalising and internalising problems, social relationships and personality. DNA was 

extracted from saliva, collected at wave 1 (see next section for more information on 

genotype data). A total of 1,103 adolescents provided DNA data at the genotype data 

collection wave. 

For the analyses in the current chapter, the sample consisted of all individuals for whom 

both phenotype and genotyped information were available. The sample size differed 

depending on the type of genetic data for analysis (VNTR or SNP data). Of the total 

sample of 979 individuals with phenotype data, 924 had data on at least one VNTR and 

918 individuals had SNP data. The self-reported ancestry (grandparent’s place of birth) 

of the sample was 843 White-Europeans, 67 non-Europeans and 14 unknowns. After 

removal of individuals with unknown or non-European ancestry (N=81), the number of 
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individuals with available VNTR data were N=838 for STin2, N=827 for DAT1, N=825 

for 5-HTTLPR, and N= 824 for DRD4 and MAOA. The final sample size for those with 

SNP data, after removal of individuals with non-European ancestry  and genotype data 

quality control steps was 838 (425 males, 413 females). The mean age of the sample 

was 14.76 (SD= .90). 

Phenotype data: The Highly Sensitive Child (HSC) scale (Pluess et al., 2018) was used 

as a measure of individual differences in general sensitivity to environments, as in 

Study 1 and 2.  HSC data were collected at the second wave of data collection, by 

visiting schools to assist participants in completing the questionnaire during a 50-

minute session. In case the adolescents were not able to complete the questionnaire in 

time, they were asked to do so at home and return the completed questionnaire to the 

school within 2 weeks.  

Genotype data: Genotype data in STRATEGIES included a selection of common 

SNPs as well as VNTRs. The DNA was obtained from saliva, collected via the Oragene 

DNA collection kits (DNA Genotek; Ontario, Canada). 

VNTRs: Five candidate VNTRs were selected for genotyping according to research 

showing they are associated with sensitivity to the environmental influences. These 

included 40-bp DAT1, 48-bp DRD4, STin2, MAOA and 5-HTTLPR. Polymerase chain 

reaction (PCR) followed by a fragment analysis protocol were used for genotyping. The 

amplification mixture for 5-HTTLPR, STin2 and MAOA contained 12.5 μl Master Mix 

(Promega), 0.5 μmol/L of forward primers, 0.5 μmol/L of reverse primers, 50ng DNA 

and 1.5 μl water. The amplification mixture for PCR of DAT1 and DRD4 included 50 

ng genomic DNA, 12.5 μl Master Mix (Promega), 0.5 μmol/l of each forward and 

reverse primer, 1M Betaine solution (Sigma-Aldrich), and 1.5 μl water. The PCR 

cycling conditions lasted in total 64 minutes and 30 sec (see table for specific 

temperature in every phase). For the fragment analysis 0.5 μl of the PCR product 

with 0.5 μl GeneScan 600 LIZ Size Standard v2.0 (Applied Biosystems) and 10 μl Hi-

Di formamide was used. After a denaturation (is a process in which proteins or 

nucleic acids lose the structure which is present in their native state) of 3 minutes at 

95°C the analysis was conducted in an ABI 3730xl Genetic Analyzer (Applied 

Biosystems). The results were printed with GeneMarker software Version 1.91 

(SoftGenetics, 2010). The fragment analysis was conducted for both alleles of the gene 
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separately. In the end, genetic information from these VNTRs was available for 97% of 

1,116 students (1% not genotyped and 2% failed).  

SNPs: Candidate SNPs in the original STRATEGIES data were selected using a step-

wise procedure. First, an extensive literature search in PUBMED was conducted for 

candidate SNPs that had already been associated with various psychological constructs. 

Second, additional important SNPs per pathway were selected from the Search Tool for 

the Retrieval of Interacting Genes (STRING; Szklarczyk et al., 2011) dataset. Third, 

tagging SNPs were selected, that is, SNPs representative of the chromosomal region, 

based on a high linkage disequilibrium to predict a large amount of genetic variation by 

imputation, even though not every SNP in the region has been genotyped. Population 

data was obtained from the 1000 genomes project (The Genomes Project et al., 2012). 

Three Caucasian populations were used, the central Utah European descendants, Great 

Britain, and Tuscany Italy, as these were thought to resemble the targeted population. 

Candidate SNPs (i.e. from the first and second step) were included first and additional 

tagging SNPs (i.e. from the third step) were generated using Haploview (Barrett, Fry, 

Maller, & Daly, 2005). A total of 7,043 SNPs were selected and analysed using an 

Illumina Infinium iSelect Costum beadchip. Genotyped data were then subjected to 

quality control using established pipelines (Anderson et al., 2010; The International 

Schizophrenia Consortium, 2009), leaving a genotyped dataset of 5,052 common SNPs, 

in 344 genes known to be involved in nine neurotransmitter pathways (serotonin, 

dopamine, HPA-axis, oxytocin, GABA, Glutamate, Choline, Noradrenergic 

neurotransmission and the circadian clock pathway) and 1,031 adolescents (Van Assche 

et al., 2017).   

For the current analyses, the genotype data in the sample with relevant phenotype data 

were subjected to further quality control, and additional SNPs were imputed to cover a 

larger proportion of the genome, using Michigan Imputation Server (Das et al., 2016), 

1000 Genomes reference panel (The Genomes Project Consortium et al., 2015). The 

imputed data was quality controlled to remove poor quality and rare variants. The final 

dataset, after imputation and quality control steps, consisted of 65,671 SNPs and 838 

Individuals. The QC steps and procedures are detailed in Section 4.2.2.2. 
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4.2.2 Analyses 

This section provides an overview of the analytical approaches used in the current study 

as well as specific steps taken for each approach when analysing the data, including 

genotype quality control and power analysis. 

4.2.2.1 Analytical approaches 

In order to address the main aim of this chapter, i.e. to examine the molecular genetic 

basis of environmental sensitivity, two main analytical approaches were employed: a) 

candidate gene approach, whereby specific genetic factors were selected for analyses, 

because they were believed to be related to the phenotype of sensitivity based on theory 

and previous research; b) exploratory genome-wide approach, whereby there were no a-

priori hypotheses for the examined genetic factors, instead available genome-wide data 

were tested for their association with sensitivity. Within these approaches, genetic 

associations between single Nucleotide Polymorphisms (SNPs), genes, and biological 

systems, using Genome-Wide Association Study (GWAS), gene-based and gene-set 

analyses, respectively, were examined. In addition to examining the association between 

single genetic variants and sensitivity, as in GWAS, polygenic score analyses were also 

conducted to examine the combined additive contribution of multiple SNPs to 

sensitivity. Lastly, in order to test replicability of findings and increase the power in the 

study, all of the analyses were first conducted separately in available datasets, followed 

by meta-analysis of GWAS results, gene-based and gene-set analyses. As well as 

increasing the sample size and power, the meta-analysed results account for different 

characteristics of each sample (age group, ethnicity mix, genotyping chips).  

Different data sets were used for the planned analyses, depending on the specific 

genetic information that they contained. The imputed TEDS and CogBIAS datasets 

contained genome-wide data of over 3 million common SNPs, and STRATEGIES 

contained over 60,000 SNPs and 5 VNTRs (5-HTTLPR, DAT1, STin2, MAOA, and 

DRD4). Table 4.2 at the end of this section shows a summary of the samples used in 

each analytical step. The approaches used in the current chapter are briefly described 

below: 

Candidate gene analysis typically tests the association between a phenotype and base-

pair change in a single SNP, or number of repeats in a VNTR. Depending on the 

literature and biological hypothesis, the alleles may be coded as additive, recessive or 
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dominant genetic models. For the candidate gene approach in the current chapter, the 

VNTRs were coded in a dominant as well as additive genetic model informed by 

literature.  

GWAS is the gold-standard method of examining genetic differences at the SNP level, 

by comparing the prevalence, or strength of an association between a phenotype and 

changes in base-pair units, to infer which variants are most relevant to the phenotype of 

interest, using t-tests for quantitative traits (or regression if there are covariates). 

Multiple testing correction is usually applied to results to account for type I error, with 

p< 5x10 -8 as the commonly used threshold. For the current chapter, GWAS were 

conducted on TEDS and CogBIAS datasets, using linear regression model, with age, 

gender and principal components as covariates. Linear regression, rather than a mixed 

model was used, as it has been shown that in data sets that do not contain family 

structure or cryptic relatedness, simpler association tests with principal component 

correction are sufficient (Price et al., 2006; Price, Zaitlen, Reich, & Patterson, 2010).  

Meta-analysis combines the evidence for association from individual studies to provide 

a more accurate estimate of effect. Meta-analysis can also increase the power in 

downstream genetic analyses, by increasing the total sample size. Meta-analysis results 

in little or no loss of efficiency compared to analysis of a combined dataset that includes 

data from individual in different studies. Running separate analyses on each data set and 

then meta-analyzing the results, rather than analyzing the combined data, has the added 

advantage of being able to control for sample specific covariates, rather than assuming 

they are similar enough to reflect the same population. The two common approaches in 

meta-analysis are to either use test statistics and standard errors (SE model) or the p-

values across studies (Z-score). While both methods are comparable, the first approach 

weights the β-coefficients by their estimated standard errors, and is suitable if the effect 

size estimates and their standard errors are in consistent units across studies, while the 

second approach takes into account the differences in sample size and direction of effect 

into account. For the current study, the standard-error based model were deemed more 

suitable because the same measurement units were used across studies and the follow up 

polygenic score analyses make use of the effect size (beta-coefficient values) when 

constructing the scores. 
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Gene-based analysis summarises the effects of all SNPs in each gene into a single 

statistic, and then examines this statistic in order to identify the gene most significantly 

associated with variations in a trait. The gene statistics are commonly obtained via three 

main methods: a) aggregating the effects of SNPs in a gene (SNPwise-mean model); b) 

selecting one/several of the top most strongly associated SNP(s) in the gene (SNPwise-

top model); c) regressing the phenotype on principal components derived from the 

SNPs in a gene (principal component regression model), which is sensitive to mean 

level of association and has better power to detect associations in low LD areas. There 

are limitations in all three approaches, where the model skews towards associations in 

areas of higher LD in a gene (model a), or the model is sensitive only when a small 

proportion of SNPs in a gene show association (method b), or is less sensitive when 

only a small proportion of SNPs is associated (model c). A more recent method by de 

Leeuw, Mooij, Heskes, and Posthuma (2015) aggregates the p-values obtained from all 

three gene-based models to counter the biases in each model and increase sensitivity to 

a wider range of genetic architectures (multi-model). The gene-based analysis is suited 

to genome-wide data, though it can also be conducted on a selected number of genes. 

The multi-model option of MAGMA (de Leeuw et al., 2015) was used for the gene-

based analyses in this chapter, which best account for differences in the genetic 

architecture. 

Gene-set analysis involves the examination of the association between the phenotype 

and genetic variation in curated sets of genes deemed to be implicated in specific 

biological pathways/networks/functions. The associations are commonly examined in 

two ways: a) competitive gene-set test and self-contained gene-set test. In the 

competitive gene-set test, the mean association with the phenotype in a target gene-set 

is compared to the mean association outside of the target gene-set. The null hypothesis 

here is that there are no differences between the target gene-set and random gene-sets of 

similar properties (gene size, density, minor allele count and per gene sample size). 

While this test indicates how a gene-set compares to others, it does not determine how 

strongly it is associated with the trait. In contrast, the self-contained test examines the 

mean association within a gene-set, as opposed to comparing it to other gene-sets. The 

null hypothesis is that none of the genes in the gene-set are associated with the trait. The 

test effectively is an omnibus gene test, as to whether at least one gene in the gene set is 

associated with the phenotype. Though this test does indicate how strongly the gene-set 

is associated with the trait, it does not determine how important it is compared to other 
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gene-sets. Both approaches were used to conduct gene-set analysis in the current 

chapter. 

Polygenic score analysis examines the collective contribution of hundreds to thousands 

of SNPs to variation in the phenotype of interest. To do this, the results of an initial 

GWAS (discovery sample) are used to construct a polygenic score in a second sample 

(target sample). This score is the sum of associated alleles weighted by their effect size 

(e.g. β- coefficient). Several scores are calculated, including SNPs with p-values that 

surpass a specified threshold. Linear or logistic regression is then conducted to test how 

much of the variation in the phenotype is predicted by the polygenic scores at each 

threshold. Polygenic score analysis therefore examines the collective contribution of 

multiple SNPs to a trait, rather than identifying single SNPs with statistically significant 

effects on the trait, a genetic model that is more compatible with the current 

understanding of the genetics of complex traits (Visscher et al., 2017). For the current 

chapter, 3 sets of polygenic score analyses were conducted, in order to a) predict 

environmental sensitivity in CogBIAS from TEDS summary statistics; b) predict 

sensitivity in CogBIAS from summary statistics of the GWAS of differential 

susceptibility in Keers et al. (2016) study; c) predict sensitivity in TEDS and CogBIAS 

based on summary statistics of thirteen publically available GWASs on personality 

(neuroticism, extraversion, openness, conscientiousness, agreeableness) and a range of 

disorders and outcomes (autism, ADHD, anxiety, depression, insomnia, loneliness, 

wellbeing). For analysis “a”, TEDS was used as the discovery sample, since using a 

larger dataset for the discovery sample is a recommended approach, affording more 

power to the study (Dudbridge, 2013). For analysis “b”, only CogBIAS sample was 

used, due to the sample overlap between Keers et al. (2016) study and TEDS 

participants in the current study. For analysis “c”, these GWASs were selected based on 

their hypothesised and evidenced phenotypic and genetic associations with 

environmental sensitivity, as detailed in Chapter 2 and Chapter 3. 

In addition to cross-trait analyses in separate TEDS and CogBIAS data, another option 

in PRSice, Sum-Sum scores, was used which utilizes GWAS summary data in both the 

base and target data sets to evaluate evidence for shared genetic aetiology, using the 

method of Johnson (2013). This approach was used to conduct genetic correlation 

analyses on the meta-analysed TEDS-CogBIAS GWAS data and the summary statistics 

from the available GWASs of personality and psychopathology. Using the meta-

analysed datasets provides more power since the target dataset is larger, as well as 
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allowing to test whether the findings from the polygenic score analysis that have been 

conducted separately in TEDS and CogBIAS hold true. Table 4.2 shows a summary of 

the data sets and the relevant analyses conducted in each data set.  
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Table 4.2 Summary of data sets used in the current chapter and the relevant analyses  

Dataset 
Sample Characteristics Candidate gene 

analyses Genome-wide analyses * 

Sample N N SNPs Candidate 
VNTR 

Candidate 
gene GWAS Meta-

analysis 
PGS of 

sensitivity PGS of DS Cross-trait 
PGS 

TEDS 642 3,220,761 û ü ü ü üDiscovery û üTarget 

CogBIAS 395 5,595,637 û ü ü ü üTarget üTarget üTarget 

STRATEGIES 838 
65,639 

& 
5 VNTRs 

ü ü û û û û û 

 
GWAS of differential 
susceptibility a 
(Keers et al., 2016)   

1026 679,050 û û û û û üDiscovery û 

 
GWAS of depression b 

(Okbay, A. et al., 2016) 
180,866 6,524,474 û û û û û û üDiscovery 

 
GWAS of educational 
attainment b 
(Okbay, Aysu et al., 2016) 

293,723 8,146,840 û û û û û û üDiscovery 

 
GWAS of neuroticism b 
(Okbay, A. et al., 2016)   

170,911 6,524,432 û û û û û û üDiscovery 

 
 
 



 
 

148 

Table 4.2 Continued 
 

Dataset 
Sample Characteristics Candidate gene 

analyses Genome-wide analyses * 

Sample N N SNPs Candidate 
VNTR 

Candidate 
gene GWAS Meta-

analysis 
PGS of 

sensitivity PGS of DS Cross-trait 
PGS 

 
GWAS of extraversion c 
(van den Berg et al., 2016)   

Sample N N SNPs Candidate 
VNTR 

Candidate 
gene GWAS Meta-

analysis 
PGS of 

sensitivity PGS of DS Cross-trait 
PGS 

 
GWAS of openness c 
(de Moor et al., 2012)  

17,375 2,305,640 û û û û û û üDiscovery 

 
GWAS of agreeableness c 
(de Moor et al., 2012)  

17,375 2,305,461 û û û û û û üDiscovery 

 
GWAS of conscientiousness c 
(de Moor et al., 2012)  

17,375 2,305,682 û û û û û û üDiscovery 

 
GWAS of ADHD d 
(Demontis et al., 2017)  

55,374 
(20,183 cases 

35,191controls) 
8,094,094 û û û û û û üDiscovery 

GWAS of autism d 

(Autism Spectrum Disorder 
Working Group of the 
Psychiatry Genomics 
Consortium, 2015)  

13,574 
(6,197 cases 

7,377 controls) 
6,440,259 û û û û û û üDiscovery 
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Table 4.2 Continued 
 

Dataset 
Sample Characteristics Candidate gene 

analyses Genome-wide analyses * 

Sample N N SNPs Candidate 
VNTR 

Candidate 
gene GWAS Meta-

analysis 
PGS of 

sensitivity PGS of DS Cross-trait 
PGS 

 
GWAS of anxiety d 
(Otowa et al., 2016)� 

18,000 6,306,612 û û û û û û üDiscovery 

 
GWAS of loneliness d 
(Gao et al., 2016) 

7,556 5,768,558 û û û û û û üDiscovery 

 
GWAS of insomnia e 

(Hammerschlag et al., 2017)  

113,006 
(32,384 cases 

80,622 controls) 
12,444,915 û û û û û û üDiscovery 

 
GWAS of subjective 
wellbeing a ** 
(Okbay, A. et al., 2016)   

202,818 2,268,371 û û û û û û üDiscovery 

*Cross-trait PGS analyses were also conducted on the meta-analysed TEDS-CogBIAS GWAS and all 13 consortium data; a= Data obtained from Authors; b= Data obtained 
from SSGAC (https://www.thessgac.org/data); c= Data obtained from Genetics of Personality Consortium (http://www.tweelingenregister.org/GPC/); d= Data downloaded 
from Psychiatric Genomics Consortium (https://www.med.unc.edu/pgc/results-and-downloads); e= Data downloaded from (https://ctg.cncr.nl/software/summary_statistics); 
PGS= polygenic score; DS= differential susceptibility 
** This data set includes GWAS summary statistics with TEDS participants excluded, provided by the first author. 
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4.2.2.2 Genotype data quality control and population stratification 

Genotype data quality control were conducted in each data set, by examining SNP 

frequency, per-individual and per-SNP missingness, Hardy-Weinberg equilibrium, 

population stratification and ancestry, and unusual patterns of heterozygosity. SNPs 

with minor allele frequency (MAF) < .01, individual and SNP missingness rates of over 

1%, deviation from HWE (p-value < 1x10-6), cryptic relatedness (IBD> .1875) and 

heterogeneity > 3 SD were removed from the data.  Figures 4.1a, 4.1b and 4.1c show 

the quality control process for each data set. 
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Data received from 
TEDS 

5,237,380 SNPs 
647 individuals 

Removed Indels 
290,196 variants were removed 

Removed  rare variants 
(MAF<.01) 

406,409 SNPs were removed 

Removed  SNPs and 
Individuals with missingness 

> 1%  

1319979 SNPs and 0 individuals 
were removed 

 
Checked HWE and Remove  
SNPs with HWE p-value < 

1x10-6  
  

62 SNPs were removed 

 
Conducted IBD checks on LD 
pruned data to remove outliers  

(IBD > 0.1875) 
  

109,461 SNPs in LD pruned data 
0 individuals were removed 

 
Removed individuals with 

unusual patterns of genome-
wide heterogeneity (< 3 SD) 

  

5 individuals were removed 

Final data set 
3,220,761 SNPs 
642 individuals 

Figure 4.1a Quality Control Process – TEDS data 
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Data received from 
CogBIAS 

5,596,260  SNPs 
412 individuals 

Removed  rare variants (MAF<.01) 
0 SNPs were removed 

Removed  SNPs and Individuals with 
missingness > 1%  

0 SNPs and 0 individuals were removed 

 
Checked HWE and Remove  SNPs with 

HWE p-value < 1x10-6  
  

623 SNPs were removed 

 
Conducted IBD checks on LD pruned 

data to remove outliers  
(IBD > 0.1875) 

  

127,869 SNPs in LD pruned data 
0 individuals were removed 

 
Removed individuals with unusual 

patterns of genome-wide heterogeneity 
(< 3 SD) 

  

12 individuals were removed 

Final data set 
5,595,637  SNPs 
395  individuals 

Figure 4.1b  Quality Control Process – CogBIAS data 



 
 

153 

Data received from 
STRATEGIES: 

5,052 SNPs 
838 individuals 

Removed  rare variants (MAF<.01) 
7 SNPs were removed 

Removed  SNPs and Individuals with 
missingness > 1%  

152 SNPs and 0 individuals were removed 

 
Checked HWE and Removed  SNPs 

with HWE p-value < 1x10-5  
  

0 SNPs were removed 

 
Conducted imputation was on 4900 

autosomal SNPs  
  

365,026 autosomal SNPs  

 
Removed duplicate and SNPS with 

imputation quality scores < .3   
 

115,624  SNPS were removed 

Final data set: 
65,671 SNPs 

838 individuals 

 
Removed rare SNPs 

 (MAF <.05)  
 

43,682 SNPS were removed 

Removed  Indels 

0 SNPs and 0 individuals were removed Removed  SNPs and Individuals with 
missingness > 1%  

 

6,012 variants were removed 

Removed  SNPs with HWE p-value < 
1x10-7  

259 SNPs were removed 

Figure 4.1c  Quality Control Process – STRATEGIES data 
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Population structure of TEDS and CogBIAS were examined via Principal Component 
analysis, using the smart-pca program of the EIGENSOFT version 6.1.4, which uses 
population genetic methods of Patterson, Price, and Reich (2006) to account for 
population structure. First, smart-pca was run to generate 100 principal components 
(PCs) from the LD-pruned genotype data and a scree-plot of the pcs was created. 
Second, A Tracey-Widom test was conducted to evaluate the statistical significance of 
each principal component identified by PCA. Third, Smart-pca was conducted again to 
check for, and remove, any individual outliers (3 SD) on the significant principal 
components. Finally, a series of linear regressions were conducted to examine the 
phenotypic variance explained by each component, and when added to a model 
including the previous components. Decision on how many pcs to include as covariates 
in the genetic analyses was based on the scree plot of the pcs from PCA, Tracey-Widom 
test, and association between PCs and phenotype. Figures 4.2a and 4.2b show the 
process in TEDS and CogBIAS. 
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Quality controlled 
TEDS data: 
109,461 LD-
pruned SNPs 

642 individuals 

 
Conducted smart PCA to 

produce 100 pcs 
  

 
Tracey Widom test on pcs 

  

3 significant pcs 

 
Ran PCA again to remove 

outliers (3 SD) on the 3 
principle components  

  

 
Tested for association 

between pcs and 
phenotype 

  

No individual outliers 

No significant associations 
until first 3 are included in the 
model 

3 pcs included in 
analyses to 
control for 
population 
structure 

Scree plot shows 3 significant 
pcs 

Figure 4.2a PCA Process – TEDS data 
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Data received 
from CogBIAS 

5,596,260  
SNPs 

412 individuals 

 
Conducted smart PCA 

to produce 100 pcs 
  

 
Tracey Widom test on 

pcs 
  

8 significant pcs 

 
Ran PCA again to 

remove outliers (3 SD) 
on the 4 principle 

components  
  
 

Tested for association 
between pcs and 

phenotype 
  

5 individual outliers were 
removed 

No significant associations 

4 pcs were 
included in 
analyses to 
control for 
population 
structure 

Scree plot shows 4 
significant pcs 

Figure 4.2b PCA Process – CogBIAS data 
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In TEDS, the scree plot of eigenvalues showed no significant pcs (Figure 4.3). The 

Tracey-Widom test indicated 3 significant PCs (Table 4.3), but there were no individual 

outliers on the 3 PCs. The results of regressing the PCs on the phenotype showed there 

were no significant associations with sensitivity until the first 3 PCs were added to the 

model (R2= .01, p< .05). Though all Eigenvalues were below 1.2, and Tracey-Widom 

test did not identify significant PCs, a more conservative approach was taken to include 

3 PCs as covariates in the analyses to correct for population stratification effects in 

TEDS, because the first 3 components together were significantly associated with 

sensitivity.   

In CogBIAS, the scree plot of eigenvalues showed 4 significant PCs (Figure 4.3). The 

Tracey-Widom test identified 8 significant PCs (Table 4.3). There were 5 individual 

outliers on the 4 PCs, which were removed from the data. After removal of outliers, the 

Tracy-Widom test indicated 6 significant PCs (Table 4. 3). The results of regressing the 

PCs on the phenotype showed there were no significant associations between the PCs 

and sensitivity.  Though the PCs were not significantly associated with sensitivity, the 

scree plot showed an elbow (considerable drop eigenvalue) after 4 pcs, therefore it was 

decided to include the first 4 principal components as covariates in the analyses to 

correct for population stratification effects in CogBIAS.  
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Figure 4.3 Scree plot of principal components in TEDS and CogBIAS
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Table 4.3 Tracy-Widom test of significant principal components in TEDS and CogBIAS  

 
TEDS  CogBIAS (prior to removal of individual 

outliers) 
 CogBIAS (after removal of individual outliers) 

PCs Eigen TW stat P  Eigen TW stat P  Eigen TW stat P 

1 1.20 2.24 6.9E-03  10.24 507.82 0.0E+00  9.72 504.88 0.0E+00 

2 1.20 2.03 9.9E-03  4.97 683.57 0.0E+00  4.93 674.69 0.0E+00 

3 1.19 1.72 1.6E-02  2.05 480.13 0.0E+00  2.05 479.60 0.0E+00 

4 1.19 -0.57 2.9E-01  1.19 47.52 7.6E-97  1.13 11.79 1.5E-13 

5 1.19 -1.49 5.7E-01  1.14 16.18 1.0E-20  1.12 4.09 1.8E-04 

6 1.19 -2.30 8.0E-01  1.12 3.00 1.7E-03  1.12 1.44 2.6E-02 

7 1.18 -2.67 8.8E-01  1.12 1.54 2.2E-02  1.11 0.06 1.6E-01 

8 1.18 -4.64 1.0E+00  1.11 1.01 4.8E-02  1.11 0.26 1.3E-01 

9 1.18 -4.48 1.0E+00  1.11 0.27 1.2E-01  1.11 -2.42 8.3E-01 

10 1.18 -5.42 1.0E+00  1.11 -0.88 3.8E-01  1.11 -2.54 8.6E-01 

Associations with p < .05 are in bold 
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The genetic ancestry of the samples were also examined, by using 1000 Genomes Phase 
1 data (The Genomes Project Consortium et al., 2015) and plotting individuals on PCs 
drawn from the reference populations. Figures 4.4a and 4.4b show the samples from 
each dataset projected onto 1000 Genomes population data, with the TEDS and 
CogBIAS sample clustering on the European-British population as would be expected 
from the self-report ethnicity data. 
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Figure 4.4a Ancestry checks - TEDS data 
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Figure 4.4b Ancestry checks - CogBIAS data 
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4.2.2.3 Analysis steps: candidate gene approaches 

The aim of this set of analyses was to examine whether any of the candidate genes that 

have been previously reported to reflect sensitivity to environmental influences would 

be associated with the phenotype environmental sensitivity, measured with the HSC 

scale. This was achieved through the following steps:  

First, the association between five VNTRs and sensitivity were examined in 

STRATEGIES data. This was done by first obtaining allele frequencies for each VNTR 

in the data, and examining their deviation from Hardy-Weinberg Equilibrium, using 

Hardy Weinberg package in R. Then, genotypes were coded in either an additive (5-

HTTLPR, DAT1, STin2) or dominant (DRD4, MAOA) genetic model, according to 

previous studies within a differential susceptibility framework (Belsky et al., 2014). 

Linear regression analyses were then conducted separately for each VNTR, with 

sensitivity as the outcome and the VNTR as the predictor, with age and sex as 

covariates. The analyses on MAOA were conducted for males and females separately, 

due to males only having one X-chromosome where MAOA is located. 

Second, the association between differential susceptibility candidate genes and 

sensitivity were examined across the three datasets. This was done by first annotating 

the 19 candidate environmental sensitivity genes identified through previous literature 

(see Table 4.1a and 1b, Section 4.1.2.2) to the SNPs in each data set, using the NCBI 

(build 37) genomic loci (annotation window =20kb). Of the 19 genes, two were not 

available in STRATEGIES data. The multi-model option of MAGMA was then used to 

examine the associations in TEDS and CogBIAS, with PCs, age and gender as 

covariates, and in STRATEGIES, with age and gender as covariates.  

4.2.2.4 Analysis steps: genome-wide approaches 

The aim of this set of analyses was to employ a range of hypothesis-free approaches to 

examine the genetic basis of environmental sensitivity. First, GWAS were conducted on 

quality-controlled TEDS and CogBIAS data, using a linear regression model, with age, 

gender and principal components as covariates.  

Second, individual GWAS results from TEDS and CogBIAS were meta-analysed. This 

was done by first harmonising data using Genotype Harmonizer (Deelen et al., 2014) to 

ensure both COGBIAS and TEDS datasets were aligned to the same genomic strand, 

followed by filtering of the genetic data so that each dataset contained only SNPs that 
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are common to both (NSNPs= 2,545,244). Next, a GWAS was conducted separately on 

each data set, using a linear regression model with their respective PCs, age, and gender 

as covariates. The two GWAS results were meta-analyzed using METAL (Willer, Li, & 

Abecasis, 2010), via the Standard Error method. Two additional METAL options were 

also selected to: a) implement Cochran’s Q-test for heterogeneity of effects across 

samples and b) estimate and apply genomic control correction to input statistics prior to 

performing meta-analysis.  

Third, gene-based analyses were conducted on TEDS and CogBIAS separately. This 

was done by first annotating the SNPs in TEDS and CogBIAS to 19,427 functional 

(protein-coding) genes from the NCBI built 37 (annotation window =20 kb), and then 

using the multi-model option in MAGMA for analyses with age, gender and PCs as 

covariates. The results of the gene-based analysis from TEDS and CogBIAS were then 

meta-analysed using the meta-analysis option in MAGMA, which uses the weighted 

Stouffer’s Z method is used to combine the Z-scores for each gene across cohorts, with 

weights set to the square root of the sample size each Z-score is based on.  

Fourth, the gene-set analyses were conducted on TEDS and CogBIAS separately. To do 

this, genes were annotated to 10,648 gene sets from Broad Institute MsigDB v5.2 

(Subramanian et al., 2005). This included of 5,917 gene-sets from three GO terms 

(biological process: 4,436 gene sets; cellular component: 580 gene sets; molecular 

function: 901 gene sets), and 4,731 curated gene-sets from five other data sources 

(chemical and genetic perturbations: 3,402 gene sets; Canonical pathways: 1,329 gene 

sets; BioCarta: 2,17 gene sets; KEGG: 186 gene sets; Reactome: 674 gene sets). 

Competitive and self-contained tests were then conducted on TEDS, CogBIAS and the 

meta-analysed gene-based results. 

Fifth, polygenic score analyses were conducted on TEDs and CogBIAS, and the meta-

analysed GWAS data using PRSice. The polygenic score analyses were conducted three 

times: first, to examine the polygenic scores of environmental sensitivity in the 

CogBIAS sample from the summary statistics of GWAS of environmental sensitivity in 

TEDS; second, to examine the polygenic scores of environmental sensitivity in the 

CogBIAS sample from the summary statistics of a GWAS of differential susceptibility 

from Keers et al. (2016); third, to predict environmental sensitivity in TEDS and 

CogBIAS from polygenic scores derived from summary statistics of publically available 

GWASs on personality traits (neuroticism, extraversion, openness, conscientiousness, 
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agreeableness) and other outcomes (autism, ADHD, anxiety, depression, insomnia, 

loneliness, wellbeing, educational attainment). PRSice was used to construct polygenic 

scores at nine P-value thresholds (PT= .001, .01, .05, .10, .20, .30, .40, .50, 1) on pruned 

data, using default clumping options (p-value threshold= 1, LD cut off r2= .1, threshold 

window = 250kb), after excluding the major compatibility complex region of the 

genome since the long-range linkage disequilibrium in this region makes linkage 

equilibrium difficult to obtain.  High resolution polygenic scoring was also conducted, 

whereby for each individual, there were PGS for all P-value thresholds between .0001 

and .50 at .0005 increments. Age, sex and PCs were included as covariates in the 

regression model predicting sensitivity. For the meta-analysed GWAS data, the 1000 

genomes European panel (The Genomes Project Consortium et al., 2015) was used to 

clump the data, with more stringent clumping parameters (p-value threshold= .5, LD cut 

off r2= .05, threshold window=300kb), as per the PRSice recommendation (Euesden, 

Lewis, & O'Reilly, 2015).  

4.2.2.5 Statistical programs and software 

R was used to examine the associations between candidate VNTRs and sensitivity as 

well as other descriptive statistics. PLINK1.9 (Chang et al., 2015) was used to conduct 

QC steps and GWAS analyses. FUMA (Watanabe, Taskesen, van Bochoven, & 

Posthuma, 2017) was used for annotation of GWAS results and graphics. METAL 

(Willer et al., 2010) was used to conduct the meta-analyses of the GWAS results. 

MAGMA (de Leeuw et al., 2015) was used to conduct gene-based and gene-set 

analyses. PRSice (Euesden et al., 2015) was used for the polygenic score analyses. 

4.2.2.6 Power analysis 

Power of a study is determined by several factors, including the sample size, the type of 

statistical analysis, the significance threshold, and the expected effect size of the 

variables on the outcome. In terms of power, more stringent significance thresholds, 

larger number of variants and smaller effect sizes require larger samples to account for 

probability of type I and type II errors.  In order to calculate the power of the current 

study for the planned analyses and the available sample sizes, an estimation of the 

expected effect sizes is required.  

With regards to genetic effect sizes, genetic association studies commonly report that a 

biologically plausible effect size for a single polymorphism or single interaction on 
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common traits is very small (explained variance < .02%) (Chabris, Lee, Cesarini, 

Benjamin, & Laibson, 2015; Rietveld et al., 2013). The very small effect sizes are 

typical of GWAS analyses, since each SNP is assessed for its association with the 

phenotype. Therefore, in order for these small effects to be identified, very large sample 

sizes are required. Indeed, evidence from recent studies indicate that improving the 

power through larger samples is an important factor in identifying larger number of 

replicable genetic variants of small effects, as has been seen in GWAS of Schizophrenia 

for example (Ripke et al., 2014; Ripke et al., 2013; Ripke et al., 2011).  

Polygenic approaches are expected to explain more of the variance in complex traits, 

since such studies summarise the cumulative effect of hundreds to thousands of genetic 

variants in a single score for use as the predictor variable. Despite this, the expected 

explained variance tends to be small, with most recent studies with over 100,000 

participants showing polygenic scores explain less than 10% of the variance (typically 

2-3%) in common traits (Rietveld et al., 2014; Rietveld et al., 2013).  

Although there are currently no genome-wide studies of the environmental sensitivity 

phenotype, effect sizes are expected to be small, in line with findings reported for other 

GWAS of complex traits. The only previous study of trait environmental sensitivity by 

Chen et al. (2011) showed surprisingly large genetic effects. Single SNPs explaining 

almost 4% of the variance in in highly sensitive personality scores (F= 4.98, Cohen’s d= 

.39, η2= .04). Nevertheless, these large effect sizes are at odds with those reported in 

other studies of complex traits with exponentially larger sample sizes and therefore 

likely reflect type 1 errors. Chen et al. (2011) also reported that polygenic score 

comprising just 10 SNPs explained as much as 11% of the variance in highly sensitive 

personality. However, it is likely that the unusual two-stage analysis used to create this 

score led to an inflation of genetic effects. Specifically, Chen et al. (2011) first tested a 

large number of SNPs for their association with the phenotype using an ANOVA. In a 

second step, they then selected the most significantly associated SNPs and included 

them in a linear regression to examine the extent to which they collectively predicted 

sensitivity in the same sample. While such an approach is possible with two separate 

samples, using the same participants in both discovery and target samples in this way 

results in substantial over-fitting of the linear regression model and subsequent inflation 

of genetic effects. 
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For the current study, power analyses were conducted using G*Power 3.1 (Faul, 

Erdfelder, Buchner, & Lang, 2009), in order to determine the power to detect the 

expected genetic effect sizes, in linear multiple regression (fixed model, R2 deviation 

from 0) in each sample, with 3 predictors in STRATEGIES (VNTR/gene + age + 

gender) and 6 in TEDS (SNP/ gene/gene-set/PGS + age + gender + 3PCS) and 7 in 

CogBIAS (SNP/ gene/gene-set/PGS +age+ gender + 4PCS). 

 The power analyses were conducted for effect sizes between .01% to 10% in each 

sample, at uncorrected alpha threshold (a= .05) as well as the multiple -testing -

corrected thresholds.  For GWAS, 5x10-8 threshold was used to correct for multiple 

testing as is customary in the field. For candidate gene analyses, gene-based, and gene-

set analyses, power was calculated for Bonferroni corrected alpha thresholds (a= .01 for 

VNTR analysis; a= .003 for candidate gene-based analyses; a=2E-06 for genome-wide 

gene-based analyses; a= 5e-06 for genome-wide gene-set analyses). For polygenic 

score analyses, the threshold was set at a= .001, as per recommendation by Euesden et 

al. (2015). 

Figures 4.5a to 4.5d show the power calculations for each sample. The results indicate 

that for the candidate gene analyses, at the a= .05 threshold, there was sufficient 

statistical power (> 70%) to detect genetic effects of 1% and above in STRATEGIES, 

2% and above in TEDS and 3% and above in CogBIAS. At the corrected thresholds, 

STRATEGIES still had sufficient power to detect the 1.5% effect in VNTR analyses 

(a= .01), and effect sizes of 2% and above for gene-based analyses (a= .003). TEDS 

and CogBIAS had less power at the corrected thresholds (< 20%), but were sufficiently 

powered to detect larger effect sizes of 3% and 5% respectively. Therefore all samples 

were sufficiently powered to detect the kind of effect sizes reported in previous 

candidate gene studies (e.g. Chen et al., 2011) but not to detect small effects of .01% to 

.05%, as would realistically be expected from a single variant. 

 For genome-wide analyses, at the a= .05 threshold, there was over 70% power in the 

TEDS-CogBIAS data to detect small effect sizes of .05%. There was over 82% power 

to detect effect sizes of 1% and larger. TEDS and CogBIAS samples were 

underpowered to detect the smaller effect sizes (< 30% and 40%), but had sufficient 

power to detect larger effects of 2% and above and 3% and above respectively. At the 

corrected thresholds, there was over 70% power in the TEDS-CogBIAS data to detect 

effect sizes of 3% and above for gene-based and gene-set analysis. All other samples 
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were underpowered to detect a similar or smaller effect size at this corrected threshold.  

For polygenic score analyses, there was over 80% power to detect effect sizes of 1.5% 

and above in the TEDS-CogBIAS sample. The power to detect a similar effect in TEDS 

and CogBIAS samples was low (< 40% and 20%, respectively), but over 70% in TEDS 

for effect sizes of 3% and above. All samples were underpowered to detect effect sizes 

of less than 1% at genome-wide threshold for GWAS analyses. 

In summary, the TEDS-CogBIAS sample is sufficiently powered (> 70%) to find the 

expected effect sizes of 1% and above in polygenic score analyses, and 3% and above in 

gene-based and gene-set analyses. For candidate gene analyses, STRATEGIES sample 

was sufficiently powered to detect effect sizes of 1.5% and above, however, it was not 

sufficiently powered to detect more realistic, smaller effects expected from single 

variants (< .01%). None of the samples were powered enough to detect the small effect 

sizes from GWAS, the results of GWAS analyses in the current chapter should therefore 

be considered exploratory and preliminary.  
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Figure 4.5a Power analysis in TEDS data 
Figure shows power analysis for a range of expected effect sizes at various alpha error thresholds including 
multiple- testing- corrected alphas (gene-based analysis a=2e-06; gene-set analysis a=5e-6; polygenic score 
analysis a=.001; candidate gene analysis a=.003) and uncorrected a for all analyses=.05. Model parameters: 
Linear multiple regression, fixed model, R2 deviation from zero, number of predictors=6, N=642 
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Figure 4.5b Power analysis in CogBIAS data 
Figure shows power analysis for a range of expected effect sizes at various alpha error thresholds including multiple- 
testing- corrected alphas (gene-based analysis a=2e-06; gene-set analysis a=5e-6; polygenic score analysis a=.001; 
candidate gene analysis a=.003) and uncorrected a for all analyses=.05. Model parameters: Linear multiple regression, 
fixed model, R2 deviation from zero, number of predictors=7, N=395 
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Figure 4.5c Power analysis in meta-analysed TEDS-CogBIAS data 
Figure shows power analysis for a range of expected effect sizes at various alpha error thresholds including multiple- 
testing- corrected alphas (gene-based analysis a=2e-06; gene-set analysis a=5e-6; polygenic score analysis a=.001; 
candidate gene analysis a=.003) and uncorrected a for all analyses=.05. Model parameters: Linear multiple regression, 
fixed model, R2 deviation from zero, N=1035. 
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Figure 4.5d Power analysis in STRATEGIES data 
Figure shows power analysis for a range of expected effect sizes at various alpha error thresholds including 
multiple- testing- corrected alphas (VNTR analyses a=.01, candidate gene analysis a=.003) and uncorrected a= .
05. Model parameters: Linear multiple regression, fixed model, R2 deviation from zero, number of predictors=3, 
N=838 
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4.3 Results 

The results are presented in two main sections according to candidate gene or genome-

wide approaches. 

4.3.1 Results: Candidate gene approaches 

4.3.1.1 VNTR analysis 

The allele frequencies for each VNTR were examined, and the distributions of 

genotypes in the sample were tested for HWE, using the Hardy Weinberg package in R. 

The results, as presented in Table 4.4, showed no deviation from HWE for the 5 

examined VNTRs. For the regression analyses, genotypes for each VNTR were coded 

in an additive or dominant genetic model for the sensitivity alleles, according to 

previous studies of these candidate gene (Belsky et al., 2014). This resulted in DAT1, 5-

HTTLPR and STin2 being coded as an additive genetic model (i.e. homozygous for 

sensitivity allele=2, heterozygous=1, homozygous for the non-sensitivity allele=0) and 

MAOA and DRD4 as dominant genetic models (i.e. homozygous for sensitivity allele=1, 

heterozygous=1, homozygous for the non-sensitivity allele=0). Table 4.5 shows the 

designated sensitivity alleles and genotype coding. For the additive models, those with 

individuals with rare alleles (< .01% frequency) were excluded from analysis (STin2 

9R; 27 individuals), DAT1 (3, 6, and 11 R; 16 individuals). For MAOA, analyses were 

conducted separately for men and for women. For each linear regression model, 

sensitivity was the outcome and the VNTR as the predictor, plus age and gender as 

covariates (expect for MAOA where age was the only covariate). As seen in Table 4.5, 

the results did not reveal any significant associations between any of the examined 

VNTRs and variations in the phenotype of environmental sensitivity. The direction of 

association was positive for 5-HTTLPR (b= .04, p= .35) and MAOA (bMale=.08, p=.34; 

bFemale=.06, p=.51), such that higher phenotypic sensitivity was associated with higher 

number/presence of sensitivity alleles. For DAT1, DRD4 and STin2 however, the 

direction of association was inverse, such that higher levels of sensitivity were 

associated with lower number/presence of sensitivity alleles (b= -.04, -.03, -.02; p= .32, 

.61, .65 respectively). 
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Table 4.4 Genotype frequencies and Hardy Weinberg test for candidate VNTRs 

VNTR Gene location Genotype frequencies N HWE test (p-value) 

 
5-HTTLPR 

 
(17q11.2) 

 
14/14= 0.19 

 
825 

 
X2= .039 (0.39) 

16/16= 0.33 
14/16= 0.48      

DAT1 (5p15.3) 9/9= 0.07 827 X2= 1E-3 (0.44) 
9/10= 0.36 
10/10= 0.55 
3/10= 0.002 
3/9= 0.001 
6/9= 0.001 
6/10= 0.004 
9/11= 0.005 
10/11= 0.006   

 
  

STin2 (17q11.2) 12/12= 0.39 833 X2 = 7E-04 (0.23) 
10/10= 0.14 
10/12= 0.45 
9/10= 0.02 
9/12= 0.01   

 
  

DRD4 (11p15.5) 2/3= 0.01 824 X2= 2E-10 (0.71) 
3/4= 0.07 
2/4= 0.14 
2/7= 0.04 
3/7= 0.02 
4/7= 0.25 
2/2= 0.01 
4/4= 0.40 
7/7= 0.04 
4/8= 0.004 
4/6= 0.004 
4/5= 0.02      

MAOA (Xp11.23-11.4) 2/0= 0.005 843 X2= 2E-07 (0.81) 
3/0= 0.30 
3.5/0= 0.02 
4/0= 0.66 
5/0= 0.02 
3/3.5= 0.01 
3/3= 0.11 
3/5= 0.01 
3.5/4= 0.02 
3/4= 0.42 
4/5= 0.01 
4/4= 0.42 
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Table 4.5 Association between VNTRs and environmental sensitivity    

VNTR Location Sensitivity allele Genotype coding model N b S.E. t p-value 

5-HTTLPR (17q11.2) Short allele variant Additive: S/S vs. L/S vs. L/L 825 .04 .04 .94 .35 

STin2 (17q11.2) 12 repeat variant Additive: 10R/10R vs.10R/12R vs. 12R/12R 812 -.02 .04 -.46 .65 

DAT1 (5p15.3) 9 repeat variant Additive: 9R/9R vs.9R/10R vs. 10R/10R 812 -.04 .05 -1.00 .32 

DRD4 (11p15.5) 7 repeat variant Dominant: 7R vs. not 7R 824 -.03 .06 -.52 .61 

MAOA (Xp11.23-11.4) Low activity variants Dominant: low activity (0,2,3,5 R) vs. 
high activity (3.5,4 R) 

Female: 406 .06 .08 .67 .51 

Male: 418 .08 .08 .95 .34 
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4.3.1.2 Candidate gene-based analysis 

Gene-based analyses were conducted on the environmental sensitivity candidate genes 

available in each data set (17 genes in STRATEGIES and 19 in CogBIAS and TEDS), 

using the multi-model option in MAGMA. Covariates included age, and gender in all 

datasets, with PCs as additional covariates in TEDS and CogBIAS data. The results 

identified three significant (p < .05) associations in TEDS (HTR2A, p= .02; ESR1, p= 

.03; COMT, p= .03), but none in CogBIAS and STRATEGIES. The significant 

associations, however, were not replicated across data sets, nor were the associations 

significant following Bonferroni correction for multiple testing (.05/19= .003). The full 

results are presented in Table 4.6. 
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Table 4.6 Results of the candidate gene analyses across three datasets 
          TEDS   CogBIAS   STRATEGIES 
GENE CHR START STOP 

 
NSNPS ZSTAT p 

 
NSNPS ZSTAT p 

 
NSNPS ZSTAT p 

APOE 19 45389039 45432650 
 

3 -1.03 .85 
 

70 -.24 .59 
 

42 -1.33 .91 
BDNF 11 27656440 27763605 

 
57 -1.08 .86 

 
130 1.03 .15 

 
106 1.05 .15 

COMT 22 19909263 19977498 
 

52 1.88 .03 
 

231 -1.58 .94 
 

190 .79 .21 
CREB1 2 208374616 208490284 

 
76 .29 .38 

 
106 -1.25 .89 

 
88 -.78 .78 

CRHR1 17 43677710 43933194 
 

780 -.74 .77 
 

1099 .77 .22 
 

578 -.77 .78 
DRD2 11 113260317 113366413 

 
152 .52 .30 

 
205 -.93 .82 

 
224 -.56 .71 

DRD4 11 617305 660706 
 

6 -.39 .65 
 

132 -.24 .59 
 

92 1.34 .09 
ESR1 6 151991631 152444409 

 
488 1.94 .03 

 
980 -.67 .75 

 
- - - 

FKBP5 6 35521362 35716360 
 

178 -2.23 .99 
 

225 -1.38 .92 
 

224 -.14 .56 
GABRA2 4 46226470 46412056 

 
238 .38 .35 

 
284 .77 .22 

 
284 -1.13 .87 

HTR1A 5 63235875 63278119 
 

28 -.77 .78 
 

53 -.40 .65 
 

30 -.61 .73 
HTR2A 13 47385677 47491211 

 
149 2.17 .02 

 
265 -.04 .51 

 
251 .14 .44 

NR3C1 5 142637496 143133322 
 

561 -.80 .79 
 

917 .97 .17 
 

178 .59 .28 
OXTR 3 8772094 8831300 

 
53 -1.54 .94 

 
181 -.57 .72 

 
228 -1.03 .85 

SIRT1 10 69624427 69698147 
 

64 .32 .38 
 

127 -1.26 .90 
 

- - - 
SLC6A3 5 1372905 1465543 

 
63 .02 .49 

 
56 -.13 .55 

 
276 -.70 .76 

SLC6A4 17 28501337 28582986 
 

47 .25 .40 
 

89 1.29 .10 
 

78 .29 .39 
TPH1 11 18022084 18082354 

 
39 1.19 .12 

 
99 .86 .20 

 
93 1.33 .09 

TPH2 12 72312626 72446221 
 

234 .28 .39 
 

310 .66 .25 
 

259 1.22 .11 
START/STOP: the annotation boundaries of the gene on that chromosome (window=20); NSNPS: the number of SNPs annotated to that gene that were found in the data; ZSTAT: Z 
statistic of the gene, a measure of the strength of association between the trait and the gene; p: the gene p-value (uncorrected for multiple testing); N=641 (TEDS), 394 (CogBIAS), 
838 (STRATEGIES); Bonferroni corrected p-value=0.003 (.05/19); associations with uncorrected p < .05 are in bold 
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4.3.2 Results: genome-wide approaches 

4.3.2.1 GWAS analyses 

GWAS was conducted separately on TEDS and CogBIAS datasets, which included 642 

individuals and 3,220,761 SNPs in TEDS and 5,595,637 variants and 395 individuals in 

CogBIAS. PLINK was used to run a linear regression, in an additive genetic model, 

with sensitivity as the outcome, and age, gender and PCs (3 CogBIAS, 4 TEDS) as 

covariates in the model. Genomic inflation was calculated based on median chi-square 

p-values and empirical p-values were obtained via 1000 permutations. The genome-

wide significance threshold was set at 5x10-8. As would be expected from the small 

sample sizes, there were no genome-wide significant SNPs identified in either data 

set. The top SNP in TEDS (p= 2.4E-06) was rs4918121 located on Chromosome 10, in 

the intergenic region of the Sortilin-Related VPS10 Domain Containing Receptor 3 

(SORCS3) gene. SORCS3 is a protein -coding gene, where it encodes a type-I receptor 

transmembrane protein. The transcript is expressed at high levels in the brain and 

adrenal gland (Fagerberg et al., 2014) and variations in this gene have been associated 

with Alzheimer disease and multiple sclerosis in candidate gene studies (Binzer et al., 

2016; Reitz et al., 2013). The SNP was not found in the GWAS catalog. This SNP was 

tagged in the CogBIAS data, and while the association was in the same direction, its p-

value was not significant (p= 0.57). 

The top SNP in CogBIAS (p= 1.5E-07) was rs6435333 located on chromosome 2, in 

the intronic region of the Potassium Voltage-Gated Channel Subfamily J Member 3 

(KCNJ3) gene. The protein encoded by this gene is an integral membrane protein and 

inward-rectifier type potassium channel. The encoded protein is controlled by G-

proteins and plays an important role in regulating heartbeat.  

The SNP was not in the GWAS catalogue and was not tagged in the TEDS data. The 

top 20 SNPs in each dataset, as well as the Manhattan plots and the QQ plots of the 

p-values for each data set are presented in Appendix 4.1.
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4.3.2.2 Meta-analysis of GWAS results 

The GWAS results of harmonized TEDS and CogBIAS data (2,545,244 SNPs) were 

meta-analysed using the Standard Error option in METAL (Willer et al., 2010), as well 

as the additional options of testing for heterogeneity effects across samples and 

applying genomic control correction to the p-values. The METAL heterogeneity 

analysis determines whether observed effect sizes (or test statistics) are homogeneous 

across samples.  

The results of the meta-analysis indicated that there were no genome-wide significant 

findings. The heterogeneity analysis identified 123,111 SNPs as showing significant 

heterogeneity effects across samples, with 119,576 SNPs having differences in the 

direction of effect and 3,544 showing differences in the magnitude of the effect. The 

Manhattan plot and QQ plot of the p-values are presented in Figure 4.6a and 4.6b. The 

top 20 SNPs from the meta-analysis are presented in Table 4.7. The top SNP from the 

meta-analysis was rs17121012, located on Chromosome 1, in the intronic region of the 

uncharacterized LOC101926964 gene. Although the specific function of this gene is as 

yet unknown, this is a long non-coding RNA gene (lncRNAs), with this class of gene 

emerging as important players in regulation of gene expression in higher 

eukaryotes. Recent studies have found variations in lncRNAs genes to be relevant to a 

range of cancers such as Pancreatic Ductal Adenocarcinoma (Song et al., 2018).  
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Table 4.7 Top 20 SNPs from the meta-analysis of TEDS and CogBIAS GWAS 

SNP A1 A2 A1 Freq Freq SE B S. E p Direction 

rs17121012 A T .90 .01 .32 0.07 1.1E-06 ++ 

rs2885689 C G .90 .01 .32 0.07 1.3E-06 ++ 

rs742277 T C .69 .01 .21 0.04 1.6E-06 ++ 

rs2867896 T C .32 .01 -.20 0.04 2.6E-06 -- 

rs73621982 C G .69 .01 .20 0.04 3.0E-06 ++ 

rs16987740 A G .69 .01 .20 0.04 3.0E-06 ++ 

rs66633066 T C .69 .01 .20 0.04 3.0E-06 ++ 

rs3764701 A T .69 .01 .20 0.04 3.1E-06 ++ 

rs4812349 T C .31 .01 -.20 0.04 3.1E-06 -- 

rs8121775 A G .69 .01 .20 0.04 3.1E-06 ++ 

rs4812350 T C .31 .01 -.20 0.04 3.5E-06 -- 

rs2179318 T C .68 .01 .20 0.04 3.5E-06 ++ 

rs7267954 A G .31 .01 -.20 0.04 4.0E-06 -- 

rs2092261 A G .69 .01 .20 0.04 4.3E-06 ++ 

rs3752299 A G .69 .01 .20 0.04 4.3E-06 ++ 

rs3764703 T C .69 .01 .20 0.04 4.3E-06 ++ 

rs2867895 T C .69 .01 .20 0.04 4.4E-06 ++ 

rs8118861 T C .69 .01 .20 0.04 4.4E-06 ++ 

rs4812345 T C .31 .01 -.20 0.04 4.7E-06 -- 

rs6028233 T C .31 .01 -.20 0.04 4.7E-06 -- 
A1=Minor Allele, A2=Major Allele, A1Freq= A1 allele frequency across datasets, Freq SE=Standard 
error of A1 allele frequency; B=meta-analysed Beta; S.E= Standard Error; P= p-value; direction of effect 
across data sets 
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Figure 4.6a Manhattan plot of the meta-analysed TEDS-CogBIAS GWAS
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Figure 4.6b Q-Q plot of the meta-analysed TEDS-CogBIAS GWAS
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Lead and independent significant SNPs from the GWAS results were identified. 

Independent significant SNPs were defined as those with p < 1E-5 which were 

independent from each other with r2>.6. These SNPs are essentially the SNPs that are 

contained after clumping GWAS tagged SNPs at the same p-value and r2. Lead SNPs 

were defined as independent significant SNPs, which were independent from each other 

at r2 < 0.1. Therefore, lead SNPs are same as the SNPs clumped independent significant 

SNPs at p < 1E-5 and r2 < 0.1. 

Three lead SNPs were identified, which included the top SNP rs17121012, as well as 

rs6726395 (p=4.7E-06) located on chromosome 2 in the intronic region of the NF-E2-

Related Factor 2 (NFE2L2) gene, and rs742277 (p=1.6E-06) located on Chromosome 

20, in the intronic region of the DEAH-box helicase 35 (DHX35) gene. NFE2L2 gene 

encodes a transcription factor, which is involved in regulation of genes involved in 

response to injury and inflammation and oxidative stress. DHX35 is a protein-encoding 

gene, with its protein implicated in a number of cellular processes involving alteration 

of RNA secondary structure. While the exact function of this protein is unknown, other 

proteins in this family are believed to be involved in embryogenesis, spermatogenesis, 

and cellular growth and division. None of these SNPs were found in GWAS catalogue 

and they were not within or close to any of the genes previously implicated in 

differential susceptibility from candidate-gene approaches. Figures 4.7a, 7b and 4.7c 

show the genomic region for these 3 SNPs. 
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Figure 4.7a Genomic region plot for top significant lead SNP (rs17121012) from meta-analysed GWAS results 

rs2885689 rs17121012
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Figure 4.7b Genomic region plot for top significant lead SNP (rs6726395) from meta-analysed GWAS results 
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SNPs	not	in	LD	of	ind. sig.	SNPs

rs742277

Figure 4.7c Genomic region plot for top significant lead SNP (rs74227) from meta-analysed GWAS results 



 
 

187 

4.3.2.3 Gene-based analyses 

SNPs in TEDS, CogBIAS and meta-analysed CogBIAS-TEDS datasets were annotated 

to functional genes from the NCBI build 37. There were 18,094 genes in CogBIAS, 

18,089 genes in TEDS. The multi-model option of MAGMA was used for gene-based 

analyses, this model controls for number of samples and minor allele count (MAC) in 

the resultant gene statistics. The linear regression model to examine the association 

between sensitivity and genes included sex, gender and PCs (4 CogBIAS and 3 TEDS) 

as covariates.  

While the analyses identified many genes with p < .05 in both TEDS and CogBIAS 

data, these associations were not robust to Bonferroni correction for multiple testing p-

value threshold (p= 2.8E-06), except for one gene in TEDS data (p=1.7E-06), Ladybird 

Homeobox 1 (LBX1) in Chromosome 10. LBX1 is a protein-coding gene, with its 

homeobox transcription factor being involved in spinal cord differentiation and 

somatosensory signal transduction (Xu et al., 2012). Polymorphisms in this gene have 

been associated with risk for adolescent idiopathic scoliosis in recent genetic association 

studies (Cao, Min, Zhang, Li, & Li, 2016). This gene has not been previously studied as 

a differential susceptibility candidate gene. The association between this gene and 

sensitivity was not significant in CogBIAS data (p= .19). 

The top gene in the CogBIAS (p= 1.1E-05) was Cytochrome P450 Family 2 Subfamily 

B Member 6 (CYP2B6), a protein coding gene in Chromosome 19, which encodes a 

member of the cytochrome P450 superfamily of enzyme. Cytochrome P450 proteins 

catalyze many reactions involved in drug metabolism and synthesis of cholesterol, 

steroids and other lipids. The enzyme has been reported to be involved in metabolisms 

of a range of drugs and is expressed highly in the liver (Pearce et al., 2016).  This gene 

has not been previously studied as a differential susceptibility candidate gene, and the 

association between this gene and sensitivity was not significant in TEDS (p= .34). 

Meta-analysis of the gene-based results, indicated that LBX1 was the top gene 

associated with sensitivity across samples (p= 1.4E-05), however, this association was 

not significant at Bonferroni multiple testing correction threshold (p= 2.8E-06).  

The results of the meta-analysis on gene-based results from TEDS and CogBIAS data 

are presented in Table 4.8.
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Table 4.8 Top ten genes associated with sensitivity from meta-analysed gene-based results and their associations in the original datasets 

Meta-analysed gene results   Genes in TEDS   Genes in CogBIAS 

GENE CHR START STOP NSNPS ZSTAT p   NSNPS ZSTAT p   NSNPS ZSTAT p 

LBX1 10 102966733 103009954   28 4.20 1.4E-05  8 4.64 1.7E-06*  48 .88 1.9E-01 

N4BP3 5 177520556 177573107   45 3.89 5.0E-05  4 2.58 4.9E-03  85 3.01 1.3E-03 

OR56A3 11 5948577 5989524   88 3.86 5.8E-05  48 1.93 2.7E-02  127 3.79 7.5E-05 

NHP2 5 177556464 177600961   37 3.72 9.8E-05  7  2.537 5.6E-03  67 2.80 2.6E-03 

EHD3 2 31436880 31511260    146 3.69 1.1E-04  80 2.48 6.6E-03  212 2.82 2.4E-03 

LOC100130880  7  137618094 137662712   57 3.60 1.6E-04  40 4.02 2.9E-05  73 .70 2.4E-01 

NXPE2 11 114529200 114599357  148 3.58 1.7E-04  119 2.29 1.1E-02  176 2.89 2.0E-03 

DHX35 20 37570981 37688366  140 3.58 1.7E-04  110 3.78 7.8E-05  169 .97 1.7E-01 

TSHR 14 81401333 81632646  519 3.55 1.9E-04  398 2.84 2.3E-03  640 2.13 1.7E-02 

NFE2L2 2 178075031 178149859   65 3.53 2.0E-04   30 3.66 1.3E-04   99 1.06 1.4E-01 
*Associations with p-value significant at Bonferroni correction threshold; Associations with p < .05 are in bold; START/STOP: the annotation boundaries of the gene on that 
chromosome (window=20); NSNPS: the number of SNPs annotated to that gene that were found in the data; ZSTAT: Z statistic of the gene, a measure of the strength of association 
between the trait and the gene; p: the gene p-value (uncorrected for multiple testing) 
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4.3.2.4 Gene-set analyses 

Gene-set analyses: Genes in TEDS, CogBIAS and meta-analysed data were annotated 

to 10,648 gene-sets obtained from Broad Institute MsigDB v5.2 (Subramanian et al., 

2005). There were 10,644 gene-sets in TEDS and CogBIAS.  

The results revealed many significant (p < .05) gene-sets in both TEDS and CogBIAS. 

Only one gene-set, PROTEIN_SERINE_THREONINE_PHOSPHATASE_ACTIVITY, 

was found to be significant at Bonferroni multiple testing correction threshold (p = 

4.8E-06), in TEDS. This gene-set was not significant in CogBIAS (p= .12).  

The significant gene-set was from Gene-Onthology (GO) and included 59 genes in 

TEDS, with 7 genes (CDC14B, CDC14B, PPM1L, PPM1L, CYCS, PPP2R5D, PDP2) 

showing p-values < .05 within this gene- set (see Table 4.9). The genes in this gene-set 

reflect the serine/threonine phosphatase pathway activity. Protein serine/threonine 

phosphatase is a form of phosphoprotein phosphatase that can to reverse the addition of 

serine/threonine protein kinases enzymes to phosphate serine/threonine amino acids. 

The addition and removal of phosphate groups regulates many cellular mechanisms 

including cell differentiation, protein synthesis, apoptosis (programmed cell death) and 

embryonic development (Shi, 2009).  

For the meta-analysis of the gene-sets, meta-analysed gene-based results were used to 

obtain evidence of association with sensitivity across the two datasets. The results of the 

top 10 gene-sets are presented in Table 4.10.  

As was expected from the non-significant association in CogBIAS, the 

PROTEIN_SERINE_THREONINE_PHOSPHATASE_ACTIVITY gene-set was not in 

the top ten significant gene-sets. The top gene-set (p= 7.6E-05), 

MIKKELSEN_ES_ICP_WITH_H3K4ME3_AND_H3K27ME3, included 135 genes 

with intermediate-CpG-density promoters (ICP) bearing bivalent histone H3 

methylation mark (H3K4me3 and H3K27me3) in embryonic stem cells (Mikkelsen et 

al., 2007). Genes in this gene-set are therefore relevant to expression and regulation of 

embryonic stem cells and subsequently a large range of processes involved in human 

development. The association for this gene-set was significant in both TEDS (p= 4.5E-

03) and CogBIAS (p= 5.7E-02) data. This gene-set however did not surpass the 

Bonferroni multiple testing corrected threshold (p= 4.8E-06). 
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Table 4.9 Top 20 genes from the significant gene-set  
(PROTEIN_SERINE_THREONINE_PHOSPHATASE_ACTIVITY) in TEDS data 
GENE CHR START STOP NSNPS ZSTAT p 

CDC14B 9 99232807 99402112 63 3.47 2.6E-04 

DUSP23 1 159730730 159772333 35 2.69 3.5E-03 

PPM1L 3 160453996 160808817 435 2.63 4.2E-03 

CYCS 7 25138270 25184980 73 2.45 7.1E-03 

PPP2R5D 6 42932218 43000083 80 2.43 7.6E-03 

PDP2 16 66894360 66945004 21 2.05 2.0E-02 

CDC14A 1 100790598 101005833 146 1.61 5.4E-02 

PPP1R15B 1 204349781 204400945 20 1.39 8.3E-02 

LCK 1 32696840 32771766 14 1.36 8.7E-02 

MYH6 14 23829942 23898836 55 1.20 .11 

RPAP2 1 92744522 92873732 71 1.16 .12 

PPA2 4 106270234 106415227 321 1.09 .14 

MTMR14 3 9671117 9764078 41 1.08 .14 

CDKN3 14 54843657 54906936 48 1.04 .15 

PPM1M 3 52259782 52304615 34 1.00 .16 

CTDSP1 2 219243061 219290664 7 .99 .16 

PPEF2 4 76761025 76843681 71 .92 .18 

CTDSP2 12 58193710 58260747 30 .89 .19 

PP2D1 3 20001453 20073765 67 .87 .19 

SSU72 1 1457053 1530262 18 .82 .21 
p < .05 are in bold 
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Table 4.10 Top ten gene-sets from meta-analysed gene results and their associations in TEDS and CogBIAS data  

Gene-set 
meta-analysed results  TEDS  CogBIAS 

N B St. B SE  p1 p2   N St. B SE  p1   N St. B SE  p1 

MIKKELSEN_ES_ICP_WITH_
H3K4ME3_AND_H3K27ME3 135 .25 .02 .07 7.6E-05 3.1E-03  131 .02 4.5E-03 7.3E-04  134 .01 5.7E-02 .34 

GO_PHOSPHATASE_COMPLE
X 44 .41 .02 .11 8.0E-05 4.4E-04  44 .02 1.5E-04 2.6E-04  44 .01 2.8E-02 .17 

GO_TRANSLATIONAL_INITI
ATION 135 .24 .02 .06 9.0E-05 9.2E-02  130 .02 2.0E-03 1.2E-02  134 .01 8.6E-03 .75 

GO_MODULATION_BY_HOST
_OF_VIRAL_PROCESS 18 .61 .02 .17 1.5E-04 1.2E-03  18 .01 8.0E-03 1.0E-02  18 .01 2.8E-02 .03 

SAKAI_TUMOR_INFILTRATI
NG_MONOCYTES_DN 79 .29 .02 .08 1.6E-04 9.9E-02  79 .02 1.2E-03 1.0E-02  78 .01 1.0E-01 .78 

GO_REGULATION_OF_CELL_
KILLING 62 .34 .02 .10 2.0E-04 1.0E-01  61 .01 5.2E-02 1.3E-01  62 .01 1.4E-02 .28 

TSAI_DNAJB4_TARGETS_DN 6 1.14 .02 .32 2.1E-04 1.1E-02  6 .02 1.8E-03 1.0E-02  6 .01 5.7E-02 .18 

BREDEMEYER_RAG_SIGNAL
ING_NOT_VIA_ATM_DN 55 .37 .02 .11 3.0E-04 2.0E-02  53 .02 2.1E-03 3.0E-02  55 .01 1.2E-02 .16 

GO_GDP_DISSOCIATION_INH
IBITOR_ACTIVITY 10 .84 .02 .25 3.2E-04 1.5E-01  10 .02 1.7E-03 4.0E-02  9 .01 2.0E-01 .76 

GO_REGULATION_OF_NATU
RAL_KILLER_CELL_MEDIAT
ED_IMMUNITY 

34 .42 .02 .12 3.6E-04 5.5E-02  34 .01 1.1E-02 6.0E-02  34 .01 3.4E-02 .29 

N= Number of genes in the gene-set; B= Beta; SE=Standard error; St. B =Standardized Beta; p1= gene-set p-value for the competitive model; p2= gene-set p-value for the self-contained 
model; associations with p < .05 are in bold; Bonferroni correction p-value threshold = 4.8E-06 
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4.3.2.5 TEDS Polygenic score of sensitivity in CogBIAS  

Polygenic scores were constructed from genome-wide SNP data of individuals in 

CogBIAS, using summary statistics from the GWAS of sensitivity in TEDS, at nine p-

value thresholds (PT= .001, .01, .05, .10, .20, .30, .40, .50, 1), as well as high resolution 

scoring. Default clumping options in PRSice were used, as described in Section 4.2.2.4. 

There were 2,545,244overlapping variants in the two samples which reduced 74,746 

following clumping. Age, sex and 4 PCs were included as covariates in the regression 

model predicting sensitivity in CogBIAS. There were no significant associations at the 

specified thresholds, though the high-resolution polygenic scoring identified PT = .0006 

as the best threshold, with the PGS score predicting 1.1% (p= .03) of the variance in 

sensitivity in CogBIAS. The direction of effect was inverse for the significant PGS, 

such that a high polygenic score of sensitivity was associated with a low phenotypic 

sensitivity. These findings may reflect the differences in sample characteristics, or may 

be spurious due to the small sample size of both target and discovery sample, especially 

since the beta value flips around after this association to be in the opposite direction, 

with only 211 SNPs at this threshold. 

Table 4.11 shows the proportion of variance explained and number of SNPs at each 

threshold (including the best score), as well as the relevant p-values. Figure 4.8 shows 

the results of the high-resolution polygenic scoring and the bar chart for specified 

thresholds.
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Table 4.11 TEDS Polygenic score of sensitivity in CogBIAS 

PT N SNPs Coefficient Standard Error R2 p-value 

.001 319 -14.49 11.38 .004 .20 

.01 2628 -6.94 38.26 .000 .86 

.05 10008 -2.25 84.45 .000 .98 

.1 17519 34.94 124.23 .000 .78 

.2 29459 85.69 175.53 .001 .63 

.3 39156 136.11 218.14 .001 .53 

.4 47485 136.57 253.76 .001 .59 

.5 54531 126.45 284.33 .000 .66 

1 74746 227.48 381.32 .001 .55 

0.0006* 211 -19.16 8.84 .011 .03 

* Best score from high resolution scoring; associations with p < .05 are shown in bold 
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Figure 4.8 TEDS polygenic score of environmental sensitivity in CogBIAS
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4.3.2.6 Polygenic score of differential susceptibility 

Polygenic scores were constructed in CogBIAS data, based on summary statistics from 

Keers et al. (2016), at nine p-value thresholds (PT= .001, .01, .05, .10, .20, .30, .40, .50, 

1), as well as high resolution scoring. Default clumping options in PRSice were used as 

described in Section 4.2.2.4. There were 70,464 clumps formed from 509,607 top 

variants. Age, sex and 4 PCs were included as covariates in the regression model 

predicting sensitivity in CogBIAS. 

The results did not suggest that there was a significant relationship between the 

polygenic score of differential susceptibility and sensitivity in the CogBIAS sample, 

though the high-resolution scoring identified a marginally significant (p= .07) effect for 

best score, predicting .09% of the variance in sensitivity (see Figure 4.9). The direction 

of the effect was positive such that higher PGS scores were associated with higher 

levels of sensitivity, though there were only 53 SNPs at this threshold, and the beta 

values flipped around after this threshold. The association is therefore not very robust 

and may be spurious. Table 4.12 shows the proportion of variance explained and 

number of SNPs at the nine p-value thresholds, as well as the relevant p-values, R2, 

coefficients and standard errors from the regression models.  

 

Table 4.12 Polygenic score of differential susceptibility predicting environmental 
sensitivity in CogBIAS 
PT N SNPs B Standard Error R2 p-value 

.001 294 10.43 12.66 .002 .41 

.01 2220 -11.59 43.30 .000 .79 

.05 8837 -137.06 106.13 .004 .20 

.1 15618 -220.38 150.72 .005 .14 

.2 26698 -290.93 217.77 .005 .18 

.3 36000 -354.13 268.54 .004 .19 

.4 43756 -474.75 315.33 .006 .13 

.5 50506 -494.44 356.45 .005 .17 

1 70464 -712.42 493.17 .005 .15 

.00015* 53 9.23 5.02 .009 .07 

* Best score from high resolution scoring; B= beta-coefficient; R2 = proportion of 

variance explained by the polygenic score. 
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Figure 4.9 Polygenic score of differential susceptibility predicting 
environmental sensitivity in CogBIAS
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4.3.2.7 Cross-trait polygenic score analyses  

For the polygenic score analyses, the summary statistics from thirteen publically 

available GWASs (neuroticism, extraversion, openness, conscientiousness, 

agreeableness, autism, ADHD, anxiety, depression, insomnia, loneliness, subjective 

wellbeing, educational attainment) were used to construct PGS from the SNP-data in 

TEDS and CogBIAS and predict sensitivity in these datasets. The PRSice options for 

clumping and p-value thresholds were as described in Section 4.2.2.4. Age, sex and PCs 

(3 TEDS, 4 CogBIAS) were included as covariates in the regression model predicting 

sensitivity. For the sum-sum score analyses, the summary statistics from the meta-

analysed GWAS of sensitivity (TEDS-CogBIAS data) were used as the target dataset, 

after excluding SNPs that showed high heterogeneity across samples. The summary 

statistics from 13 GWAS data were used as the base data set. The PRSice options for 

clumping and p-value thresholds were as described in Section 4.2.2.4.   

The results from TEDS data showed significant associations between environmental 

sensitivity and all personality traits except for neuroticism. The largest association was 

found for polygenic scores of openness (R2= 2.5%, p= 4.8E-05), followed by 

extraversion (R2= 1.2%, p= 4.9E-03), agreeableness (R2= 1%, p= 1.1E-02), and 

conscientiousness (R2= .7%, p= 3.2E-02). Of psychopathological outcomes, the 

strongest predictor of sensitivity was autism (R2= 1.6%, p= 9.6E-04), followed by 

anxiety (R2= .9%, p= 1.6E-02), ADHD (R2= .7%, p= 2.8E-02), Loneliness (R2= .7%, p= 

3.0E-02), and depression (R2= .6%, p= 4.2E-02). Of the more positive outcomes, 

subjective wellbeing polygenic score was a significant predictor of sensitivity (R2= .9%, 

p= 1.5E-02), and so was educational attainment (R2= .7%, p=3.2E-02).. No significant 

associations were found between sensitivity and polygenic scores of neuroticism or 

insomnia. 

The results from TEDS were replicated in CogBIAS data for most traits. Of the 

personality traits, there were significant associations between sensitivity and polygenic 

scores of openness (R2= 1.8%, p= 6.8E-03), and extraversion (R2= 3.1%, p= 3.4E-04). 

Contrary to TEDS, there was a significant association for neuroticism (R2= 1.3%, p= 

3.8E-03) in this dataset, but none for agreeableness or conscientiousness.  Of other 

outcomes, the association between depression (R2= 2%, p= 3.8E-03), and loneliness 

(R2= .9%, p= 5.3E-02) and subjective wellbeing (R2= 3.1%; p= 3.1E-04) were also 
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significant in CogBIAS. However, there were no significant associations between 

ADHD, anxiety, autism, insomnia or educational attainment. 

The CogBIAS data included more SNPs than TEDS, but it had a smaller sample size, 

which may explain why some of the findings were not repeated across datasets. The 

replications across datasets for significant associations between sensitivity and PGS of 

openness, extraversion, subjective wellbeing, depression and loneliness provide strong 

support for these findings. PRSice authors recommend a significance threshold of p= 

.001 for the PGS, based on their permutation analyses. According to this significance 

threshold correction, the more robust associations in TEDS were for openness (p=  

4.8E-05) and autism (p= 9.6E-04) and marginally extraversion (p= 4.9E-03), and in 

CogBIAS they were extraversion (p= 3.4E-04), subjective wellbeing (p= 3.1E-04) and 

marginally openness (p= 6.8E-03) and depression (p= 3.8E-03). The direction of effect 

(Beta-coefficients) for these significant associations were similar across data sets, such 

that PGS of openness, depression and autism were positively associated with sensitivity 

and PGS of extraversion and subjective wellbeing were negatively associated with 

sensitivity. 

The results of the polygenic score analysis using the summary statistics from the meta-

analysed TEDS and CogBIAS data largely reflected results in individual datasets. As 

expected, there were significant genetic correlations between sensitivity and openness 

(r2= .02, p= 2.5E-06), extraversion (r2 = .01, p= 1.9E-04), depression (r2= .01, p= 3.5E-

04), and autism (r2= .01, p= 1.0E-04). Other traits with significant (p< .05) but smaller 

correlations included subjective wellbeing (r2 = .006, p= 6.1E-03), neuroticism (r2 = 

.005, p= 2.0E-02), ADHD (r2 = .008, p= 2.6E-03), anxiety (r2 = .006, p= 7.0E-03), and 

agreeableness (r2= .005, p= 1.4E-02). No significant correlations were observed 

between sensitivity and conscientiousness, loneliness, insomnia, and educational 

attainment. The results of the cross-trait polygenic score analyses are summarised in 

Table 4.13. Bar-chart plots and high-resolution scoring graphs of TEDS, CogBIAS and 

meta-analysed data are presented in Appendix 4.2. 

Overall, the results of cross-trait polygenic score analyses indicated PGS of neuroticism, 

anxiety, autism, openness, extraversion, and depression to be associated with sensitivity, 

with all six traits showing consistent direction of effect across the two datasets, and the 

latter four being robust to significance threshold correction of p< .001. 
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Table 4.13 Results of cross trait polygenic score analyses 
  TEDS   CogBIAS   Meta-analysed data 
PT N SNPs b S.E R2 p   N SNPs b S.E R2 p   N SNPs rg p 

AGREEABLENSS 
.001 291 4.45 7.60 5.2E-04 5.6E-01  294 -1.33 8.66 5.7E-05 8.8E-01  286 3.4E-05 4.3E-01 
.01 2307 43.16 24.95 4.5E-03 8.4E-02  2325 1.22 30.27 3.9E-06 9.7E-01  2227 9.2E-04 1.6E-01 
.05 9070 33.75 57.56 5.2E-04 5.6E-01  9117 28.42 72.46 3.7E-04 7.0E-01  8208 5.8E-05 4.0E-01 
.1 15770 14.5 83.04 4.6E-05 8.6E-01  15892 -19.12 97.84 9.2E-05 8.5E-01  13804 1.7E-04 3.4E-01 
.2 26806 40.53 118.56 1.8E-04 7.3E-01  26995 13.13 146.05 2.0E-05 9.3E-01  22160 3.9E-05 4.2E-01 
.3 35605 55 145.82 2.1E-04 7.1E-01  35934 -1.42 181.92 1.5E-07 9.9E-01  28518 1.0E-04 3.7E-01 
.4 43313 44.21 170.26 1.0E-04 8.0E-01  43637 -41.23 212.28 9.1E-05 8.5E-01  33886 2.2E-04 3.2E-01 
.5 49621 50.9 192.02 1.1E-04 7.9E-01  50036 -119.22 237.08 6.1E-04 6.2E-01  38154 3.5E-05 4.3E-01 
1 68307 96.74 260.52 2.1E-04 7.1E-01  68766 -262.85 318.92 1.6E-03 4.1E-01  38157 3.5E-05 4.2E-01 
Best 1879 56.96 22.41 9.6E-03 1.1E-02  20 2.87 2.14 4.3E-03 1.8E-01  1827 4.7E-03 1.4E-02 

OPENNESS 
.001 289 9.66 6.75 3.1E-03 1.5E-01  289 2.01 7.38 1.8E-04 7.9E-01  294 1.3E-03 1.2E-01 
.01 2422 75.71 23.3 1.6E-02 1.2E-03*  2433 38.3 26.12 5.2E-03 1.4E-01  2337 1.1E-02 3.2E-04* 
.05 9123 157.55 48.63 1.6E-02 1.3E-03*  9215 68.21 56.38 3.5E-03 2.3E-01  8276 1.2E-02 1.6E-04* 
.1 15926 198.44 70.83 1.2E-02 5.2E-03  16041 128.85 79.72 6.3E-03 1.1E-01  13894 9.7E-03 7.5E-04* 
.2 26904 211.14 103.44 6.2E-03 4.2E-02  27103 181.46 118.41 5.6E-03 1.3E-01  22211 8.9E-03 1.2E-03* 
.3 35832 284.25 129.83 7.2E-03 2.9E-02  36044 265.82 151.61 7.4E-03 8.0E-02  28681 1.1E-02 3.3E-04* 
.4 43224 322.84 149.72 7.0E-03 3.1E-02  43513 269.44 176.06 5.6E-03 1.3E-01  33868 1.2E-02 2.0E-04* 
.5 49466 379.61 168.28 7.6E-03 2.4E-02  49871 267.87 199.5 4.3E-03 1.8E-01  38141 1.2E-02 1.8E-04* 
1 68182 491.31 227.37 7.0E-03 3.1E-02  68680 375.34 267.38 4.7E-03 1.6E-01  38146 1.2E-02 1.7E-04* 
Best 1385 68.08 16.62 2.5E-02 4.8E-05*  3039 79.28 29.11 1.8E-02 6.8E-03  5677 2.0E-02 2.5E-06* 
 
 
 



 200 

Table 4.13 Continued 
 
  TEDS   CogBIAS   Meta-analysed data 
PT N SNPs b S.E R2 p   N SNPs b S.E R2 p   N SNPs rg p 

CONSCIENTIOUSNESS 
.001 322 9.79 6.81 3.1E-03 1.5E-01  324 -9.9 7.61 4.1E-03 1.9E-01  317 9.1E-04 1.7E-01 
.01 2370 31.61 20.75 3.5E-03 1.3E-01  2388 -8.00 23.94 2.7E-04 7.4E-01  2259 4.0E-04 2.6E-01 
.05 9147 43.67 47.06 1.3E-03 3.5E-01  9240 -23.33 54.32 4.4E-04 6.7E-01  8255 3.5E-04 2.7E-01 
.1 15951 106.1 66.25 3.8E-03 1.1E-01  16068 -50.65 76.83 1.0E-03 5.1E-01  13834 3.0E-04 2.9E-01 
.2 26953 166.79 93.23 4.8E-03 7.4E-02  27186 -62.5 112.72 7.4E-04 5.8E-01  22325 4.1E-04 2.6E-01 
.3 35779 215.93 116.78 5.1E-03 6.5E-02  36085 -89.49 144.08 9.3E-04 5.3E-01  28650 3.6E-05 4.2E-01 
.4 43155 200.42 138.25 3.2E-03 1.5E-01  43560 -79.76 168.3 5.4E-04 6.4E-01  33758 2.6E-06 4.8E-01 
.5 49671 179.59 155.75 2.0E-03 2.5E-01  50084 -123.81 191.57 1.0E-03 5.2E-01  38219 1.0E-04 3.7E-01 
1 68239 178.22 211.14 1.1E-03 4.0E-01  68713 -134.63 256.58 6.6E-04 6.0E-01  38222 1.0E-04 3.7E-01 
Best 167 10.08 4.68 6.9E-03 3.2E-02  313 -12.26 7.48 6.4E-03 1.0E-01  17430 1.7E-03 9.5E-02 

NEUROTICISM 
.001 956 -31.43 201.7 3.7E-05 8.8E-01  960 340.48 221.07 5.7E-03 1.2E-01  905 2.3E-03 6.1E-02 
.01 4332 255.54 546.05 3.3E-04 6.4E-01  4388 1291.52 620.62 1.0E-02 3.8E-02  3931 1.1E-03 1.4E-01 
.05 12838 1658.14 1081.67 3.5E-03 1.3E-01  13000 2040.5 1290.47 6.0E-03 1.1E-01  11220 2.9E-03 4.1E-02 
.1 20241 1966.06 1482.86 2.6E-03 1.9E-01  20534 3220.32 1765.06 8.0E-03 6.9E-02  17159 3.3E-03 3.1E-02 
.2 31943 3078 2093.81 3.2E-03 1.4E-01  32399 3845.88 2473.14 5.8E-03 1.2E-01  25871 4.3E-03 1.7E-02 
.3 41236 3133.94 2593.82 2.2E-03 2.3E-01  41720 4923.66 3007.83 6.4E-03 1.0E-01  32555 3.3E-03 3.1E-02 
.4 48728 4252.09 2970.35 3.1E-03 1.5E-01  49341 6207.78 3515.77 7.5E-03 7.8E-02  37747 3.7E-03 2.5E-02 
.5 55088 4247.84 3302.53 2.5E-03 2.0E-01  55735 6772.72 3894.59 7.2E-03 8.3E-02  42071 2.4E-03 5.6E-02 
1 72652 4824.11 4319.7 1.9E-03 2.6E-01  73518 8393.87 5035.22 6.7E-03 9.6E-02  42075 2.4E-03 5.6E-02 
Best 15317 2138.62 1214.50 4.6E-03 7.9E-02  5318 1627.29 694.74 1.3E-02 2.0E-02  25104 5.1E-03 1.1E-02 
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Table 4.13 Continued 
 
  TEDS   CogBIAS   Meta-analysed data 
PT N SNPs b S.E R2 p   N SNPs b S.E R2 p   N SNPs rg p 

EXTRAVERSION 
.001 84 -49.06 45.96 1.7E-03 2.9E-01  84 -36.05 54.22 1.1E-03 5.1E-01  88 1.7E-03 9.2E-02 
.01 573 -48.98 136.66 1.9E-04 7.2E-01  576 -277.6 160.78 7.1E-03 8.5E-02  540 2.8E-03 4.4E-02 
.05 2043 -327.25 294.14 1.9E-03 2.7E-01  2059 -1020.51 336.93 2.2E-02 2.6E-03  1846 7.3E-03 3.0E-03 
.1 3412 -407.87 408.66 1.5E-03 3.2E-01  3461 -1103.37 474.43 1.3E-02 2.1E-02  2917 1.0E-02 5.2E-04* 
.2 5600 -530.95 566.22 1.3E-03 3.5E-01  5687 -1475.78 682.78 1.1E-02 3.1E-02  4562 9.5E-03 8.6E-04* 
.3 7179 -810.73 672.61 2.2E-03 2.3E-01  7311 -1916.98 840.74 1.2E-02 2.3E-02  5673 1.1E-02 3.5E-04* 
.4 8565 -1028.84 771.65 2.7E-03 1.8E-01  8690 -2090 980.95 1.1E-02 3.4E-02  6619 1.2E-02 2.3E-04* 
.5 9638 -1128.21 851.2 2.6E-03 1.9E-01  9787 -2121.41 1086.96 9.1E-03 5.2E-02  7344 1.0E-02 5.2E-04* 
1 12582 -1599.89 1097.82 3.2E-03 1.5E-01  12715 -2583.02 1410.67 8.0E-03 6.8E-02  7344 1.0E-02 5.2E-04* 
Best 3 -20.40 7.22 1.2E-02 4.9E-03  2803 -1449.77 400.79 3.1E-02 3.4E-04*  1283 1.2E-02 1.9E-04* 

ADHD 
.001 879 99.64 57.43 4.5E-03 8.3E-02  887 53.77 63.27 1.7E-03 4.0E-01  817 2.6E-03 5.2E-02 
.01 3979 274.45 143.72 5.5E-03 5.7E-02  4001 176.87 173.18 2.5E-03 3.1E-01  3634 5.8E-03 7.0E-03 
.05 11866 493.17 280.53 4.6E-03 7.9E-02  11977 190.07 333.38 7.8E-04 5.7E-01  10294 3.8E-03 2.4E-02 
.1 18922 583.25 386.51 3.4E-03 1.3E-01  19159 -34.67 470.9 1.3E-05 9.4E-01  15936 2.5E-03 5.5E-02 
.2 29737 189.55 533.71 1.9E-04 7.2E-01  30105 -20.72 633.9 2.6E-06 9.7E-01  24093 1.1E-03 1.4E-01 
.3 38390 214.87 646.46 1.7E-04 7.4E-01  38809 -345.3 780.56 4.7E-04 6.6E-01  30417 7.5E-04 1.9E-01 
.4 45447 251.83 748.86 1.7E-04 7.4E-01  45997 -478.06 900.56 6.8E-04 6.0E-01  35365 1.1E-03 1.4E-01 
.5 51562 251.14 831.96 1.4E-04 7.6E-01  52199 -529.51 999.7 6.8E-04 6.0E-01  39552 9.9E-04 1.6E-01 
1 69121 366.42 1093.13 1.7E-04 7.4E-01  70006 -695.19 1335.48 6.5E-04 6.0E-01  39555 9.9E-04 1.6E-01 
Best 4510 343.98 156.10 7.3E-03 2.8E-02  1071 106.21 73.30 5.0E-03 1.5E-01  2619 7.5E-03 2.6E-03 
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Table 4.13 Continued 
 
  TEDS   CogBIAS   Meta-analysed data 
PT N SNPs b S.E R2 p   N SNPs b S.E R2 p   N SNPs rg p 

ANXIETY 
.001 434 121.4 91.92 2.6E-03 1.9E-01  432 -2.37 105.64 1.2E-06 9.8E-01  425 2.8E-03 4.5E-02 
.01 3257 253.26 281.95 1.2E-03 3.7E-01  3274 -22.95 342.65 1.1E-05 9.5E-01  3101 4.7E-04 2.4E-01 
.05 12074 531.04 652.63 1.0E-03 4.2E-01  12157 768.11 774.25 2.4E-03 3.2E-01  10789 2.2E-03 6.5E-02 
.1 20541 1106.29 907.03 2.2E-03 2.2E-01  20786 1492.73 1095.78 4.5E-03 1.7E-01  17574 3.8E-03 2.4E-02 
.2 32970 1975.52 1280.99 3.6E-03 1.2E-01  33321 2288.71 1570.54 5.1E-03 1.5E-01  26832 4.0E-03 2.0E-02 
.3 42579 1295.83 1566.84 1.0E-03 4.1E-01  43035 2109.24 1917.27 2.9E-03 2.7E-01  33484 2.3E-03 6.1E-02 
.4 50063 1193.69 1785.84 6.7E-04 5.0E-01  50647 2391.45 2195.88 2.9E-03 2.8E-01  38577 1.4E-03 1.1E-01 
.5 55923 1372.43 1955.35 7.4E-04 4.8E-01  56561 2557.18 2411.99 2.7E-03 2.9E-01  42569 2.1E-03 7.0E-02 
1 71483 1309.49 2475.47 4.2E-04 6.0E-01  72214 3275.99 3025.07 2.8E-03 2.8E-01  42575 2.1E-03 7.0E-02 
Best 981 353.78 146.48 8.7E-03 1.6E-02  16426 1692.07 945.09 7.7E-03 7.4E-02  16198 5.8E-03 7.0E-03 

AUTISM 
.001 395 36.86 22.42 4.1E-03 1.0E-01  398 41.23 26.68 5.7E-03 1.2E-01  378 5.9E-03 6.8E-03 
.01 2773 136.96 71.64 5.5E-03 5.6E-02  2783 66.02 83.32 1.5E-03 4.3E-01  2598 3.9E-03 2.3E-02 
.05 10074 30.19 151.55 6.0E-05 8.4E-01  10190 0.28 172.98 6.3E-09 1.0E+00  9018 2.9E-04 2.9E-01 
.1 17191 -29.85 208.02 3.1E-05 8.9E-01  17372 -106.92 249.68 4.4E-04 6.7E-01  14759 4.8E-05 4.1E-01 
.2 28585 -194.34 293.13 6.6E-04 5.1E-01  28883 101.97 346.72 2.1E-04 7.7E-01  23303 1.6E-05 4.5E-01 
.3 37623 -211.5 366.47 5.0E-04 5.6E-01  38007 244.21 423.12 8.0E-04 5.6E-01  29782 5.5E-05 4.1E-01 
.4 45234 -310.28 422.83 8.1E-04 4.6E-01  45722 410.36 486.55 1.7E-03 4.0E-01  35086 9.1E-07 4.9E-01 
.5 51702 -261.18 476.03 4.5E-04 5.8E-01  52345 457.64 544.98 1.7E-03 4.0E-01  39506 5.9E-05 4.0E-01 
1 70503 -318.23 639.74 3.7E-04 6.2E-01  71325 670.74 733.77 2.0E-03 3.6E-01  39512 5.5E-05 4.1E-01 
Best 127 40.07 12.08 1.6E-02 9.6E-04*  177 31.25 16.95 8.0E-03 7.0E-02  252 1.0E-02 1.0E-04* 
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Table 4.13 Continued 
 

DEPRESSION 
.001 641 266.18 183.74 3.2E-03 1.5E-01  646 11.94 220.33 7.1E-06 9.6E-01  620 5.1E-04 2.3E-01 
.01 3884 339.05 552.12 5.7E-04 5.4E-01  3915 1493.38 639.03 1.3E-02 2.0E-02  3631 4.8E-03 1.2E-02 
.05 12486 1460.84 1189.33 2.3E-03 2.2E-01  12614 3302.37 1314.97 1.5E-02 1.2E-02  10954 8.0E-03 1.9E-03* 
.1 20386 369.11 1640.58 7.6E-05 8.2E-01  20546 3786.15 1845.69 1.0E-02 4.1E-02  17239 3.1E-03 3.7E-02 
.2 32442 813.68 2236.18 2.0E-04 7.2E-01  32812 5840.58 2533.47 1.3E-02 2.2E-02  26191 3.0E-03 3.9E-02 
.3 41728 1773.57 2730.77 6.3E-04 5.2E-01  42222 7569.68 3060.73 1.5E-02 1.4E-02  32859 3.4E-03 3.1E-02 
.4 49355 1065.6 3142.65 1.7E-04 7.3E-01  49859 7774.75 3496.18 1.2E-02 2.7E-02  38098 3.5E-03 2.9E-02 
.5 55660 1445.53 3484.21 2.6E-04 6.8E-01  56149 8646.01 3898.56 1.2E-02 2.7E-02  42242 3.6E-03 2.7E-02 
1 72440 363 4467.8 9.9E-06 9.4E-01  73295 11196.08 5085.5 1.2E-02 2.8E-02  42248 3.6E-03 2.7E-02 
Best 7986 1782.61 876.33 6.2E-03 4.2E-02  16231 4586.44 1574.04 2.0E-02 3.8E-03  9887 1.1E-02 3.5E-04* 

EDUCATIONAL ATTAINMENT 
.001 1908 190.16 389.9 3.6E-04 6.3E-01  1925 -345.11 453.96 1.4E-03 4.5E-01  1691 3.2E-04 2.8E-01 
.01 5999 1449.79 816.48 4.7E-03 7.6E-02  6079 -561.21 988.85 7.8E-04 5.7E-01  5269 7.3E-04 1.9E-01 
.05 14813 2295.55 1491.04 3.6E-03 1.2E-01  14998 29.52 1741.88 6.9E-07 9.9E-01  12525 4.0E-04 2.6E-01 
.1 22192 2457.79 1972.38 2.3E-03 2.1E-01  22488 -765.85 2288.18 2.7E-04 7.4E-01  18271 4.7E-05 4.1E-01 
.2 33349 2783.27 2603.99 1.7E-03 2.9E-01  33747 -1856.03 3064.26 8.8E-04 5.5E-01  26632 1.1E-04 3.7E-01 
.3 42183 3448.7 3165.53 1.8E-03 2.8E-01  42647 -2093 3651.28 7.9E-04 5.7E-01  32802 2.5E-04 3.1E-01 
.4 49541 4234.88 3634.36 2.0E-03 2.4E-01  50043 -2060.68 4192.63 5.8E-04 6.2E-01  37930 3.7E-04 2.7E-01 
.5 55741 4897.39 4046.98 2.2E-03 2.3E-01  56262 -2113.64 4598.5 5.1E-04 6.5E-01  42223 1.9E-04 3.3E-01 
1 73586 5578.98 5241.43 1.7E-03 2.9E-01  74239 -3135.83 5997.58 6.6E-04 6.0E-01  42229 1.8E-04 3.3E-01 
Best 8694 2247.35 1046.20 6.9E-03 3.2E-02  2519 -667.56 546.24 3.6E-03 2.2E-01  5698 1.9E-03 7.9E-02 
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Table 4.13 Continued 
 

INSOMNIA 
.001 513 -59.68 70.87 1.1E-03 4.0E-01  512 -10.94 78.2 4.7E-05 8.9E-01  492 2.6E-04 3.0E-01 
.01 3151 -81.00 197.04 2.5E-04 6.8E-01  3179 145.32 229.56 9.7E-04 5.3E-01  2965 3.3E-05 4.3E-01 
.05 10780 187.15 415.64 3.1E-04 6.5E-01  10917 318.44 529.46 8.7E-04 5.5E-01  9609 4.0E-04 2.6E-01 
.1 18209 -41.91 588.82 7.6E-06 9.4E-01  18442 423.12 733.19 8.0E-04 5.6E-01  15632 8.8E-05 3.8E-01 
.2 29744 196.10 800.29 9.0E-05 8.1E-01  30066 126.79 1001.35 3.9E-05 9.0E-01  24419 5.3E-05 4.1E-01 
.3 39180 7.16 992.37 7.8E-08 9.9E-01  39574 -108.17 1234.9 1.9E-05 9.3E-01  31164 2.6E-05 4.3E-01 
.4 47116 -28.58 1155.77 9.2E-07 9.8E-01  47572 -412.83 1436.76 2.0E-04 7.7E-01  36631 1.0E-05 4.6E-01 
.5 53858 287.38 1286.38 7.5E-05 8.2E-01  54387 -381.29 1615.22 1.3E-04 8.1E-01  41306 6.0E-06 4.7E-01 
1 73561 967.55 1740.26 4.7E-04 5.8E-01  74257 -333.67 2178.15 5.7E-05 8.8E-01  41306 6.0E-06 4.7E-01 
Best 871 -134.67 92.38 3.2E-03 1.5E-01  4993 307.56 302.00 2.5E-03 3.1E-01  1667 2.1E-03 7.2E-02 

LONELINESS 
.001 287 -4.26 18.68 7.8E-05 8.2E-01  287 32.2 22.48 4.9E-03 1.5E-01  285 1.6E-04 3.4E-01 
.01 2217 -67.07 63.49 1.7E-03 2.9E-01  2234 119.88 73.14 6.4E-03 1.0E-01  2136 1.8E-05 4.5E-01 
.05 8499 -196.61 141.84 2.9E-03 1.7E-01  8614 236.84 168.42 4.7E-03 1.6E-01  7732 3.8E-05 4.2E-01 
.1 15034 -422.9 205.96 6.3E-03 4.0E-02  15200 251.73 241.53 2.6E-03 3.0E-01  13165 6.9E-06 4.7E-01 
.2 25754 -508.62 303.23 4.2E-03 9.4E-02  26128 401.9 354.28 3.1E-03 2.6E-01  21488 1.1E-04 3.7E-01 
.3 34395 -697.01 379.36 5.1E-03 6.7E-02  34949 396.99 447.49 1.9E-03 3.8E-01  27921 8.9E-06 4.6E-01 
.4 41805 -711.61 438.51 4.0E-03 1.1E-01  42427 465.96 516.5 2.0E-03 3.7E-01  33160 1.6E-05 4.5E-01 
.5 48052 -639.73 495.18 2.5E-03 2.0E-01  48753 502.07 583.75 1.8E-03 3.9E-01  37422 3.2E-05 4.3E-01 
1 66669 -821.71 682.87 2.2E-03 2.3E-01  67393 701.88 795.43 1.9E-03 3.8E-01  37422 3.2E-05 4.3E-01 
Best 14725 -443.64 204.34 7.0E-03 3.0E-02  6029 262.73 135.62 9.0E-03 5.3E-02  5902 1.1E-03 1.4E-01 
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Table 4.13 Continued 
 
  TEDS   CogBIAS   Meta-analysed data 
PT N SNPs b S.E R2 p   N SNPs b S.E R2 p   N SNPs rg p 

SUBJECTIVE WELLBEING 
.001 541 -159.5 136.88 2.0E-03 2.4E-01  542 -248.17 167.46 5.3E-03 1.4E-01  299 2.7E-03 4.7E-02 
.01 3233 -179.91 421.99 2.7E-04 6.7E-01  3250 -1712.57 491.8 2.8E-02 5.5E-04*  1757 1.6E-03 9.9E-02 
.05 10620 -586.05 878.98 6.7E-04 5.1E-01  10729 -2887.42 1040.16 1.8E-02 5.8E-03  5259 1.1E-03 1.5E-01 
.1 17798 107.88 1273.01 1.1E-05 9.3E-01  17876 -3668.68 1447.26 1.5E-02 1.2E-02  8571 3.8E-05 4.2E-01 
.2 28906 483.27 1806.91 1.1E-04 7.9E-01  29064 -4777.27 2091.03 1.2E-02 2.3E-02  13395 1.3E-05 4.5E-01 
.3 37662 -172.12 2215.84 9.1E-06 9.4E-01  37991 -5328.51 2565.9 1.0E-02 3.8E-02  17013 5.1E-06 4.7E-01 
.4 44887 -143.19 2584.25 4.6E-06 9.6E-01  45170 -6410.16 2925.87 1.1E-02 2.9E-02  19898 1.5E-05 4.5E-01 
.5 51050 -743.67 2927.59 9.7E-05 8.0E-01  51494 -6527.08 3286.65 9.4E-03 4.8E-02  22289 7.9E-06 4.6E-01 
1 68952 -756.08 3875.3 5.7E-05 8.5E-01  69446 -8742.02 4393.82 9.5E-03 4.7E-02  22295 5.6E-06 4.7E-01 
Best 98 -123.40 50.76 8.8E-03 1.5E-02   6630 -2833.26 778.17 3.1E-02 3.1E-04*   434 6.1E-03 6.1E-03 
PT= P-value threshold for inclusion of SNPs in the model; Best= PGS at best threshold (highest Beta and lowest p); p < .05 are in bold; * p-value significant after 
multiple testing correction at p< .001 



 206 

4.4 Discussion 

The aims of this chapter were to examine the molecular genetic factors underlying the 

detected heritability of environmental sensitivity. Two distinct methodological 

approaches were applied to do this. First, a hypothesis-driven approach was taken by 

examining whether any of the previous genetic variants, found to moderate the effects 

of environmental influences consistent with differential susceptibility theories, may 

explain individual differences in environmental sensitivity. The associations between 

these genetic variants and sensitivity were examined at a variant and a gene level. 

Second, a hypothesis-free approach was taken by examining the genome-wide 

associations between environmental sensitivity and over 3 million common SNPs, as 

well as over 18,000 genes and 10,000 gene-systems that are believed to have functional 

consequences for biological pathways involved in human development. The genome-

wide approaches included GWAS, gene-based, gene-set as well as polygenic score 

analysis. Within these two distinct approaches, an important consideration was given to 

replicability, therefore the analyses were conducted across multiple datasets and the 

results were meta-analysed. A discussion of findings from these analyses are presented 

in the sections below, separately for candidate gene and genome-wide approaches, 

followed by evaluation of the limitations and implications of the studies herein, 

directions for future studies, and a final conclusion  

4.4.1 Candidate gene analysis findings 

In the candidate gene analysis, the main hypothesis was that the genetic variants that 

have been found to moderate the impact of environmental influences for better and for 

worse in previous differential susceptibility GxE studies, would be associated with 

individual differences in environmental sensitivity, as measured via a validated 

questionnaire in adolescents. The effects of variation in five VNTRs (5-HTTLPR, 

DRD4, MAOA, DAT1, STin2) were analysed, each having shown prior evidence of 

moderating the effects of a range of environmental factors in a manner consistent with 

differential susceptibility theories. In addition to this, the associations between 

environmental sensitivity and candidate sensitivity genes was examined using a gene-

based model, with the unit of association being the summarised gene-values rather than 

single SNPs within it. The analysis using VNTRs were examined in STRATEGIES data 

only, as they were not available in other datasets. The results from the VNTR analyses 

did not yield any significant associations between the five studied variants and 

environmental sensitivity. The direction of associations for DAT1, DRD4 and STin2 
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VNTRs were not in the expected direction either, where higher number of sensitivity 

alleles in these VNTRs associated with lower levels of environmental sensitivity.  

For gene-based analysis, associations were examined in three datasets (STRATEGIES 

(N= 838), TEDS (N=642) and CogBIAS (N= 295)). The results from gene-based 

analysis of 19 candidate genes identified significant associations for three genes: 

HTR2A, ESR1, and COMT in TEDS data. None of the significant associations were 

replicated across the other two datasets, and the associations were not robust to multiple 

testing correction. HTR2A gene encodes one of the receptors for serotonin (5-HT2 

receptors), which are primarily located in neocortex, caudate nucleus, nucleus 

accumbens, hippocampus, and smooth muscle cells. ESR1 encodes an estrogen receptor, 

which play an important role in hormone binding, DNA binding, and activation of 

transcription. Estrogen and its receptors are essential for sexual development and 

reproductive function, as well as pathological processes including breast cancer, 

endometrial cancer, and osteoporosis. COMT gene encodes the catechol-O-

methyltransferase protein, which is involved in the degradation of catecholamine 

neurotransmitters such as dopamine, epinephrine, and norepinephrine. COMT is one of 

the genes with the strongest evidence of their differential susceptibility effect on 

environmental factors. Variations in COMT VNTR for example, has been found to 

moderate the effects of prenatal smoking and aggressive behaviour in adolescents 

(Brennan et al., 2011), parenting quality on alcohol use (Laucht et al., 2012), childhood 

trauma on anxiety sensitivity (Baumann et al., 2013), and serious life events on 

childhood aggression (Hygen et al., 2015).  Though examined in smaller number of 

studies, HTR2A, and ESR1 have been nominated as sensitivity candidate genes for 

moderating the influence of childhood maternal nurturance on adult social attachment 

(Salo et al., 2011), and familial conflict/cohesion and onset of menarche (Manuck et al., 

2011). 

Despite these genes having been found to be associated with environmental sensitivity 

in the current study, the significant associations were found only in one sample out of 

the three, and none remained significant following correction for multiple testing. The 

significant results must therefore be interpreted very cautiously. Lack of significant 

associations between the phenotype of environmental sensitivity and some of the most 

robust sensitivity candidate VNTRs such as 5-HTTLPR, MAOA and COMT, may be 

interpreted from two angles: a) the current null findings hold true and that these variants 

are not implicated or as relevant to environmental sensitivity, despite strong evidence 
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from previous studies, b) the null findings represent a type II error, where there is an 

effect, but the current study failed to detect it, due to the limitations discussed later on in 

this section.  

The first interpretation is plausible in light of two main points. First, previous GxE 

studies and the current study differ in how they conceptualised environmental 

sensitivity. That is, GxE studies capture operational sensitivity as variations in a 

measured response (e.g. depression/no depression) to a specific measured 

environmental influence (e.g. traumatic life events), whereas the current study measures 

sensitivity as a personality trait, hypothesised to be relatively stable across time and 

context of an individual. This latter conceptualisation means that while the overall 

pattern of behaviour may reflect generally heightened sensitivity to environmental 

stimuli, the reactions/outcomes in specific context may not consistently reflect this. The 

opposite holds for the operational concept of sensitivity in GxE studies, where 

responses are context/outcome specific. This is more evident when we have a closer 

look at the range of environmental factors and outcomes that are generally studied with 

each candidate gene. For example, SLC6A4 and other serotonin system genes are 

commonly studied in the context of stressful/traumatic life events and internalising 

behaviours, whereas DRD4 is commonly studied with externalising behaviours, mainly 

due to these genes hypothesised biological relevance for these psychological outcomes, 

rather than because they are specifically related to the phenotype of environmental 

sensitivity. As noted in the introduction, the same genes that underlie significant 

differential response to environmental influences may therefore not be implicated as 

strongly in the phenotype of sensitivity. This interpretation is also supported by Chen et 

al. (2011), who showed that several of the dopaminergic candidate sensitivity genes 

(DRD4, DAT1, COMT and MAOA) selected from previous GxE studies were not 

significantly associated with variations in the environmental sensitivity phenotype.  

The second point that further validates the possibility the candidate gene findings are 

truly null, relates to the fundamental limitation of candidate gene approaches. That is, 

the methodological issues such as vague biological hypothesis for candidate gene 

selection, and most importantly, that the effect of single or multiple gene variants on 

complex traits is so small that the significant findings from previous GxE studies most 

likely reflect false positives, in these largely underpowered samples. Though it is true 

that the samples used in the current study were also underpowered to detect the more 

realistic effect sizes (< .02%) for these variants, it was sufficiently powered to detect the 
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kind of effects reported in previous candidate GxE studies. For example, Pluess et al. 

(2010) found a significant interaction effect consistent with differential susceptibility 

for 5-HTTLPR and life events in predicting neuroticism, in a sample of 118 individuals. 

The effect size for the interaction was ƒ2 = .04. Considering that interactions are 

statistically harder to detect than main effects (Duncan & Keller, 2011; Munafo & Flint, 

2009), and the STRATEGIES sample was almost 8 times larger and better powered to 

find a similar effect size, but failed to do so, further strengthen the proposition that the 

candidate genes identified through GxE studies may not be as robust as they appear. In 

light of these limitations, it is possible that none of the previously hypothesised 

sensitivity genes can be considered robust candidates that play a large or significant role 

in the biological aetiology of a complex trait such as the phenotype of environmental 

sensitivity. If sufficiently powered studies that search the entire genome for associations 

find only tiny effects, then large effects found in studies with sample sizes in hundreds 

are likely to be false positives. This has been shown empirically for general intelligence 

(g) for example, where using a sample of 10,000 participants, Chabris et al. (2012) 

failed to replicate the associations between g and 12 candidate genes.  

The second interpretation, that the null results from the current study represent a type II 

error, may be plausible in light of the methodological differences in the current study 

versus previous candidate gene studies. For example, while previous studies used a 

purely hypothesis-driven approach, by examining a specific SNP within a gene and 

specifying which allele in each SNP is the sensitivity allele, the gene-based method 

included all SNPs within a gene and did not specify the sensitivity allele for the 

included SNPs in a gene. Another point related to this, is how rare alleles are treated 

across different studies of VNTRs. While some exclude these individuals, other studies 

assimilate them into the main genotype categories (e.g. 5 or 6 repeats are grouped with 

more prevalent 7 repeats), yet others create a separate genotype category (e.g. 7R, 9R, 

other). Since there is no clear consensus across studies, the approach depends on the 

sample characteristics and the authors’ choice. The approach in the current study was to 

exclude those individuals with rare alleles, however, the difference in the approach 

taken here versus other studies is unlikely to be an important influencer since the 

number of excluded individuals were small. The other potential reason for this study not 

finding significant associations for candidate genes may be due to the measure of the 

phenotype of sensitivity. It is possible that the sensitivity reflected in the Highly 

Sensitive Personality scale reflects more negative aspect of sensitivity, which would 

bias the results towards associations that reflect negative sensitivity rather than 
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sensitivity to both positive and negative influences. This is plausible, considering the 

findings from Chapter 2, showing that sensitivity as captured by the HSC scale was 

more strongly associated with negative outcomes such as depression, anxiety and 

neuroticism. In addition, the heritability analyses in Chapter 3 found that the three 

subscales of HSC capture the general domain of sensitivity, but also that its subscales 

reflect more specific aspects of sensitivity, such as sensitivity to more positive appraisal 

of environmental exposures through AES, sensitivity to more negative appraisal of 

environmental influences as through EOE, and heightened negative reactivity to 

unpleasant sensory sensations through LST. Examining the genetic associations of these 

relatively distinct components may have shown different associations with these 

candidate genes and sensitivity. Though important to consider, the subscales were not 

examined in the current chapter due to the scope of the thesis and the need for multiple 

testing correction for three additional sets of analyses, which would have gravely 

impacted the power.  

Overall, the results of candidate gene studies emphasised the limitation of candidate 

gene-approaches in examining the genetic basis of environmental sensitivity and that 

the top variants from GxE studies may not be most relevant to individual differences in 

environmental sensitivity. 

4.4.2 Genome-wide analysis findings 

In the genome-wide approaches the main aim was to take an exploratory approach to 

identify SNPs, genes and biological pathways that are significantly associated with 

individual differences in environmental sensitivity. To do this, first a GWAS was 

conducted to examine the associations between over 3 million common SNPs and 

environmental sensitivity.  Gene-based analysis was then conducted to examine the 

association between over 18,000 functional genes across the genome and environmental 

sensitivity, followed by examination of the association between over 10,000 gene-sets 

belonging to biological pathways involved in human development and functioning. 

Finally, polygenic score analyses were conducted to examine the collective contribution 

of common SNPs to individual differences in environmental sensitivity. Similar to the 

candidate gene approaches, all analyses were conducted across both TEDS and 

CogBIAS where possible, and then meta-analysed.  

GWAS analyses, conducted separately in TEDS and CogBIAS, did not identify any 

SNPs that were associated with environmental sensitivity at genome-wide significance 
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threshold values. This was expected since the sample sizes were too underpowered to 

detect the expected small effects of single SNPs. The top SNP in each dataset, 

rs4918121 (TEDS) and rs6435333 (CogBIAS), were located in SORCS3 and KCNJ3 

genes respectively. SORCS3 shows high expression of transcription factors in brain and 

adrenal glands and Alzheimer disease, and KCNJ3 gene is involved in regulating 

heartbeat. Though highly speculative, it may be that variations in these genes may 

reflect the hypothesised physiological variations underlying sensitivity. Despite the 

potential lead, it was not possible to replicate the findings across datasets, since the top 

SNP from CogBIAS was not available in TEDS, and the top SNP in CogBIAS was not 

found to be significant in TEDS. Meta-analysis of the GWAS from the two samples 

identified rs17121012, located in the LOC101926964 gene, as the top SNP across 

samples. Though the specific function of this gene is as yet uncharacterized, genes in 

this family have been found to be involved in pancreatic function and a range of 

cancers, including Pancreatic Ductal Adenocarcinoma. The other two genes identified 

through meta-analysis included DHX35, involved in embryogenesis, cellular grown and 

division, and NFE2L2, involved in response to injury and inflammation and oxidative 

stress. Though the results of the GWAS were exploratory, and did not find genome-

wide significant hits due to low power, the results on the strength of association 

between these genetic variants and environmental sensitivity were used in down-stream 

polygenic score analyses which had more power to detect cumulative genetic effects. 

Gene-based analyses resulted in one genome-wide significant hit in TEDS for the 

LBX1 gene. LBX1 is a protein-coding gene, with its homeobox transcription factor being 

involved in spinal cord differentiation and somatosensory signal transduction (Xu et al., 

2012). This is an interesting finding, because of the hypothesised heightened sensory 

sensitivity aspect of environmental sensitivity, as reflected in highly sensitive 

personality. Variations in these genes therefore appear to be functionally relevant to the 

sensory differences in this trait. However, despite identifying one genome-wide 

significant and biologically relevant gene for environmental sensitivity, the association 

was not replicated in the CogBIAS data, perhaps due to the smaller sample size of 

CogBIAS, and the differences in age group, with CogBIAS including children of 13 

years and TEDS adolescents of 17 years. In the meta-analysis across the two datasets, 

LBX1 was still the top gene, though not genome-wide significant, proving further 

confidence that of all the 18,000 genes examined, LBX1 was the most significantly 

associated with environmental sensitivity.   
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Gene-set analyses also identified one genome-wide significant gene-set 

(PROTEIN_SERINE_THREONINE_PHOSPHATASE_ACTIVITY) in TEDS. The 

genes in this gene-set reflect the serine/threonine phosphatase pathway activity, which 

are assumed to be relevant for the regulation of many cellular mechanisms, including 

cell differentiation, protein synthesis, apoptosis (programmed cell death) and embryonic 

development (Shi, 2009). This significant association for this gene-set, however, was 

not replicated in CogBIAS and subsequently did not appear as the top gene-set in the 

meta-analysis. The top gene-set from the meta-analysis was 

MIKKELSEN_ES_ICP_WITH_H3K4ME3_AND_H3K27ME3, with genes in this 

gene-set proposed to be relevant to expression and regulation of embryonic stem cells. 

While this gene-set was significant in both datasets, the p-value did not pass genome-

wide corrected threshold. The lack of replication of the genome-wide significant hit 

from TEDS may be attributed to the low power in CogBIAS and differences in sample 

characteristics.  

Polygenic score analyses were conducted using two main approaches, first, to predict 

environmental sensitivity in CogBIAS, based on a PGS of sensitivity from TEDS and 

also from a PGS of differential susceptibility, and second, to conduct cross-trait analysis 

to predict environmental sensitivity in TEDS and CogBIAS data, using PGS of a range 

of other related phenotypes (i.e. the Big Five personality traits), psychopathologies 

(autism, anxiety, depression, ADHD, insomnia, loneliness), and positive outcomes 

(wellbeing, educational attainment). Genetic correlation analyses were also conducted 

on the meta-analysed TEDS-CogBIAS GWAS summary statistics and these traits. 

According to the results, the polygenic score of environmental sensitivity from TEDS 

explained 1.1% of the variance in environmental sensitivity in CogBIAS. The amount 

of variance explained was small, which is not surprising considering the small sample 

sizes in both discovery and replication steps. The significant prediction provided 

evidence that the genetic factors underlying variations in environmental sensitivity 

reflect a polygenic effect on the trait. Were the samples larger, the analysis would have 

had more power to explain larger amount of variance. The lack of more robust 

associations may also reflect the sample characteristics as noted earlier, with individuals 

from the different samples being at different developmental stages during data 

collection. Specifically, the phenotypic manifestations of environmental sensitivity, or 

subjective awareness of participants’ own tendencies and reactions may be less 

developed in childhood than in adolescents.  In addition, the contribution of genetic 
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effects to sensitivity may be increasing with age, a phenomenon that has been well 

established for a number of different complex phenotypes such as intelligence 

(Trzaskowski, Yang, Visscher, & Plomin, 2014)  

The results of the polygenic score of differential susceptibility by Keers et al. (2016)  

predicting environmental sensitivity in CogBIAS was not found to be significant. The 

lack of a significant association may be due to two main factors. Firstly, the samples 

were small in both discovery (N= 1,026) and target (N= 395) datasets, meaning they 

were underpowered. Secondly, the polygenic score was created based on MZ twins 

differences on emotional symptoms, so although the scores represent differential 

reactivity to environmental influences that are relevant for emotional problems, they are 

biased towards heightened sensitivity to negative, rather than both positive and negative 

environmental influences, as environmental sensitivity is conceptualised to be.  

The cross-trait polygenic score analyses yielded several significant associations, some 

of which were replicated across datasets and also robust to multiple testing correction. 

In TEDS there were significant associations between environmental sensitivity and PGS 

of all examined phenotypes, except for neuroticism and insomnia. In CogBIAS, there 

were significant associations between environmental sensitivity and PGS of openness, 

extraversion, neuroticism, depression, loneliness, and subjective wellbeing. The 

replications across datasets for significant associations between environmental 

sensitivity and PGS of openness, extraversion, subjective wellbeing, depression and 

loneliness, strengthened the evidence for these findings. These associations were robust 

to multiple testing correction for openness, extraversion, subjective wellbeing, autism, 

and depression. PGS of openness, extraversion, subjective wellbeing were the most 

predictive, explaining over 3% of the variation in environmental sensitivity, followed by 

depression at 2% and autism at 1.6%.  

Polygenic score analyses on the meta-analysed TEDs and COGBIAS sample, further 

validated these findings. There were significant genetic correlations between subjective 

wellbeing, neuroticism, anxiety, autism, openness, extraversion and depression, with the 

latter four being robust to multiple testing correction. The cross-trait polygenic findings 

are consistent with evidenced phenotypic associations in previous research. High 

sensitivity has been associated with higher autistic symptoms (Liss, Mailloux, & 

Erchull, 2008), higher neuroticism (Smolewska et al., 2006; Sobocko & Zelenski, 

2015), and higher anxiety and depression (Bakker & Moulding, 2012; Liss et al., 2008), 

but lower levels of life satisfaction (Booth et al., 2015) and extraversion (Smolewska et 
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al., 2006; Sobocko & Zelenski, 2015) and higher openness (Smolewska et al., 2006). 

The results thus suggest that the phenotypic correlations are partially due to overlapping 

genetic influences. 

Apart from the phenotypic correlations, multivariate twin results with personality traits, 

depression and anxiety in Chapter 3 provided initial support for the presence of shared 

genetic factors between environmental sensitivity and extraversion, neuroticism, 

anxiety, and depression.  The polygenic score results supported the twin model findings 

for all four phenotypes, with depression being the most robust. This is perhaps due 

partly to the variation in the quality of the phenotype measures in the discovery sample, 

as larger samples technically provide more power, but impact the phenotype quality due 

to the greater mix of composite samples and phenotype measures. 

4.4.3 Implications 

The results from the current chapter have several implications for our understanding of 

the genetic factors underlying environmental sensitivity. 

First, genome-wide polygenic approaches were found to be more suitable to studying 

environmental sensitivity than candidate gene approaches. Despite evidence from 

previous candidate GxE studies, the current study failed to detect any significant genetic 

main effects on the phenotype of environmental sensitivity. This indicates that previous 

studies might have put undue emphasis on candidate gene findings and that the genetic 

structure of environmental sensitivity seems to be more complicated than the 

serotoninergic and dopaminergic related genes most frequently studied. Though the 

current study was sufficiently powered to detect the effect sizes previously reported for 

these candidate genes, these variants were not found to be significant contributors to the 

phenotype of environmental sensitivity. While lack of a significant contribution does 

not negate the possibility that they are involved, it does indicate that these genetic 

factors do not contribute as much as expected. Instead, the findings from genome-wide 

approaches, especially the cross-trait correlations explained more of the variance in 

environmental sensitivity. This, due to the larger sample size of the discovery sample 

and also the methodological approach of calculating additive effects, indicates that 

genome-wide polygenic approaches may be more appropriate for studying the genetic 

basis of environmental sensitivity. The null findings also highlight that it is important to 

examine genetics of environmental sensitivity as a phenotype since it cannot be 

assumed that the same genes that appear to moderate the impact of specific 
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environmental influences are the same as those that reflect general tendencies in 

sensitivity to environmental influences, as the trait conceptualisation of sensitivity 

suggests.  

Second, findings from the current study provides further evidence that environmental 

sensitivity, like other measures of personality, is a complex trait influenced by many 

genetic variants of small effect. Such effects may not be detected in GWAS of 

environmental sensitivity, unless much larger sample sizes are used.  

Third, the polygenic score of common SNPs explained a small proportion of variance in 

environmental sensitivity. As shown in Chapter 3, the heritability of environmental 

sensitivity was estimated at 47 %, using twin design. This is almost 15 times larger than 

the best polygenic score could predict at 3%. While, this “missing heritability” in 

molecular genetic studies (Maher, 2008) is partly a function of low power to detect 

smaller effects, other potential mechanisms have been proposed, including the 

contribution of other variants not included in polygenic scores such as CNVs, epigenetic 

processes, or GxE interactions. The results from the current study indicate the 

importance of using sufficiently powered samples, but also investigating the genetics of 

environmental sensitivity in the context of these other variations.  

Fourth, cross-trait approaches are promising and can be informative in understanding 

the genetics of environmental sensitivity. The findings from cross-trait polygenic 

analyses confirmed the results of multivariate twin analysis from Chapter 3, showing 

that although environmental sensitivity and common personality traits have distinct 

phenotypic presentations, they share a substantial genetic basis. This was the first study 

to examine the genetic correlation between these traits using molecular genetic data. 

While genetics of environmental sensitivity is a new area of research, personality and 

other psychiatric outcomes have been studied for longer, with more developed 

biological hypotheses and correlates. In order to understand environmental sensitivity, 

we can build on the existing research on these better studied traits to examine how they 

relate to mechanism involved in environmental sensitivity, or those that leads to their 

phenotypic co-presentation and distinctiveness. 

Fifth, genome-wide results indicated that genes and pathways other than those 

implicated in the brain may be relevant for individual differences in environmental 

sensitivity. The exploratory GWAS, gene-based and gene-set analyses identified several 

novel genes as candidate sensitivity genes and future research might benefit from 
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widening the search to genes beyond the dopamine and serotonin system genes, to those 

that are more broadly expressed and involved in embryonic development and other 

physiological systems not directly implicated in brain function. 

4.4.4 Strengths and limitations 

The main strengths of the current study were this being the largest candidate genes 

study of environmental sensitivity phenotype and the first ever genome-wide study of 

this trait. In addition, the most recent approaches in behavioural genetic research were 

applied to studying environmental sensitivity including gene-based and gene-set 

analysis to explore its genetics from a functional biological perspective. The use of 

multiple samples and meta-analysis allowed greater sensitivity and assessment of the 

reliability of significant findings. There were, however, several limitations. Firstly, all 

of the analyses conducted here were only able to capture main effects of genetic 

variation on environmental sensitivity. A more comprehensive investigation would have 

involved examining polygenic x E effects on individual differences in environmental 

sensitivity, which would enable identifying genes that are indirectly involved in this 

trait through their interaction with environmental influences. Secondly, the GWAS 

analyses were underpowered and exploratory, and the results should be considered 

preliminary only. While there was sufficient power to detect polygenic effects, the small 

sample size from the initial discovery in TEDS meant that the study were largely 

underpowered to predict sensitivity in CogBIAS or to detect smaller effects in cross-

trait analyses. Thirdly, the analyses investigated only the total score from the highly 

sensitive personality scale. Despite the previous heritability analyses indicating that 

distinct genetic influences may underlie the three subscales of the measure, these were 

not examined separately for their molecular genetic associations. Conducting separate 

analysis on the subscales might have revealed genetic factors that are not captured by 

the total score. The decision to not pursue this line of analysis in the current chapter was 

made due to considerations for power and general scope of the thesis. Finally, the 

current study included children and adolescents, which may limit extending of the 

findings to adults. The earlier developmental stage of the sample accompanies the large 

changes in many other physiological domains that may be affecting the presentation of 

symptoms that are similar to environmental sensitivity. An Adult sample might 

therefore show different associations, when the phenotype is more stable and other 

extreme biophysical changes of adolescents are not emphasised.  
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4.4.5 Future research 

Future studies should aim to address the limitations of the current study as noted in the 

previous section, by including larger sample sizes to provide better-powered studies for 

genome-wide approaches. Since this was the first comprehensive study of genetics of 

environmental sensitivity, the results may be considered preliminary and future studies 

are required to further validate the findings of the current study.  

The current study only examined common SNPs, but it is likely that other types of 

genetic factors are involved. Future studies could use other DNA structural variations 

such as CNVs, insertions/deletions or rare variants to study the genetics of 

environmental sensitivity. The current study examined only main effects of genes on 

environmental sensitivity, and future studies would benefit from using a longitudinal 

Genome-wide x E design for this purpose.  

Importantly, while the genetic associations with environmental sensitivity implicate 

these genes as sensitivity genes, future studies could test their implied association from 

a different perspective, by testing whether they do indeed moderate the impact of 

environmental influences for better and for worse. Finally, while the current study 

showed that the genetic basis of environmental sensitivity is polygenic, and that 

pathways other than those related to brain and serotoninergic and dopaminergic are 

worth studying, the biological consequences of the SNPs that explain 3% of variation in 

environmental sensitivity are as yet unknown.  Future follow up studies could examine 

how the SNPs from significant PGS of different traits may relate to the biology and 

potential mechanisms of sensitivity.  

4.4.6 Conclusions 

The results of the analyses in the current chapter included several novel findings in the 

genetics of environmental sensitivity. The exploratory genome-wide approaches 

identified potential novel sensitivity genes, including LOC101926964, NFE2L2, and 

DHX35 from GWAS meta-analysis, and LBX1 from the gene-based analyses. The gene-

set analysis identified two potentially relevant gene-pathways 

(PROTEIN_SERINE_THREONINE_PHOSPHATASE_ACTIVITY; 

MIKKELSEN_ES_ICP_WITH_H3K4ME3_AND_H3K27ME3) for environmental 

sensitivity, with biological processes implicated in embryonic development, cell 

differentiation and apoptosis. The polygenic score analysis showed strong support for 

the polygenic nature of environmental sensitivity and confirmed the findings from twin 
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model analysis in Chapter 3, by showing significant genetic correlations between 

extraversion, neuroticism, anxiety and depression, and first evidence of genetic 

correlation between autism, openness and subjective wellbeing. The polygenic score 

results provide encouraging evidence for future investigations of the genetics of 

environmental sensitivity using polygenic genome-wide approaches
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Chapter 5 

Genetic sensitivity and response to positive and 

negative environmental influences 
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5.1 Introduction 

The results from Chapter 4 identified molecular genetic factors associated with 

individual differences in sensitivity to environmental influences. The next step, after 

identifying what genetic factors underlie environmental sensitivity, is to examine how 

they operate as individual-specific characteristics to influence mental health and 

wellbeing outcomes. As detailed in Chapter 1, differential susceptibility theories 

suggest that sensitivity functions in a “for better and for worse manner”. Specifically, 

more sensitive individuals respond more negatively to adversity, but also benefit more 

from positive features of the environment. The implication of this pattern of interaction 

with the environmental context is that heightened sensitivity increases the risk of 

psychopathology in adverse contexts, but would also be associated with more positive 

outcomes in response to environmental contexts that promote wellbeing. Genetic 

sensitivity therefore functions in a for better and for worse manner (Belsky, Fearon, & 

Bell, 2007). 

The main aim of the current chapter is therefore to examine this proposed function of 

sensitivity. Specifically, the current chapter examines how genetic sensitivity moderates 

the effects of environmental factors on clinical depression and psychological distress 

and response to therapeutic psychological interventions. These outcomes are measured 

in three separate studies with different designs, using a polygenic score-x-environment 

interaction paradigm. The first study examines the interaction between genetic 

sensitivity and childhood psychosocial environmental quality in predicting 

psychological distress across the life span in adulthood, in a prospective longitudinal 

cohort study. The second study examines the interaction between genetic sensitivity and 

environmental factors such as childhood maltreatment and recent stressful life events on 

risk for clinical depression, in a cross-sectional case/control design. The third study 

examines the interaction between genetic sensitivity and three types of Cognitive 

Behavioural Therapy (CBT) treatments in predicting reduction of paediatric anxiety 

symptoms. 

The following section includes a detailed review and evaluation of the GxE literature 

that have examined the moderating function of genetic sensitivity on environmental 

exposures on a range of mental health outcomes, according to the differential 

susceptibility theories. 
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5.1.1 Review of environmental sensitivity GxE research 

The GxE literature in support of the hypothesised moderating action of genetic 

sensitivity can be categorised into two main groups. The first group includes earlier 

GxE studies, the results of which provide evidence for environmental sensitivity, but 

which have not been conducted under the differential susceptibility theories framework 

from the outset. The second group includes more recent GxE studies (from 2009 

onwards), which have been conducted from the outset under the differential 

susceptibility framework and are specifically set out to test the proposed GxE function 

of environmental sensitivity. The first group of studies has been used as initial evidence 

for differential susceptibility. However, the design of early GxE studies (e.g. not having 

a full range of the environmental variable from the negative to the positive end of the 

spectrum) naturally limits the interpretation of findings as evidence for a differential 

susceptibility model. The literature review in this section therefore concentrates on 

recent GxE studies that have been conducted under the differential susceptibility 

framework including an environmental variable that ranges from negative to positive.    

As discussed in detail in Chapter 4, the majority of GxE studies in environmental 

sensitivity include testing the moderating effects of one or several candidate sensitivity 

genes, usually from serotoninergic or dopaminergic systems, on a wide range of 

environmental factors on outcomes including both normal developmental outcomes and 

psychopathology (e.g. literacy, depression). Meta-analyses of the studies with serotonin 

transporter gene variants (van IJzendoorn et al., 2012) and dopamine-related genes  

(Bakermans-Kranenburg & van IJzendoorn, 2011) have found GxE interaction patterns 

consistent with differential susceptibility theories. For example, the 5-HTTLPR s-allele 

has been associated with higher neuroticism in the context of negative life events, but 

also found to be associated with lower levels of neuroticism in the context of positive 

life events (Pluess et al., 2010). Elsewhere, the same genotype has been found to 

moderate for better and for worse, the impact of parenting practices on children’s 

positive affect (Hankin et al., 2011), and of perceived racial discrimination and child 

maltreatment on conduct problems and antisocial behaviour (Cicchetti et al., 2012). In 

other studies with DRD4 as marker of sensitivity, higher genetic sensitivity (DRD4 7- 

repeat genotype) was associated with higher inattention in the context of insensitive 

early maternal care, but also with lower levels of inattention in the context of more 

sensitive maternal care (Berry et al., 2013), with development of social competence in 

interaction with quality of child-care (Belsky & Pluess, 2013b), and pro-social 
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behaviour (Knafo et al., 2011) and children’s externalizing behaviour (Bakermans-

Kranenburg et al., 2008) in interaction with parenting practices. 

Other studies have used an aggregated measure of genetic sensitivity by considering 

several rather than single candidate genes, and report similar findings. For example, 

using longitudinal data from a sample of over 500 individuals, Simons et al. (2011) 

found that functional polymorphisms in the dopamine receptor gene (DRD4) and 

serotonin transporter gene (5-HTTL) moderated the effects of positive (i.e. supportive 

parenting, religious participation, neighbourhood informal social control, and school 

involvement) and adverse (i.e. harsh parenting, racial discrimination, neighbourhood 

victimization, and violent peers) social conditions on aggression in early adulthood. The 

interaction pattern supported a differential susceptibility perspective, such that 

heightened genetic sensitivity was associated with more aggression in adverse 

environmental contexts, and less aggression in more positive contexts.  In another study, 

Dalton et al. (2014) examined the effects of Brain-Derived Neurotrophic Factor (BDNF) 

and 5-HTTLPR, by comparing the effects of family environment on depression scores 

(N=363) as a function of a cumulative sensitivity genotype, defined as presence of both, 

either, or neither sensitivity alleles (i.e. BDNF Met allele and 5-HTTLPR short allele). 

They found that genetic sensitivity interacted with family environment quality to predict 

depression among males and females at age 15. The pattern of interaction supported a 

differential susceptibility model, such that those with sensitivity alleles experienced 

more or less depressive symptoms depending on quality of the family environment. 

They also found that after age 15, the interaction was only predictive of depression 

among females, and reflected a diathesis-stress model of gene-environment interaction. 

Although valuable in establishing an association between genotype, environmental 

factor and the outcomes, all of the studies reviewed so far have a correlational design. 

Experimental GxE designs are the ideal way for inferring causality of the effects, 

however, they pose considerable ethical issues were researchers to expose some 

individuals to adversity while allocating others to nurturing conditions. However, 

experimental designs that consider treatment response can provide an ethical and 

powerful way to test whether the effects of environmental exposures (treatment type) on 

the outcome (treatment response) vary as a function of genotype. In addition to 

inferences on causality, the experimental GxE design results in lower measurement 

error, requires fewer participants, and has greater statistical power than correlational 

studies (McClelland & Judd, 1993). GxE research in environmental sensitivity has 



 223 

indeed taken advantage of the benefits of using this design. For example, Chhangur, 

Weeland, Overbeek, Matthys, and Orobio de Castro (2012) examined whether a 

polygenic score derived from five dopaminergic gene variants (DRD4, DRD2, DAT1, 

MAOA, and COMT) moderated the efficacy of a parenting intervention program for 

children’s behavioural problem in a randomized controlled trial design (N=341 families 

with children).  They found that boys carrying 3–5 sensitivity gene variants showed the 

largest reduction in behavioural problems at both post treatment and 8-month follow up, 

compared to less genetically-sensitive children.   

A meta-analysis of experimental studies in environmental sensitivity provided further 

support for this hypothesis (van Ijzendoorn & Bakermans-Kranenburg, 2015). This 

meta-analysis, which consisted of 22 experimental GxE studies (N= 3,000) showed that 

both the exon 3 DRD4 VNTR and 5-HTTLPR moderated response to interventions for a 

range of developmental outcomes including externalising problems, internalising 

behaviours, and cognitive development. The authors found that while the effect sizes for 

the interventions were moderate and significant for individuals with environmental 

sensitivity genotypes, for those with the alternative genotypes, the interventions were no 

more effective than the control condition.  Though encouraging, there is an important 

confound in the experimental studies of environmental sensitivity, whereby the majority 

of studies consist of interventions aimed at parents, in order to examine the effects of 

subsequent change in the environment on the child’s behaviour as a function of the 

child’s genotype. What is not accounted for in such studies is the genetic relationship 

between the parent and child, which may mean the more genetically sensitive children 

also have more genetically sensitive parents who benefited more from the intervention, 

and thus impacted the outcome indirectly that way.  

While not a test of genetic sensitivity, other experimental studies that have used the 

phenotypic measure of sensitivity, have also found similar results.  For example, a study 

by Pluess and Boniwell (2015) examined response to a school-based resilience-

promoting program aimed at reducing depressive symptoms in adolescents. They found 

a main effect of treatment for all individuals at 6 months follow up, but that the 

reduction in depression symptom was only significant at 12 months follow up for those 

adolescents who were more sensitive (higher scores on the highly sensitive personality 

questionnaire). In another recent study, Nocentini et al. (2018) tested whether individual 

differences in environmental sensitivity predicted treatment response in a large 

randomized controlled trial (N=2,042) of an anti-bullying intervention in school 



 224 

settings. They found that the intervention effect on victimization and internalising 

symptoms were moderated by environmental sensitivity, such that highly sensitive boys 

showed significantly larger reduction in victimization and internalizing symptoms than 

less sensitive boys. 

The majority of the studies reviewed so far have used single or multiple candidate genes 

to index genetic sensitivity in a correlational or experimental design. Using a genome-

wide PGS x E approach (gPGS x E), where the PGS is derived of genome-wide variants 

has been applied in several studies on depression (e.g. Mullins et al., 2016; Peyrot, 

Wouter J et al., 2014), but is yet to be employed in environmental sensitivity research, 

except for one study to date by Keers et al. (2016). Compared to candidate GxE, this 

approach captures the inter-individual variation in the genetic component across the 

whole-genome, rather than indexing variation as a function of a single variant; therefore 

should be able to explain more of the variation in the GxE model. In the only genome-

wide study of environmental sensitivity, Keers et al. (2016),  used a gPGSxE approach 

to test environmental sensitivity in a treatment response design. In this study, the 

authors first obtained a score of environmental sensitivity, by calculating differences in 

scores of emotional problems in MZ twin pairs. This score was then used as an outcome 

in a GWAS. Using the summary statistics from this GWAS, a PGS of environmental 

sensitivity was constructed in a separate sample of children undergoing psychological 

treatments for anxiety disorders. The authors showed that participants’ reduction in 

anxiety symptoms in response to three types of CBT (Individual, group or guided self-

help) differed as a function of their PGS. The results supported the differential 

susceptibility theories, whereby higher genetic sensitivity was associated with more 

discriminant reaction to the type of treatment received, with better response to 

individual CBT versus guided self-help, compared to less genetically sensitive 

individuals whose response did not differ across treatment types. While an innovative 

and intelligent approach was taken in this study to index genetic sensitivity, the one 

limitation may be that the PGS reflects more genetic sensitivity to environmental factors 

that are specifically involved in depression, rather than genetic sensitivity to all types of 

environmental influences.  

Overall, the reviewed literature provides evidence to support the proposition that 

environmental sensitivity moderates the impact of environmental influences on a range 

of mental health and related outcomes, with heightened sensitivity inferring greater risk 

for negative outcomes, but also more beneficial outcomes in more positive contexts. It 
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would be remiss, however, to not mention that some studies conducted within this 

framework have failed to find the hypothesised interaction pattern (e.g. see Belsky et 

al., 2014; Kochanska et al., 2011). Additionally, there are some limitations and gaps in 

the research reviewed so far, as will be the focus of the next section. 

5.1.2 Limitations of GxE research on environmental sensitivity 

The first limitation is the almost exclusive use of candidate genes to index genetic 

sensitivity, whereby all studies so far (expect for one by Keers et al. (2016))  have 

examined only one or several selected candidates. Briefly, the main limitation of this 

approach is that the effect of single or multiple variants on a phenotype, whether as a 

main effect or in an interactive model, is deemed to be too small to be biologically 

meaningful (see Chapter 4, Section 4.1.3 for a more detailed discussion). Using a 

polygenic score that summarises genetic differences using hundreds to thousands of 

genetic variants can better account for the more complex biological factors that are 

likely to be involved in interaction with the environmental influences that bring about a 

particular outcome (e.g. for depression see Mullins et al., 2016; Peyrot, W. J. et al., 

2014).  

The second limitation is related to how genetic sensitivity is identified. While the GxE 

studies in the field have so far identified certain genetic variants as genetic sensitivity 

candidates based on their pattern of interaction with environmental influences, none of 

these candidate genes have been previously examined for their association with 

phenotype of sensitivity. As per the results of analyses in Chapter 4, these previously 

strong candidate genes for sensitivity were not found to be associated with the only 

available phenotypic measure of sensitivity. These candidate genes may not therefore 

strictly reflect general sensitivity to environments, especially considering that much of 

these sensitivity genes have been consistently studied in the context of specific 

disorders (e.g. 5-HTTLPR and depression; DRD4 and externalizing behaviour; COMT 

and psychosis), and perhaps reflect genetic sensitivity to the specific environments that 

are relevant to the specific disorder. Therefore, constructing a GxE model, in which the 

genetic score reflects general sensitivity to a wide range of environmental factors, 

captured through the phenotype of sensitivity, may provide a more accurate 

examination of how genetic sensitivity relates to mental health outcomes. 

The third limitation relates to the lack of epidemiological/life-course studies of 

sensitivity. Although several studies have used a longitudinal design, via repeated 
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measurements across 3 to 4 years in specific developmental periods (e.g. Dalton et al., 

2014), there are to date, no GxE studies of environmental sensitivity across life span, 

bar one by Keers and Pluess (2017).  The cross-sectional or limited longitudinal design 

of the current studies means that so far our insight into if and how the effects of genetic 

sensitivity may change across the life span is very limited. In the only life span study of 

genetic sensitivity, Keers and Pluess (2017) used a PGS of environmental sensitivity 

from nine candidate genes, and childhood and adulthood material environment, to 

predict psychosocial distress in adulthood in a longitudinal cohort from 7 to 50 years 

old. Using linear mixture models, the authors reported that there was no significant gene 

by childhood environment or gene by adulthood environment interactions on 

psychological distress. However, they did find significant evidence for GxExE in 

predicting adulthood psychological distress. Specifically, for children with a low 

genetic sensitivity, childhood environment had little effect on their sensitivity to stress 

in adulthood. However, genetically sensitive children who experienced a positive 

childhood environment were less sensitive to the depressogenic effects of a poor 

environmental quality in adulthood. These findings suggest that sensitivity in adulthood 

may be a product of both genetic factors and early environment and future studies of 

sensitivity may need to take a developmental approach, taking into account both 

childhood and adulthood environments.  Nevertheless, the results of this study are 

affected by the limitations discussed above. That is, that they index genetic sensitivity 

via a handful of candidate genes with evidence from GxE studies, but no prior evidence 

of a direct association with the environmental sensitivity phenotype.  

The final limitation relates to the paucity of environmental sensitivity research with 

clinical outcomes. Much of previous GxE studies of environmental sensitivity have 

examined mental health outcomes using community samples and disorder symptoms 

rather than clinical diagnosis. It is therefore unclear how genetic sensitivity may relate 

to clinically-ascertained outcomes, either in terms of development of the disorder or 

treatment response. It is important to make a distinction between clinical outcomes 

versus symptoms, because it is possible that heightened sensitivity in adverse contexts 

impairs functioning to some extent, as for example reflected in elevated levels of 

depressive symptoms, but not to the extent that would contribute to the development of 

a clinically distinct disorder such as major depression diagnosis. In order to be able to 

extend the relevance of genetic sensitivity to psychopathology, empirical test of its 

association with clinically diagnosed disorders are therefore essential. 
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5.1.3 Aims  

The main aim of the current study was to examine how genetic sensitivity interacts with 

environmental factors to influence the risk of psychopathology and response to 

psychological intervention. This was tested using a GxE interaction design in three 

separate studies. The first study examines the interaction between genetic sensitivity 

and childhood psychosocial environmental quality in predicting psychological distress 

across life span in adulthood, in a prospective longitudinal cohort study of 2,863 

individuals from age 7 to 50. The second study examines the interaction between 

genetic sensitivity and environmental factors such as childhood maltreatment and recent 

stressful life events on risk for major depression, in a cross-sectional case/control design 

study of 2,434 individuals. The third study examines the interaction between genetic 

sensitivity and three types of Cognitive Behavioural Therapy (CBT) treatment in 

predicting reduction of paediatric anxiety symptoms in an experimental design study of 

over 900 individuals.  

These studies attempt to address the limitations and gaps in research identified in 

Section 5.1.2. To do this, all three studies used a genome-wide PGS of sensitivity 

developed in the previous chapter, rather than candidate genes to index genetic 

sensitivity. In addition, the PGS was derived from a validated measure of the 

environmental sensitivity phenotype, which captures general sensitivity to all 

environmental influences, rather than sensitivity to a measured environmental factor, as 

in previous GxE studies. Finally, a life course approach was taken in Study 1, in order 

to study how genetic sensitivity interacts with environmental factors to influence 

probability of psychopathology across life span. 

According to differential susceptibility theories, it is hypothesised for Study 1 and 2, 

that genetic sensitivity will infer a greater risk of psychopathology in adverse contexts, 

but that it is also associated with decreased risk in more positive contexts. A similar 

interaction pattern is expected to be found in Study 3, with polygenic score of 

sensitivity moderating response to treatment, with higher genetic sensitivity showing 

enhanced treatment response. 
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5.2 Methods 

Three data sets were used to examine the aims of the current chapter. The methods and 

analytical approaches for each of the three studies are presented in separate sections. All 

statistical analyses were carried out using STATA 12 (StataCorp, 2011).  

5.2.1 Study 1: The National Child Development Study (NCDS) 

5.2.1.1 Study 1: Sample, measures and procedures 

Data: NCDS is a continuing, multidisciplinary longitudinal British birth cohort study. 

The study followed 18,558 babies born in a single week in 1958, in England, Scotland, 

and Wales. The study collected information on physical development, education, social 

and economic circumstances, family life, health, welling and social participation at 9 

time points at ages 7, 11, 16, 23, 33, 42, 46, 50, and 55 years. During the follow-ups at 

ages 7, 11 and 16 years, the original birth cohort was augmented by including 

immigrants born in the relevant week, as identified from school registers. Detailed 

information on ethics approval and informed consent across the different data collection 

waves is available elsewhere (Shepherd, 2012).  

Genetic data was available from several genome-wide association studies of different 

subsamples of the NCDS cohort, including the Wellcome Trust Case Control 

Consortium’s Wave 1 and 2 controls, and the Type 1 Diabetes Genetics Consortium 

study, genotyped on Illumina and Affymetrix platforms. For the current study, in order 

to maintain compatibility with the other GWAS data used for polygenic scoring, only 

genotyped data from Illumina platform, imputed to human genome build 37 were used.  

Sample:  The current study included a subsample of 2,919 individuals from the NCDS 

data for whom genotype data were available. Following genotype data quality control 

procedures, 56 individuals were removed, leaving a final sample of 2,863 individuals 

(male=1,478, female=1,385). More detailed descriptive statistics of the sample for each 

age group are included in Section 5.3.1.1. 

Measures: The measures in the current study included psychological distress in 

childhood and adulthood, index of childhood psychosocial environmental quality, and 

the PGS of sensitivity derived from the meta-analysed GWAS results in Chapter 4. 

Psychological Distress in childhood was measured via the depression scale of Bristol 

Social Adjustment Guides (BSAG; Stott, 1963), collected at ages 7 and 11. BSAG is a 
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four-page booklet of 250 descriptions of behaviour, where teachers select the items that 

best describe the child. By summing up groups of items, a quantitative measure of 

child’s behaviour disturbances in several domains including depression, anxiety, 

hostility and restlessness are obtained. The depression scores were used in the current 

study to measure psychological distress in childhood. For adulthood measure of 

psychosocial distress, the Malaise Inventory (Rutter, Tizard, & Whitmore, 1970) was 

used at ages 23, 33, 42 and 50. Of the original 24 items in the inventory, nine (items 2, 

3, 5, 9, 12, 14, 16, 20, and 21) were available at each of the adult time points. These 

items covered symptoms of emotional disturbance and associated physical symptoms 

(e.g. “Do you feel tired most of the time?” “Do you often feel depressed?” “Are you 

easily upset or irritated?”). Items were rated as 0=No and 1=Yes, and a total score of 

overall psychological distress was obtained by summing up all items for those 

individuals with over 80% completeness rate for all 9 items. The total score was 

standardized prior to the analyses. The scale showed acceptable reliability at all ages 

(Cronbach alphas: 0.6, 0.73, 71, and .78 at 23, 33, 42, and 50 years, respectively).  

Psychosocial environment quality was indexed via a composite score of questions on 

socio-demographic and psychosocial environment during childhood (ages 7, 11, and 16) 

and adulthood (ages 23, 33, 42, 50). The Childhood environmental quality index 

included 5 questions at ages 7,11 and 16. The questions included questions such as 

whether the mother reads to the child (age 7), whether mum takes child for walks (age 

11), Child gets on with mother/father/siblings (age 16), Dad’s involvement in parenting, 

and mother/father’s interest in child’s education (all ages). All items were rated on a 

scale of 1= rarely/low to 3= always/high. A total score of environmental quality at each 

age was obtained by summing up all items for those individuals with over 80% 

completeness rate for all 5 items. A score of overall childhood environmental quality 

was obtained by calculating the average score across ages 7, 11 and 16 for each 

individual.  The scores were standardised for the analyses. For adulthood environmental 

quality index, the measure was composite score of 5 questions on participant’s 

employment status, partnership status, accommodation tenure (owner of property or 

rented), number of bedrooms, and social class (current or most recent occupation), rated 

on a scale of 0 to 1.  A total score of adult socioeconomic environmental quality was 

obtained by summing up all items for those individuals with over 80% completeness 

rate for all 5 items. The scores were standardised for the analyses. Higher scores on 

either index indicate higher quality of the childhood or adulthood environment. 
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Polygenic score of sensitivity was obtained from NCDS GWAS data, using summary 

statistics from meta-analysed GWAS of environmental sensitivity (1,035 individuals 

and 2,422,121 SNPs) as detailed in Chapter 4. The initial NCDS genotype data 

included 6,662,419 SNPs and 2,919 individuals. The genotype data for the current study 

were subjected to the same quality control procedure as described in Chapter 4, 

Section 4.2.2.2.  This included filtering out the data for Indels and rare SNPs (Maf < 

.01), per-SNP and per-individual missingness rates (> 1%), SNPs with deviation from 

HWE (p < 1x10-6), IBD outlier individuals (%IBD > .1875), and genome-wide 

heterogeneity individual outliers. The NCDS genotype data after all quality control 

steps included 5,854,454 SNPs and 2,863 individuals. Of the 2 million SNPs in the base 

dataset, 1,931,667 SNPs were available in NCDS data. Polygenic scores for each 

individual were obtained from SNPs in 69,311 clumps, at nine p-value thresholds (PT=. 

001, .01, .05, .1, .2, .3, .4, .5, and 1), using the same settings as described in Chapter 4, 

Section 4.2.2.4. Principal components of the genetic data were obtained using PCA in 

EIGENSTRAT, according to the same protocols as described in Chapter 4, Section 

4.2.2.2. The PCA identified 3 PCs to be included in the GxE analysis to control for 

population stratification effects. The genotype quality control and PCA procedures are 

presented in Figure 5.1a, 5.1b and 5.1c. 

 



 231 

 

Data received from 
NCDS 

6,662,419 SNPs 
2,919 individuals 

Removed Indels 
101,1926 variants were removed 

Removed  rare variants 
(MAF<.01) 

0 SNPs were removed 

Removed  SNPs and 
Individuals with missingness 

> 1%  

0 SNPs and 0 individuals were 
removed 

 
Checked HWE and Remove  
SNPs with HWE p-value < 

1x10-6  
  

3,2954  SNPs were removed 

 
Conducted IBD checks on LD 
pruned data to remove outliers  

(IBD > 0.1875) 
  

168,818  SNPs in LD pruned data 
0 individuals were removed 

 
Conducted PCA to remove 
outliers on significant PCs 

  

23 individuals were removed 

Final data set: 
 5,854,454 SNPs 
2,863 individuals 

 
Removed individuals with 

unusual patterns of genome-
wide heterogeneity (< 3 SD) 

  

33 individuals were removed 

Figure 5.1a Genotype data quality control process (Study 1) 
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Quality controlled NCDS 
data: 

168,818 LD-pruned SNPs 
2,919 individuals 

 
Conducted smart PCA to produce 100 PCs 

  

 
Tracey Widom test on PCs 

  

16 significant PCs 

 
Ran PCA again to remove outliers (3 SD) on 

the 3 principle components  
  

Scree plot after removal of outliers 
  

33 individual outliers removed 

3 significant PCs 

3 PCs included in 
analyses to control for 
population structure 

Scree plot shows 3 significant PCs 

 
Tested for association between PCs and 

phenotype 
  

No significant associations 

Figure 5.1b PCA analysis process (Study 1) 
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Figure 5.1c Scree plot of PCs after removal of individual outliers (Study 1) 
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5.2.1.2 Study 1: Data analysis 

Analytical approach: The study design was longitudinal, with psychological distress at 

6 time points as the outcome, two environmental factors (childhood psychosocial 

environment at 3 time points, and adult psychosocial environment at 4 time points), and 

9 polygenic scores at each time point.  The effects of childhood psychosocial 

environment and PGS on psychological distress across adulthood were examined using 

linear mixed effect models fitted with full maximum likelihood. By modeling the 

relatedness between repeated measures in the same individual as random intercepts, 

these models allowed data from each time point to be included simultaneously and to 

estimate overall effects of the childhood predictor across adulthood. The following 

parameters were included as fixed effects in the models: Childhood environment quality 

at age 7, 11, 16 or overall childhood environment (centred at mean), PGS (centered at 

mean), PGS x environment interaction term, principal components (3 PCs centered at 

mean) to account for population stratification effects, adult environment (centred at 

mean) to account for the concurrent effect of the environment, sex, and time (in 

decades) to account for the effects of time. All models included the random effects of 

individual to account for correlations between repeated measures from the same 

participant. In order to rule out gene-environment correlation (rGE) confounding the 

GxE effects, linear regression analyses were conducted to examine the association 

between PGS and environmental factors, in a model that included the environmental 

factor as the outcome and PGS as the predictor, with sex and 3 PCs as covariates.  

Data analysis steps: First, the main effects of the environmental factors and the 

polygenic score on adulthood psychological distress were examined. This was done by 

conducting a series of linear mixed effect models with psychological distress as the 

outcome, each of the environmental factors (environmental quality at age 7, 11, 16, 

overall childhood environment or concurrent adult environment) as a fixed effect. 

Similar models were used to test each of the polygenic scores of environmental 

sensitivity on psychological distress. All models included sex and time as fixed effect 

covariates and individual as a random effect. Polygenic analysis also included the first 3 

PCs to control for the effects of population stratification. Second, the moderating effects 

of PGS on the link between childhood environmental quality and psychological distress 

in adulthood was examined. This was done by conducting a series of linear mixed effect 

models, with psychological distress as the outcome and the fixed effects of childhood 

environment, PGS, and a PGS by childhood environment interaction term as predictors. 
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Models were repeated for each childhood environment variable (age 7 or 11 or 16 or 

overall childhood environment) and each PGS. All models also included concurrent 

adult environment, sex, time and the first 3 PCs as fixed effect covariates. Third, we 

explored whether the PGS moderated the effects of concurrent environmental quality on 

psychological distress. This was done by conducting a series of linear mixed effect 

models with psychological distress as the outcome, and the fixed effects of concurrent 

environment, PGS and a PGS by concurrent environment interaction term. All models 

also included overall childhood environment, sex, time and the first 3 PCs as fixed 

effect covariates. Any significant interaction effects were followed up using simple 

slopes analyses, with PGS and environmental factor ± 2 SD. Fourth, in order to examine 

gene-environment correlations, a series of linear regression models were constructed 

with each of the childhood or adult environmental variables as the outcome and PGS as 

the predictor. All models also included with sex and 3 PCs as covariates. Finally, post-

hoc analyses were conducted to explore whether gene-environment interaction findings 

differed according to the proximity of the environmental exposure to the outcome. In 

order to allow for the maximum time between environment and outcome measures these 

analyses focused on the effects of childhood environment at age 7. Linear mixed models 

were constructed with psychological distress at ages 7, 11, 23, 33, 42, and 50 as the 

outcome. Predictors included the fixed effects of psychosocial environment (at age 7), 

PGS and time and the two and three-way interaction terms between each of these 

variables (i.e. PGS x time, PGS x environment, time x environment, PGS x environment 

x time). A significant three-way interaction PGS x time x environment was used to 

indicate that PGS by environment interactions differed as a function of time. Simple 

slope analyses were used further probe these three-way interactions on psychological 

distress. This included repeating the above analyses in a series of linear regression 

models fitted separately for each time point. 
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5.2.2 Study 2: RADIANT UK  

5.2.2.1 Study 2: Sample, measures and procedures 

Data: The data in the current study included genetic and clinical depression data from 3 

previously published studies: RADIANT UK, Genome Based Therapeutic Drugs for 

Depression (GENDEP), and the London site of the Bipolar Affective Disorder Case–

Control study (BACC). The RADIANT UK (Mullins et al., 2016) includes cases with 

recurrent Major Depressive Disorder (MDD) drawn from the Depression Case Control 

(DeCC) study (Cohen-Woods et al., 2009), and probands from the Depression Network 

(DeNT) study of affected sibling pairs (Farmer et al., 2004). GENDEP is a prospective 

pharmacogenetic study of patients with moderate to severe unipolar depression, on a 12-

week antidepressant treatment course (Uher et al., 2010). BACCs is a multi-site study of 

Bipolar Affective Disorder (Gaysina et al., 2009; Lewis et al., 2010). Cases (N=1,605) 

were available from RADIANT and GENDEP studies and controls (N= 1064) were 

available from DeCC and the BACCs study. Recurrent MDD was defined as having at 

least two episodes of moderate severity, separated by two or more months of remission 

(World Health Organization, 1993). For cases, the exclusion criteria included personal 

or family history of other psychiatric diagnoses besides anxiety disorder (Cohen-Woods 

et al., 2009; Farmer et al., 2004; Uher et al., 2010). For healthy controls, exclusion 

criteria include first-degree family history of any psychiatric disorder or a score of 10 or 

more on the Beck Depression Inventory at interview (Beck, Steer, & Brown, 1996; 

Cohen-Woods et al., 2009). DNA samples were extracted from whole blood from 

depressed cases, and from blood or buccal swabs from controls, and genotyped on the 

Illumina Human610-Quad BeadChip, and subjected to an established genotype data 

quality control procedure (Lewis et al., 2010). 

Sample: The sample included a total of 2,669 individuals (1,605 cases and 1,064 

controls) from the UK for whom genotype data was also available.  Two hundred and 

twenty-three individuals were removed during genotype data quality control process, 

leaving a final sample size of 2,434 individuals (1,530 cases and 904 controls). Mean 

age of the sample was 34 (SD= .38), with 65% of the sample being female.  Data on 

Childhood Trauma was available only for a subset of the sample (N= 496), with 230 

cases and 266 controls. The mean age of the sample was 44 (SD= .67), with 65% of the 

sample being female. The ethnicity of the sample was white European from the UK 

only. 
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Measures: The measures in the current study included depression status, stressful life 

events and childhood maltreatment, and the PGS of sensitivity. 

Depression was assessed using the self-report Beck Depression Inventory (Beck et al., 

1996), in the DeCC and GENDEP cases, and the Schedules for Clinical Assessment in 

Neuropsychiatry Interview (Wing et al., 1990) in DeNT. Information was recorded on 

patients’ worst and second worst episodes of depression in the DeCC and DeNT studies 

and on their current episode in the GENDEP study (Lewis et al., 2010). Controls were 

screened for life- time absence of all psychiatric disorders using the Past History 

Schedule (McGuffin, Katz, & Aldrich, 1986) 

Stressful Life Events were assessed via the Brief Life Event Questionnaire, which is a 

shortened version (11 items) of the List of Threatening Experiences Questionnaire 

(LTE-Q; Brugha & Cragg, 1990), as well as an extra item on childbirth (Farmer et al., 

2004). Cases in the DeCC and DeNT studies were asked whether or not they 

experienced each SLE in the 6 months prior to their worst episode of depression, while 

GENDEP cases were asked to report on the 6 months preceding the clinical trial (Fisher 

et al., 2012; Keers et al., 2011). Controls were asked about SLEs in the 6 months prior 

to their interview. The number of reported SLEs was summed for each individual, and 

the score was coded as low, medium and high for analyses. Missing information on age 

at worst episode of depression (233 cases) and age at interview (34 controls) was 

replaced with the mean age at worst episode or interview as appropriate. In line with 

Mullins et al. (2016), number of SLEs in cases were adjusted for sex and age, since 

younger individuals and females reported more SLEs. This was done by using controls 

as a proxy for the general population to conduct a linear regression of SLEs on age and 

sex, and then use the regression coefficients to adjust the number of SLEs in depressed 

cases. 

Childhood Maltreatment was measured via the self–report Childhood Trauma 

Questionnaire (Bernstein et al., 2003). The questionnaire measures frequency and 

severity of sexual, physical and emotional abuse, and physical and emotional neglect 

during childhood, using 25 items on a Likert scale. The scores for the specific types of 

maltreatment ranged from 5 to 25 and overall maltreatment ranged from 25 to 125. For 

the analyses, overall levels of childhood maltreatment was categorized into none, mild 

and moderate/severe, according to a definition described previously using this sample 

(Fisher et al., 2013). CT score was not associated with age or sex, so no adjustment was 

performed. 
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Polygenic score of environmental sensitivity was obtained from RADIANT GWAS 

data, using summary statistics from meta-analysed GWAS of sensitivity (1,035 

individuals and 2,422,121 SNPs) as detailed in Chapter 4, Section 4.3.2.2, and 

RADIANT genotype data. The initial RADIANT data included 2,257,734 SNPs and 

2,665 individuals (906 males, 1,759 females). The genotype data for the current study 

were subjected to the same quality control procedure as described in Chapter 4, 

Section 4.2.2.2.  This included filtering out the data for Indels and rare SNPs (Maf < 

.01), per-SNP and per-individual missingness rates (> 1%), SNPs with deviation from 

HWE (p<1x10-6), IBD outlier individuals (%IBD > 0.1875), and genome-wide 

heterogeneity outlier individuals. The genotype data after all quality control steps 

included 2,252,052 SNPs and 2,434 individuals. Of the 2 million SNPs in the base 

dataset, 931,952 SNPs were available in RADIANT data. Polygenic scores for each 

individual were obtained from SNPs in 56,188 clumps, at nine p-value thresholds (PT=. 

001, .01, .05, .1, .2, .3, .4, .5, and 1), using the same settings as described in Chapter 4, 

Section 4.2.2.4.  

Principal components of the genetic data were obtained using PCA in EIGENSTRAT, 

according to the same protocols as described in Chapter 4, Section 4.2.2.2. The PCA 

identified 3 PCs to be included in the GxE analysis to control for population 

stratification effects. The genotype quality control and PCA procedures are presented in 

Figure 5.2a, 5.2b and 5.2c. 
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RADIANT 

2,257,734 SNPs and 
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Removed Indels 
0 variants were removed 

Removed  rare variants 
(MAF<.01) 
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> 1%  
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pruned data to remove outliers  

(IBD > 0.1875) 
  

102,403  SNPs in LD pruned data 
0 individuals were removed 

 
Conducted PCA to remove 
outliers on significant PCs 

  

44 individuals were removed 

Final data set: 
 2,252,052 SNPs 
2,434 individuals 

 
Removed individuals with 

unusual patterns of genome-
wide heterogeneity (< 3 SD) 

  

51 individuals were removed 

Figure 5.2a Genotype data quality control process (Study 2) 
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Figure 5.2b PCA analysis process (Study 2) 
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5.2.2.2 Study 2: Data analysis 

Analytical approach: The study design was cross-sectional, with outcome as major 

depression versus control, and childhood trauma (overall score and specific childhood 

traumas: sexual, physical and emotional abuse, and physical and emotional neglect), 

stressful life events, and polygenic score of sensitivity as predictors.  

A series of logistics regression models were fitted to examine the contribution of each 

of these predictors to depression case/control status. First, each environmental variable 

and each PGS were tested for their association with the outcome. Subsequent models 

tested whether the PGS moderated the effects of the environmental variables by 

including the main effects of the PGS and environment as well as the interaction 

between these variables. Analyses were repeated for each of the environmental 

variables and each PGS. Age (centred at mean) and sex were included as covariates in 

all models. Models including the PGS also included the first three PCs (centered at 

mean), to account for population stratification effects. In order to examine if there were 

any gene-environment correlations, a series of ordinal and linear regressions were used 

to examine the association between PGS and each of the environmental factors.  

Data analysis steps: First, main effects of environmental factors (Childhood Trauma, 

Stressful Life Events) on depression were examined using logistic regression, in models 

that included depression as the outcome and the environmental factor, age and sex as 

predictors. The same was conducted with PGS as the predictor, with PCs 1-3 as 

additional covariates in the model.  Second, the interaction effects of PGS and 

environmental factors were examined using logistic regression, with depression as the 

outcome and PGS, environmental factor, their interaction term, age, sex and 3 PCs as 

the predictors. Significant interaction effects were followed up using simple slopes 

analyses, with PGS at ± 2 SD, and environmental factor at ± 3 SD, or at 3 levels (low, 

medium, high) for ordinal variable of overall maltreatment. Third, gene-environment 

correlations were examined, using ordinal regression when the outcome was 

SLEs/overall childhood trauma, and linear regression when the outcome was specific 

maltreatments, and PGS as the predictor, with sex, age, and 3 PCs as covariates. 
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5.2.3 Study 3: Genes for Treatment (GxT) 

5.2.3.1 Study 3: Sample, measures and procedures 

Data: GxT is a multi-site clinical study designed to examine genetic and clinical 

predictors of response to paediatric anxiety disorders. The initial study comprised data 

from 1,519 children from 11 sites in 7 countries including Germany, Switzerland, UK, 

USA, Netherlands, Australia, Norway and Denmark.  The inclusion criteria were age 

(5-18 years old, 94% the sample were 5-13), DSM-IV primary diagnosis of an anxiety 

disorder and provision of a DNA sample. Exclusion criteria were significant physical or 

intellectual disability or psychosis. Participants were assessed at baseline for anxiety 

symptoms prior to receiving individual CBT (mean number of sessions: 11.8,), or 

group-based CBT (mean number of sessions: 10), or guided self-help CBT (mean 

number of sessions: 7.3). Their symptoms were then assessed after the completion of 

therapy (post-treatment), as well as at least once at follow up at 3,6 or 12 months post 

treatment. Other measures such as parental psychopathology and children’s 

internalising and externalising disorders were also used in the original study, but did not 

form part of the current study. More information on GxT study is detailed in (Hudson et 

al., 2015). Genotype data was obtained by genotyping DNA extracted from buccal 

swabs and saliva, using llumina Human Core Exome-12v1.0 microarrays. Genotype 

data was subjected to established data quality control procedures for relatedness, data 

missingness, HWE equilibrium, allele frequency, and genome-wide heterogeneity 

patterns, according to (Coleman, Lester, et al., 2016) QC procedure. The quality-

controlled data was imputed to the December 2013 release of the 1,000 Genomes 

Project using IMPUTE2. The imputed data contained only SNPs with an information 

metric > 0.8 and a minor allele frequency >1%. 

Sample: The participants in the current study included all of the 980 (444 male, 536 

female) participants in the initial dataset with available genome-wide genotype data and 

at least 1 post-baseline assessment. Following genotype data quality control, 913 

individuals (male= 417, female= 496) remained in the final sample, with mean age of 

9.83 years old (SD= 2.20).  Of the 913 participants, 334 had a diagnosis of generalized 

anxiety disorder (GAD), 188 social anxiety disorder (SoAD), 214 Separation Anxiety 

disorder (SAD), 102 specific phobias (SP), and 75 “other anxiety” disorders. Other 

anxiety disorders included panic disorder with and without agoraphobia (n= 13), 

agoraphobia without panic disorder (n= 10), obsessive-compulsive disorder (n= 33), 

post- traumatic stress disorder (n= 12), selective mutism with a diagnosis of severe 
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social anxiety disorder (n= 1), and anxiety disorder not otherwise specified (n= 6). 

Participants were allocated to one of three treatment groups of individual CBT (n= 

242), group CBT (n= 475), or guided self-help CBT (n=196). The ethnicity of the 

sample based on grandparent’s ancestries were 93% white European, 5.26% mixed, 

0.81% Arab and Middle Eastern, 0.27% Asian and 0.13% African/Caribbean. 

Measures:  The measures in the study included severity of the primary anxiety 

diagnosis (measured at baseline, post treatment and three follow up time points), CBT 

treatment type and PGS of environmental sensitivity. 

Anxiety was assessed via the Anxiety Disorders Interview Schedule for DSM-IV 

(ADIS-IV; Silverman & Nelles, 1988) administered in all cites to obtain the anxiety 

diagnosis, expect for Germany and Switzerland centres where the Diagnostisches 

Interview bei psychischen Strungen im Kindes- und Jugendalter (Kinder-DIPS; 

Schneider, Unnewehr, & Margraf, 2009) was administered. Graduate assistants or 

clinical staff trained in administration of psychological instruments conducted the 

assessments via structured interviews and according to DSM –IV criteria. Severity was 

assessed using the clinician severity rating (CSR), which assigns a score of 0 to 8 

(absent to very severe). A diagnosis was made when the child met the diagnostic criteria 

and received a CSR of 4 or more. Diagnostic categories included generalized anxiety 

disorder (GAD), social anxiety disorder (SoAD), separation anxiety disorder (SAD), 

specific phobia (SP), and “other anxiety” disorders, which included panic disorder with 

and without agoraphobia and agoraphobia without panic disorder, obsessive-compulsive 

disorder, post- traumatic stress disorder, selective mutism with a diagnosis of severe 

social anxiety disorder, and anxiety disorder not otherwise specified. Symptom severity 

was assessed at baseline, post-treatment and three follow ups. 

Treatment included three types of CBT (individual CBT, group CBT, or guided self-

help CBT) for anxiety. All treatments were manualised, and treatment protocols across 

all sites were comparable for core elements of CBT including teaching of coping skills, 

cognitive restructuring, and exposure. The individual CBT treatment was delivered by 

qualified clinical psychologists in 1:1 sessions with the participant, group CBT was 

delivered in a group format with participants, and guided self-help CBT included 

provision of CBT instructions to parents of the participants. 

Polygenic score of sensitivity: PGS scores were obtained from GWAS data, using 

summary statistics from meta-analysed GWAS of sensitivity (1,035 individuals and 
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2,422,121 SNPs) as detailed in Chapter 4, Section 4.3.2.2. The initial GxT genotype 

data included 3,017,603 SNPs and 980 individuals. The genotype data for the current 

study were subjected to the same quality control procedure as described in Chapter 4, 

Section 4.2.2.2.  This included filtering out the data for Indels and rare SNPs (Maf < 

.01), per-SNP and per-individual missingness rates (> 1%), SNPs with deviation from 

HWE (p < 1x10-6), IBD outlier individuals (IBD > .1875), and genome-wide 

heterogeneity individual outliers. The genotype data after all quality control steps 

included 1,998,654 and 913 individuals. Of the 2 million SNPs in the base dataset, 

907,788 were available in GxT data. Polygenic scores for each individual were obtained 

from SNPs in 43,093 clumps, at nine p-value thresholds (PT=. 001, .01, .05, .1, .2, .3, 

.4, .5, and 1), using the same settings as described in Chapter 4, Section 4.2.2.4. 

Principal components of the genetic data were obtained using Principal Components 

Analysis (PCA) in EIGENSTRAT, according to the same protocols as described in 

Chapter 4, Section 4.2.2.2. The PCA identified 3 PCs to be included in the GxE 

analysis to control for population stratification effects. The genotype quality control and 

PCA procedures are presented in Figure 5.3a, 5.3b and 5.3c. 
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Figure 5.3a Genotype data quality control process (Study 3) 
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Figure 5.3b PCA analysis process (Study 3) 
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5.2.3.2 Study 3: Data analysis 

Analytical approach: The analyses were conducted to investigate the effects of the 

PGS of sensitivity on overall treatment response and differential response to the three 

treatment types.  

The effect of PGS on overall treatment response was investigated by testing the effects 

of the PGS on change in severity of the primary anxiety diagnosis from baseline to post 

treatment and follow-up time points. Treatment specific effects were investigated by 

conducting analyses separately in those treated with individual CBT, group CBT and 

guided self-help and by testing PGS x treatment type interactions. Response to 

treatment was considered using data from the entire duration of the trial (post-treatment 

and 3 follow ups).  

To make use of all available data on post treatment time points and to provide estimates 

in the presence of missing values, the effects of predictors on outcome were tested using 

linear mixed effect models fitted with full maximum likelihood.  The following 

parameters were included as fixed effects: age (centred at mean), gender, baseline 

symptom severity (centred at the mean), anxiety diagnosis (in which SoAD, separation 

anxiety disorder [SAD], specific phobia [SP], and “other anxiety” disorders were each 

compared with generalized anxiety disorder [GAD]), treatment type (in which group- 

based and guided self-help CBT were each compared with individual-based CBT), 

linear and quadratic effects of time to account for the curvilinear slope of treatment 

outcome, 3 PCs to account for population stratification effects (centered at mean), and 

PGS of sensitivity (centred at mean).  All models included the random effects of 

individual to account for correlations between repeated measures from the same 

participant, and higher-order random effect of trial to account for between-trial and 

between-site differences in outcome. For the GxE models, the interaction terms of PGS 

x treatment were included as the predictor, alongside other fixed and random effects. In 

all analyses, the coefficient values of variables predicting a more favourable response to 

treatment (i.e. greater reduction in severity) are negative, whereas variables predicting a 

less favourable response are positive.  

Data Analysis Steps: First, analyses were conducted in order to examine whether 

genetic sensitivity biased treatment allocation or was over represented in specific 

diagnostic categories or correlated with symptom severity pre-treatment. To do this, 

ANOVAs were conducted, with PGS as the dependent variable and treatment type and 
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primary diagnosis category as the independent variable, to examine if there were 

differences in mean PGS score across the three treatment types or the 5 diagnostic 

categories at baseline. Pearson correlation was also conducted to examine the 

association between PGS and symptom severity at baseline. The effect of baseline 

symptom severity and age on treatment allocation was also examined using ANOVA. 

Chi-square analyses were conducted to see if allocation to treatment types were 

associated with diagnostic categories or gender. 

Second, main effects of PGS on treatment response were examined, by including the 

PGS of sensitivity as a predictor of changes in symptom severity (4 time points) in a 

mixed linear regression model, alongside other fixed effect predictors which included 

baseline symptom severity (centered at the mean), treatment type (in which group- 

based and guided self-help CBT were each compared with individual-based CBT), age 

(centered at the mean), gender, the linear and quadratic effects of time, anxiety 

diagnosis, and 3 PCs.  

Third, the effects of PGS in each treatment type was explored. This was done by using 

the same model as previous step, minus treatment, to predict treatment response in the 

three treatment groups (individual CBT, group CBT, guided self-help CBT). 

Finally, an interaction term of PGS x treatment type (individual vs. group CBT; 

individual vs. guided self-help CBT; group vs. guided self-help CBT) was added to the 

model alongside variables from step 2 (baseline symptom severity, anxiety diagnosis 

category, treatment type, age, gender, linear and quadratic effects of time, polygenic 

score and PCs) to predict symptom severity post intervention. Significant interactions 

were then followed up using simple slopes analysis, with PGS at ± 2 SD, and 

environmental factor at 3 levels (low, medium, high). 

5.2.4 Power analysis 

G*Power 3.1 software (Faul et al., 2009) was used to determine the power to detect a 

range of expected effect sizes for the gene-environment interaction analyses in the  

current studies. Power analysis were conducted at two different p-value thresholds: 

nominal significance (alpha level of 0.05), and experiment-wide significance (alpha 

level of 0.001) which takes into account multiple testing of polygenic scores calculated 

at multiple thresholds (Euesden et al. (2015). The PGSxE interaction effects are 

expected to be small, based on other studies in the field using this approach. For 

example, Mullins et al. (2016), using a PGS of depression in interaction with childhood 
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trauma and SLEs in the same sample as Study 2, reported a significant but small odds 

ratio of .96 for the PGS x childhood trauma interaction, explaining 1.9% of the variance 

in depression. Similarly, using the same design and sample as the Study 3, Keers et al. 

(2016) reported significant interaction effects (PGS of differential susceptibility x 

treatment type), with the interaction terms explaining 1.6% to 5.7% of variance in 

treatment response. The same study found that a PGS x parenting interaction term 

explained .53% of the variance in children’s emotional problems, an effect size 

comparable to other PGSxE studies, such as for major depression (Peyrot et al., 2014).  

The expected effect sizes for the interactions in the current studies are therefore 

expected to be small. 

The results of the power analysis for Study 1, 2 and 3 are presented in Figures 5.4a, 

5.4b and 5.4c, respectively. For Study 1, in a multiple linear regression model, the 

sample was adequately powered (70% power) to detect an effect that explained 0.21% 

of the variance at an alpha level of .05. However, at the lower alpha level of .001, the 

sample was only adequately powered to detect an effect that explained 0.51% of the 

variance. For Study 3, the sample was adequately powered (70% power) to detect an 

effect that explained 0.68% at the higher alpha of .05, however, at the lower alpha level 

of .001, the sample was only adequately powered to detect an effect that explained 1.6% 

of the variance. The repeated measures models used in the Study 1 and 3 is a more 

powerful approach than the ordinary linear regression models tested here, therefore 

these are more conservative estimate of power in these studies.  

For Study 2, using a logistic regression model, there was over 70% power to detect an 

effect with an OR of .80 and lower, or 1.2 and higher, at an alpha level of .05. However, 

for the .001 alpha level, the power was reduced, with 70% power to detect an effect 

with an OR of .77 and lower or 1.3 and higher. The sample was insufficiently powered 

(< 10%) to detect smaller effect sizes (e.g. OR= .96) as reported in previous studies. 

In summary, Study 1 and 3 were sufficiently powered to detect effects that explained as 

little as 0.5% of the variance and Study 2 was sufficiently powered to detect an effect 

with an OR smaller than .77 or larger than 1.3. Given that the power analysis showed 

that all studies would be insufficiently powered to detect smaller effect sizes, it was 

decided to report all results of nominal significance (p< .05), as well as any experiment-

wide significant results with p < .001, which takes into account multiple testing of 

polygenic scores calculated at multiple thresholds (Euesden et al., 2015). 
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5.3 Results 

5.3.1 Study 1: Results 

5.3.1.1 Study 1: Descriptive statistics 

Descriptive statistics of the sample, including sample size at each age, and mean scores 

of environmental quality in childhood and adulthood, psychological distress are 

presented in Table 5.1a. Bivariate correlations between all study variables are presented 

in Table 5.1b.  There were significant positive correlations between measures of quality 

of environment across lifespan (r= .18 to .53), such that higher childhood psychosocial 

environmental quality was associated with higher adulthood psychosocial 

environmental quality, with temporally closer time points showing larger correlations.  

Psychological distress scores were also positively correlated across childhood time 

points (r= .10 to .18), and adulthood time points (r= .43 to .45). The correlations 

between childhood and adulthood psychological distress were also significant, though to 

a lesser degree (r= .02 to .06).  

Overall, higher scores on environmental quality were correlated with lower risk of 

psychological distress. Female gender was associated with higher levels of 

psychological distress in adulthood, but lower levels of distress in childhood. Males 

showed the opposite effect, whereby they had higher scores on psychological distress in 

childhood, but lower scores in adulthood. Gender was also associated with 

environmental quality in adulthood, whereby there was a significant positive correlation 

between higher environmental quality at ages 33, 42, and 50 and being male.  
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Table 5.1a Descriptive statistics of the sample (Study 1) 

 Sample Size  Mean score (SD) 

  Environmental quality Psychological distress Gender (% female)   Environmental quality Psychological distress 

Age 7 1483 2626 48.82  .06 (0.025) -.09 (.02) 
Age 11 1467 2499 48.18  .06 (0.02) -.08 (.02) 
Age 16 1336 . 48.13  .04 (0.03) . 
Age 23 497 2475 48.97  .15 (0.04) -.06 (.02) 
Age 33 2107 2579 49.44  .08 (0.02) -.07 (.02) 
Age 42 2337 2765 48.14  .07 (0.02) -.06 (.02) 
Age 50  2185 2535 48.64   .05 (0.02) -.05 (.02) 
Genetic data was available for all individuals; scores for all variables are standardised, with higher scores indicating higher levels of environmental quality and 
psychological distress; Empty cell indicate no data was available for the variable at the specific age. 
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Table 5.1b Bivariate correlations between study variables (Study 1) 

    1 2 3 4 5 6 7 8 9 10 11 12 13 

1 ENV7              
2 ENV11 .53*             
3 ENV16 .36* .36*            
4 ENV23 .23* .17* .08           
5 ENV33 .23* .29* .24* .41*          
6 ENV42 .18* .20* .21* .33* .55*         
7 ENV50 .19* .21* .24* .34* .47* .64*        
8 PD7 -.21* -.20* -.18* -.15* -.15* -.12* -.12*       
9 PD11 -.16* -.26* -.17* -.08 -.20* -.14* -.15* .18*      

10 PD33 -.12* -.13* -.20* -.17* -.20* -.18* -.16* .02 .10*     
11 PD42 -.02 -.10* -.13* -.08 -.11* -.09* -.10* .06* .05* .45*    
12 PD50 -.03 -.09* -.10* -.18* -.13* -.10* -.10* .02 .04* .43* .56*   
13 Sex -.01 .02 -.02 .06 -.08* -.09* -.07* -.11* -.07* .28* .18* .17*  
14 PGS1 -.03 .00 -.02 .05 .02 .04 .00 -.01 -.01 -.05 -.03 -.04 -.04 
15 PGS2 .00 -.01 -.04 .06 .01 .01 -.01 -.02 -.02 -.03 -.03 -.01 -.02 
16 PGS3 -.04 .01 -.01 .00 .03 -.01 -.03 .00 .00 -.02 -.04 -.02 .00 
17 PGS4 -.03 .01 -.02 .00 .02 -.02 -.03 .00 -.01 -.01 -.03 .00 .01 
18 PGS5 -.02 .02 -.01 .01 .02 -.02 -.03 .00 -.02 -.01 -.02 .00 .01 
19 PGS6 -.02 .03 -.01 .01 .02 -.01 -.03 -.01 -.02 -.01 -.02 .00 .02 
20 PGS7 -.02 .01 .00 .00 .02 -.01 -.03 .00 -.02 -.02 -.02 .01 .02 
21 PGS8 -.02 .02 .00 .00 .02 -.01 -.03 -.01 -.02 -.01 -.02 .01 .02 
22 PGS9 -.02 .02 .00 .01 .02 -.01 -.02 -.01 -.02 -.02 -.02 .01 .01 

ENV=Environmental quality at each age; PD= Psychological distress at each age; PGS=Polygenic score of environmental sensitivity at different thresholds; 
PGS=polygenic score at different thresholds; * p < .05 
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5.3.1.2 Study 1: Main effects of PGS and childhood environmental quality on 

psychological distress in adulthood 

There was a main effect of psychosocial environment at all ages during childhood (7, 11 

and 16) as well as concurrent adulthood environment on adulthood psychological 

distress. The associations were in the expected direction, with higher quality childhood 

or adulthood environment associated with lower psychological distress in adulthood. 

There were significant effects of overall childhood environment and concurrent adult 

environment on psychological distress (β= -.13, p < 4E-14 and β=-.07, p < 6E-10, 

respectively). There were no significant effects of polygenic scores of sensitivity on 

psychological distress, except for a small protective effect of PGS1 on psychological 

distress (β= -.03, p= .02). Full results are presented in Table 5.2. 

  

Table 5.2 Main effects of PGS and environmental quality on psychological distress in 
adulthood (Study 1) 

    β CI p 
Environment age 7  -.07  -.11, -.03 3.00E-04 
Environment age 11 -.12  -.15, -.08  2.00E-09 
Environment age 16 -.14  -.17, -.10 8.00E-13 
Overall childhood environment  -.13  -.16, -.09  4.00E-14 
Adult environment  -.07  -.09, -.05  6.00E-10 
PGS1  -.03  -.06, -.00  .02 
PGS2  -.02  -.05, .01  .11 
PGS3  -.02  -.05, .00  .11 
PGS4  -.02  -.04, .01  .26 
PGS5  -.01  -.04, .02  .42 
PGS6  -.01  -.04, .02  .46 
PGS7  -.01  -.04, .01  .33 
PGS8  -.01  -.04, .02  .40 
PGS9   -.01  -.04,  .01  .31 
PGS= Polygenic Score; β= standardized beta coefficient of the variable from the regression model; CI=95% 
Confidence interval; p =p-value of the beta Regression model for environmental factors: decades, sex, and E 
factor as fixed effects, plus individual as random effect; Regression model for PGS: decades, sex, PGS, 
and PCs 1 to 3 as fixed effects, plus individual as random effect 
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5.3.1.3 Study 1: PGS x environment interaction effects on psychological distress in 

adulthood 

The results of the GxE interaction analyses for PGS of sensitivity and environmental 

quality at ages 7, 11, 16, overall childhood, and concurrent adult environment are 

presented in Table 5.3. There was a small, but statistically significant GxE effect for 

environmental quality at age 7 and PGS 4 (β= .04, p < .05). Though none of the other 

interactions were found to be significant, they were all in the same direction. Simple 

slopes analysis of the significant interaction show that the direction of effect was 

contrary to the study hypothesis. As shown in Figure 5.5, higher genetic sensitivity was 

associated with decreased risk of adulthood psychological distress in the context of low 

quality environment at age 7, and higher risk of distress in the context of high quality 

childhood environment. 
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Table 5.3 PGS x environmental quality interaction in predicting psychological distress in adulthood (Study1) 

  Environmental quality across ages 

 Age 7  Age 11  Age 16  Overall childhood  Concurrent adulthood 

  β CI p   β CI p   β CI p   β CI p   β CI p 
PGS1 .03 -.01, .07 .18  .01 -.03, .05 .60  .00 -.04, .04 .96  .01 -.03, .04 .71  .00  -.02, .02  .98 
PGS2 .04 -.00, .08 .07  .01 -.03, .05 .54  .02 -.01, .06 .22  .01 -.02, .05 .39  .02  -.01, .04  .21 
PGS3 .03 -.01, .06 .20  .01 -.03, .05 .60  .02 -.02, .06 .26  .01 -.02, .05 .51  -.01  -.03, .02  .52 
PGS4 .04 .00, .08 .04  .02 -.02, .06 .42  .02 -.02, .06 .28  .02 -.01, .06 .18  .00  -.03, .02  .68 
PGS5 .04 -.00, .08 .07  .02 -.02, .06 .37  .02 -.02, .06 .25  .03 -.01, .06 .12  .00  -.02, .03  .82 
PGS6 .03 -.01, .07 .09  .01 -.03, .05 .51  .02 -.02, .06 .30  .03 -.01, .06 .15  .01  -.02, .03  .50 
PGS7 .04 -.01, .08 .09  .01 -.03, .05 .54  .02 -.02, .06 .36  .02 -.01, .06 .22  .01  -.01, .03  .43 
PGS8 .03 -.01, .07 .12  .01 -.03, .05 .75  .01 -.02, .05 .47  .02 -.02, .05 .37  .01  -.01, .03  .41 
PGS9 .03 -.01, .07 .11   .01 -.03, .05 .73   .01 -.02, .05 .46   .02 -.02, .05 .32   .01  -.01, .03  .46 
PGS= Polygenic Score; β = standardized beta coefficient of the variable from the regression model; CI=95% Confidence interval; p =p-value of the beta; Regression models for 
childhood environments include: fixed effects (PGS x childhood environment interaction term, childhood environment, PGS, adult environment, 3 PCs, sex, decades) and random 
effect (individual); Regression model for concurrent adult environment includes: fixed effects (PGS x adult environment interaction term, adult environment, PGS, overall childhood 
environment, PCs 1 to 3, sex, decades) and random effect (individual) 
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Post hoc analyse were conducted to explore whether the gene-environment 

interaction findings differed according to the proximity of the environmental 

exposure to the outcome. In order to allow for the maximum time between 

environment and outcome measures these analyses focused on the effects of 

childhood environment at age 7. A single linear mixed model was fitted with 

psychological distress at all available ages (7, 11, 23, 33, 42, and 50) as the 

outcome. Predictors included the fixed effects of psychosocial environment (at 

age 7), PGS and time and the two and three-way interaction terms between 

each of these variables (i.e. PGS x time, PGS x environment, time x 

environment, PGS x environment x time). The results of this model are 

presented in Table 5.4. A small (β= .001 and .002) but significant 3-way 

interaction was detected for several PGSs (PGS 2, 3, 4 and 7) indicating that 

PGS by environment interactions differed as a function of time.
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Table 5.4 Results of three-way interaction model with PGS x environment quality at age 7 x time predicting psychological distress across life span 
(Study 1) 

 PGS  Time  Env age 7  PGS x Env age 7  PGS x Time  PGS x Env age 7 x Time 
 β p  β p  β p  β p  β p  β p 

PGS1 -.01 .79  .001 .18  -.21 <1E-18  -.01 .65  -.00 .09  .00 .14 
PGS2 .01 .60  .001 .22  -.21 <1E-18  -.04 .04  -.001 .02  .002 4E-04 
PGS3 -.01 .59  .001 .18  -.21 <1E-18  -.03 .14  -.00 .29  .001 0.02 
PGS4 -.02 .38  .001 .17  -.21 <1E-18  -.04 .10  .00 .57  .002 4E-03 
PGS5 -.03 .11  .001 .19  -.21 <1E-18  -.02 .49  .00 .92  .001 .06 
PGS6 -.04 .06  .001 .18  -.21 <1E-18  -.02 .45  .00 .51  .001 .08 
PGS7 -.04 .07  .001 .18  -.21 <1E-18  -.02 .42  .00 .58  .001 .05 
PGS8 -.04 .08  .001 .19  -.21 <1E-18  -.02 .50  .00 .64  .001 .08 
PGS9 -.04 .06  .001 .19  -.21 <1E-18  -.02 .47  .00 .69  .001 .07 
PGS= Polygenic score; Env= psychosocial environmental quality; β= standardized beta coefficient of the variable from the regression model; Mixed effects linear regression with 
psychological distress at ages 7, 11, 23, 33, 42, and 50 as predictor, and fixed effects of environmental quality at age 7, PGS, time, PGS x time x environment at age 7 interaction 
term, PGS x time interaction term, PGS x environment at age 7 interaction term, time x environment at age 7 interaction term, sex and 3 PCs, and individual as random effect 
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In order to probe these three-way interactions on psychological distress, the analyses 

were repeated in a series of linear regression models fitted separately for each time 

point. Table 5.5 presents the findings from the age 7 and age 11 time points (there was 

no data on psychological distress at age 16). Although the interactions were not 

statistically significant, except for a marginal effect for PGS4 at age 7 (β= -.04, p = .07), 

findings were in the opposite direction to those observed at the adult time points. That 

is, high genetic sensitivity was associated with greater psychological distress in poor-

quality environments but was protective in high quality environments.  

Figure 5.6, shows the PGS4 x environment at age 7 on psychological distress at each 

time point from childhood to adulthood. They show that, in line with the direction of 

effects indicated by the 3-way interaction, the effects of high genetic sensitivity 

gradually reverse over time. That is, high genetic sensitivity is associated with higher 

distress in a poor-quality environment in childhood, but lower distress later on in 

adulthood. The slopes remain relatively stable for low genetically sensitive individuals 

across life. 
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Table 5.5 Interaction effects of PGS x environmental quality at age 7 and 11 in predicting psychological distress at ages 7 and 11 (Study 1) 

   Environmental Factor  PGS of Sensitivity  PGS x E Interaction 
  β CI p   β CI p   β CI p 

Environmental Quality at age 7 

PGS1  -.21 (-.26, -.16) 2E-17  -.01 (-.06, .03) .54  .01 (-.04, 0.05) .73 
PGS2  -.21 (-.26, -.16) 1E-17  .02 (-.03, .06) .49  -.03 (-.08, 0.01) .17 
PGS3  -.21 (-.26, -.16) 2E-17  -.01 (-.05, .04) .76  -.03 (-.08, .01) .16 
PGS4  -.21 (-.26, -.16) 2E-17  .00 (-.05, .04) .88  -.04 (-.09, .00) .07 
PGS5  -.21 (-.26, -.16) 2E-17  -.01 (-.06, .04) .65  -.03 (-.08, .02) .20 
PGS6  -.21 (-.26, -.16) 2E-17  -.02 (-.06, .03) .43  -.03 (-.08, .02) .29 
PGS7  -.21 (-.26, -.16) 2E-17  -.01 (-.06, .04) .69  -.03 (-.08, .02) .18 
PGS8  -.21 (-.26, -.16) 2E-17  -.01 (-.06, .04) .68  -.03 (-.08, .02) .21 
PGS9  -.21 (-.26, -.16) 2E-17  -.01 (-.06, .03) .61  -.03 (-.08, .02) .20 

Environmental Quality at age 11 

PGS1  -.25 (-.30, -.20) <1E-18  -.02 (-.06, .03) .45  -.01 (-.06, .03) .57 
PGS2  -.25 (-.30, -.20) <1E-18  -.01 (-.06, .03) .55  -.02 (-.07, .02) .29 
PGS3  -.25 (-.30, -.20) <1E-18  -.01 (-.05, .04) .73  -.04 (-.08, .01) .11 
PGS4  -.25 (-.30, -.20) <1E-18  .00 (-.05, .04) .94  -.03 (-.08, .02) .22 
PGS5  -.25 (-.30, -.20) <1E-18  .00 (-.05, .04) .86  -.03 (-.07, .02) .28 
PGS6  -.25 (-.30, -.20) <1E-18  .00 (-.04, .04) .96  -.02 (-.07, .02) .30 
PGS7  -.25 (-.30, -.20) <1E-18  .00 (-.05, .04) .86  -.02 (-.07, .02) .32 
PGS8  -.25 (-.30, -.20) <1E-18  .00 (-.05, .04) .94  -.02 (-.07, .03) .39 
PGS9   -.25 (-.30, -.20) <1E-18   -.01 (-.05, .04) .74   -.02 (-.06, .03) .49 
PGS= Polygenic score; β= standardized beta coefficient from the regression model; CI=95% confidence interval; p =p-value; significant interactions are in bold; Linear regression models 
included psychological distress (at age 7 or 11) as the outcome, and environmental quality (at age 7 or 11), PGS, PGS x Environment interaction term, 3PCs and sex as predictors. 
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Figure 5.6 Simple slopes analysis of the effect of environmental quality at 7 predicting psychological distress across life span (Study 1)
The x-axis represent environmental quality at age 7, and the y-axis represent psychological distress (z-scores) at different ages, indicated at the top of each chart.
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5.3.1.4 Study 1: Gene-environment correlation 

The results of the linear regression analyses, with each environmental variable as the 

outcome and PGS as the predictor and sex and 3 PCs as covariates are presented in 

Table 5.6. There were no significant correlations between any of the examined PGS and 

environmental factors.  

 

Table 5.6 Gene-environment correlation analyses (Study 1) 

  Childhood environmental quality  

  Age 7   Age 11  Age 16  Overall childhood 
environment 

  β p  β p  β p  β p 
PGS1 -.03 .27  -.01 .82  -.01 .61  -.02 .38 
PGS2 .00 .91  -.01 .77  -.03 .18  -.02 .16 
PGS3 -.04 .14  .01 .78  -.01 .70  -.02 .18 
PGS4 -.03 .23  .01 .81  -.02 .47  -.02 .24 
PGS5 -.02 .40  .02 .37  -.01 .76  -.01 .78 
PGS6 -.02 .37  .02 .32  -.01 .68  .00 .80 
PGS7 -.02 .41  .01 .60  .00 .98  .00 .83 
PGS8 -.02 .49  .02 .50  .00 .94  .00 .93 
PGS9 -.02 0.48  .02 .40  .00 .91  .00 .97 
  Adulthood environmental quality 

  Age 23  Age 33  Age 42  Age 50 

  β p  β p  β p  β p 
PGS1 .04 .32  .01 .48  .04 .06  .00 .92 
PGS2 .06 .18  .01 .67  .02 .42  -.01 .69 
PGS3 .00 .99  .03 .11  .00 .91  -.03 .19 
PGS4 -.01 .90  .02 .45  -.01 .44  -.03 .17 
PGS5 .01 .89  .02 .42  -.02 .42  -.03 .13 
PGS6 .01 .90  .02 .42  -.01 .70  -.03 .21 
PGS7 .00 .99  .02 .44  -.01 .68  -.03 .19 
PGS8 .00 .98  .02 .40  .00 .94  -.02 .25 
PGS9 .00 .92   .02 .40   .00 .90   -.02 .29 
PGS= Polygenic Score; β= standardized beta coefficient of the variable from the regression model; Linear 
regression model included environmental variable as the outcome, and PGS as the predictor with sex and 
3 PCs as the covariates 
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5.3.2 Study 2: Results 

5.3.2.1 Study 2: Descriptive statistics  

Descriptive statistics of the sample, including sample size, childhood traumas, stressful 

life events (SLEs), and number of cases/controls are presented in Table 5.7a. Cases 

included a significantly larger proportion of females (X2= 51.89, p< .001) and also 

experienced higher levels of SLEs (X2= 16.77, p< .001) than controls. 

Bivariate correlations between all study variables are presented in Table 5.7b. The 

results showed all maltreatment types to be significantly and positively correlated (r= 

.17 to .63), and childhood maltreatment was also correlated positively and significantly 

with SLEs (r= .16 to .23). Female gender was associated with higher levels of sexual 

and emotional abuse (r=.14 and .12, respectively). Polygenic scores of sensitivity were 

not significantly correlated with any of the other variables. 

 

Table 5.7a Descriptive statistics of the sample (Study 2) 
  Cases Controls 

Sample * n 1530 904 
Age 30.07 (.50) 42.64 (.53) 

Sex, n   
Male 447 394 

Female 1083 510 

Stressful life events, n  
Low 388 480 

Moderate 479 289 
High 663 135 

Sexual abuse 7.05 (.30) 5.48 (.13) 
Physical abuse 6.76 (.21) 5.61 (.09) 
Emotional abuse 11.24 (.38) 6.82 (.18) 
Physical neglect 8.09 (.23) 6.15 (.13) 
Emotional neglect 13.15 (.38) 8.70 (.22) 

Overall maltreatment, n  
Low/None 94 225 
Moderate 84 35 

High 52 6 
The statistics given are mean (SD) unless otherwise specified; * the sample with 
childhood maltreatment data was N=496, with 230 cases and 266 controls 
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Table 5.7b Bivariate correlations between study variables (Study 2) 

  Sex Age Dep SLEs SA PA EA PN EN OM 

Age -.10*          

Depression .15* -.27*         

Stressful life events .08* -.11* .33*        

Sexual abuse .14* -.15* .22* .16*       

Physical abuse .02 -.09* .23* .17* .26*      

Emotional abuse .12* -.21* .45* .32* .37* .55*     

Physical neglect -.01 -.09* .32* .22* .32* .31* .47*    

Emotional neglect -.01 -.14* .42* .23* .28* .34* .59* .63*   

Overall maltreatment .05 -.23* .46* .31* .51* .57* .79* .70* .73*  

PGS1 -.02 -.03 .01 .01 .04 .06 .06 .08 .08 .08 
PGS2 -.02 .00 .02 -.02 .02 .02 .07 .07 .04 .06 
PGS3 -.01 -.01 .02 .00 .03 .05 .06 .04 .06 .06 
PGS4 -.01 .00 .02 .01 .04 -.01 .05 .00 .07 .05 
PGS5 .00 -.02 .03 -.01 .05 -.02 .04 .01 .04 .03 
PGS6 .01 -.01 .02 -.01 .06 -.01 .06 .02 .06 .04 
PGS7 .01 -.02 .02 -.01 .05 .01 .06 .02 .06 .04 
PGS8 .00 -.02 .02 -.01 .06 .01 .07 .02 .07 .05 
PGS9 .00 -.02 .02 -.01 .07 .01 .08 .03 .07 .06 
* p -value < .05; Dep= Depression; SLEs= Stressful life events; SA= Sexual abuse; PA=Physical abuse; EA=emotional abuse; PN=Physical neglect; EN=emotional neglect; 
OM=Overall maltreatment; PGS=Polygenic score  
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5.3.2.2 Study 2: Main effects of SLEs and maltreatment and PGS of environmental 

sensitivity on depression  

The results of analysis examining the effects of PGS and environmental factors on 

depression are presented in Table 5.8. The results showed a significant main effect of 

SLEs on depression, such that higher/more severe levels of SLE’s were associated with 

two-fold increase in risk of depression (OR= 2.32, p < .001).  There were also 

significant main effects of childhood maltreatment (overall and subscales) such that any 

type of childhood maltreatment increased the risk of having depression, with the largest 

effect seen for physical neglect and abuse (OR= 1.28, p < .001). There was a significant 

effect of overall childhood maltreatment, (OR = 4.46, p < .01), indicating the risk of 

depression was over four times greater for those who had experienced maltreatment 

compared to those who had not. There was a general trend towards higher risk of 

depression with increased genetic sensitivity, though the associations were not 

statistically significant. 

 

Table 5.8 Main effects of PGS, stressful life events, and childhood maltreatment on 
depression (Study 2) 
  OR CI p 
Stressful life events 2.32 2.07, 2.60 3E-09 
Sexual abuse 1.15 1.05, 1.25 2E-03 
Physical abuse 1.28 1.15, 1.43 1E-05 
Emotional abuse 1.23 1.16, 1.30 4E-12 
Physical neglect 1.28 1.18, 1.39 3E-09 
Emotional neglect 1.20 1.15, 1.27 2E-13 
Overall childhood maltreatment  4.46 3.03, 6.56 4E-14 
PGS1 1.10 .90, 1.35 .36 
PGS2 1.09 .90, 1.33 .38 
PGS3 1.14 .92, 1.40 .22 
PGS4 1.12 .91, 1.38 .28 
PGS5 1.07 .87, 1.31 .52 
PGS6 1.09 .90, 1.33 .38 
PGS7 1.10 .90, 1.34 .37 
PGS8 1.09 .90, 1.33 .41 
PGS9 1.13 .92, 1.38 .24 
PGS= Polygenic Score; OR= Odds ratio form logistic regression model; CI=95% Confidence 
interval; Logistic regression models included depression case/control status as the outcome, and the 
environmental factor or PGS with age, sex and 3 PCs as covariates; p < .05 are in bold. 
 

 



 269 

5.3.2.3 Study 2: PGS x environment interaction effects on depression 

In order to examine whether the PGS moderated the effects of the environment on 

major depression, the environmental factor (SLE or maltreatment), PGS and an 

environment x PGS interaction term were included as predictors in logistic regression 

model with case/control status as the outcome. Analyses were conducted separately for 

each environmental variable. Age, sex and 3 PCs were included as covariates in all 

analyses.  

The results of these analyses are presented in Table 5.9. Genetic sensitivity x recent 

SLE’s interactions were not statistically significant, but were in the expected direction. 

High sensitivity was associated with a slight increased risk of depression (OR= 1.06, p= 

.32) in the presence of recent SLEs.  

Significant GxE effects were identified for overall childhood maltreatment (OR= .66, 

p= .04), and sexual abuse (OR= .89, p= .02). The interaction term explained .06% and 

.08% of the variance in depression, respectively. However, the simple slopes analysis, 

as presented in Figure 5.7a, show that this pattern of interaction was contrary to 

expectations. That is, in the absence of/low levels of childhood maltreatment, high 

sensitivity increased risk of depression in adulthood, but in the presence of severe 

maltreatment, genetic sensitivity acted as a protective factor. Conversely, low genetic 

sensitivity was associated with a low risk of depression in the absence of childhood 

maltreatment and increased depression risk in the context of severe maltreatment. A 

similar interaction pattern was found for the significant interaction between sexual 

abuse and depression risk (Figure 5.7b). Although not statistically significant, 

interactions across all types of maltreatment showed a similar pattern, except for the 

interaction with physical neglect that showed a small (OR= 1.02) opposite effect by 

increasing the risk for depression (Table 5.9). 
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Table 5.9 Interaction effects of SLEs and childhood maltreatment with PGS in predicting depression (Study 2) 

  SLEs 
Overall 

maltreatment 
Sexual abuse Physical abuse Emotional abuse Physical neglect Emotional neglect 

 
OR 
(CI) 

p OR 
(CI) 

p OR 
(CI) 

p OR 
(CI) 

p OR 
(CI) 

p OR 
(CI) 

p OR 
(CI) 

p 

PGS1 1.03 0.63 0.66 0.04 0.89 0.02 0.89 0.10 0.98 0.60 0.97 0.49 0.95 0.06 

 
(.92, 1.15) 

 
(.44, .99) 

 
(.81, .98) 

 
(.77, 1.02) 

 
(.92, 1.05) 

 
(.88, 1.06) 

 
(.90, 1.00) 

 

PGS2 1.02 0.76 0.96 0.83 0.97 0.52 0.97 0.54 1.01 0.83 1.02 0.56 0.99 0.70 

 
(.91, 1.14) 

 
(.67, 1.38) 

 
(.89, 1.06) 

 
(.86, 1.08) 

 
(.95, 1.07) 

 
(.95, 1.11) 

 
(.95, 1.04) 

 

PGS3 1.06 0.32 0.89 0.52 0.97 0.46 0.97 0.42 0.99 0.83 1.07 0.14 0.98 0.52 

 
(.94, 1.19) 

 
(.61, 1.28) 

 
(.89, 1.06) 

 
(.89, 1.05) 

 
(.93, 1.06) 

 
(.98, 1.17) 

 
(.94, 1.03) 

 

PGS4 1.05 0.40 0.78 0.20 0.96 0.24 0.93 0.11 0.97 0.34 1.07 0.14 0.98 0.36 

 
(.94, 1.18) 

 
(.54, 1.14) 

 
(.89, 1.03) 

 
(.85, 1.02) 

 
(.91, 1.03) 

 
(.98, 1.16) 

 
(.93, 1.03) 

 

PGS5 1.05 0.37 0.77 0.15 0.95 0.22 0.94 0.18 0.98 0.58 1.04 0.29 0.97 0.28 

 
(.94, 1.18) 

 
(.54, 1.10) 

 
(.87, 1.03) 

 
(.86, 1.03) 

 
(.93, 1.04) 

 
(.97, 1.12) 

 
(.93, 1.02) 

 

PGS6 1.05 0.43 0.77 0.17 0.95 0.27 0.94 0.17 0.99 0.65 1.02 0.70 0.98 0.36 

 
(.93, 1.18) 

 
(.54, 1.12) 

 
(.88, 1.04) 

 
(.86, 1.03) 

 
(.93, 1.05) 

 
(.94, 1.10) 

 
(.93, 1.03) 

 

PGS7 1.04 0.49 0.8 0.24 0.96 0.31 0.95 0.28 0.99 0.83 1.02 0.64 0.98 0.48 

 
(.93, 1.17) 

 
(.54, 1.17) 

 
(.88, 1.04) 

 
(.86, 1.04) 

 
(.93, 1.06) 

 
(.94, 1.11) 

 
(.93, 1.03) 

 

PGS8 1.04 0.53 0.79 0.23 0.95 0.23 0.95 0.26 0.99 0.79 1.03 0.51 0.98 0.40 

 
(.93, 1.16) 

 
(.53, 1.16) 

 
(.87, 1.03) 

 
(.86, 1.04) 

 
(.93, 1.05) 

 
(.95, 1.12) 

 
(.93, 1.03) 

 

PGS9 1.05 0.41 0.8 0.25 0.96 0.31 0.94 0.22 0.99 0.80 1.03 0.48 0.98 0.45 

 (.94, 1.18) 
 

(.54, 1.18) 
 

(.88, 1.04) 
 

(.86, 1.04) 
 

(.93, 1.06) 
 

(.95, 1.12) 
 

(.93, 1.03) 
 

PGS= Polygenic score; OR= Odds ratio form logistic regression model; CI=95% Confidence interval; Logistic regression models included depression case/control status as the 
outcome, and the environmental factor, PGS, the environment x PGS interaction term, age, sex and 3 PCs as predictors; p < .05 are in bold 
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Figure 5.7a Simple slopes analysis of the interaction between PGS x overall 
childhood maltreatment in probability of depression in adulthood

Figure 5.7b Simple slopes analysis of the interaction between PGS x sexual abuse in 
probability of depression in adulthood
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5.3.2.4 Study 2: Gene-environment correlation 

The results of ordinal regression analyses with overall maltreatment or SLEs as 

outcome and PGS, sex, gender and 3 PCs as predictors, and linear regression analyses 

with specific maltreatments as outcome, showed there were no significant associations 

between polygenic scores of sensitivity and SLEs or childhood maltreatment (Table 
5.10). 
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Table 5.10 Gene-environment correlations (Study 2) 

  SLEs a Overall maltreatment a Sexual abuse b Physical abuse b Emotional abuse b Physical neglect b Emotional neglect b 

  OR CI OR CI β CI β CI β CI β CI β CI 
PGS1 1.01   .94, 1.09  1.20   .99, 1.44  .16  -.14, .47  .14  -.08, .36  .28  -.14, .69  .20  -.06, .46  .37  -.08, .82  
PGS2 .97   .90, 1.04  1.11   .93, 1.33  .09  -.21, .38  .05  -.16, .26  .33  -.07, .73  .19  -.06, .44  .17  -.27, .60  
PGS3 1.01   .94, 1.09  1.10   .92, 1.33  .08  -.23, .38  .12  -.10, .34  .28  -.14, .70  .11  -.15, .37  .27  -.18, .72  
PGS4 1.03   .95, 1.10  1.11   .92, 1.34  .11  -.19, .41  -.02  -.24, .19  .23  -.18, .64  .00  -.26, .26  .38  -.07, .82  
PGS5 .99   .92, 1.06  1.03   .86, 1.24  .11  -.18, .41  -.06  -.27, .16  .15  -.25, .56  .02  -.23, .28  .17  -.27, .61  
PGS6 .99   .92, 1.06  1.07   .89, 1.29  .15  -.15, .45  -.02  -.23, .20  .25  -.16, .66  .05  -.20, .31  .27  -.17, .71  
PGS7 .99   .92, 1.06  1.08   .90, 1.30  .13  -.17, .43  .03  -.18, .25  .25  -.15, .66  .05  -.21, .30  .31  -.13, .76  
PGS8 .99   .92, 1.07  1.09   .90, 1.31  .16  -.14, .46  .03  -.18, .25  .30  -.11, .71  .05  -.21, .31  .32  -.13, .76  
PGS9 .99   .92, 1.07  1.10   .92, 1.33  .20  -.10, .50  .03  -.19, .24  .32  -.08, .73  .07  -.19, .32  .32  -.12, .76  
PGS= Polygenic score; SLEs= Stressful life events; OR= Odds ratio from ordinal regression model; β=beta coefficient from linear regression model; CI=95% confidence interval; 
CIs crossing 1 indicate non-significant OR and CIs crossing zero indicate non-significant beta; a= Ordinal regression model including overall maltreatment or SLEs as outcome and 
PGS, 3 PCs, age and gender as predictors; b=Linear regression model included the type of maltreatment as outcome, and PGS, 3 PCs, age and gender as predictors. 
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5.3.3 Study 3: Results 

5.3.3.1 Study 3: Descriptive statistics  

Descriptive statistics of the sample, including sample size, severity of anxiety symptoms 

at baseline and post treatment time points and for each diagnostic category are presented 

in Table 5.11. The results show mean score of anxiety symptoms at baseline was 6.20 

(SD= .10), which decreased to 2.98 (SD= 2.11) immediately post treatment, indicating a 

positive effect of treatment on reducing anxiety symptoms. Similar reductions in 

anxiety symptom scores were observed across diagnostic categories at post-treatment.  

The results of ANOVAs with PGS as the dependent variable and treatment type and 

diagnosis as independent variables suggested that PGS did not significantly differ by 

treatment type (e.g. F(PGS1) = .70, p = .50) or diagnosis (e.g. F(PGS1) =1.36, p= .25) at the 

baseline assessment. Similarly, there was no significant correlation between the PGS 

and baseline anxiety severity (r= -.03 to .03, p > .05). Overall, the results indicated that 

genetic sensitivity did not significantly bias treatment allocation and was not associated 

with specific anxiety diagnosis or pre-treatment severity of anxiety. There were also no 

significant associations between treatment type allocation and gender (X2= 2.43, p = 

.30). 

There were, however, significant associations between treatment type and symptom 

severity at baseline (F= 35.39, p < .001), between treatment type and age (F= 4.51, p= 

.01), and between treatment type and diagnosis (X2= 69.76, p < .001) at baseline. The 

results suggest that younger participants and those with higher anxiety scores were more 

likely to be allocated to the more intensive treatments (individual CBT vs. group CBT 

vs. guided self-help CBT), and those with generalised anxiety disorder diagnosis were 

more likely to be offered group or guided self-help CBT treatment.



 275 

Table 5.11 Descriptive statistics of the sample (Study 3) 

  Mean (SD) 
N 

  Baseline Post treatment Follow up1 Follow up2 Follow up3 

Age 9.83 (2.20)      
913 (m=417, f=496) 

    

Anxiety symptom severity: overall, by treatment and diagnosis     
Overall 6.20 (.10) 2.98 (2.11) 1.95 (2.35) 2.52 (1.95) 2.59 (2.25) 

 913 876 169 455 172 
CBT 6.13 (1.04) 2.59 (2.20) .90 (1.27) 2.10 (2.29) 2.53 (2.34) 

 242 226 40 93 125 
Group CBT 6.41 (.98) 3.26 (2.01) 2.28 (2.52) 3.02 (1.68) 2.73 (2.02) 

 475 457 129 248 47 
Guided self- help CBT 5.75 (.80) 2.75 (2.13) .  1.85 (1.92) . 

 196 193 . 114 . 
Generalised anxiety disorder 6.19 (.90) 2.66 (1.88) 1.69 (2.09) 2.59 (1.74) 2.40 (2.24) 

 334 312 50 192 54 
Social phobia 6.12 (1.01) 3.86 (1.92) 2.43 (2.64) 2.82 (1.93) 3.29 (2.09) 

 188 180 34 95 43 
Specific phobia 6.28 (1.09) 3.19 (2.40) 2.09 (2.45) 2.34 (2.25) 2.25 (1.97) 

 102 100 27 53 22 
Separation anxiety disorder 6.22 (1.02) 2.82 (2.20) 2.09 (2.41) 2.28 (2.04) 2.83 (2.48) 

 214 210 40 81 39 
Other anxiety disorder 6.27 (1.12) 2.26 (2.14) 1.23 (2.21) 2.14 (2.32) 1.04 (1.80) 
  75 74 18 34 14 
Of the total sample (N=913), 249 individuals had missing data on anxiety symptom severity at 3 time points, 578 at 2 time points, 77 at 1 time point and 9 individuals 
had no missing data 
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5.3.3.2 Study 3: The effects of the PGS of sensitivity on overall treatment response 

Linear mixed models were used to investigate the effects of the PGS on overall 

treatment response (change in the anxiety severity) from baseline to the post treatment 

time points. These models included the fixed effects of the PGS as well as the fixed 

effects of diagnosis, 3 PCs, treatment type, baseline score, age, gender, and linear and 

quadratic effects of time. Repeated measures were accounted for by fitting random 

intercepts at the individual level. A further, higher-order, random intercept was fitted to 

account for the clustering of data within trials. The effects of demographic and clinical 

factors on treatment response were also examined separate models. The results 

indicated there were no significant effects of gender (β = .04, p= .37) or age (β = .01, p= 

.61) on treatment response. Higher symptom severity at baseline was associated with 

less favourable treatment response (β= .17, p < .001) and individuals with a specific 

phobia or social anxiety disorder diagnosis showed a significantly poorer response to 

treatment than those with generalized anxiety disorder (β= .20, p= .01 and β = .41, p < 

.001, respectively).  

The effects of the PGS on treatment response are presented in Table 5.12. There were 

no significant associations between PGS of sensitivity and changes in anxiety scores 

post-treatment. Though not statistically significant, higher genetic sensitivity was 

inversely associated with anxiety score, indicating an overall more favourable treatment 

response for more genetically sensitive individuals. 

 

Table 5.12 Association between PGS of sensitivity and changes in anxiety 
symptom severity post-treatment (Study3) 
  β CI p 
PGS1 .01  -.07, .09  .83 
PGS2 .01  -.07, .09  .86 
PGS3 -.02  -.10, .07  .67 
PGS4 -.02  -.11, .06  .57 
PGS5 -.03  -.11, .05  .43 
PGS6 -.04  -.12, .04  .37 
PGS7 -.03  -.11, .05  .49 
PGS8 -.03  -.11, .05  .44 
PGS9 -.03  -.11, .05  .42 
PGS= Polygenic Score; β=beta coefficient from linear regression model; CI=95% Confidence 
interval; CIs crossing zero indicate non-significant beta; Mixed effects linear regression model 
with symptom severity at 4 time points as the outcome, and PGS, sex, age, linear and quadratic 
effect of time, baseline symptom severity, diagnosis, treatment type, 3 PCs as fixed effects, and 
individual and trial as random effects 

 



 277 

5.3.3.3 Study 3: Treatment specific effects of the PGS of sensitivity 

Linear mixed models were used to investigate treatment-specific effects of the PGS by 

fitting the same models as in the previous analyses but including a PGS by treatment 

interaction. A significant interaction in these models indicates that the PGS had a 

different effect on response according to treatment type. In these analyses there were no 

significant PGS by treatment interactions when comparing individual vs. guided self-

help CBT or group vs. guided self-help CBT. However, significant treatment type-PGS 

interactions were identified when comparing individual CBT and group CBT (βPGS7= 

.22, 95%CI [0.01-0.43], p= .04; βPGS8= .21, 95%CI [0.01-0.42], p= .05; βPGS9= .23, 

95%CI [0.03-0.44], p= .03). The significant interaction term explained .12% of the 

variance in treatment response. These findings suggest that the effects of the PGS 

differed according to treatment type. 

Post-hoc simple slopes analyses were conducted in order to probe these interaction 

effects, and further explore possible treatment specific effects of the PGS (see Figure 
5.8). The results indicated that highly sensitive individuals responded more favorably to 

individual CBT, but worse to group CBT. The interaction was the inverse for low 

genetically sensitive individuals.  

Linear mixed models were used to investigate treatment-specific effects of the PGS by 

examining the effects of PGs in each treatment group. In these analyses, similar models 

were fitted as in previous step (5.3.3.2) separately for patients treated with individual 

CBT, group CBT and guided self-help. As shown in Table 5.13, findings were non-

significant for the PGS in each of these treatment groups, which was likely the result of 

a loss of power following stratification. Nevertheless, the PGS did appear to have 

different effects for the different treatment types, and consistent with findings from the 

interaction analyses, the largest differences were in individual CBT vs. group CBT. 

While higher genetic sensitivity was associated with a superior response to individual 

CBT, it predicted a poor response to group CBT (e.g. for PGS9: βindividual CBT = -.08, 

βgroup CBT= .11).  
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Figure 5.8 Simple slopes analysis of the interaction between PGS x treatment type 
predicting reduction in anxiety symptoms post treatment

-1
.5

-1
-.5

0
.5

An
xie

ty 
sy

m
pt

om
 se

ve
rit

y 

1 2
Individual vs. Group CBT Treatment

Low polygenic score
High polygenic score

Individual	CBT Group	CBT



 279 

Table 5.13 Association between PGS of sensitivity and changes in symptom severity post-treatment (Study 3) 

  
  Individual CBT 

 
Group CBT 

 
Guided self-help CBT 

  

  β CI p  
β CI p  

β CI p 

PGS1 
 

.03 -.07, .12 .55 
 

-.12 -.31, .07 .20 
 

.12 -.02, .27 .10 

PGS2 
 

.02 -.09, .13 .73 
 

.03 -.17, .22 .80 
 

-.03 -.17, .11 .68 

PGS3 
 

.02 -.09, .13 .72 
 

.01 -.18, .21 .89 
 

-.06 -.21, .09 .41 

PGS4 
 

-.02 -.12, .09 .74 
 

.06 -.15, .27 .56 
 

-.04 -.18, .10 .57 

PGS5 
 

-.06 -.16, .04 .21 
 

.05 -.14, .25 .60 
 

-.05 -.21, .10 .51 

PGS6 
 

-.06 -.16, .04 .22 
 

.05 -.16, .25 .66 
 

-.05 -.21, .10 .52 

PGS7 
 

-.08 -.17, .02 .12 
 

.09 -.12, .31 .39 
 

-.03 -.19, .13 .68 

PGS8 
 

-.08 -.18, .02 .11 
 

.09 -.12, .29 .40 
 

-.04 -.20, .12 .61 

PGS9   -.08 -.18, .02 .10 
 

.11 -.09, .31 .29 
 

-.06 -.21, .10 .49 

PGS= Polygenic score; β=beta coefficient from linear regression model; CI=95% confidence interval; CIs crossing zero indicate non-significant beta; Mixed effects linear regression 

model with symptom severity at 4 time points as the outcome, and PGS, sex, age, linear and quadratic effect of time, baseline symptom severity, diagnosis, treatment type, 3 PCs as 

fixed effects, and individual and trial as random effects 
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5.4 Discussion 

The main aim of this chapter was to examine whether genetic sensitivity moderates the 

effects of negative and positive environmental factors on mental health problems 

including response to treatment. This was explored using three separate studies, each 

aiming to specifically address the identified limitations and gaps in previous research as 

detailed in Section 5.1.3.  A discussion of the findings is presented separately for each 

study, followed by implications, strength and limitations, and lastly, conclusions from 

research in this chapter. 

5.4.1 Study 1: genetic sensitivity x childhood psychosocial environment interaction 

in predicting psychological distress across life span 

This study examined how genetic sensitivity moderates the effects of the psychosocial 

environment on psychological distress across life span, in a prospective longitudinal 

cohort of over 2,800 individuals from age 7 to 52. The results suggested that genetically 

sensitive children who were exposed to unfavourable environments were at a higher risk 

of concurrent psychological distress than those with a low genetic sensitivity. However, 

this genetic sensitivity acted as a protective factor in the long-term, decreasing their risk 

of psychosocial distress in adulthood. 

These intriguing results were contrary to expectations, since theoretical models of 

sensitivity suggest that genetic sensitivity acts for better and for worse, such that high 

genetic sensitivity in negative context would implicate worse outcomes and in positive 

context better outcomes and cross-sectional studies in the field have largely supported 

the hypothesised interaction pattern (Bakermans-Kranenburg & van IJzendoorn, 2011; 

van IJzendoorn, M. H. et al., 2012). However, the majority of the studies in the field are 

conducted with children and adolescents rather than adults (see Table 4.1a and 4.1b in 

Chapter 4, Section 4.1.2.2). It is possible that the hypothesised interaction pattern is 

more robustly detectable in childhood than is in adulthood, as the findings from the 

current study is consistent with previous environmental sensitivity findings in children, 

but adulthood findings were not. For example, Keers and Pluess (2017), using a subset 

of the data form the same study but a PGS of several candidate genes and material 

environmental quality in childhood and adulthood to predict adult psychosocial distress, 

did not find a significant GxE effect. Instead, they found a significant GxExE 

interaction, whereby genetically sensitive children were more vulnerable to adversity as 
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adults if they had experienced a poor childhood material environment, but were also 

significantly less vulnerable if their childhood material environment was high, 

compared to low sensitive individuals. Although Keers and Pluess (2017) study used 

longitudinal data, it is challenging to interpret the current study’s findings with 

reference to this study, due to difference in measures of genetic sensitivity (candidate 

vs. genome-wide PGS) and environmental factor (material vs. psychosocial), but 

importantly because their analytical approach did not allow life-span examination of 

how sensitivity may differ as a function of time, or at childhood versus adulthood life 

stages. There is however at least one study examining the effects of 5-HTTLPR, the 

most widely studied candidate sensitivity gene, and its interaction with early life stress 

(ELS) and age in predicting wellbeing. In one such study, Gartner et al. (2017) found 

that while the short allele (sensitivity genotype) was associated with lower levels of 

evaluative well-being in younger participants in the presence of ELS, this effect 

disappeared in middle-aged participants and the effects were reversed in old age. 

Similar to the findings in the current study, higher sensitivity (s-allele carriers) in the 

context of ELS was associated with lower levels of well-being in young age, but higher 

levels in older ages. The less sensitive individuals (l-allele carriers) reported lower 

levels of well-being in the presence of ELS. The authors interpreted the findings in the 

context of evidence showing short allele carriers are more receptive to social supports, 

and also display higher levels of social conformity(Homberg & Lesch, 2011; Kaufman 

et al., 2004); these traits inferred by the s-allele genotype may act as protective factors 

and promote successful adaptation to challenges of aging and therefor higher levels of 

wellbeing later in life.  

It is difficult to draw on differential susceptibility theories to explain the unexpected 

results, since they are yet to make specific hypotheses about how the effects of 

sensitivity may differ as a function of time/aging. It is, however, possible to offer an 

appropriate interpretation of the results if the core features of highly sensitive 

personality are considered in light of theory and research on resilience/coping in 

response to adversity. Although contextual adversity/stress/childhood traumas are 

generally studied as risk factors for a range of psychopathologies including depression, 

there is great heterogeneity in response to these events (Rutter, 2007). In fact, it has 

been suggested that four types of reactions are likely following exposure to 

trauma/stressor (Connor & Davidson, 2003): first, the person may become maladjusted 

by using destructive means to cope with the trauma/stressor; second, the person may 



 282 

overcome the stressor but show some deficits in functioning; third, the person may 

move forward beyond the trauma/stressor, returning to the same functioning as before 

the trauma; fourth, the trauma/stressor may present the person with an opportunity to 

grow and improve function in some respects. Rutter (1987) has suggested two 

alternative models of “stress sensitization “ or “stress inoculation” to explain the 

heterogeneous outcomes of adverse experiences. In the first model, early adverse 

experiences predispose an individual to higher sensitization to future stressful events, 

whereas in the second model, the early traumatic/stressful experiences makes the 

individual more resilient to future stress events, as a result of meeting, and successfully 

coping with, challenges (Rutter & Rutter, 1993). The process via which one or the other 

outcomes may be observed is a dynamic and complex interplay between the person and 

the stressor’s characteristics (Rutter, 2012).  Research on the characteristics of the 

person in such processes have found that a cognitive redefinition of the 

traumatic/stressful experiences, a self-reflective style, taking considered approach to 

decision making, personal agency and a concern to overcome adversity are all important 

factors in shaping traumas/stressors into steeling/inoculation effects or even flourishing 

ones (Agaibi & Wilson, 2005; Hauser, Allen, & Golden, 2009; Rutter, 1985, 1987; 

Rutter, 1995). Considering the dynamic interplay between personal characteristics that 

influence the impact of environmental context on subsequent events, it is not surprising 

that developmentally distal and proximal environmental influences may have a different 

effect on psychological outcomes (Rutter, 2012). That is, while the immediate effects of 

adversity may lead to the conclusion that it was damaging, intervening factors and 

interactions over time may lead to different or even reversing of these effects.  

The results from the current study seem to be best explained by a steeling effect of 

adversity, that has a greater influence on those with a high vs. low genetic sensitivity. 

This increased sensitivity to steeling effects is perhaps less surprising given that the core 

features of high sensitive personality involve deeper processing of emotional stimuli, 

greater self-reflection and introspection, extensive information processing and longer 

deliberation in decision making (Aron & Aron, 1997), all of which are deemed 

important in resilience/coping to adversity and more positive outcomes. Specifically, 

the results indicate that while heightened sensitivity predisposes the individual to higher 

psychological distress in childhood in response to low psychosocial environment 

quality, the inherent characteristics of high sensitive personality also potentiates lower 

psychological distress in later life. In contrast, low sensitive individuals may not be as 
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psychologically affected by the poor quality of their environment in childhood, but 

since they are also lower on the beneficial aspects of sensitivity, they do not learn as 

much from early exposure to such contexts (i.e. developing coping skills), leaving them 

ultimately more vulnerable to adversity later in life. The findings from the next study on 

depression and childhood trauma further support the conclusion of GxE results in the 

current study, a detailed discussion of which is presented in the following section. 

Overall, the results from this study indicate that the longitudinal effects of sensitivity 

differ across life-span, with high genetic sensitivity increasing risk for childhood 

psychological distress in the context of low quality childhood psychosocial environment 

in the short-term, but acting as a protective factor against adulthood psychological 

distress in the long-term.  

5.4.2 Study 2: genetic sensitivity x childhood traumas and stressful life events 

interaction in predicting clinical depression 

This study examined how genetic sensitivity moderates the effects of childhood 

maltreatment or recent stressful life events (SLEs) on major depression in a case-control 

design study of over 2,500 individuals.  The results showed a significant main effect of 

SLEs and childhood maltreatment on depression. Higher number of SLEs were 

associated with two-fold increase in risk of depression, and the risk of depression was 

over four times greater for those who had experienced any maltreatment compared to 

those who had not, with the largest effect seen for physical neglect and abuse. There 

was a general trend towards higher risk of depression with increased genetic sensitivity, 

but the associations were not statistically significant.  

With regards to SLEs, there were small but statistically non-significant interactions 

between PGS of sensitivity and recent SLE’s in predicting the risk for depression. The 

interactions were in the expected direction. Specifically, the depressogenic effects of 

recent SLEs were greater in those with high vs low genetic sensitivity, whereas, in the 

context of low levels of adversity (few recent SLEs), the risk of depression did not 

differ by genetic sensitivity score. Though the interaction effects were not significant, 

this pattern of interaction is in accordance with differential susceptibility theories. That 

is, high genetic sensitivity would be associated with an increased risk of depressive 

symptoms in the context of adversity, but decreased/no difference in risk in low SLE 

contexts. The lack of significant effects in the current study may reflect the difference 

between the current study and previous GxE studies of environmental sensitivity in how 
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genetic sensitivity and the outcome are measured. Specifically, while much of the 

previous studies with SLEs have examined depressive symptoms and using candidate 

genes to index sensitivity (e.g. Priess-Groben & Hyde, 2013; Zimmermann et al., 2011), 

the current study was the first to examine clinical depression, using a genome-wide 

PGS of sensitivity.  Interpreting the results in the context of these differences in 

outcome measure between previous and current study, it is possible that genetic 

sensitivity increases the risk of normally distributed depressive symptomatology in 

response to stressful life events, but it does not contribute sufficiently to risk for clinical 

depression; a qualitatively distinct phenotype compared to depressive symptoms; or that 

the previous studies are examining genetic sensitivity to risk of depression, rather than 

general genetic sensitivity to environments as captured here in the PGS score. 

With regards to childhood maltreatment, there was evidence for significant interactions 

between genetic sensitivity and overall childhood maltreatment, and sexual abuse, 

though the pattern of interaction was contrary to expectations. While childhood 

maltreatment and genetic sensitivity were both found to increase the risk of depression, 

the combination of these factors resulted in a decreased risk. Specifically, the results 

indicated that in the absence of, or at low levels of childhood maltreatment, high 

sensitivity increased risk of depression in adulthood, but in the presence of severe 

maltreatment, genetic sensitivity acted as a protective factor. Low genetic sensitivity on 

the other hand was associated with an increase in risk of depression in the context of 

severe maltreatment.  

The results are intriguing, especially in the context of previous research on sensitivity, 

showing that high genetic sensitivity increased risk of depressive symptoms in 

adolescence in the context of childhood maltreatment but decreased/no difference in 

risk in the absence of maltreatment, compared to low genetic sensitivity (e.g. Cicchetti 

et al., 2007). As noted earlier, the differences in results from the current study may 

reflect the differences in the outcome (clinical diagnosis vs. symptoms) and genetic 

(candidate vs. genome-wide) measure. It is possible that genetic sensitivity increases the 

risk of normally distributed depressive symptomatology, but that it acts as a protective 

factor when comparing the risk for clinical depression. Although this may explain why 

the results of the current study are different to others in the field so far, it does not 

explain why/how high genetic sensitivity decreases risk for clinical depression in the 

context of childhood maltreatment, and low genetic sensitivity increases the risk.  A 

possible explanation comes to light when considering the results from Study 1, and 
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when comparing the interaction between maltreatment and genetic sensitivity to that of 

SLEs in the current study.  

As it was evidenced in Study 1, the effects of genetic sensitivity changed over time, so 

that while the short-term effects in childhood were compatible with the differential 

susceptibility theories, the long-term effects in adulthood were reversed. Specifically, 

the more genetically sensitive children, compared to low genetically sensitive, were at 

higher risk of psychological distress when they grew up in less favourable psychosocial 

contexts, but that their genetic sensitivity acted as a protective factor in the long-term, 

decreasing their risk of psychosocial distress in adulthood. The results indicated an 

interaction with time, such that the passing of time between childhood events and 

genetic sensitivity moderated the risk for psychological distress. This pattern of 

interaction was explained in the context of steeling effects of adversity over time as a 

function of the highly sensitive person’s characteristics. The same steeling effects 

appear to be in play for childhood maltreatment, consistent with findings for a range of 

psychopathologies including depression, as a function of personal characteristics noted 

earlier (Bulik, Prescott, & Kendler, 2001; Campbell-Sills, Cohan, & Stein, 2006; 

Cicchetti, Rogosch, Lynch, & Holt, 2009; Collishaw et al., 2007; Rutter, 1995; 

Valentine & Feinauer, 2007).  Given that highly sensitive individuals may show more 

introspection and reflection, it is possible that low sensitive individuals do not process 

the emotional impact of the negative life events such as maltreatment, therefore at 

higher risk of developing depression later in life. 

Additionally, while higher genetic sensitivity was associated with slight increased risk 

of depression in response to recent SLEs, it also acted, in the longer term, as a 

protective factor against clinical depression in the context of childhood maltreatment. 

The contrasting results may be due to the timing of the events, since SLEs were 

measured 6 months prior to depressive episode/diagnosis and maltreatment as the more 

distant childhood events. Though suggestive, it is difficult to firmly establish the 

differences in results are a function of time, and not SLEs vs. maltreatment effects, 

without further investigation in a longitudinal cohort.  Overall, the results indicated that 

high genetic sensitivity is protective in the context of childhood maltreatment for risk of 

clinical depression, but it is not a significant contributor to risk for clinical depression in 

the context of high SLEs.  
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5.4.3 Study 3: genetic sensitivity x treatment interaction in predicting response to 

CBT intervention for paediatric anxiety disorders 

This study examined how genetic sensitivity moderates response to psychological 

interventions for clinically diagnosed anxiety disorders in a sample of over 900 

children. The treatment groups included individual CBT, group CBT, and guided self-

help CBT. The results showed that treatment type was not a significant predictor of 

treatment response, whereby all individuals showed a reduction in their anxiety scores 

post-treatment, regardless of the treatment type they received. There were no 

statistically significant effects of genetic sensitivity on overall treatment response. 

However, as expected, there was a significant genetic sensitivity x treatment type 

interaction, whereby higher genetic sensitivity was associated with a good response to 

individual CBT, but a poor response to group CBT. Low genetic sensitivity showed the 

opposite pattern, whereby low genetic sensitivity was associated with a good response 

to group CBT and a poor response to individual CBT.  

The result of the current study supports Keers et al. (2016) findings, by showing that 

genetic sensitivity moderates the outcomes of psychotherapeutic intervention for 

anxiety, with high genetic sensitivity associated with advantageous response to 

individual CBT versus group CBT.  This finding is in line with differential 

susceptibility theories, which propose environmental factors (positive or negative) have 

a greater effect on more sensitive individuals, therefore the more sensitive individual 

may be more sensitive to the type of treatment they receive, compared to low sensitive 

individuals. The preferential response to more intensive type of treatment such as 

individualized CBT may reflect the fact that individuals with higher genetic sensitivity 

to the environment are more likely to develop the type of cognitive biases underlying 

anxiety disorders (such as a bias towards threat) (Pergamin-Hight, Bakermans-

Kranenburg, van IJzendoorn, & Bar-Haim, 2012), and therefore require more intensive 

treatments to overcome these biases. 

While much of previous candidate sensitivity gene x treatment studies have found that 

genetically sensitive individuals may benefit disproportionately from psychological 

interventions for a range of outcomes including anxiety, depression, externalizing 

behaviours (Bakermans-Kranenburg et al., 2008; Brody, Beach, Philibert, Chen, & 

Murry, 2009; Eley et al., 2012), other studies have found preferential response to 

psychological treatments for low and not high genetic sensitivity for major depression 

(Cicchetti, Toth, & Handley, 2015) or bulimia (Steiger et al., 2008). The current study 
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also did not find a significant effect of overall treatment response for anxiety as a 

function of genotype. The differences may be due to the current study’s use of a 

genome-wide PGS score of environmental sensitivity, CBT intervention type or the 

clinical sample, which has not been attempted in other environmental sensitivity studies 

so far, expect for Keers et al. (2016). On the other hand, the diversity of the results may 

also indicate that response to therapeutic interventions, as a function of genetic 

sensitivity may be disorder or treatment-type specific, and cautions against 

generalisation of the results to other treatment types or outcomes. Overall, the results of 

the current study suggest that the more genetically sensitive children respond better to 

individualised CBT treatment for reducing symptoms of a wide range of anxiety 

disorders.  

5.4.4 Implications 

The findings from the studies in the current chapter have several implications for 

research in environmental sensitivity. First, the results of Study 1 highlighted the 

importance of taking a developmental approach to GxE given that the effects of the 

interaction between environmental factors and genetic sensitivity differed across the life 

span. Importantly, since much of current differential susceptibility theories are based on 

evidence from cross-sectional studies or longitudinal studies in childhood, theoretical 

models of sensitivity would benefit from incorporating the current study’s findings as 

starting point for extending the model to life-course development. Without considering 

a life course approach, our understating of genetic sensitivity to context may be skewed 

by the more immediate effects of environments, rather than their longer-term effects on 

an individual’s mental health.  

Second, the results of the study on genetic sensitivity, SLEs, and childhood 

maltreatment on risk for clinical depression highlighted the importance of studying 

sensitivity in the context of clinical diagnoses, and challenges the notion of high 

sensitivity leading to increased risk of mental health problems in adverse contexts. 

Using a genome-wide PGS of sensitivity, it was seen that contrary to expectations, high 

genetic sensitivity did not significantly increase risk for clinical depression in response 

to recent SLEs, and in fact acted as a protective factor against depression in response to 

childhood maltreatment. The findings therefore caution against generalising the findings 

from non-clinical samples to clinical samples. Most importantly, the findings with 

maltreatment show that the genetic factors underlying high sensitive personality entails 
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certain characteristics that reduce the risk for depression following childhood 

maltreatment, challenging the differential susceptibility theories’ proposition that that 

high sensitivity increases risk for negative outcomes in response to adverse 

environmental influences. Specifically, it could be that in the short term and in response 

to immediate or recent adverse events, highly sensitive individuals have higher risk of 

mental health problems, but in the longer term, they are more protected than the low 

sensitive individuals.   

Finally, the results of the study on response to CBT intervention for anxiety disorders, 

builds on existing research in therapygenetics, showing the “one size fits all approach” 

should be re-considered, as it was found that the efficacy of different treatment types 

differs according to the level of environmental sensitivity. High genetic sensitivity was 

associated with better response to individual CBT and worse response to group CBT, 

whereas low genetic sensitivity showed the opposite pattern. The findings may assist in 

deriving more success from interventions by targeting the interventions at the people 

most likely to benefit from it. For example, more intensive psychological treatment 

could be targeted at highly sensitive individuals, and the more cost-effective, lower-

intensity approaches such as group-based therapies targeted at individuals with lower 

genetic sensitivity who may respond to them better or as effectively as they to 

individual CBT treatment.  

5.4.5 Strengths and limitations  

The studies included in the current chapter have several strengths. Firstly, all three 

studies used, for the first time, polygenic scores derived from genome-wide variants 

associated with sensitivity. Unlike candidate-gene based analyses or scores, using 

genome-wide polygenic scores is in concordance with our understanding of the 

polygenic nature of complex traits. Secondly, in constructing the polygenic score, 

genetic variants were included according to their evidenced association with general 

sensitivity to context, via high sensitive personality trait, rather than hypothesised 

candidate genes. Third, the studies in the current chapter were the first to take a life 

course approach to studying the interaction between polygenic score of genetic 

sensitivity and environmental influences in mental health, or examine the interaction 

patterns in relation to clinical depression.  

Nevertheless, the findings should be interpreted in light of several limitations. First, the 

polygenic score of sensitivity was derived from a rather small sample (N=1,035), which 
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would affect its sensitivity and also the PGS was not examined for its association with 

environmental sensitivity in an independent sample, meaning it was difficult to 

determine the extent to which it might have captured environmental sensitivity in 

different study samples. It is possible therefore that the results reflect false positive or 

false negatives. The findings should therefore be considered preliminary and 

exploratory, pending replication in larger samples. Second, the measure of the 

environment in Study 1 was not a psychometrically standard measure of psychosocial 

environments, rather, an index of environmental factors deemed important in 

psychological functioning. Though its association with the outcome measure 

determined the validity of the measure, a psychometrically validated measure might 

have strengthened the results. Third, the environmental factor in Study 2 only included 

the extent of/presence and absence of negative context, and therefore not providing a 

full spectrum of both positive and negative environmental factors. Interpretation of the 

results may therefore be limited in their application to testing of response to more 

negative aspects of the environmental influences as a function of genetic sensitivity. 

Finally, the treatment allocation in Study 3 was not random, because the sample 

included children with anxiety disorders receiving psychological treatment as part of a 

trial, or treatment as usual in one of multiple studies; treatment type was therefore 

associated with several clinical and demographic characteristics at baseline. While 

inclusion of demographic and diagnostic variables in the analytical models, aimed to 

account for this, it does not exclude the possibility that the results were influenced by 

other unmeasured factors. The Replication of the results in a randomised trial, which 

better account for these confounds, would further validate the findings herein. 

5.4.6 Future directions 

First, other studies should address the limitations of the current research, including 

following up on the current findings, using genome-wide PGS scores of sensitivity, with 

a design that includes environmental factors from both positive and negative spectrum 

of events. Second, considering the findings of Study 1, it is important that theoretical 

models of environmental sensitivity are further developed to consider the lifespan 

implications of sensitivity. While the results of the study requires further replication, 

they provide encouragement for future research to investigate the mechanisms that 

underlie observed changes in the effects of genetic sensitivity on mental health 

outcomes. Specifically, future research may investigate what specific characteristics in 

the highly sensitive individuals, or the sensitivity genotypes, makes them more 
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susceptible to adversity in the short term, but acts as protective factors in the long-term. 

Following up on the results by asking whether these differences are a function of the 

same characteristics, or a constellation of different ones would have implications in 

understanding and promoting mental health. Third, in light of findings from Study 2, 

future research should aim to clarify if the trajectory of the interaction between genetic 

sensitivity and environmental exposures differs for clinical versus symptomatic 

presentation of mental health outcomes, and if genetic sensitivity shows specificity in its 

function according to the type of environmental factors (SLEs vs. maltreatment) being 

considered. This is an important future research direction, since current environmental 

sensitivity research tends to not distinguish between these outcomes and factors, and 

thus generalising the findings from one disorder/trait to others to provide evidence for 

the proposed function of genetic sensitivity. Insight provided by future research may 

help discern genetic factors that relate specifically to mental health in the context of 

specific environmental factors versus those that are more generic in their function. 

Finally, the findings from Study 3 are encouraging for the future research in 

environmental sensitivity; however, future research should address the limitations of the 

current study by using randomised trials in larger samples, as well as using patient 

records of response to other commonly prescribed therapeutic interventions to conduct 

genome-wide GxE studies. This enables researchers to examine if the treatment 

response differs as a function of genetic sensitivity and what works best for what type of 

disorders.   

5.4.7 Conclusions 

In conclusion, the studies in the current chapter were the first to examine how genetic 

sensitivity, indexed via genome-wide polygenic score of high sensitive personality, may 

moderate the effects of environmental factors on mental health across the life-span, in 

clinical depression, and in treatment response for anxiety disorders. The results of the 

life-span study of genetic sensitivity and the study of clinical depression both indicated 

that the effects of sensitivity differ across development. Specifically, adults and children 

with a high genetic sensitivity were more vulnerable to the effects of developmentally 

proximal adversity but more resilient to the effects of distal adversity. These findings 

suggest that genetic sensitivity may moderate processes by which early adversity lead to 

steeling or stress inoculation. The results of study on response to CBT therapy as 

function of genetic sensitivity, confirmed previous research findings that high genetic 
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sensitivity is associated with improved response to more intense treatment for anxiety 

disorders, such as individual CBT, rather than group CBT 
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Chapter 6 

General discussion 
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Several recent theories (i.e. sensory processing sensitvity: Aron & Aron, 1997; 

differential suscceptibility hypothesis: Belsky, Bakermans-Kranenburg, et al., 2007; 

Belsky & Pluess, 2009; biological sensitivity to context: Boyce & Ellis, 2005), referred 

to here as differential susceptibility theories, suggest that individuals differ in their 

levels of sensitivity to their environmental contexts, and that those who are generally 

more sensitive tend to respond more positively to the beneficial aspects of their 

environmental, as well as being affected more detrimentally by the negative impact of 

adverse environmental influences (compared to less sensitivity individuals). Higher 

sensitivity therefore may be a risk factor for developing psychopathology in response to 

adversity, but also predict flourishing and lower risks in positive or health-promoting 

contexts. Individual differences in this environmental sensitivity, reflected in the “for 

better and for worse interaction pattern”, are proposed to have a genetic basis. Although 

several candidate genes have been suggested to reflect environmental sensitivity, based 

on their for better and for worse moderating action on a range of environmental 

influences and outcomes in gene-environment interaction studies, the heritability of 

environmental sensitivity remains unknown. Additionally, bar one study by Keers et al. 

(2016), no studies to date have examined the genetic basis of sensitivity, using a 

quantifiable phenotype of environmental sensitivity, and genetic studies to date have 

almost entirely relied on candidate gene approaches.  

The main purpose of this thesis was to examine the genetic basis of environmental 

sensitivity and its association with mental health outcomes. This was done by using the 

highly sensitive personality trait to index individual differences in environmental 

sensitivity and through a diverse range of analytical approaches. The main aims of this 

thesis were addressed through a series of studies presented in four chapters.  A summary 

of the specific aims and findings from each chapter are presented below. 

6.1 Summary of findings 

6.1.2 Chapter 2 

Aim: to develop and establish the psychometric properties of a new measure of 

environmental sensitivity suitable for use with children and adolescents. 

While the Highly Sensitive Person scale (HSP; Aron & Aron, 1997) has been used as a 

quantifiable phenotype of environmental sensitivity in research with adults, there is no 

developmentally appropriate measure for studying environmental sensitivity at younger 

ages. Considering that the sample in the current thesis consisted mainly of children and 



 294 

adolescents, developing a psychometrically valid measure for this population was an 

important first step towards the main aim of this thesis.  

This aim was addressed across four studies in Chapter 2, via a large multi-site study in 

the UK, comprising of four independent samples (N= 1,931) of children and 

adolescents. In Study 1, the items for the new scale were selected from a larger pool of 

developmentally appropriate items that were deemed to capture the environmental 

sensitivity concept according to the adult measure, the Highly Sensitive Person scale by 

Aron and Aron (1997). Principal component analysis and confirmatory factor analysis 

was used to arrive at the final version of the scale, using a sample of 334 children. In 

Study 2, the psychometric properties of the new scale (highly sensitive child; HSC) 

were established by examining its associations with other relevant constructs in a 

sample of 11-year olds (N= 258).  In Study 3, the test-retest reliability of the scale was 

established in a different sample of 10-year old children (N= 155).  In Study 4, the 

psychometric properties of the new scale were examined in a large sample of 

adolescents (N= 1,174).   

The results across the different samples indicated that the newly developed HSC 

measure reflected the same structure as the adult measure by showing the same three 

underlying factors of ease of excitation (EOE), aesthetic sensitivity (AES), and low 

sensory threshold (LST). Factor analysis results across the studies indicated that a bi-

factorial solution fitted the data best, such that the 12 items reflected three components 

but also loaded onto a general factor of environmental sensitivity. The scale also 

showed good internal consistency and test-retest reliability. In addition, the measure 

was associated in meaningful ways with other constructs, as seen with the adult scale 

and as theorised in the initial conceptualisation of the phenotype. Higher scores on the 

scale, reflecting higher levels of environmental sensitivity, were associated with higher 

behavioural inhibition and activation, positive and negative affect, effortful control, 

neuroticism and lower extraversion. The observed correlations between the total score 

and both BIS and BAS, as well as both negative and positive emotionality, suggested 

that this phenotype encompasses sensitivity to both negative and positive influences, 

consistent with differential susceptibility theories. 

Associations of the three subscales of sensitivity with other measures were in line with 

previous research findings in adults, showing that while the AES component was more 

strongly associated with measures that reflect sensitivity to more positive experiences 

(e.g. BAS, positive emotionality, extraversion, openness, conscientiousness), EOE and 
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LST were more strongly associated with traits that reflect sensitivity to negative 

environmental factors (e.g. BIS, negative emotionality, negative affect, and 

neuroticism). The findings from this chapter have since been published (Pluess et al., 

2018), and the scale has been used in various studies with children and adolescents. The 

findings from these studies further strengthened the validity of this scale, by showing 

that environmental sensitivity as captured by this measure moderates the effects of 

environmental influences for better and for worse (e.g. Nocentini et al., 2018; Slagt et 

al., 2018).   

6.1.3 Chapter 3 

Aim: to examine the heritability of environmental sensitivity and its genetic 

architecture as a function of its components and its relationship with other traits.  

While candidate GxE studies have found several genetic variants that reflect sensitivity 

to environmental influences by moderating the impact of negative and positive 

environmental exposures on a range of outcome, no studies to date have examined the 

total genetic contribution to individual differences in environmental sensitivity. 

This aim for this chapter was addressed by examining the heritability of environmental 

sensitivity, for the first time, using twin design and the scale developed in the previous 

chapter, in a sample of adolescent twins from the UK (N= 2,868). Following on from 

the findings from the previous chapter, multivariate twin design was used to examine 

whether the genetic influences underlying variations in environmental sensitivity 

reflected one common factor shared between all three components of the scale, or if 

there were also some genetic influences that were distinct to each trait. In addition, 

multivariate models were used to examine the extent to which the correlation between 

environmental sensitivity and the Big-Five personality traits, as well as depression and 

anxiety were due to shared genetic or environmental influences. The results confirmed 

the hypothesised genetic basis of environmental sensitivity, by showing that genetic 

influences explain almost half (47%, 95% CI= 30, 53) of the variation in environmental 

sensitivity. The heritability was found to be mostly due to additive genetic effects, and 

no significant sex differences were observed in heritability estimates. The multivariate 

analysis results revealed, as expected based on results from Chapter 2, that the three 

factors of environmental sensitivity contributed to a common latent factor, and that 

variations in the three components were partly explained by shared genetic and 

environmental influences underlying all three factors, but also distinct genetic and 
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environment influences that were specific to AES and LST components. The results 

suggested that the genetic factors underlying variations in environmental sensitivity 

may be best understood as the function of two sets of genetic influences, those that give 

rise to variations in overall levels of sensitivity (i.e. common latent factor), and those 

that reflect variations in sensitivity to specific type of environmental influences: 

negative aspects of environmental influences (as reflected in the LST component) and 

positive aspects of the environment (as reflected in the AES component). This 

interpretation is also consistent with the hypthesised existence of different types of 

sensitivity (Pluess, 2015) as reflected in diathesis-stress (negative sensitivity), vantage 

sensitivity (positive sensitivity) and differential susceptibility (general sensitivity to 

both positive and negative).  

Analysis of the aetiological overlap between environmental sensitivity and personality 

traits, as well as depression and anxiety revealed a large genetic overlap between the 

genetic factors that explain variations in environmental sensitivity and neuroticism and 

extraversion (approx. 80%). However, the environmental factors that explain variation 

in these phenotypes were found to be distinct to each. The genetic influences on 

environmental sensitivity were also shared with those underlying depression and 

anxiety, though to a lesser extent (approx. 47%). There was a small overlap of the 

environmental factors that explain the variations in depression, anxiety and 

environmental sensitivity (approx. 10%). Overall, approximately one third of the 

genetic and environmental influences on environmental sensitivity were shared with 

depression and anxiety, and two thirds were unique to it.  

6.1.4 Chapter 4 

Aim: to identify the molecular genetic factors associated with individual 

differences in environmental sensitivity  

Previous studies have identified genetic variants that moderate the impact of 

environmental influences in a manner consistent with differential susceptibility theories 

(i.e. for better and for worse). However, no studies to date, with the exception of one 

(Chen et al., 2011), have examined how these sensitivity candidate genes relate to 

individual differences in the phenotype of environmental sensitivity (i.e. HSP). In 

addition, previous studies on environmental sensitivity focused almost exclusively on 

candidate gene approaches, rather than exploratory genome-wide approaches.  
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The aims in this chapter were examined by applying two different approaches. In the 

first part, the candidate gene approach was used to examine the associations between 

five sensitivity candidate gene variants (MAOA, 5-HTTLPR, DRD4, DAT1, STin2) 

identified in previous research. Next, gene-based analyses were applied to examine the 

association between 20 candidate genes and environmental sensitivity at the gene rather 

than the SNP level. Analyses were conducted across 3 independent samples, one from 

Belgium (N= 838), plus two from the UK (N= 395 and N= 642). In the second part, 

genome-wide approaches were employed to conduct a GWAS of environmental 

sensitivity across two samples from the UK, as well as a meta-analysis of the data to 

identify those SNPs most strongly associated with variations in environmental 

sensitivity. In addition, genome-wide gene-based and gene-set analyses were conducted. 

Finally, genome-wide polygenic score analysis was conducted to examine whether a 

polygenic score of environmental sensitivity predicts sensitivity in independent 

samples, and also to test whether polygenic scores from 13 other related phenotypes 

(i.e. Big-Five personality traits, autism, ADHD, anxiety, depression, insomnia, 

loneliness, subjective wellbeing, educational attainment) would predict variations in 

environmental sensitivity.  

The candidate gene approach did not yield evidence of a significant association between 

sensitivity candidate gene variants (or genes) and individual differences in 

environmental sensitivity across the three samples. This was despite the larger sample 

sizes of the current studies, rendering them more powerful to detect the effect sizes 

reported in previous GxE studies from which the candidate genes were selected. The 

findings therefore indicate that despite previous GxE studies regarding these candidate 

variants/genes as sensitivity genes, they may not play a significant role in explaining 

individual differences in the phenotype of environmental sensitivity. It is also possible 

that they explain a very small proportion of variance in sensitivity, and therefore require 

larger samples to detect these small effects.  

The genome-wide approach resulted in mixed findings. There were no SNPs associated 

with environmental sensitivity at genome-wide significance level, which was expected 

due to the small underpowered samples in the current studies. Gene-based and gene-set 

analyses did identify Ladybird Homeobox 1 gene (LBX1) in Chromosome 10 and the 

PROTEIN_SERINE_THREONINE_PHOSPHATASE_ACTIVITY gene-set to be 

significantly associated with variations in environmental sensitivity, therefore proposing 

potential new candidate genes and biological mechanisms related to this phenotype. 
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These associations, however, failed to replicate in the other sample, again reflecting the 

low power in these studies. The polygenic score analyses proved more successful with. 

results suggesting that the polygenic score of environmental sensitivity from the UK 

discovery sample predicted 1% of the variance in the other independent UK sample. 

According to the cross-trait polygenic score analyses of thirteen phenotypes from large 

GWAS studies, there were robust associations between the phenotype of environmental 

sensitivity and the polygenic scores of neuroticism, anxiety, autism, openness, 

extraversion, depression, with the latter four being robust to significance threshold 

correction for multiple testing, and explaining 2-3% of the variance in environmental 

sensitivity. Polygenic score analysis is a powerful approach, since the discovery sample 

is fully independent of the target sample and there are no shared environmental factors. 

Hence, any observed association between a trait and a genetic predictor (based on the 

discovery sample) must be due to shared genetic factors. The findings from the 

polygenic score analyses in this chapter support the twin model findings from Chapter 

3, suggesting that environmental sensitivity shares some of its genetic aetiology with 

other traits including depression, anxiety, neuroticism, and extraversion. 

6.1.5 Chapter 5 

Aim: to examine the moderating effects of genetic environmental sensitivity on the 

association between environmental influences and mental health outcomes  

Differential susceptibly theories propose that individuals that are more sensitive fare 

worse in negative contexts (compared to less sensitive individuals), but also benefit 

more from the positive/protective aspects of positive environmental exposures. Three 

independent studies were conducted to examine the main aim of this chapter, using the 

polygenic score of sensitivity obtained from the previous chapter as an index of genetic 

sensitivity.  

In Study 1 it was examined whether genetic sensitivity moderates the impact of 

childhood psychosocial environmental quality on psychological distress across the life 

course. This was done using longitudinal data and conducting linear mixed model 

analyses, to examine the moderating effects of the polygenic score of sensitivity on 

psychological distress for 2,800 individuals from childhood to adulthood (ages 7 to 50).   

Study 2 aimed at examining the moderating effects of genetic sensitivity on the well-

established association between childhood maltreatment as well as stressful life events 
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(SLEs) and clinically ascertained major depressive disorder in a sample of 2,500 

individuals.  

In Study 3 the focus was on the moderating effects of genetic sensitivity in response to 

three types of psychological interventions that vary in intensity (individual CBT, group 

CBT and guided self-help) in a sample of 900 children with clinically diagnosed anxiety 

disorders. Linear mixed model analysis was applied to examine changes in symptoms 

post treatment as a function of genetic sensitivity and the type of treatment received.  

The results of Study 1 indicated that the moderating effects of genetic sensitivity 

changed across life span. Specifically, those children who were highly sensitive and 

experienced poor quality psychosocial environment showed higher levels of 

psychological distress environment in childhood, but lower levels when growing up in 

higher quality environment; an interaction pattern consistent with differential 

susceptibility theory. However, the moderating effects of genetic sensitivity changed as 

a function of time, such that highly sensitive children who experienced poor 

psychosocial environments in childhood, were at lower risk of psychological distress in 

adulthood (compared to low sensitive children). In other words, for highly sensitive 

individuals, poor quality childhood environment was a risk factor in childhood, but 

acted as a protective factor in adulthood. The findings appear to indicate that the 

moderating effects of genetic environmental sensitivity may be contingent on the 

specific developmental period and that its distal versus proximal effect may differ 

across life span. More specifically, while poor psychosocial environmental quality in 

early childhood, marked by lower parental support, may hamper the psychological 

functioning of the genetically sensitive child in the short-term, it may also forster the 

development of protective traits, such as self-efficacy on the longer term, which then 

contribute to elevated resilience in adulthood (i.e. psychological immune system, 

“steeling” effects). Perhaps, the hypothesised ability of genetically sensitive individuals 

to process information and emotions to a greater depth and deliberation in making 

decisions may lead to higher levels of distress in the adverse context, in the short term, 

but also lead to greater learning, more efficient strategies for dealing with future 

stressful events in the long-term. This interpretation is in line with stress inoculation/ 

steeling theory (Rutter, 1987), according to which exposure to adverse environmental 

factors lead to more resilience in response to future adversity.  

The results of Study 2 showed that there were no significant effects of genetic 

sensitivity in response to recent SLEs regarding the risk of major depression, though the 
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direction of effects was consistent with differential susceptibility: More sensitive 

individuals (compared to less sensitive) had a higher risk of experiencing a depressive 

episode in response to recent SLEs and lower risk in the absence/low levels of SLEs. 

For childhood trauma, the results were in line with Study 1, such that the effect of 

childhood maltreatment for genetically more sensitive individuals was protective in 

terms of risk for developing major depression in adulthood. The different moderating 

effects of genetic sensitivity for SLE and maltreatment on the outcome may reflect the 

findings from Study 1, such that the effects of distal (childhood maltreatment) versus 

proximal (recent SLEs) environmental influences are different for more sensitive 

individuals, perhaps as a function of the inherent characteristics of higher sensitivity 

promoting resilience in the longer term (i.e. steeling effects).  

The results of Study 3 showed that highly sensitive individuals were more discriminant 

in their response to psychological intervention than less sensitive individuals. While 

most participants benefited from receiving treatment (i.e. decrease in anxiety 

symptoms) regardless of their level of sensitivity or the type of treatment received, the 

more sensitive individuals showed a stronger response to more intensive types of 

treatment, such as individual CBT versus group CBT.  The findings suggest that more 

genetically sensitive individuals may benefit more from more personalised types of 

CBT treatment.  

6.2 Implications  

The implications of the various findings from this thesis are discussed from two 

perspectives: First, in relation to environmental sensitivity theory and research, and 

second, in the wider context of psychological research and practice.  

6.2.1 Implications for environmental sensitivity research and theory 

New candidate genes underlying environmental sensitivity. Although the results of the 

GWAS, gene-based and gene-system analyses have to be considered preliminary and 

exploratory, due to the low power in these studies, the results propose potential new 

systems and genes implicated in the aetiology of environmental sensitivity. The gene-

system results particularly highlighted that genes other than those relating to serotonin 

and dopamine systems (i.e. LBX1 and biological processes implicated in embryonic 

development, cell differentiation and apoptosis) may be implicated in the mechanisms 

underlying individual differences in sensitivity, and should encourage follow up 

research on these alternative genetic factors implicated in this trait.  
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The relationship between environmental sensitivity and other traits. The observed 

genetic correlations between environmental sensitivity and related traits may give an 

indication of how they are relevant to each other and why they are associated. The 

genetic overlap can be interpreted in two distinct ways: First, these correlating genetic 

factors may predispose an individual to be more susceptible to environmental influences 

(e.g. stressful life events), which along with the presence of other trait-specific genetic 

factors, contribute to the development of the associated phenotype (e.g. neuroticism). 

According to this model, environmental sensitivity genes moderate the effects of 

specific environmental influences on the associated trait and are therefore involved in 

its development. The genetic correlation thus explains some of the observed phenotypic 

correlation, but environmental sensitivity and the associated phenotype still remain 

distinct phenotypes. Second, these genetic factors may reflect the shared biological 

precursors of two distinct phenotypes, each manifested as a function of specific/separate 

sets of genetic and environmental influences. In this model, environmental sensitivity is 

not a significant factor in the development of the other phenotype, but they co-occur due 

to their correlating genetic influences. It is hard to determine, through the type of 

analysis conducted here, which model may best explain the observed correlations. 

However, the first hypothesis has been initially explored in the earliest theoretical 

models of highly sensitive personality and its commonly observed association with the 

traits of neuroticism and introversion (low extraversion). The hypothesised model has 

been fully detailed in Chapter 2, Section 2.1.1, but will be presented here again briefly.  

Association with high neuroticism and low extraversion: According to sensory 

processing sensitivity theory (Aron & Aron, 1997), highly sensitive individuals have an 

inherently lower threshold of reactivity to sensory stimuli, as well as greater awareness 

and deeper processing of sensory and psychological stimuli. The tendency for lower 

threshold of reactivity to sensory stimuli, and higher attention capture by a larger 

number of salient stimuli and therefore larger processing load can lead to 

overstimulation and suboptimal response (e.g. slower, less accurate). In addition, more 

complex and discriminating stimuli-processing style can lead to temporary pauses, or 

inhibitions of behaviour (e.g. more deliberation, reflecting before acting). Such inherent 

tendencies in processing of environmental stimuli could give rise to psychological and 

behavioural characteristics such as being easily overwhelmed by sensory and 

psychological stimuli, behavioural inhibition (or pausing to reflect when faced with 

novel situations), greater attention to detail, and intensity in feelings of pleasure or 

discomfort. This could explain why introversion (or low extroversion) and neuroticism 



 302 

are more pronounced in highly sensitive individuals, with the former as a strategy to 

avoid overstimulation and the latter as a consequence of the interaction between 

inherent sensitivity and aversive experiences. Specifically, Aron and Aron (1997) 

suggest that while low sociability can be a consequence of aversive social and 

attachment experiences, it can also be a consequence of high sensitivity, whereby low 

sociability develops over time as an adaptive response to avoid overstimulation. This is 

because social situations tend to be highly stimulating contexts due to their 

characteristic novelty, unpredictability and complexity. Higher arousal due to higher 

sensitivity to stimulation can overwhelm the individual and lead to poor performance in 

such situation, leading to discomfort in and avoidance of social situations. High 

sensitivity in the context of adverse environmental experiences can lead to neuroticism, 

since retrospective evaluations following experiencing aversive stimuli is conducted 

more deeply and in greater detail, leading also to greater awareness of potential threat 

cues in prospective evaluation of danger and ensuing preoccupation with danger and 

mitigating actions. A similar pathway has been proposed for depression/negative affect 

and anxiety. 

Association with Autism: With regards to the correlation between environmental 

sensitivity and autism, no hypothesis have yet been suggested, but it is true that more 

sensitive individuals and autistic individuals tend to report higher levels of unpleasant 

or distressing reactions to overstimulation from sensory inputs. The genetic correlations 

between these traits may reflect the genetic factors that are shared between these traits 

that lead to presentation of heightened sensitivity to environmental stimuli, whereas the 

presence or absence of other genetic factors may lead to the presentation of other 

symptoms that together make up the symptomology of autism.   

Association with openness and wellbeing: It is less clear what mechanisms may best 

explain the genetic correlation of environmental sensitivity with openness and 

subjective wellbeing. It is possible that heightened sensitivity creates a larger repertoire 

of impact by various kinds of environmental influences, including positive ones, which 

lead to positive reinforcements for being generally more open to experiences. Regarding 

the observed correlation between lower sensitivity and higher wellbeing, low sensitivity 

may act as a generally protective factor during the human life span, which undoubtedly 

is never entirely free of stressors and commonly includes some degree of traumas and 

stressors. It is important to emphasise that until further experimental research is 

conducted the interpretation of genetic correlations remain speculative. 
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Developmental specificity in environmental sensitivity: Findings from Chapter 5, 

implicated developmental specificity regarding the effects of environmental sensitivity, 

such that the function of sensitivity to context in childhood may be different to that in 

adulthood. Specifically, genetic environmental sensitivity may not always function in a 

“for better and for worse manner” across life span. The findings were consistent with 

the notion of steeling effects, or desensitisation to the effects of adversity, as a function 

of the interaction between genetic sensitivity and lower childhood environmental 

quality. Perhaps, the ability of genetically more sensitive individuals to process 

information and emotions to greater depth, leads to their higher levels of distress in 

adverse contexts, but also to greater learning and the acquisition of effective strategies 

for coping with future stressful events. The results may also reflect gene-environment 

correlation. Since genetically sensitive individuals are more affected by their 

environmental contexts, they are also more likely to self-select into the type of 

environments that are better suited to them as they mature; their higher genetic 

sensitivity therefore acts as a protective factor later in life. The main implication of 

these findings for future research on environmental sensitivity is that it is crucial to 

consider development across the life span. Current theories may lead to the assumption 

that genetic sensitivity functions consistently in a “for better and for worse” manner 

across life, but this is not supported by the findings reported in this thesis.  

6.2.2 Implications for psychological research and practice  

The majority of GxE studies have been conducted from a diathesis-stress perspective, 

which requires re-evaluation in light of differential susceptibility research suggesting 

that many of the common genetic variants in these studies may reflect generally 

heightened susceptibility to both negative and positive environmental influences, rather 

than exclusively vulnerability. Incorporating environmental sensitivity research findings 

is therefore crucial in order to accurately interpret the role of genetic factors in common 

mental disorder as well as wellbeing outcomes. 

The differential susceptibility framework for GxE is not necessarily competitive or 

contrary in explaining the interaction between genotype and environment on outcomes. 

Indeed, it is possible that genetic risk for psychiatric disorders includes a combination 

of genetic variants that operate in a variety of ways. That is, genetic risk for a 

psychiatric disorder may include variants that have a direct effect on the psychiatric 
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disorder, variants that exclusively increase risk by increasing sensitivity to adversity 

(i.e. vulnerability), variants that increase risk by decreasing sensitivity to protective 

factors such as social support (i.e. vantage resistance), and variants that increase 

sensitivity to both adverse and protective environments (i.e. differential susceptibility). 

While there is no research to date that has examined such an integrated genetic model, 

current empirical evidence supports the existence and relevance of all three GxE 

interaction models as explanation for the observed link between environmental factors, 

genotype and mental health outcomes. Hence, considering the various ways in which 

genetic factors may interact with environmental influences to bring about mental health 

problems or protect against them should be an important feature in mental health 

genetic research.  

Considering GxE findings showing that high sensitivity acts as a protective factor 

against future stressors, resilience research may particularly benefit from studying 

genetic sensitivity as a potential characteristic that moderates the developmental 

trajectory in response to contextual adversity. While the current study examined the 

associations at the genetic level, the findings should encourage paying greater attention 

to understanding this personality trait as an important individual characteristic for a 

range of outcomes. Understanding what specific characteristics of highly sensitive 

individuals can act as protective factors in response to adversity may inform 

interventions.  

Finally, the findings on treatment response showed that more genetically sensitive 

individuals varied more strongly in their response to the type of treatment they received 

(better response to individual CBT vs. group CBT), regardless of their symptoms 

severity or anxiety disorder diagnosis. Interestingly, the intervention outcome did not 

differ as a function of treatment type for genetically less sensitive individuals. These 

findings, pending further replication, may be incorporated in clinical practice by 

considering an individual’s personality trait (as indicator of underlying genetic 

sensitivity) as an important factor when deciding on individual treatment. The current 

National Institute for Health and Care Excellence (NICE) guidelines, for example, are 

based on a stepped care approach (National Institute for Health and Care Excellence, 

2013), which takes into account the severity of the anxiety disorder, with more severe 

symptomology receiving more intensive types of psychological intervention. 

Incorporating differences in environmental sensitivity in this model of care when 



 305 

formulating individualised intervention plans is an important potential application of the 

current findings.  

6.3 Strengths and limitations 

The following section considers the strengths and limitations of the research carried out 

in this thesis with reference to the main aims of this thesis.  

Aim 1: Develop and use the phenotypic measure of environmental sensitivity to 

explore the hypothesised genetic basis of sensitivity 

Strengths: One of the main strengths of the studies conducted here was access to a 

phenotype of sensitivity. This is important given two main disadvantages of studying 

sensitivity as an operationally defined construct in order to identify genes based on their 

moderating action alone. First, the GxE findings to date may not necessarily reflect 

general sensitivity to environmental contexts, but rather represent variations in 

sensitivity to specific environmental influences, related to specific outcomes. This is 

because, as noted in Chapter 1 and Chapter 4, the majority of studies to date have 

examined specific candidate genes in the contexts of specific outcomes and 

environmental influences (e.g. 5-HTTLPR, stressful life events, depression), and do not 

allow to determine whether the findings can be extended to reflect general sensitivity to 

context, as differential susceptibility theories propose. Second, variations in 

environmental sensitivity may not be accurately captured by the study design, because 

such studies rely heavily on two implicit assumptions: i) that reactivity to environmental 

influences always leads to overt measureable responses (e.g. development of depression 

symptom or not), and ii) that the response to the environment can be narrowly defined 

to the one that is measured in the study (e.g. variations in depression) and thus 

dismissing other potential outcomes of the environmental exposure (e.g. anxiety rather 

than depression). The latter is specially important since it has been demonstrated in 

studies of diverse types of risk factors and outcomes, that any risk factor may produce a 

variety of outcomes (i.e. Cicchetti & Rogosch, 1996). The implication of these implicit 

assumptions is that unobserved or unmeasured responses in these studies are 

misclassified as no reactivity/response and no difference in interaction with the 

environment. An example from another area of research may make the latter point 

clearer. Consider for example the research evidencing peer victimization is an 

established risk factor for internalising disorders (Boivin, Hymel, & Bukowski, 1995), 

though not all individuals exposed to it develop internalising disorders. While one may 
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conclude that those who do not develop internalising problems are immune to the 

effects of peer victimisation, research considering multiple alternative outcomes have 

found several differential trajectories following peer victimisation, including 

externalising problems, high achieving and low achieving, as well as internalising 

problems (Hanish & Guerra, 2002). Therefore, it may not be so much that a risk factor 

has no effect on some individuals, but that for a subset of individuals it has an 

alternative effect to what is generally expected and measured. Similarly, in an 

operational model of sensitivity, unmeasured differential response to a specific 

environmental factor may be misclassified as low sensitivity.  

Using a phenotype of sensitivity can account for this, since the phenotypic approach 

defines environmental sensitivity as a function of characteristic responses and general 

tendencies that reflect sensitivity to a broad range of contexts, rather relying on 

capturing responses at a particular time in a specific context, or assuming that if the 

response is not manifested in the outcome of interest then it does not exist. The 

phenotype conceptualisation of environmental sensitivity also entails certain limitations, 

for example, the difficulty in reliably capturing such a complex phenotype via self-

report or other report questionnaires. Notwithstanding this limitation, using the 

phenotype of environmental sensitivity when identifying the genetic factors that 

underlie environmental sensitivity may be more appropriate than using genetic markers 

of environmental sensitivity in an operational design.  

Limitations: One limitation of the HSC measure is that it is based on self-report; 

therefore it is a subjective index of environmental sensitivity. Using other report or 

more objective measures of sensitivity would complement and strengthen the findings.  

Aim 2: examine the genetic basis of environmental sensitivity and identify 

molecular genetic factors underlying its individual differences. 

Strengths: The studies in the current thesis applied a wide range of methodologies to 

examine the genetics of environmental sensitivity. Some of the analyses in the thesis 

were used for the first time in research on environmental sensitivity, attempting to find 

novel results using a range of established and more recent methodological approaches 

that have proved successful in research with other phenotypes. For example, classic 

twin modelling was used to derive the heritability estimates for environmental 

sensitivity and examine its genetic architecture and relationship with other relevant 

traits. The molecular genome-wide approaches, explored the genetic basis of sensitivity 
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at both SNP as well as gene and gene-system levels, and conducted polygenic score 

analysis of environmental sensitivity in a meta-analysed sample.  The large sample sizes 

used in the heritability analyses ensured sufficient power to detect the expected effects. 

Conducting the molecular genetic analysis in multiple samples and meta-analysis of the 

data ensured increased power and sensitivity for the polygenic score analysis.  

Limitations: First, all measures used for the heritability studies were self-report 

questionnaires, which could have inflated the cross trait correlations. Using different 

informant sources would have accounted for this bias. Second, although genome-wide 

approaches address one of the main limitations of candidate gene studies (i.e. the 

requirement for a-priori hypothesis regarding functional relevance of the genes to the 

trait), this hypothesis-free approach presents two challenges: increased rates of false 

positive and false negative results. This is because in genome-wide association studies, 

typically over 1 million SNPs are tested for their association with the trait, therefore 

creating a multiple testing problem with increased possibility of type I error (false 

positive results). In order to counter against false positive results, the significance 

threshold for genome-wide findings are commonly adjusted to p < 5 x 10-8 (Pe'er, 

Yelensky, Altshuler, & Daly, 2008). While the correction for multiple testing addresses 

the type I error rates, it also increases the possibility of type II errors (false negative 

results), if the sample does not provide the power to detect the very small effect sizes at 

this high significance threshold. Since GWAS examines the main effects of common 

variants on the trait, and the effect sizes of single SNPs are expected to be very small (< 

.01%), adequately powered samples (N > 1 million) are required to address the false 

negative finding results (Visscher et al., 2017). Hence, the GWAS analyses in the 

current thesis were clearly underpowered due to the small sample sizes. Similarly, the 

genome-wide gene-based and gene-set analyses were underpowered when correcting for 

multiple testing. Polygenic score approaches do not necessitate the same stringent 

criteria for multiple testing correction, because the SNPs are not considered for the 

singular contribution to the trait. However, the low power to detect small effects of SNP 

on the trait at the first stage of polygenic score construction (GWAS of the discovery 

sample) would have impacted the down-stream processes when SNPs summary 

statistics are used to construct the polygenic score. Third, while polygenic approaches 

have been more successful in predicting the genetic risk/propensity for the examined 

trait, this approach is lacking in promoting knowledge of the biological processes 

underlying the disease, since the biological correlates of the SNPs in the PGS were not 

further explored. Fourth, the molecular approaches only considered additive genetic 
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effects. Meta-analysis results of Polderman et al. (2015) suggest that additive genetic 

effects explain only 2/3 of the heritability of complex traits, with the remaining 1/3rd 

accounted for by non-additive effects. Results of model fittings from heritability 

analyses indicated that the effects are mostly due to additive genetic effects, but there 

also exists some non-additive genetic effects, as indicated by higher than twice MZ twin 

correlations compared to DZ twins.  

Aim 3: Examine the effects of environmental sensitivity genetics on mental health 

outcomes 

Strengths: The moderating effects of genetic sensitivity were examined across the life 

span, using a longitudinal design to examine changes within individuals, rather than 

relying on cross-sectional data. Furthermore, the studies included a PGS of 

environmental sensitivity based on genome-wide variants, which may better index 

sensitivity than single candidate genes, and PGS may reflect general sensitivity rather 

than specific sensitivity to specific contexts. A further strength is the use of clinically 

diagnosed disorders in two studies, rather than symptoms, addressing a gap in research 

on environmental sensitivity and clinical disorders.  

Limitation: The PGS derived from meta-analysed GWAS in Chapter 4 and used for 

GxE analyses in Chapter 5 were likely to be noisy, due to the small GWAS at the first 

step, therefore not capturing environmental sensitivity in a precise way. Also, due to not 

having data on the environmental sensitivity phenotype in any of the samples in 

Chapter 5, it was not possible to examine how well the PGS predicted environmental 

sensitivity in these independent samples. In addition, the environmental measures in 

Study 2 and Study 3 did not always stretch from the extremes of negative to the positive 

end of the quality spectrum, therefore limiting the extent to which variations in 

environmental sensitivity may manifest themselves in a for better and for worse pattern 

in these studies.  

6.4 Future directions 

First, the heritability results using twin design provided a first estimate of heritability 

for environmental sensitivity. Since twin model derived heritability are proposed to 

estimate an upper limit of heritability, future research should consider alternative 

approaches such as SNP-based heritability analyses, to obtain a lower limit of 

heritability. In addition, since the contribution of genetic influences on other phenotypes 

has been reported to change over time (Gow et al., 2011; Haworth et al., 2008), future 
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studies could examine the stability of heritability of environmental sensitivity over time. 

This is practically of interest, since the effects of genetic sensitivity appeared to 

decrease and change over time in the life span GxE study of sensitivity and 

psychosocial distress in Chapter 5. In addition, future research should examine the 

specific environmental factors that contribute to individual differences in environmental 

sensitivity, especially because the results indicated that more than half of the variation 

in sensitivity is due to environmental factors. 

Second, twin model results showed that individual differences in environmental 

sensitivity might be a function of three distinct genetic/biological systems that could 

result in different sensitivity types, depending on the proportional representation of 

these genetic factors underlying each component. Future research could further explore 

these preliminary findings, by examining whether the associations between the genetic 

factors related to different components of sensitivity relates to other outcomes in 

expected ways. For example, AES may be associated with better treatment response or 

higher wellbeing and LST or EOE with more negative outcomes. 

Third, the samples in the current thesis were underpowered for genome-wide 

approaches and the findings should be considered exploratory and preliminary. Future 

studies should examine if the nominated genes and gene systems from the current study 

would be validated in larger, adequately powered samples. The success of the cross-trait 

polygenic score analysis could be utilised further to follow up on the biological 

mechanism underlying the variants that explained variations in environmental 

sensitivity in these analyses.  

Fourth, one of the main limitation of the studies conducted here, and generally in the 

field, is that only additive rather than interactive genetic models are considered in 

genetic association studies. Future studies on the genetics of environmental sensitivity 

would benefit from examining its aetiology using genetic models that consider an 

interactive genetic/biological model, such as one recent model proposed by Moore and 

Depue (2016). 

Fifth, the findings on cross-trait genetic correlations indicate that a significant 

proportion of the genetic factors of psychiatric disorders such as depression, anxiety and 

autism are correlated with those of environmental sensitivity. Since environmental 

sensitivity genes represent genetic influences that interact with various environmental 

contexts, they increase the risk for the development of a range of psychopathologies 
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whose development depend on environmental exposures. Therefore, identifying genes 

that reflect general sensitivity in addition to testing for main effects of genes for specific 

disorders could be a worthwhile new approach in psychiatric genetic research, than 

relying on detecting disease specific factors only.  

Finally, in light of findings that genetically more sensitive individuals seem to benefit 

from their heightened sensitivity in certain contexts, such as in response to 

psychological therapies or over time in response to adversity, future research into what 

aspects of sensitivity facilitates positive adaptation is paramount in 

promoting/enhancing these factors in other people who are not naturally predisposed 

this way, as a function of their lesser general sensitivity. Relatedly, while much of the 

research in the field has studied GxE interactions in non-clinical samples, research is 

sparse on clinical populations. The GxE findings on major depression from Study 2 in 

Chapter 5 did not support the hypothesised differential susceptibility interaction model, 

emphasising the importance of considering the longitudinal effects of environmental 

sensitivity in its interaction with childhood risk factors in development of clinical 

disorders. Future research could examine whether and how environmental sensitivity 

may relate to higher or lower risk of clinical disorders in its interaction with high risk 

environmental exposures in childhood.  

6.5 Conclusions 

The research conducted in this thesis aimed to investigate the genetic basis of 

environmental sensitivity, a trait proposed to have a genetic basis according to 

differential susceptibility theories. This aim was examined using a variety of analytical 

approaches, including twin design to estimate the heritability of environmental 

sensitivity, candidate and genome-wide molecular approaches to identify genetic 

variants, genes and gene-systems associated with environmental sensitivity, and 

longitudinal GxE approaches to investigate its moderating effects on mental health and 

response to psychological therapies. The findings suggest that environmental sensitivity 

is heritable, that it shares some of its genetic influences with other phenotypes such as 

neuroticism, extraversion, depression, and anxiety. In addition, environmental 

sensitivity was found to act as a risk factor for the development of mental health 

problems in response to recent/concurrent adverse environmental exposures, but as a 

protective factor over time. Environmental sensitivity was also found to moderate the 

response to CBT treatment for anxiety disorders, with more sensitive individuals 

showing preferential response to individual CBT. In sum, genetic factors play an 
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important role in the aetiology of environmental sensitivity, but more research is needed 

to identify the molecular genetic factors underlying individual differences in this 

phenotype and their moderating effects on mental health and disorder. 
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Appendix 2.1 The Highly Sensitive Person scale (HSP; Aron & Aron, 
1997) – adult version 
 
1.Are you easily overwhelmed by strong sensory input? 
2.Do you seem to be aware of subtleties in your environment? 
3.Do other people's moods affect you? 
4.Do you tend to be more sensitive to pain? 
5.Do you find yourself needing to withdraw during busy days, into bed or into a 
darkened room or any place where you can have some privacy and relief from 
stimulation? 
6.Are you particularly sensitive to the effects of caffeine? 
7.Are you easily overwhelmed by things like bright lights, strong smells, coarse fabrics, 
or sirens close by? 
8.Do you have a rich, complex inner life? 
9.Are you made uncomfortable by loud noises? 
10.Are you deeply moved by the arts or music? 
11.Does your nervous system sometimes feel so frazzled that you just have to go off by 
yourself? 
12.Are you conscientious? 
13.Do you startle easily? 
14.Do you get rattled when you have a lot to do in a short amount of time? 
15.When people are uncomfortable in a physical environment do you tend to know what 
needs to be done to make it more comfortable (like changing the lighting or the 
seating)? 
16.Are you annoyed when people try to get you to do too many things at once? 
17.Do you try hard to avoid making mistakes or forgetting things? 
18.Do you make a point to avoid violent movies and TV shows? 
19.Do you become unpleasantly aroused when a lot is going on around you? 
20.Does being very hungry create a strong reaction in you, disrupting your 
concentration or mood? 
21.Do changes in your life shake you up? 
22.Do you notice and enjoy delicate or fine scents, tastes, sounds, works of art? 
23.Do you find it unpleasant to have a lot going on at once? 
24.Do you make it a high priority to arrange your life to avoid upsetting or 
overwhelming situations? 
25.Are you bothered by intense stimuli, like loud noises or chaotic scenes? 
26.When you must compete or be observed while performing a task, do you become so 
nervous or shaky that you do much worse than you would otherwise? 
27.When you were a child, did parents or teachers seem to see you as sensitive or shy? 
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Appendix 2.2 Questionnaire items measuring the 38-item Highly 
Sensitive Child scale (HSC-38)  
 
The unpublished Highly Sensitive Child Scale with 38 items (HSC-38) has been 
developed based on the Highly Sensitive Person scale (HSP; Aron & Aron, 1997) in 
order to measure sensory-processing sensitivity in Dutch school-aged children. The 
following five adaptations were made to the original HSP-scale:  

1. Rather than ‘Do you…’ or ‘Are you…’, items were rephrased as ‘I am…’ or ‘I 
find…’. 

2. Difficult words that are likely to be unknown to children were replaced with 
simpler words. For example, ‘Are you conscientious?’ was changed into ‘I am 
very precise’.  

3. Single items that concerned an evaluation of two or more issues were divided 
into two or more separate items. For example, the original question from the 
HSP-scale ‘Do you try hard to avoid making mistakes or forgetting things’ was 
changed into ‘I try not to forget things’ (item 25) and ‘I try not to make 
mistakes’ (item 36).  

4. The original item ‘Are you particularly sensitive to the effects of caffeine?’ was 
changed into ‘Drinking coke, makes me feel uncomfortable’, because most 
children below the age of 13 do not drink coffee, but may drink coke which 
sometimes causes effects similar to coffee.  

5. The original item ‘When you were a child, did parents or teachers seem to see 
you as sensitive or shy’ was changed into ‘My parents think I am sensitive’ 
(item 26) and ‘My teacher thinks I am shy’ (item 3).  

As a result of these adaptations the original HSP-scale that consisted of 27 items was 
changed into the HSC-38 scale consisting of 38 items. 

 
Highly Sensitive Child (HSC-38) items - Study 1 
 

1.  I find it unpleasant to have a lot going on at once 
2.  I don’t like unpleasant smells 
3.  My teacher thinks I am shy 
4.  I love nice sounds 
5.  I startle easily 
6.  I don’t like bright lights 
7.  When I am hungry, I get in a bad mood 
8.  I love nice paintings 
9.  Drinking coke, makes me feel uncomfortable 
10.  Some music can make me really happy  
11.  When someone is happy, that makes me feel happy too 
12.  I love nice tastes 
13.  I don’t like it when it is a mess around me  
14.  Some music can me make sad  
15.  Loud noises make me feel uncomfortable 
16.  I am annoyed when people try to get me to do too many things at once  
17.  I tend to feel pain easily 
18.  I notice it when small things have changed in my environment 
19.  When someone is sad, that makes me feel sad too 
20.  When I am hungry, I cannot think properly 
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21.  I don’t like clothes that feel funny 
22.  I get nervous when I have to do a lot in little time 
23.  When someone is angry, that makes me feel angry too 
24.  I love nice smells 
25.  I try not to forget things 
26.  My parents think I am sensitive 
27.  I find it unpleasant to have a lot going on at once 
28.  I don’t like watching TV programs that have a lot of violence in them 
29.  I always think long and deep about everything 
30.  I try to avoid situations that I don’t like 
31.  When someone feels uncomfortable, I know what to do to change that 
32.  I don’t like loud noises 
33.  I don’t like it when things change in my life 
34.  When there is a lot going on around me, I prefer to be alone in a room  
35.  I don’t like watching movies that have a lot of violence in them 
36.  I try not to make mistakes 
37.  I am very precise 
38.  When someone observes me, I get nervous. This makes me perform worse than normal 
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Appendix 2.3 Results of principal component analyses of HSC-38 scale 
(Study 1) 

Table 2.3.1 PCA on HSC-38; selection method: Eigenvalues >1 

Component 
Initial Eigenvalues   Rotation Sums of Squared 

Loadings 

Total % of 
Variance 

Cumulative 
%   Total % of 

Variance 
Cumulative 

% 
1 9.76 25.69 25.69   4.10 10.78 10.78 
2 3.59 9.44 35.13   3.00 7.91 18.68 
3 2.18 5.74 40.87   2.82 7.42 26.10 
4 1.79 4.71 45.57   2.68 7.05 33.15 
5 1.40 3.67 49.24   2.63 6.93 40.08 
6 1.33 3.50 52.74   2.60 6.83 46.92 
7 1.16 3.06 55.80   2.24 5.89 52.81 
8 1.12 2.94 58.74   1.98 5.21 58.02 
9 1.09 2.87 61.62   1.37 3.60 61.62 
10 0.97 2.55 64.17         
11 0.91 2.39 66.56         
12 0.89 2.34 68.89         
13 0.85 2.23 71.12         
14 0.73 1.92 73.04         
15 0.70 1.84 74.88         
16 0.69 1.81 76.69         
17 0.64 1.68 78.37         
18 0.63 1.65 80.02         
19 0.59 1.55 81.57         
20 0.57 1.50 83.07         
21 0.54 1.41 84.48         
22 0.52 1.37 85.85         
23 0.50 1.33 87.17         
24 0.47 1.23 88.40         
25 0.45 1.19 89.59         
26 0.44 1.16 90.76         
27 0.43 1.13 91.88         
28 0.38 1.01 92.89         
29 0.37 0.97 93.86         
30 0.36 0.94 94.79         
31 0.30 0.79 95.58         
32 0.29 0.77 96.35         
33 0.28 0.73 97.08         
34 0.26 0.68 97.76         
35 0.25 0.67 98.43         
36 0.24 0.63 99.06         
37 0.20 0.52 99.58         
38 0.16 0.43 100.00         

 
 



 344  

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3.1 Scree plot of the principal components of the HSC-38 
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Table 2.3.2 PCA on HSC-38; selection method: 3 principle components (Study 1) 

  
Initial Eigenvalues Extraction Sums of 

Squared Loadings 
Rotation Sums of Squared 

Loadings 

Total % of 
Variance 

Cumulative 
% Total % of 

Variance 
Cumulative 

% Total % of 
Variance 

Cumulative 
% 

1 9.76 25.69 25.69 9.76 25.69 25.69 6.29 16.55 16.55 
2 3.59 9.44 35.13 3.59 9.44 35.13 5.22 13.73 30.28 
3 2.18 5.74 40.87 2.18 5.74 40.87 4.02 10.58 40.87 
4 1.79 4.71 45.57             
5 1.40 3.67 49.24             
6 1.33 3.50 52.74             
7 1.16 3.06 55.80             
8 1.12 2.94 58.74             
9 1.09 2.87 61.62             
10 0.97 2.55 64.17             
11 0.91 2.39 66.56             
12 0.89 2.34 68.89             
13 0.85 2.23 71.12             
14 0.73 1.92 73.04             
15 0.70 1.84 74.88             
16 0.69 1.81 76.69             
17 0.64 1.68 78.37             
18 0.63 1.65 80.02             
19 0.59 1.55 81.57             
20 0.57 1.50 83.07             
21 0.54 1.41 84.48             
22 0.52 1.37 85.85             
23 0.50 1.33 87.17             
24 0.47 1.23 88.40             
25 0.45 1.19 89.59             
26 0.44 1.16 90.76             
27 0.43 1.13 91.88             
28 0.38 1.01 92.89             
29 0.37 0.97 93.86             
30 0.36 0.94 94.79             
31 0.30 0.79 95.58             
32 0.29 0.77 96.35             
33 0.28 0.73 97.08             
34 0.26 0.68 97.76             
35 0.25 0.67 98.43             
36 0.24 0.63 99.06             
37 0.20 0.52 99.58             
38 0.16 0.43 100.00             
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Table 2.3.3 HSC-38 rotated component matrix. 12 selected items are highlighted 
(Study 1) 
  1 2 3 
1 I find it unpleasant to have a lot going on at once .104 .567 -.044 
2 I don’t like unpleasant smells .341 .297 -.222 
3 My teacher thinks I am shy -.113 .371 .242 
4 I love nice sounds .661 .115 .024 
5 I startle easily .049 .489 .258 
6 I don’t like bright lights .010 .459 .286 
7 When I am hungry, I get in a bad mood .003 .584 .141 
8 I love nice paintings .603 .112 .243 
9 Drinking coke, makes me feel uncomfortable -.083 .257 .460 
10 Some music can make me really happy  .674 .088 -.065 
11 When someone is happy, that makes me feel happy too .682 -.035 .123 
12 I love nice tastes .739 .172 -.148 
13 I don’t like it when it is a mess around me  .536 .167 .187 
14 Some music can me make sad  .354 .105 .487 
15 Loud noises make me feel uncomfortable .125 .425 .376 

16 I am annoyed when people try to get me to do too many 
things at once  .308 .597 -.085 

17 I tend to feel pain easily -.013 .615 .344 

18 I notice it when small things have changed in my 
environment .431 .204 .236 

19 When someone is sad, that makes me feel sad too .433 .193 .469 
20 When I am hungry, I cannot think properly .114 .656 .078 
21 I don’t like clothes that feel funny .432 .450 .023 
22 I get nervous when I have to do a lot in little time .335 .580 .187 
23 When someone is angry, that makes me feel angry too .092 .388 .418 
24 I love nice smells .754 .166 -.006 
25 I try not to forget things .682 .096 .026 
26 My parents think I am sensitive .182 .271 .374 
27 I find it unpleasant to have a lot going on at once .236 .697 .060 

28 I don’t like watching TV programs that have a lot of 
violence in them 

.006 .141 .688 

29 I always think long and deep about everything .397 .157 .524 
30 I try to avoid situations that I don’t like .558 .141 .239 

31 When someone feels uncomfortable, I know what to do 
to change that .547 -.066 .362 

32 I don’t like loud noises .165 .266 .480 
33 I don’t like it when things change in my life .289 .483 .317 

34 When there is a lot going on around me, I prefer to be 
alone in a room  .170 .544 .332 

35 I don’t like watching movies that have a lot of violence 
in them 

.045 .140 .762 

36 I try not to make mistakes .623 .110 .200 
37 I am very precise .472 -.036 .451 

38 When someone observes me, I get nervous. This makes 
me perform worse than normal .124 .546 .232 
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Appendix 2.4 Results of confirmatory factor analysis of the 12- item 
HSC scale (Study 1) 
 
Table 2.4.1 CFA parameters of the 3-factor model (Study1) 
Latent variables and item content Estimate Std.Err 
EOE   
    Unpleasant a lot going on 0.658 0.124 
    Annoyed when too many things 1.014 0.112 
    Nervous when a lot to do 1.244 0.104 
    Don’t like changes 1.020 0.109 
    Nervous when observed 1.026 0.121 
AES   
    Music makes me happy 1.038 0.104 
    Love nice tastes 1.304 0.105 
    Notice small changes 0.615 0.106 
    Love nice smells 1.299 0.114 
LST   
     Loud noises make me uncomfortable 1.488 0.117 
     Don’t like violence in TV 0.832 0.157 
     Don’t like loud noises 1.487 0.125 
 
 
 
Table 2.4.2 Covariance matrix among latent variables of the 3-factor model (Study 
1) 
 EOE AES LST 
EOE  .570 .613 
AES   .234 
LST    
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Table 2.4.3 CFA parameters of the bi-factor model (Study 1) 
Latent variables and items content Estimate Std. Err 
EOE   
   Unpleasant a lot going on 1.000  
    Annoyed when too many things -0.029 0.162 
    Nervous when a lot to do -0.363 0.157 
    Don’t like changes -0.056 0.154 
    Nervous when observed -0.230 0.171 
AES   
    Music makes me happy 1.000  
    Love nice tastes 1.208 0.116 
    Notice small changes 0.333 0.120 
    Love nice smells 1.028 0.114 
LST   
     Loud noises make me uncomfortable 1.000  
     Don’t like violence in TV 0.585 0.151 
     Item 32 1.664 0.112 
HSC – General factor   
     Unpleasant a lot going on 1.000  
     Annoyed when too many things 1.046 0.116 
     Nervous when a lot to do 1.315 0.112 
     Don’t like changes 1.031 0.120 
     Nervous when observed 1.046 0.125 
     Music makes me happy 0.461 0.126 
     Love nice tastes 0.642 0.122 
     Notice small changes 0.592 0.144 
     Love nice smells 0.779 0.126 
     Loud noises make me uncomfortable 0.950 0.123 
     Don’t like violence in TV 0.628 0.157 
     Don’t like loud noises 0.787 0.144 
 
 

 
Figure 2.4.1 Density plot to illustrate the distribution of the 12-item HSC scale 
(Study1) 
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Appendix 2.5 Results of divergent validity analysis (Study 1) 
 
Table 2.5.1 Heterotrait-monotrait ratio of correlations (Study 1) 

 HSC HSC-EOE HSC-AES HSC-LST 
HSC     
HSC-EOE .932    
HSC-AES .748 .589   
HSC-LST .701 .661 .246  
BAS .511 .386 .620 .180 
BIS .690 .649 .504 .490 
PE .390 .272 .470 .181 
NE .431 .362 .328 .316 
EC .424 .360 .392 .258 
PA .310 .139 .503 .117 
NA .244 .207 .200 .3183 
HSC = Highly Sensitive Child Scale; HSC-EOE = Ease of Excitation; HSC-AES = Aesthetic Sensitivity; 
HSC-LST = Low Sensitivity Threshold; BIS = Behavioural Inhibition System; BAS = Behavioural 
Activation System; EC = Effortful Control; NE = Negative Emotionality; PE = Positive Emotionality 
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Appendix 2.6 Results of confirmatory factor analysis of the 12-item 
HSC scale (Study 2) 
 
Table 2.6.1 CFA parameters of the 3-factor model (Study 2) 
Latent variables and items content Estimate Std.Err 
EOE   
    Unpleasant a lot going on .914 0.130 
    Annoyed when too many things 1.230 0.155 
    Nervous when a lot to do 1.183 0.157 
    Don’t like changes 0.717 0.160 
    Nervous when observed 0.904 0.155 
AES   
    Music makes me happy 0.953 0.131 
    Love nice tastes 0.840 0.126 
    Notice small changes 0.531 0.131 
    Love nice smells 1.059 0.147 
LST   
     Loud noises make me uncomfortable 1.614 0.178 
     Don’t like violence in TV 0.711 0.160 
     Don’t like loud noises 1.900 0.179 
 
 
 
Table 2.6.2 Covariance matrix of latent variables (Study 2) 
 EOE AES LST 
EOE  .448 .480 
AES   .153 
LST    
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Table 2.6.3 CFA parameters of the bi-factor model  (Study 2) 
Latent variables and items content Estimate Std.Err 
EOE   
    Unpleasant a lot going on 1.000  
    Annoyed when too many things .057 .210 
    Nervous when a lot to do -0.489 .240 
    Notice small changes 0.285 .180 
    Nervous when observed -0.030 .202 
AES   
    Music makes me happy 1.000  
    Love nice tastes 0.883 0.138 
    Notice small changes 0.444 0.135 
    Love nice smells 0.882 0.153 
LST   
     Loud noises make me uncomfortable 1.000  
     Don’t like violence in TV 0.551 .143 
     Don’t like loud noises 1.968 .072 
HSC – General factor   
    Unpleasant a lot going on 1.000  
     Annoyed when too many things 1.178 0.153 
     Nervous when a lot to do 1.343 0.176 
     Don’t like changes 0.666 0.153 
     Nervous when observed 0.915 0.151 
     Music makes me happy 0.421 0.125 
     Love nice tastes 0.244 0.092 
     Notice small changes 0.300 0.160 
     Love nice smells 0.536 0.131 
     Loud noises make me uncomfortable 0.927 0.163 
     Don’t like violence in TV 0.420 0.166 
     Don’t like loud noises 0.845 0.157 
 

 
Figure 2.6.1 Density plot to illustrate the distribution of the 12-item HSC scale 
(Study 2) 
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Appendix 2.7 Results of divergent validity analysis (Study 2) 
 
 
 
Table 2.7.1 Heterotrait-monotrait ratio of correlations (Study 2) 
 HSC HSC_EOE HSC_AES HSC-LST 

HSC 
    

HSC-EOE .903 
   

HSC-AES .774 .600 
  

HSC-LST .681 .536 .309 
 

BAS .402 .331 .487 .117 

BIS .527 .528 .366 .334 

PE .658 .490 .712 .354 

NE .666 .680 .443 .420 

EC .646 .544 .608 .364 
HSC = Highly Sensitive Child Scale; HSC-EOE = Ease of Excitation; HSC-AES = Aesthetic Sensitivity; 
HSC-LST = Low Sensitivity Threshold; BIS = Behavioural Inhibition System; BAS = Behavioural 
Activation System; EC = Effortful Control 
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Appendix 2.8 Results of confirmatory factor analysis of the 12-item 
HSC scale (Study 4) 
 
Table 2.8.1 CFA parameters of the 3-factor model (Study 4) 
Latent variables and items content Estimate Std.Err 
EOE   
    Unpleasant a lot going on 1.330 0.039 
    Annoyed when too many things 1.278 0.042 
    Nervous when a lot to do 1.254 0.045 
    Don’t like changes 1.106 0.044 
    Nervous when observed 1.228 0.046 
AES   
    Music makes me happy 0.692 0.047 
    Love nice tastes 1.100 0.043 
    Notice small changes 0.416 0.049 
    Love nice smells 1.073 0.041 
LST   
     Loud noises make me uncomfortable 1.400 0.042 
     Don’t like violence in TV 0.664 0.055 
     Don’t like loud noises 1.543 0.042 
 
 
 
Table 2.8.2 Covariance matrix of latent variables (Study 4) 
 EOE AES LST 
EOE  .296 .637 
AES   .136 
LST    
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Table 2.8.3 CFA parameters of the bi-factor model (Study 4) 
Latent variables and items content Estimate Std.Err 
EOE   
    Unpleasant a lot going on 1.000  
    Annoyed when too many things 1.168 0.057 
    Nervous when a lot to do 0.912 0.068 
    Don’t like changes 0.549 0.068 
    Nervous when observed 0.657 0.081 
AES   
    Music makes me happy 1.000  
    Love nice tastes 1.183 0.047 
    Notice small changes 0.360 0.051 
    Love nice smells 1.127 0.044 
LST   
     Loud noises make me uncomfortable 1.000  
     Don’t like violence in TV -0.241 0.102 
     Don’t like loud noises 0.512 0.121 
HSC – General factor   
     Unpleasant a lot going on 1.000  
     Annoyed when too many things 0.769 0.049 
     Nervous when a lot to do 0.883 0.052 
     Don’t like changes 0.992 0.055 
     Nervous when observed 1.049 0.059 
     Music makes me happy 0.186 0.041 
     Love nice tastes 0.163 0.044 
     Notice small changes 0.422 0.051 
     Love nice smells 0.227 0.047 
     Loud noises make me uncomfortable 1.257 0.067 
     Don’t like violence in TV 0.862 0.067 
     Don’t like loud noises 1.338 0.057 
 

 
Figure 2.8.1 Density plot to illustrate the distribution of the 12-item HSC scale 
(Study 4) 
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Appendix 2.9 Results of divergent validity analysis (Study 4) 
 
 
Table 2.9.1 Heterotrait-monotrait ratio of correlations (Study 4) 
 HSC HSC-EOE HSC-AES HSC-LST 
HSC     
HSC-EOE .893    
HSC-AES .581 .317   
HSC-LST .763 .684 .192  
Neuroticism .449 .484 .142 .333 
Extraversion .439 .368 .285 .343 
Openness .341 .205 .372 .235 
Agreeableness .249 .179 .191 .210 
Conscientiousness .234 .197 .213 .117 
HSC = Highly Sensitive Child Scale; HSC-EOE = Ease of Excitation; HSC-AES = Aesthetic Sensitivity; 
HSC-LST = Low Sensitivity Threshold
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Appendices Chapter 3 
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Appendix 3.1 Results of the univariate ACE analyses 
 

Table 3.1 ACE estimates from sex limitation models for HSC and its three components 
  Variance Components 

  A  C  E 
    male female   male female   male female 
HSC Qualitative, rg= free  .53 (.25, .61) .37 (.11, .52)  .00 (.00, .23) .07 (.00, .30)  .47 (.39, .58) .55 (.48, .64) 

 Qualitative, rc= free  .53 (.25, .61) .38 (.11, .52)  .00 (.00, .23) .00 (.00, .30)  .47 (.39, .58) .55 (.48, .64) 

 Quantitative, rg= .5 & rc=1  .53 (.26, .61) .38 (.11, .52)  .00 (.00, .22) .00 (.00, .30)  .47 (.39, 58) .55 (.48, .64) 

 Scalar  .48 (.31, -.53)  .00 (.00, -.13)  .52 (.47, -.59) 
 Homogeneity  .47 (.30, -.53)  .00 (.00, -.13)  .53 (.47, -.59) 

          
EOE Qualitative, rg= free  .29 (.00, .56) .29 (.02, .48)  .20 (.00, .45) .11 (.00, .34)  .52 (.42, .63) .60 (.52, .69) 

 Qualitative, rc= free  .27 (.00, .55) .26 (.00, .47)  .21 (.00, .45) .14 (.00, .37)  .52 (.42, .64) .60 (.52, .70) 

 Quantitative, rg= .5 & rc=1  .29 (.00, .57) .41 (.00, .49)  .19 (.00, .46) .01 (.00, .38)  .51 (.41, .65) .59 (.51, .67) 
 Scalar  42 (.24, -.49)  .00 (.00, -.14)  .57 (.51, -.64) 
 Homogeneity  .42 (.23, -.48)  .01 (.00, -.14)  .58 (.52, -.65) 

          
AES Qualitative, rg= free  .36 (.21 ,.47) .35 (.07, .45)  .00 (.00, .10) .01 (.00, .24)  .64 (.53, .75) .63 (.55, .73) 

 Qualitative, rc= free  .36 (.21, .46) .32 (.08, .44)  .00 (.00, .11) .04 (.00, .23)  .64 (.53, .75) .64 (.56, .73) 

 Quantitative, rg= .5 & rc=1  .36 (.21, .46) .32 (.08, .43)  .00 (.00, .11) .04 (.00, .23)  .64 (.54, .75) .64 (.56, .73) 
 Scalar  .36 (.25, .42)  .00 (.00, .07)  .64 (.58, .71) 
 Homogeneity  .36 (.26, .42)  .00 (.00, .06)  .64 (.58, .71) 
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LST Qualitative, rg= free  .45 (.15, .57) .29 (.01, .46)  .03 (.00, .28) .10 (.00, .34)  .52 (.43, .63) .61 (.53, .70) 

 Qualitative, rc= free  .45 (.15, .57) .29 (.01, .46)  .03 (.00, .28) .10 (.00, .34)  .52 (.43, .63) .61 (.53, .70) 

 Quantitative, rg= .5 & rc=1  .46 (.15, .57) .29 (.01, .46)  .03 (.00, .28) .10 (.00, .34)  .52 (.43, .63) .61 (.53, .70) 
 Scalar  .41 (.27-.47)  .00 (.00-.00)  .59 (.53-.65) 

  Homogeneity  .41 (.26-.47)   .00 (.00-.11)   .59 (.53-.66) 
Qualitative ACE  (rg=Free) and Qualitative ACE (rc=Free) = models that allow differences in source of variation in males and females, where either rc or rg is free to be estimated for opposite sex twin pairs and can vary below the 
values assigned to same-sex dizygotic pairs; Quantitative ACE =model that allows differences in the extent of influence of ACE parameters in males and females, with rc and rg in opposite sex twins being fixed to 1 and .5 
respectively, estimating the ACE parameters from same sex twin pairs only; Scalar = model with no sex differences in ACE parameters but scalar term on males; Homogeneity= univariate ACE model with no difference between 
males and females 
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Table 3.2 Univariate model fit results for personality, anxiety, and depression 
    Model fit   Compared to fully saturated model 
    -2ll df AIC   Δ -2ll Δ df p 
Neuroticism Fully saturated 6559.76 1131 4297.76         

 Constrained  6582.64 1147 4288.64  22.89 16 0.12 
 ACE 6583.84 1152 4279.84  24.09 21 0.29 
         

Openness Fully saturated 6207.96 1129 3949.96     
 Constrained  6224.07 1145 3934.07  16.11 16 0.45 
 ACE 6233.20 1150 3933.20  25.24 21 0.24 
         

Conscientiousness Fully saturated 6270.45 1125 4020.45     
 Constrained  6289.14 1141 4007.14  18.68 16 0.29 
 ACE 6298.06 1146 4006.06  27.61 21 0.15 
         

Extraversion Fully saturated 6389.55 1129 4131.55     
 Constrained  6406.31 1145 4116.31  16.76 16 0.4 
 ACE 6421.47 1150 4121.47  31.93 21 0.06 
         

Agreeableness Fully saturated 6208.85 1127 3954.85     
 Constrained  6239.35 1143 3953.35  30.49 16 0.02 
 ACE 6243.96 1148 3947.96  35.11 21 0.03 
         

Depression Fully saturated 17586.99 2865 11856.99  
   

 Constrained  17605.05 2881 11843.05  18.05 16 0.32 
 ACE 17731.61 2886 11959.61  144.62 21 < .001 
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Anxiety Fully saturated 18543.07 2865 12813.07     
 Constrained  18571.54 2881 12809.54  28.47 16 0.03 

  ACE 18665.92 2886 12893.92   122.85 21 <.001 
Fully saturated model=model with maximum number of parameters describing the data; Constrained = sub-model of the fully saturated model, testing the assumptions of twin 
design, with means and variances equated across twins and zygosity; −2ll= minus twice the log likelihood; df= degrees of freedom; AIC= Akaike’s information criterion; Δ -2ll 
=difference in -2ll value; Δ df= difference in degrees of freedom; p= p-value. 
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Appendix 3.2 Results the multivariate ACE analyses, Cholesky decomposition correlated factors model 

  
Table 3.3 Results of the Cholesky decomposition correlated factors model  

 rA rC rE rph phA phC phE 

EOE - AES 0.45 (.23,.67) 1 0.14 (.07,.22) 0.27 (.23,.30) 0.17 (.07,.24) 0.01 (-.03,.08) 0.09 (.04,.14) 
EOE - LST 0.62 (.43,.78) 1 0.45 (.39,.51) 0.52 (.49,.55) 0.25 (.12,.32) 0.01 (-.03,.08) 0.26 (.22,.32) 
AES - LST 0.34 (.14,.56) 1 0.06 (-.01,.13) 0.17 (.13,.21) 0.13 (.04,.19) 0.01 (-.03,.08) 0.04 (-.01,.08) 
rA=genetic correlation; rC=common environmental influences correlation; rE=non-shared environmental influences; rph= phenotypic correlation; phA=phenotypic correlation due to 
A; phC=phenotypic correlation due to C; phE=phenotypic correlation due to E. 
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Appendices Chapter 4 
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Appendix 4.1 Results of GWAS in TEDS and CogBIAS data 
 
 
 
 
 
 

CogBIAS

TEDS

Figure 4.1 Manhattan Plots of TEDS and CogBIAS GWAS 
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TEDS CogBIAS

Figure 4.2 QQ plots of GWAS p-values in TEDS and CogBIAS  
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Table 4.1 Top 20 GWAS SNPs in TEDS and CogBIAS 

Top 20 SNPs in TEDS data   The same SNPs in CogBIAS data 
CHR   SNP BP A1 BETA     SE  STAT  P P (GC)   A1   BETA       SE        STAT          P  
10 rs4918121 106392464 A 0.27 0.06 4.76 2.4E-06 2.4E-06 

 
A  0.04 0.07 0.6 0.57 

9 rs4262391 91189708 T 0.34 0.07 4.75 2.5E-06 2.5E-06 
 

- - - - - 
10  rs11006258 60538659 A -0.26 0.05 -4.75 2.6E-06 2.7E-06 

 
- - - - - 

12  rs11060151 129615327 A -0.32 0.07 -4.62 4.7E-06 4.8E-06 
 

A  0.08 0.10 0.8 0.41 
10  rs10509093 60523769 G -0.25 0.05 -4.54 6.6E-06 6.8E-06 

 
- - - - - 

10  rs11006256 60525880 G -0.24 0.05 -4.53 7.0E-06 7.2E-06 
 

- - - - - 
6 rs2096982 162660989 A -0.23 0.05 -4.49 8.6E-06 8.8E-06 

 
A  -0.08 0.06 -1.3 0.20 

10  rs10826238 60527208 C -0.24 0.05 -4.48 8.8E-06 9.1E-06 
 

- - - - - 
6  rs16886446 76012047 T 0.89 0.20 4.45 1.0E-05 1.1E-05 

 
T  -0.02 0.06 -0.3 0.78 

3 rs7636669 168674012 A -0.36 0.08 -4.44 1.1E-05 1.1E-05 
 

A  -0.04 0.09 -0.4   0.68 
10  rs10883597 102999754 T 0.24 0.05 4.43 1.1E-05 1.1E-05 

 
T  0.07 0.07 1.0 0.31 

1  rs10797664 180988636 T -0.25 0.06 -4.43 1.1E-05 1.1E-05 
 

- - - - - 
15 rs7498016 69802419 C -0.35 0.08 -4.42 1.2E-05 1.2E-05 

 
C  -0.04 0.09 -0.4 0.70 

6  rs73463831 75918659 C 0.95 0.22 4.40 1.3E-05 1.3E-05 
 

- - - - - 
6  rs73463834 75918900 A 0.95 0.22 4.40 1.3E-05 1.3E-05 

 
- - - - - 

6  rs73463835 75918993 A 0.94 0.22 4.39 1.3E-05 1.3E-05 
 

- - - - - 
8 rs1160120 118641568 G 0.26 0.06 4.36 1.6E-05 1.6E-05 

 
G  -0.01 0.07 -0.2 0.83 

10  rs11190878 103009908 G 0.24 0.06 4.35 1.6E-05 1.6E-05 
 

G  -0.09 0.07 -1.2 0.22 
1  rs10910849 180980443 A -0.24 0.05 -4.35 1.6E-05 1.7E-05 

 
A  -0.02 0.06 -0.3 0.74 

1 rs35672928  180969115  G -0.24 0.05 -4.33 1.7E-05 1.8E-05 
 

- - - - - 
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Top 20 SNPs in CogBIAS  
 

The same SNPs in TEDS data 
CHR   SNP BP A1 BETA     SE  STAT  P P (GC)   A1   BETA       SE        STAT          P  
2 rs6435333 155560333 C -0.56 0.10 -5.35 1.5E-07 1.7E-07 

 
- - - - - 

19  rs55811526 41450934 T 0.33 0.06 5.17 3.7E-07 4.1E-07 
 

- - - - - 
19 rs4062238 41451576 G 0.32 0.06 4.97 9.9E-07 1.1E-06 

 
- - - - - 

19 rs4560022 41451810 C 0.32 0.06 4.97 9.9E-07 1.1E-06 
 

- - - - - 
19  rs12972933 41455816 T  0.32 0.06 4.95 1.1E-06 1.2E-06 

 
- - - - - 

19 rs4239510 41453499 T  0.31 0.06 4.95 1.1E-06 1.2E-06 
 

- - - - - 
19 rs4239511 41453582 C 0.32 0.06 4.95 1.1E-06 1.2E-06 

 
- - - - - 

19 rs4322765 41458785 T 0.32 0.06 4.95 1.1E-06 1.2E-06 
 

- - - - - 
19 rs4560023 41451893 C 0.32 0.06 4.95 1.1E-06 1.2E-06 

 
- - - - - 

19 rs4803411 41463593 A 0.32 0.06 4.95 1.1E-06 1.2E-06 
 

- - - - - 
19  rs58436969 41462418 T 0.32 0.06 4.95 1.1E-06 1.2E-06 

 
- - - - - 

5  rs17517197 110357426 G -0.54 0.11 -4.92 1.3E-06 1.4E-06 
 

- - - - - 
19 rs8110485 41448205 G 0.32 0.06 4.92 1.3E-06 1.4E-06 

 
- - - - - 

19 rs2099361 41498348 C 0.32 0.06 4.87 1.6E-06 1.7E-06 
 

- - - - - 
19  rs10417579 41465130 T 0.30 0.06 4.85 1.8E-06 1.9E-06 

 
- - - - - 

19  rs56317391 41477304 A 0.31 0.06 4.85 1.8E-06 2.0E-06 
 

- - - - - 
19 rs3889806 41459241 T 0.31 0.06 4.84 1.9E-06 2.0E-06 

 
- - - - - 

19 rs7251436 41452293 A 0.31 0.06 4.84 1.9E-06 2.0E-06 
 

- - - - - 
19  rs11673114 41465979 G   0.31 0.06 4.84 1.9E-06 2.1E-06 

 
- - - - - 

19  rs988900 41472213 A   0.31 0.06 4.84 1.9E-06 2.1E-06   - - - - - 
Associations with p < .05 are in bold; Empty cells indicate the SNPs were not available in the respective data set 
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Appendix 4.2 Results of cross-trait polygenic score analyses in TEDS, CogBIAS and meta-analysed data sets 
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Figure 4.1 AGREEABLENESS 
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Figure 4.2 ANXIETY 
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Figure 4.3 CONSCIENTIOUSNESS 
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Figure 4.4 DEPRESSION 



 371  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CogBIAS

EDUCATIONAL	ATTAINMENT

TEDS

Figure 4.5 EDUCATIONAL ATTAINMENT 
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Figure 4.6 EXTRAVERSION 
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Figure 4.7 INSOMNIA 
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Figure 4.8 LONLINESS 
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Figure 4.9 NEUROTICISM 
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Figure 4.10 OPNENESS 
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Figure 4.11 SUBJECTIVE WELLBEING 
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Figure 4.12 ADHD 
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CogBIAS 

Figure 4.13 AUTISM 
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