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Abstract

Conserved non-coding elements (CNEs) are regions of non-coding DNA which

have remained evolutionarily conserved across various species over millions of

years and are found to cluster near genes involved in early embryonic devel-

opment, suggesting that they play an important role as regulatory elements.

Indeed, many CNEs have been shown to act as enhancers; however, not all regu-

latory elements are conserved and in some cases, deletion of CNEs did not result

in any notable phenotypes. These opposing findings indicate that the functions

of CNEs are still poorly understood and further research on these elements is

needed to uncover the reasons for their extreme conservation. The aim of this

thesis is to investigate the use and development of algorithms for decoding the

regulatory grammar of CNEs. Initially, an assessment of several methods for

functional classification of CNEs is provided. The results obtained using these

methods are validated by functional assays and their limitations in capturing

the grammar of CNEs are discussed. Motivated by these limitations, a partial

order graph representation of the sequence of transcription factor binding sites

(TFBSs) in a CNE that allows efficient handling of the overlapping sites is intro-

duced. A dynamic programming-based method for aligning two such graphs and

identifying regulatory signatures composed of co-occurring TFBSs is proposed

and evaluated. The results demonstrate the predictive ability of this method,

which can be used to prioritise regions for experimental validation. Building on

this method, the partial order kernel (POKer) for comparison of strings contain-

ing alternative substrings and represented by partial order graphs is introduced.

The POKer is evaluated in different sequence comparison tasks, including vi-

sual localisation. An approach using the POKer for functional classification of

CNEs is introduced and its effectiveness in capturing the grammar of CNEs is

demonstrated. Finally, the implications of the results presented in this work for

modelling the evolution of CNEs are discussed.
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Introduction

Gene expression, the process by which the information encoded in genes is used

to synthesise functional products such as proteins, is a key process in the develop-

ment of all organisms. Gene expression consists of several steps, many of which

are orchestrated by elements known as regulatory elements. These elements

control the timing, location and amount of gene expression, allowing the cell to

adapt to the environment and respond to external signals. Understanding the

mechanisms of action of regulatory elements is thus crucial to our understanding

of evolution and diseases.

An approach to identifying and characterising regulatory elements is compar-

ative sequence analysis, in which genomic sequences from different organisms are

compared in order to identify genomic regions that are evolutionarily conserved

and analyse them for potential regulatory function. The rationale behind this

approach is that functional regions of the genome are generally under selective

pressure, and therefore, are more likely to be similar across organisms than other

regions [1]. Comparative sequence analysis of vertebrate genomes has led to the

discovery of a set of non-coding DNA sequences known as conserved non-coding

elements (CNEs). Non-coding DNA – regions of DNA that do not encode pro-

teins – make up over 98% of the human genome [2]. Initially called junk DNA,

some non-coding DNA is now known to have important biological functions [3].

What sets CNEs apart from other non-coding DNA is their level of conservation,

their distribution throughout the vertebrate lineage and their location within

vertebrate genomes [4]: CNEs show exceptionally high levels of conservation [5];

they have remained conserved across evolutionarily distant species for millions

of years [6]; and they appear in clusters near key developmental genes [7]. These

features make CNEs candidates for regulatory elements. Although the regula-

tory functions of a number of CNEs have been confirmed [8, 9], the reasons for

their extreme conservation are still unknown.

During gene expression, the genetic information stored in DNA is transcribed

into RNA molecules. Transcription is partly controlled by proteins known as
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transcription factors (TFs). TFs bind, in a cooperative manner, to short DNA

motifs called transcription factor binding sites (TFBSs). Thus, the presence of

clusters of TFBSs is assumed to be a good indicator of regulatory activity [10].

CNEs are enriched in overlapping TFBSs [11]. Hence, one explanation proposed

for the high levels of conservation seen in CNEs is that since mutations within

these elements can affect multiple TFBSs, they have come under selective pres-

sure, as mutations in TFBSs may have unexpected effects on gene expression

which can be selected against. This, however, does not fully explain the extent

of CNEs conservation. According to the ‘billboard’ model of TF interactions, the

exact arrangement of TFBSs is not necessary for regulatory activity [12].

The majority of functionally characterised CNEs act as enhancers, increasing

the probability of transcription [13]. This offers another potential explanation for

the conservation of CNEs since, as mentioned above, functional sequences tend

to be more conserved than those which have been predicted to be non-functional.

However, this explanation suffers from the observation that regulatory elements

are not necessarily conserved and can diverge [14].

Finally, in some cases, deletion of CNEs resulted in no notable phenotypes,

casting doubt on the functional importance of these elements [15]. These oppos-

ing findings indicate that the nature of conservation of CNEs is more complex

than thought before, and further work is needed in order to understand the roles

of CNEs and their mechanisms of action.

Testing whether a CNE drives the expression of a gene is commonly done

using in-vivo functional assays; however, these methods have a few shortcom-

ings [16], which highlight the need for new methods for assessing the regulatory

activity of CNEs. In this work, we aim to

• model CNEs based on their TFBSs,

• develop machine learning algorithms to compare these models, and

• predict novel regulatory elements.

In doing so, we test the following hypotheses:

• regulatory activity of CNEs can be predicted using TFBS-based features

(as opposed to their primary sequence),

• CNEs share regulatory sequence signatures that can be detected using

machine learning algorithms, and

• these signatures can be used to identify additional regulatory elements.
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Structure of the Thesis

Chapter 1 provides an overview of the biological entities and processes that

are the subject of our work. We begin with the definitions of information-

carrying biopolymers, namely DNA, RNA and proteins, and the central dogma

of molecular biology which outlines the flow of genetic information between these

biopolymers. Next, we focus on the process of transcription, the first stage in

the transfer of information from DNA to protein. We look at how it is regulated

and what entities are involved in it. Finally, we review the current research

on CNEs, including their origin, their sequence properties and the hypotheses

about their roles in transcriptional regulation that have provided the motivation

for our work.

Chapter 2 contains the definitions, notations and descriptions for the compu-

tational methods that form the foundations of the works presented in subsequent

chapters. These include representation of biological sequences, sequence align-

ment and kernel methods.

In Chapter 3, we consider the applications of a number of existing cluster-

ing algorithms and network analysis and dimensionality reduction techniques to

group CNEs into clusters of functionally related elements. To measure the sim-

ilarities between CNEs, we employ different metrics based on the occurrences

of TFBSs within the elements. We apply the considered methods in conjunc-

tion with these metrics to a set of CNEs and validate the results by performing

functional assays. We discuss the limitations of these methods in capturing the

regulatory sequence signatures in CNEs and highlight the need for a new method

for comparing these elements.

In Chapter 4, we introduce a graph representation of the sequence of TFBSs

identified in a CNE that efficiently handles overlapping binding sites. Moreover,

we present a dynamic programming algorithm for aligning two such graphs,

and show how the frequency of aligned TFBSs is measured in order to detect

regulatory sequence signatures composed of co-occurring TFBSs. We use this

method to identify the regulatory signatures in elements from a set of functionally

validated CNEs. We compare the results with those obtained using functional

assays to demonstrate the predictive power of our approach.

In Chapter 5, we introduce a new kernel based on sequence alignment, called

the partial order kernel (POKer). The POKer produces a measure of similarity

between strings that contain alternative substrings (e.g., the sequence of over-

lapping TFBSs identified in a CNE) which we represent as partial order graphs.

To benchmark the POKer’s performance, we extend a state-of-the-art string ker-
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nel to handle strings with alternative substrings. We show the effectiveness of

the POKer by comparing its performance to that of this kernel in two sets of

experiments on different simulated datasets.

In Chapter 6, we further evaluate the POKer in a real-world setting by con-

sidering its application to a computer vision problem, namely visual localisation.

We introduce a novel sequence-based approach that is robust to changes in the

appearance of the environment. That is, we convert the sequences of images

of a place taken at different times to strings with alternative substrings repre-

sented as graphs, and use the POKer to obtain the similarities between these

graphs and match the corresponding locations. We demonstrate the robustness

of our approach on a standard dataset and in comparison to the state-of-the-art

methods.

In Chapter 7, we propose an approach to classifying CNEs into groups of

functionally related elements based on the TFBSs they contain. We use the

graph representation introduced in Chapter 4 to model CNEs, and employ the

POKer to compare the graphs. To evaluate our approach, we train a classifier on

a set of functionally validated CNEs. We then test this classifier on a different set

of CNEs whose regulatory activity (or lack of it) has been confirmed, and discuss

the biological relevance of the results. Moreover, we show how this approach is

used to define a tissue-specific regulatory grammar for CNEs.

The thesis concludes with a discussion of our findings. Appendix A sum-

marises a related work in the field of image processing where we used the dimen-

sionality reduction technique considered in Chapter 3. Appendix B reports a

case study on social networks that we carried out to evaluate the network anal-

ysis technique used in Chapter 3. Appendix C outlines the proof of the theorem

in Chapter 5.

Collaboration Details and Publications

The works presented in Chapters 3 and 4 were done in collaboration with the

Regulatory Genomics Laboratory (formerly part of the National Institute Of

Medical Research (NIMR)) while visiting the Francis Crick Institute.

The work presented in Chapter 6 was done in collaboration with the Intel-

ligent Systems, Automation and Robotics Laboratory (ISARLab) while visiting

the Università degli Studi di Perugia.
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Chapter 1

Biological Context and

Motivation

1.1 The Building Blocks

The genome is made up of deoxyribonucleic acid (DNA) molecules. DNA consists

of two nucleotide strands twisted into a double helix. Each nucleotide is com-

posed of a sugar called deoxyribose, a phosphate group and a nitrogen-containing

nucleobase: adenine (A), cytosine (C), guanine (G) or thymine (T). For ease of

reference, the five carbon atoms in deoxyribose are assigned a number followed

by a prime (1’, 2’ and so forth). The strands of DNA are joined together by

hydrogen bonds between pairs of nucleobases: C pairs with G, and A pairs with

T. These strands store the genetic information.

In certain organisms (e.g., some viruses), genetic information is stored in

ribonucleic acid (RNA). RNA consists of a single nucleotide strand. Nucleotides

in RNA differ from those in DNA in two aspects: the constituent sugar in RNA

is ribose and the complementary base to adenine (A) is uracil (U). There exist

several types of RNA with different functions. We mention some of them in the

following sections.

Another class of biopolymers that carry the genetic information are proteins.

Proteins are composed of polypeptides, folded into a 3-dimensional structure.

Each polypeptide is a sequence of amino acids linked together by covalent bonds

called peptide bonds. Amino acids are organic compounds containing an amino

(NH2) group and a carboxyl (COOH) group. There are 20 amino acids found in

proteins.

A family of proteins called histones package DNA into the eukaryotic nucleus,
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Figure 1.1: Transfer of genetic information between DNA, RNA and protein. Solid arrows are
probable general transfers, dotted arrows are possible specific transfers, and absent arrows are
unknown transfers which the dogma postulates never occur.

forming units known as nucleosomes. Each nucleosome is composed of approxi-

mately 146 base pairs (bp) of DNA, wound 1.65 times around eight histones (two

of each of the histones H2A, H2B, H3 and H4). One histone H1 wraps an addi-

tional 20 base pairs around this histone core to form a chromatosome. The chain

of nucleosomes folds and forms a chromatin fiber, which is further compressed

and folded to form one of the two chromatids of a chromosome [17].

1.2 From DNA to Protein

The central dogma of molecular biology [18] outlines the flow of genetic infor-

mation between DNA, RNA and protein. Figure 1.1 shows the classification of

these transfers, as proposed in 1970.

According to the dogma, during a process known as gene expression, genetic

information flows from DNA to RNA to protein. Gene Expression occurs in two

main steps: transcription and translation. The following two sections describe

the processes of transcription and translation in eukaryotes, respectively.

1.2.1 Transcription

During transcription, one strand of DNA, referred to as the template strand,

is used for the synthesis of a complementary RNA chain called the primary

transcript. The primary transcript is identical to DNA’s non-template strand,

referred to as the coding strand, with T bases replaced by U bases. Primary

transcripts are further modified to yield mature RNAs. DNA is transcribed into

different types of RNA. Those that convey the genetic information from DNA

to protein are called messenger RNAs (mRNAs), and a primary transcript that

17



Figure 1.2: RNA synthesis within the transcription bubble. Image source: [20]

becomes an mRNA is called a precursor mRNA (pre-mRNA). RNA synthesis

occurs in three stages: initiation, elongation and termination.

In eukaryotes, RNA is synthesised in the nucleus. Synthesis of an RNA

chain is initiated by the enzyme RNA polymerase. RNA polymerase, with the

assistance of proteins called transcription factors (TFs), binds to a specific region

of DNA called the promoter, located near the transcription start site at the 5’

end. TFs and promoters are described in Section 1.3. Recall that DNA is tightly

packed into the chromatin; therefore, to allow TFs to access it, the chromatin

structure must be modified. This process is known as chromatin remodelling.

For details of this process, see [19].

During elongation, RNA polymerase moves along the DNA, unwinds it and

forms a region called the transcription bubble. In this bubble, RNA polymerase

traverses the template strand in the 3’ to 5’ direction and adds complementary

RNA nucleotides to the new chain. DNA that was unwound is rewound after it

has been transcribed (Figure 1.2).

Once RNA polymerase passes the end of the gene, a protein complex binds to

two locations (a polyadenylation signal sequence and a GU-rich sequence) on the

growing transcript and cleaves the primary transcript. The newly synthesised

pre-mRNA is released, RNA polymerase dissociates from the template strand

and transcription terminates. Pre-mRNAs are further processed before they

become mRNAs. This includes the addition of a 5’ cap, the addition of a poly(A)

tail (polyadenylation) and splicing to remove introns [21]. The resulting mRNA

is transported to the cytoplasm where it is translated.
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Figure 1.3: Polypeptide chain synthesis in the ribosome. Image source: [20]

1.2.2 Translation

In translation, the genetic information encoded in an mRNA is translated by

the ribosome into the chain of amino acids in a polypeptide. The mRNA is read

in blocks of nucleotide triplets called codons, each of which specifies an amino

acid according to the genetic code. The genetic code is degenerate, meaning

that some amino acids are specified by more than one codon. Translation of

codons into amino acids requires another class of RNAs called transfer RNAs

(tRNAs). Each tRNA carries a nucleotide triplet called an anticodon, which is

complementary to a codon in mRNA. tRNAs that are attached to the amino acid

which corresponds to their anticodon are called aminoacyl-tRNAs (aa-tRNAs).

Similar to transcription, translation occurs in three stages: initiation, elongation

and termination.

Ribosomes are made up of ribosomal RNAs (rRNAs) and proteins. Eukary-

otic ribosome is composed of two subunits, a small subunit (40S) and a large

subunit (60S) [22]. The 40S subunit binds to the mRNA and scans it in the

5’ to 3’ direction. Protein synthesis is initiated once a start codon (commonly

AUG) is encountered and the 40S subunit is joined by the 60S subunit to form

the complete ribosome (80S).

There are three binding sites for tRNAs in the ribosome: the aminoacyl (A)

site, the peptidyl (P) site and the exit (E) site. During elongation, an aa-tRNA

carrying the anticodon that matches the codon in the A site binds to this site.

Next, a peptide bond forms between the amino acid of aa-tRNA and the amino

acid of the tRNA bound to the P site, which holds the growing polypeptide
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chain, and the chain is transferred to aa-tRNA. The tRNAs in the A and P sites

are then moved to the P and E sites, respectively. The deacylated tRNA leaves

the E site and another aa-tRNA enters the A site (Figure 1.3).

Elongation continues until a stop codon (e.g., UAG) enters the A site. Stop

codons are not recognised by any tRNAs. Instead, they are recognised by pro-

teins known as release factors, which trigger the hydrolysis of the bond between

the polypeptide chain and the tRNA in the P site. The completed polypeptide is

released and the ribosomal subunits dissociate. The resulting polypeptide then

folds into a protein and carries out its role in the cell.

1.3 Transcriptional Regulation

Regulation of gene expression is termed gene regulation. Gene regulation oc-

curs at various levels, but the majority of it takes place at the level of tran-

scription. Transcriptional regulation is orchestrated by many entities, notably

cis-regulatory elements (which regulate the transcription of nearby genes, in

contrast to trans-regulatory elements) and transcription factors (TFs). The fol-

lowing two sections describe the structures and functions of these regulatory

elements.

1.3.1 Cis-regulatory Elements

Promoters and enhancers are the two best-studied cis-regulatory elements. Pro-

moters are regions of DNA located upstream of a gene (towards the 5’ end of the

coding strand) that consist of several elements which can be bound by TFs. The

element closest to the transcription start site is the TATA box (named after its

sequence which most commonly is TATAAA). Transcription factor IID (TFIID),

which contains a TATA box binding protein (TBP) and several TBP-associated

factors, is the first TF that binds to the TATA box and forms the transcription

preinitiation complex (PIC). It is followed by TFIIA and TFIIB. Next, RNA

polymerase and TFIIF join the PIC. Finally, TFIIE and TFIIH bind to the

PIC [23]. TFIIH has helicase activity that unwinds DNA and helps create the

transcription bubble. Active promoters are marked by trimethylation (methy-

lation is the process by which methyl (CH3) groups are transferred to lysine or

arginine residues in histones; trimethylation refers to the transfer of three methyl

groups) of lysine 4 in histone H3 (H3K4) [24]. Promoters vary in length and can

be hundreds of base pairs long.

Similar to promoters, enhancers are regions of DNA that contain several TF
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binding sites (TFBSs). TFs known as activators bind to enhancers, help recruit

the RNA polymerase and increase the transcription rate (a class of regulatory

elements called silencers play the opposite role of enhancers; they are bound by

TFs known as repressors which prevent transcription). In addition to serving

as centres for the assembly of the PIC, enhancers have also been reported to

play an important role in transcription elongation [25, 26]. Another way in

which enhancers are involved in gene regulation is through a class of non-coding

RNAs known as enhancer RNAs (eRNAs), which are transcribed from enhancer

sequences. The exact mechanisms by which eRNAs influence gene expression are

not known yet; however, a number of them have been shown to have enhancer-

like function [27]. Enhancers, similar to promoters, have been characterised

by epigenetic features. Active enhancers are marked by monomethylation of

H3K4 [24]. Enhancers are typically a few hundred base pairs long.

A hallmark property of enhancers is that they act independently of their

location, distance and orientation with respect to their target genes, that is,

they may be several hundred kilobases away from their target genes, upstream

or downstream of the transcription start site, in forward or reverse direction [28].

Several models of how distal enhancers communicate with their target genes have

been proposed [29, 30, 31]. Currently, the favoured model is DNA looping. This

model is supported by evidence from chromosome conformation capture (3C)

and fluorescence in situ hybridisation (FISH) methods. DNA looping occurs

when a protein or a protein complex simultaneously binds to two DNA sites,

thereby looping out the intervening DNA [32]. Hence, although an enhancer

may be megabases away from its target gene, it is spatially close to the gene and

its promoter.

Considering the above, it is not surprising that mutations in cis-regulatory

elements can result in phenotypic changes and diseases [33].

1.3.2 Transcription Factors

Transcription factors (TFs) are proteins that bind to the regulatory regions of

DNA and control the gene expression. The two main types of TF are general (or

basal) TFs and specific TFs. General TFs bind to promoters and are involved

in the recruitment of RNA polymerase [34, 35]. TFIIH, a general TF, also

participates in DNA repair [36]. Specific TFs, namely activators and repressors,

bind to enhancers and silencers, respectively. Activators facilitate the binding

of general TFs, while repressors inhibit the transcription process using various

mechanisms. These include competing with an activator for a common binding

site, interfering with an activator bound nearby (quenching) and interfering with
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Figure 1.4: Models of TF interactions. The enhanceosome model represents fixed TFBSs
composition and positioning, where presence of all TFs is required for enhancer activation.
In the billboard model, TFBSs composition is fixed while their positioning is flexible; only a
subset of TFs must be bound for enhancer activation. The TF collective model features diverse
TFBSs composition and positioning. Image source: [43]

the function of general TFs [37].

TFs have a modular structure where distinct regions are responsible for dif-

ferent functions such as DNA binding, activation and repression of transcrip-

tion [38]. TFs are categorised into four families, based on the motifs that con-

stitute their binding domains: helix-turn-helix (HTH) (including homeodomain

proteins), zinc finger, leucine zipper and helix-loop-helix (HLH). For details of

each family, see [39]. TFs are typically 10 base pairs long [40].

TFs do not act alone; they interact with components of the transcription

machinery including other TFs [41]. A DNA sequence containing a cluster of

TFBSs for multiple interacting TFs is called a cis-regulatory module (CRM).

TF interactions may impose constraints on the composition of regulatory se-

quences (e.g., the number, location, orientation and order of TFBSs within the

sequence), which define the ‘grammar’ of regulatory elements. To what extent

the composition of regulatory sequences is determinant of their function is still

an open question [42] – one that is investigated in this thesis.

Three models of TF interactions have been proposed: enhanceosome, bill-

board and TF collective. Examples of each model are shown in Figure 1.4. In

the enhanceosome model, TFs interact in a highly cooperative manner. This

model represents a situation where a strict TFBSs arrangement is essential for

enhancer activity and changes in individual TFs affect the outcome [44]. The

interferon-β enhancer is an example of an enhancer that follows the enhanceo-

some model. In contrast, the billboard model offers a more flexible arrangement

of TFBSs. In this model, TFs interact in a relatively independent manner. The

billboard model suggests that enhancers act as information displays (hence the

term billboard), transmitting signals that are then decoded by the basal ma-
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chinery and used to turn genes on or off [12]. Examples of enhancers following

the billboard model are the even-skipped (eve) enhancers. The two models men-

tioned are the extreme ends of the spectrum. In a third model, called the TF

collective model, similar to the enhanceosome model, TFs bind to enhancers in

a cooperative manner; however, their cooperation does not require a specific ar-

rangement, similar to the billboard model [45]. Ultimately, TF interactions fall

on different points along this spectrum.

1.4 Conserved Non-coding Elements (CNEs)

Over 98% of the human genome does not encode proteins [2]. Non-coding DNA,

once dismissed as ‘junk’ [46], has important functions. For instance, some non-

coding DNA sequences are transcribed into non-coding RNAs, many of which are

involved in translation. There exist regions of non-coding DNA that are under

strong purifying selection. Properties of these conserved non-coding elements

(CNEs) suggest that they may be involved in gene regulation; however, while

the functions of a number of CNEs have been identified, the role of many CNEs

and hence the reason for their extreme conservation remains a mystery. The

following three sections provide a review of what is currently known about these

elements.

1.4.1 Origins

CNEs are identified through comparative genomic analysis, whereby genomic

sequences from two or more species are compared in order to identify orthologous

regions that are evolutionarily conserved across the species being analysed. The

idea behind this approach is that functional regions are under purifying selection

since changes in these regions may reduce the organism’s fitness; therefore, such

sequences are expected to be more similar across species than other regions [47,

1]. For details of this approach, see Section 2.3.

Comparative sequence analysis of vertebrate genomes has led to the discovery

of thousands of CNEs. Various criteria are used to define CNEs, including a

minimum sequence similarity and a minimum sequence length. For example,

ultraconserved elements (UCEs) are sequences of length 200bp or more that are

100% identical between the orthologous regions of the human, mouse and rat

genomes [5]; or, long conserved non-coding sequences (LCNSs) are sequences

longer than 500bp with at least 95% sequence identity [48]. Throughout this

thesis, we refer to all of these sequences as CNEs.
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CNEs were thought to be mutational cold spots; however, analysis of al-

lele (variants of a gene) frequencies showed that new alleles of single nucleotide

polymorphisms (SNPs) within CNEs are rarer than those within other regions,

indicating that CNEs are under purifying selection [49, 50]. Despite being under

strong purifying selection, CNE losses do occur [51] and may be accompanied

by phenotypic changes [52].

CNEs have been found to originate from diverse sources, including transpos-

able elements (DNA sequences that can jump from one location in the genome

to another) [53] and ancient repeats [54].

Most CNEs have been identified in vertebrates. A small number of these

elements are conserved across evolutionarily distant species. One example is the

set of CNEs that are conserved between human and sea lamprey (Petromyzon

marinus), a jawless fish which belongs to a group of vertebrates that separated

from the jawed lineage around 600 million years ago [55]. Another example is

the set of CNEs found in amphioxi (also known as lancelets), which last shared

an ancestor with vertebrates over 520 million years ago [56]. Although primarily

identified in vertebrates, CNEs have also been identified in invertebrates such as

worms and insects [57, 58]. Moreover, hundreds of CNEs have been identified in

plants [59, 60]. Although CNEs identified in different animal groups share little

sequence similarity, the sets of developmental genes that they are associated with

overlap [61].

The extreme conservation of CNEs over large evolutionary distances implies

that these elements are likely to play an essential role during evolution.

1.4.2 General Properties

Analysis of the nucleotide composition of CNEs revealed a sharp drop in A+T

frequency beyond the boundaries of these elements, meaning that CNEs are more

rich in A+T content than their flanking sequences [62]. CNEs have also been

shown to be enriched in motif TAATTA, which contains the core recognition

motif TAAT for homeodomain proteins [63].

CNEs often appear in clusters near key developmental genes [7] and similar

to TFs, function in a cooperative manner [64]. These clusters, referred to as

genomic regulatory blocks (GRBs), can span up to several hundred kilobases

around their target genes. Many GRBs contain gene deserts, i.e., regions of

DNA that are devoid of genes. In addition to target genes, GRBs also contain

other genes called bystander genes, whose regulation and functions are unrelated

to those of the target genes. There exists evidence that there is evolutionary
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pressure to keep GRBs intact [65, 66], suggesting that CNEs may act as long-

range regulatory elements which are required to remain in cis with their target

genes [67, 68, 69]. An example of such CNEs is the elements around the Sonic

Hedgehog (SHH) gene [70].

More recently, GRBs were found to coincide with topologically associating

domains (TADs) [71]. TADs are regions of the genome that prefer to interact

with themselves rather than with regions outside the TAD [72]. TADs that over-

lap GRBs, termed GRB-TADs, have distinct features: compared to non-GRB-

TADs, they are larger, gene-sparse, exhibit higher levels of self-interactions and

are more insulated from neighbouring regions [71]. While still preliminary, this

observation is consistent with the presence of selective pressure against disrup-

tion of GRBs and further supports the potential role of CNEs as long-range

regulatory elements.

CNEs are rich in overlapping TFBSs [11], a feature of regulatory elements

such as enhancers. In some cases, the position and order of CNEs within GRBs

have remained intact [6], while in others, they have undergone shuffling [73].

The former observation is in agreement with the enhanceosome model which

proposes that a strict arrangement of TFBSs within CNEs is required for their

regulatory function, while the latter observation is consistent with the billboard

model which suggests that the exact arrangement of TFBSs within CNEs is not

necessary for their regulatory function.

Overall, the above features make CNEs good candidates for regulatory ele-

ments.

1.4.3 Functions and Unknown Reasons for Conservation

The majority of CNEs tested using functional assays and chromatin immuno-

precipitation combined with massively parallel DNA sequencing (ChIP-seq) have

been shown to act as enhancers, in that they drive tissue-specific gene expres-

sion in vivo, most commonly in mice [74, 9, 75] and zebrafish [8]. The VISTA

enhancer browser [76] contains hundreds of these validated CNEs with enhancer

activity.

A number of diseases have been linked to mutations in CNEs, including

point mutations [77, 78, 79], deletions [80] and duplications [81, 82]. These

diseases include malformations (for a list of examples, see [83]) and behavioural

disorders [84, 85].

The above, however, do not fully explain the high levels of conservation
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seen in CNEs. Sequence conservation does not necessarily imply regulatory

function [86, 87], and not all regulatory elements are highly conserved [88, 89].

Moreover, deletion of some CNEs yielded viable mice with no significant phe-

notypic changes [90, 15], although it was recently demonstrated that deletion

of these elements causes phenotypes, including reduced growth and neurological

abnormalities, that may have been too subtle to be detected in a laboratory

setting [91]. In addition, it is possible that CNEs which act as enhancers and

are associated with the same gene have redundant activity in order to provide

robustness to the loss of function that can result from their loss, and therefore,

deletion of one CNE results in no or subtle phenotypes [92]. Nevertheless, such

cases raise doubts about the functional importance of CNEs.

These opposing findings pose interesting questions regarding the functions of

CNEs and the reasons for their extreme conservation, and indicate that further

research on CNEs is required to understand their mechanisms of action.
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Chapter 2

Computational Background

2.1 Biological Sequence Representation

DNA, RNA and protein sequences are essentially strings over a finite alphabet

of symbols, where each symbol represents a structural unit of that biopolymer.

Thus, one approach to representing these sequences is to use natural language

processing (NLP) techniques such as word embedding [93]. For example, in [94],

DNA sequences are segmented into variable-length k -mers and a distributed

representation of these k -mers is computed.

Another approach to representing biological sequences is to use a graphical

representation. 2D and 3D graphical representations of DNA sequences [95,

96, 97] and proteins [98] are derived from the mathematical denotation of the

sequences and provide a simple way to analyse these sequences.

One data structure that has been used to represent biological sequences is

a graph. For example, in [99], nucleotide sequences are represented by directed

acyclic graphs (DAGs) called sequence graphs, in which nodes are labelled with

nucleobase symbols and alternative paths in the graph correspond to differ-

ent DNA sequences that encode the same amino acid sequence. In another

example [100], nucleotide sequences are represented by graphs similar to, but

more condensed than, sequence graphs called back-translation graphs. In back-

translation graphs, IUPAC codes are used to join multiple nodes, each labelled

with a nucleobase symbol, together into a single node labelled by an ambiguity

character.

In Chapter 4, we introduce a new graph representation for CNEs.

27



GCATG-CU

G-ATTACA

Figure 2.1: Example of a pairwise alignment. Sequences are written in rows, creating a corre-
spondence between the symbols in the same column.

2.2 Sequence Alignment

Sequence alignment is the most widely used method for comparing two (pairwise

sequence alignment) or more (multiple sequence alignment) biological sequences

and forms the core of many other methods in computational biology, including

those developed to predict regulatory elements.

Definition 1. Given two sequences S = s1s2 . . . sn and T = t1t2 . . . tm over an

alphabet A, an alignment between S and T is a pair of sequences S′ = s′1s
′
2 . . . s

′
l

and T ′ = t′1t
′
2 . . . t

′
l over the alphabet A′ = A ∪ {−} with the condition that

@k ∈ {1, . . . , l} : s′k = t′k = −. If s′i, t
′
i ∈ A, then the aligned pair (s′i, t

′
i)

corresponds to a match when s′i = t′i, and a mismatch otherwise. If one of the

symbols is a gap (denoted by −), then the aligned pair corresponds to an indel

(insertion or deletion).

An example of a pairwise alignment is shown in Figure 2.1. A score is as-

signed to each aligned pair; usually, matches are rewarded, while mismatches

and gaps are penalised. Match and mismatch scores are often given by a scoring

matrix (e.g., PAM [101] and BLOSUM [102] substitution matrices). There are

various types of gap penalty; the simplest are the constant, linear and affine gap

penalties. A constant gap penalty assigns a fixed cost e to each gap, regardless

of its length and position in the alignment. A linear gap penalty takes into ac-

count the length of the gap (denoted by g) and has the form ge. An affine gap

penalty combines the above two types of penalty and has the form o+ (g − 1)e,

where o and e are the gap opening penalty and the gap extension penalty (cost

of extending the length of a gap by 1), respectively [103].

The score of an alignment is the sum of the scores of all the aligned pairs, and

is computed using one of the following approaches: global, semi-global and local.

Global alignment is an alignment over the entire length of the sequences. Local

alignment aligns similar regions within the sequences. In semi-global alignment,

sequences are globally aligned, but leading and trailing gaps are ignored. Once

the desired approach is chosen, an optimal alignment is an alignment with the

highest score among all the possible alignments.
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2.2.1 Pairwise Alignment via Dynamic Programming

Pairwise alignment algorithms are divided into two main categories: dynamic

programming-based methods and heuristic methods. Following is an overview

of the classic alignment algorithms that belong to the first category and form

the basis for the work presented in Chapters 4 and 5. They are the Needleman-

Wunsch global alignment algorithm [104] and the Smith-Waterman local align-

ment algorithm [105].

The first step in dynamic programming-based methods is the construction

and initialisation of a score matrix whose axes represent the sequences to be

aligned, i.e., cell (i, j) corresponds to position i in the first sequence and position

j in the second sequence (Figure 2.2). Next, this matrix is filled, from top to

bottom and from left to right, by computing the score M(i, j) for each cell as

follows:

M(i, j) = max


M(i− 1, j − 1) + s(i, j)

M(i, j − 1) + g

M(i− 1, j) + g

(2.1)

where s(i, j) is the match (or mismatch) score and g is the gap penalty. A

diagonal move (first term in Equation 2.1) corresponds to aligning two symbols,

while horizontal and vertical moves (second and third terms in Equation 2.1,

respectively) correspond to inserting a gap in the first and second sequences,

respectively.

The last step is to trace back the path that leads to an optimal alignment.

This is done by starting from a cell and then backtracking, i.e., selecting the

predecessors with the optimal score iteratively, until another cell is reached.

The choice of which cell to start from and end at depends on the type of the

alignment: in the Needleman-Wunsch algorithm, backtracking starts from the

lower right corner of the matrix and ends at the top left corner of the matrix. In

the Smith-Waterman algorithm, the first row and the first column of the score

matrix are filled with zeros, and if M(i, j) becomes negative, it is reset to zero.

In this algorithm, backtracking starts at the cell with the highest score in the

matrix and ends when a cell with a score of zero is reached.

Heuristic methods (e.g., FASTA [106] and BLAST [107]) follow the seed-and-

extend paradigm: given a query sequence, they list words of length k from the

query sequence, and search the database sequences for matching words called

seeds. The matches are then extended using dynamic programming, and those

whose score (computed using a scoring matrix) is greater than a given cut-off

score are listed and their statistical significance is determined. Finally, matches
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A

C

A

T

T

A

G

G C A T G C U

0 -1 -2 -3 -4 -5 -6 -7

-1 1 0 -1 -2 -3 -4 -5

-2 0 0 1 0 -1 -2 -3

-3 -1 -1 0 2 1 0 -1

-4 -2 -2 -1 1 1 0 -1

-5 -3 -3 -1 0 0 0 -1

-6 -4 -2 -2 -1 -1 1 0

-7 -5 -3 -1 -2 -2 0 0

Figure 2.2: Score matrix showing the paths corresponding to the optimal global alignments
between GCATGCU and GATTACA. The path coloured in blue corresponds to the alignment shown
in Figure 2.1. The match score, mismatch score and gap penalty are equal to 1, -1 and -1,
respectively.

with expectation values smaller than a given threshold are returned. In contrast

to dynamic programming-based methods, heuristic methods do not guarantee to

find an optimal alignment between the sequences.

2.3 Identifying Cis-Regulatory Elements and Mod-

ules

Following is a survey of the computational methods for identifying cis-regulatory

elements and modules. Today, many tools combine two or more of the following

approaches.

One approach to identifying cis-regulatory elements is cross-species sequence

comparison. The key assumption in comparative sequence analysis methods such

as phylogenetic footprinting [108] is that sequences regulating the expression of

orthologous genes (genes that are derived from a common ancestral gene and

usually have the same function) are conserved across different species [109].

The first step in comparative sequence analysis is selecting the sequences

that are to be compared from species with appropriate phylogenetic distances.

Comparisons at long phylogenetic distances (e.g., >one billion years) allow one

to distinguish between coding and non-coding sequences. An example of analy-

sis at this distance is the comparison between the genomes of flies, worms and

yeast [110]. Comparisons at moderate phylogenetic distances (e.g., 100 million

years) separate functional from non-functional sequences. Examples of anal-
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yses at this distance are the comparisons among several yeast species [111].

Comparisons at short phylogenetic distances (e.g., 5 million years) reveal the

sequence differences that are responsible for differences between the compared

species [112]. An example of analysis at this distance is the comparison between

the genomes of human and chimpanzee [113].

The second step in comparative sequence analysis is annotating the reference

sequences for known features such as repetitive DNA. For many species, this in-

formation is available in genome browsers (e.g., Ensembl [114]). After known

features are located, the remaining regions are candidates for regulatory ele-

ments. The last step in comparative sequence analysis is aligning the sequences

and visualising the alignments. Examples of tools commonly used in this step

are VISTA [115] and PipMaker [116], which produce global and local alignments,

respectively. The plots returned by these tools are examined to find regulatory

elements.

Another approach to identifying cis-regulatory elements is searching for sta-

tistically over-represented motifs in sequences. Word counting methods fall in

this category. Word counting methods consider sequences as text and count

the number of occurrences of all nucleotide words (or oligonucleotides) of a de-

fined length k. They then compare the observed frequency of each word with

its expected frequency in a background model (e.g., a set of randomly generated

sequences, a Markov chain model [117] or a lexicon [118]). In order to deter-

mine whether a word is over-represented, the significance of its observed versus

expected frequency is evaluated using some criteria (e.g., Z -score).

A third approach to identifying cis-regulatory elements is using probabilistic

models. In this approach, motifs are modelled as position probability matrices

(PPMs) hidden in a noisy background sequence. The parameters of the model are

found using algorithms such as expectation maximisation and Gibbs sampling.

Examples of regulatory elements identified using this approach are human heart

enhancers [119].

A fourth category of methods for identifying cis-regulatory elements rely on

chromatin state features of regulatory elements (unlike the previous categories,

which use sequence-based features). These methods use hidden Markov models

(HMMs) [120], neural networks [121] and random forests [122]. A comparison

between different approaches using various features showed that regulatory ele-

ments, in particular enhancers, can be accurately predicted using only sequence-

based features (specifically, the TFBS occurrence-based features), and the pre-

diction accuracy is further improved by adding epigenetic features [123].

Methods for identifying cis-regulatory modules (CRMs) rely on the spa-
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tiotemporal relationships among TFBSs. A number of these methods employ

HMMs to model CRMs as sequences generated from a set of TFBSs, where each

state represents a motif [124]. Another group of these methods apply Bayesian

inference to locate CRMs [125, 126].

2.4 Kernel Methods

In computational biology, kernel methods have been successfully employed to

discover patterns of regulatory activity. The two components of a kernel method

are: a kernel function and a learning algorithm [127, 128].

Definition 2. Given a non-empty set of objects X , a kernel function (or kernel

in short) k : X ×X → R is a similarity measure for which there exists a feature

map Φ : X → H that maps objects into a dot product space (also called a feature

space) H satisfying

k(x, x′) = 〈Φ(x),Φ(x′)〉 (2.2)

for all x, x′ ∈ X . For a kernel to be valid, it must be positive semi-definite.

Definition 3. Given a kernel k on X×X and its Gram matrix Kij := (k(xi, xj)),

k is positive semi-definite if ∑
i,j

cicjKij ≥ 0 (2.3)

for all xi, xj ∈ X and ci, cj ∈ R. Throughout this thesis, we refer to positive

semi-definite kernels simply as kernels.

The set of kernels is a closed convex cone, i.e., it is closed under addition,

multiplication by a positive constant and pointwise limits. It is also closed under

product. These properties make it possible to build new kernels from existing

ones. One such family of kernels is known as convolution kernels.

Definition 4. Suppose that x ∈ X is a composite structure (e.g., a string)

and x̄ = x1, x2, . . . , xD (xd ∈ Xd, 1 ≤ d ≤ D) are its parts. Let relation Rx

over X1 × X2 × . . . × XD, where x̄ ∈ Rx, denote that x̄ are the parts of x.

Suppose that x′ ∈ X is another composite structure and kernel Kd(xd, x
′
d)

measures the similarity between xd and x′d. If K1,K2, . . . ,KD are kernels on

X1 ×X1, X2 ×X2, . . . , XD ×XD, respectively, then the convolution

K1 ? K2 ? . . . ? KD :=
∑
x̄∈Rx
x̄′∈Rx′

D∏
d=1

Kd(xd, x
′
d) (2.4)
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is a kernel on X ×X [129].

Many learning algorithms are used in combination with kernels. For details

of these methods, see [127].

2.4.1 Kernels for Biological Sequences

Kernels have been widely used, often combined with support vector machines

(SVMs), to solve computational biology problems such as protein homology de-

tection. A kernel can be explicitly built by extracting features from the sequences

and forming the kernel as the dot product of the feature vectors.

Kernels based on probabilistic models such as the marginalised kernels [130]

assume that sequences are generated by a latent variable model (e.g., a HMM).

The idea behind these approaches is to first, build a joint kernel over both visible

and latent variables (which are assumed to be available), and then obtain a kernel

by taking the expectation of the joint kernel with respect to the latent variables

(marginalising). A special case of marginalised kernels, called the Fisher ker-

nel [131], uses the gradient of the log-likelihood of the sequence with respect to

the probabilistic model with a given set of parameters as features.

String kernels such as the spectrum kernel [132] and its variants [133] use

counts of the number of occurrences of k -mers in the sequences as features. The

oligo kernel [134] and the weighted degree (WD) kernel [135] and its variant [136]

are similar to the spectrum kernel, but they also use positional information, i.e.,

given a sequence of length l, they consider all the k -mers starting at positions

i = 1, 2, . . . , l. Another kernel, called the motif kernel [137], similarly uses counts

of the number of occurrences of motifs from a database as features.

The two frameworks of sequence alignment and kernel methods were uni-

fied in [138], where the feature vector corresponding to a sequence consists of

the E -values of the Smith-Waterman alignments between that sequence and all

the sequences in the training set (the E -value or the expectation value of an

alignment measures its significance. For details of how E -value is calculated,

see [139]). A similar kernel, called the local alignment (LA) kernel [140, 141],

computes an exponentially weighted sum of the scores of all the possible local

alignments between the sequences.

The convolution kernels and the string kernels described above are all special

cases of the rational kernels [142]. In Chapter 5, we introduce a new convolution

kernel for comparison of strings.
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Chapter 3

Comparative Evaluation of

Methods for Grouping

Functionally Related CNEs

In this chapter, we investigate the use of a number of existing methods for

grouping CNEs into clusters of functionally related elements based on the TFBSs

they contain. The assumption here is that CNEs having the same combination

of TFBSs are likely to be involved in regulating genes with similar expression

profiles, as explained in Section 1.3.

We convert each CNE into a feature vector, where the features are based on

the occurrences of TFBSs within that CNE. We then use different metrics to

measure the similarities (or distances) between these vectors. Next, we group

CNEs based on the similarity of their corresponding feature vectors. Finally, we

check whether the CNEs that belong to the same cluster are similar in terms of

their regulatory function. We test this approach on a set of CNEs as follows: to

group CNEs, we consider five clustering algorithms (four hierarchical clustering

algorithms and a spectral clustering algorithm), a dimensionality reduction tech-

nique (t-SNE [143]) and a network topology visualisation tool (BOSAM [144]).

These methods are widely used in practice and form the basis of numerous other

methods. Among the clusters returned by each method, we select those that

are compact. We then obtain the gene expression data for CNEs in the selected

clusters by performing functional assays in zebrafish, and compare these data to

the clustering results. We discuss the shortcomings of the above approach and

highlight the need for a new method for comparing CNEs.
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3.1 Related Work

Alignment-free methods for sequence comparison model sequences based on the

presence and frequency of subsequences (also called words) that they contain,

and use a similarity measure (or a distance function) to compare the mod-

els [145].

These methods commonly represent sequences by frequency vectors, where

each entry corresponds to the number of occurrences of a matched word. Some

methods take only exact word matches [146, 147] into account, while others al-

low approximate matches with a bounded number of mismatches [148]. Another

category of methods use patterns called spaced words. Positions in a spaced

word are either a ‘match’ or a ‘don’t care’ position; two words are considered a

match if they contain matching symbols in the match positions [149]. A third

category of these methods measure the similarity between a pair of sequences

based on the lengths of their common subsequences [150, 151], i.e., for each

position in one sequence, the length of the longest subsequence starting at that

position and matching some subsequence starting at any position in the other se-

quence is considered. Some methods, instead, consider the length of the shortest

subsequence [152].

Various similarity measures and distance functions are used to compare fre-

quency vectors. They range from the simple Euclidean distance and its vari-

ants (e.g., D2 score [153]), statistical measures based on correlation and covari-

ance (e.g., the Pearson correlation coefficient [154] and the Mahalanobis dis-

tance [155]) to cosine similarity and information theoretic measures (e.g., the

Kullback-Leibler divergence [156]).

3.2 Sequence Similarity Measures

We measure the similarity between CNEs in a way that takes the presence and

number of TFBSs into account, and is compatible with the billboard model

of TF interactions (for descriptions of different models of TF interactions, see

Section 1.3.2). Given a set of TFBSs T = {t1, t2, . . . , tn}, we represent a CNE S

by a vector VS = 〈v1, v2, . . . , vn〉, where vi is the number of times TFBS ti has

been identified in S. For each pair of vectors, we compute two types of distance:

the Euclidean distance and the Jensen-Shannon distance, which is defined as the

square root of the Jensen-Shannon divergence (JSD).

In detail, let X and Y be two CNEs, represented by vectors VX and VY ,

respectively. The TFBS-occurrence vectors VX and VY are normalised to form
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probability distributions P and Q, respectively. This cannot be done if VX = ~0;

in that case, we consider P (i) = 0 ∀i. Similarly, if VY = ~0, then we con-

sider Q(i) = 0 ∀i. We compute an unnormalised Jensen-Shannon divergence

using

UJSD(P‖Q) =
1

2
UKLD(P‖M) +

1

2
UKLD(Q‖M) (3.1)

where M =
1

2
(P +Q) and UKLD(P‖M) is the unnormalised Kullback-Leibler

divergence [157], defined as

UKLD(P‖M) =
∑
i

P (i) ln
P (i)

M(i)
+
∑
i

(M(i)− P (i)) (3.2)

UKLD(Q‖M) is defined similarly. If M(i) is zero for some i, i.e., when both

P (i) and Q(i) are zero or, in other words, TFBS ti has not been identified in

either X or Y , then we consider P (i) ln
P (i)

M(i)
= Q(i) ln

Q(i)

M(i)
= 0 ln

0

0
= 0. Note

that when VX 6= ~0 and VY 6= ~0, i.e., P and Q are probability distributions,

UJSD becomes the classic Jensen-Shannon divergence as UKLD becomes the

classic Kullback-Leibler divergence (see Equation 3.10).

Another way to compare two CNEs based on the TFBSs they contain is to

identify the sequence of TFBSs in each CNE, align these sequences and then

compare the CNEs according to the score of an optimal alignment between their

corresponding TFBS sequences. Such an alignment-based similarity measure

takes the presence, number and relative position of TFBSs into account, and is

consistent with the enhanceosome model of TF interactions. In Chapter 4, we

present an algorithm for aligning a pair of TFBS sequences.

3.3 Methods

3.3.1 Clustering

In computational biology, clustering algorithms have traditionally been used

to partition genes on the basis of their expression profiles, and then identify

regulatory elements in the obtained clusters [158, 159]. Our approach follows

the opposite direction, i.e., we use clustering algorithms to group CNEs based

on their TFBSs composition, and then validate the expression profiles of elements

in the obtained clusters. For a similar approach applied to genes, see [160]. We

consider two types of clustering algorithms: hierarchical clustering and spectral

clustering. Following is an overview of these algorithms.
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Algorithm αi β γ

Single linkage 0.5 0 -0.5

Average linkage |i|
|i|+|j| 0 0

Complete linkage 0.5 0 0.5

Ward’s |i|+|k|
|i|+|j|+|k| − |k|

|i|+|j|+|k| 0

Table 3.1: Lance-Williams update formula parameters for the three linkage methods and the
Ward’s method

Hierarchical Clustering

For hierarchical clustering, we choose three linkage methods (single-linkage,

average-linkage and complete-linkage) and the Ward’s method [161]. All four

algorithms can be described by the Lance-Williams update formula [162]. Let

i and j be two clusters (including singletons) that have been agglomerated into

cluster i ∪ j. The Lance-Williams update formula for computing the distance

between this cluster and other clusters is defined as

d(i ∪ j, k) = αid(i, k) + αjd(j, k) + βd(i, j) + γ|d(i, k)− d(j, k)| (3.3)

where αi, αj , β and γ are parameters. Table 3.1 lists the values of these param-

eters for each algorithm.

For the linkage methods, we use the Jensen-Shannon distances. In the Ward’s

method, the initial distances are the squared Euclidean distances between feature

vectors.

Spectral Clustering

The three main variants of spectral clustering are unnormalised, symmetric nor-

malised [163] and asymmetric normalised [164]. Here, we use the asymmet-

ric normalised variant. The reasons for our choice are as follows: first, nor-

malised spectral clustering implements both clustering objectives, namely max-

imising intra-cluster similarity and minimising inter-cluster similarity, while un-

normalised spectral clustering implements only the latter. Second, normalised

spectral clustering is consistent, while unnormalised spectral clustering may fail

to converge. Lastly, in symmetric normalised spectral clustering, eigenvectors of

the Laplacian are multiplied by an additional factor which can lead to undesired

effects [165]. Below is the description of asymmetric normalised spectral clus-

tering from the graph cut point of view (the others being the random walk and
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perturbation theory points of view).

Given a set of objects and their pairwise similarities (we convert the Jensen-

Shannon distances to similarities using a Gaussian kernel and use them as the

initial similarities), a similarity graph G is constructed. In this graph, each node

represents an object. Two nodes are connected if the similarity between their

corresponding objects is positive or above a certain threshold, and the edge con-

necting them is weighted by that similarity. The objective is to find a partition

of G such that edges within the partition have high weights (high intra-cluster

similarity) and edges between the partitions have low weights (low inter-cluster

similarity); in other words, to find partitions A1, . . . , Ak that minimise

cut(A1, . . . , Ak) =
1

2

k∑
i=1

S(Ai, Āi) (3.4)

where Ā is the complement of A, and S(A,B) is the sum of weights of edges with

one node in A and one node in B. To achieve balanced clusters, the objective

function is defined as

Ncut(A1, . . . , Ak) =
k∑
i=1

cut(Ai, Āi)

vol(Ai)
(3.5)

where vol(A) is the sum of weights of all edges connected to nodes in A.

The minimisation of Ncut(A1, . . . , Ak) is an NP-hard problem; however, by

relaxing the discrete constraint on the indicator functions of the partitions, i.e.,

allowing them to take real values, this problem reduces to minimisation of the

Laplacian of G.

The first step in asymmetric normalised spectral clustering is computing the

Laplacian of the graph. Let W and D be the weighted adjacency matrix and

the degree matrix of G, respectively. The Laplacian is defined as L = D −W .

The next step is finding the first k eigenvectors u1, . . . , uk of Lu = λDu. Eigen-

values are sorted in the ascending order while respecting their multiplicity, and

therefore, the eigenvectors corresponding to the k smallest values are selected.

Let U be the matrix containing these vectors as columns and let yi be the i-th

row of U .

The final step is grouping (yi)i=1,...,n into clusters C1, . . . , Ck using the k -

means algorithm. We use the eigengap heuristic technique for determining the

number of clusters k for the k -means algorithm. Given eigenvalues 0 = λ0 ≤
λ1 ≤ . . . ≤ λn−1, k is chosen such that eigengaps |λi − λi−1| (i ≤ k) are small

and eigengap |λk+1 − λk| is large. The output is clusters A1, . . . , Ak with Ai =
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{j|yj ∈ Ci}.

Cluster Validation

To evaluate the quality of a clustering, we use the silhouette coefficient. The

silhouette coefficient is an internal clustering evaluation measure which considers

both cohesion and separation of clusters. Given a data point i, its silhouette

coefficient is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3.6)

where a(i) is the average distance between i and data points in the same cluster,

and b(i) is the minimum of the average distances between i and data points in

other clusters. The silhouette coefficient of a cluster is equal to the average s(i)

over all data points i in that cluster. Values close to 1 indicate good clustering,

whereas values close to -1 indicate poor clustering [166].

In the case of hierarchical clustering algorithms, we cut each dendrogram at

different levels to obtain different partitions (with up to 100 clusters), and choose

the clustering that yields the maximum mean silhouette coefficient.

To compare two partitions, we use the adjusted Rand index (ARI). Given a

set of n objects S, suppose that U = u1, . . . , uN and V = v1, . . . , vM are two

different partitions of S such that ∪Ni=1ui = ∪Mj=1vj = S and ui∩uj = vi∩vj = ∅.
Let ni and nj be the number of objects in clusters ui and vj , respectively, and

let nij be the number of objects that belong to both clusters. The ARI is defined

as

ARI =

∑
i,j

(nij

2

)
−

[∑
i

(
ni
2

)∑
j

(nj

2

)]
/
(
n
2

)
1
2

[∑
i

(
ni
2

)
+
∑
j

(nj

2

)]
−

[∑
i

(
ni
2

)∑
j

(nj

2

)]
/
(
n
2

) (3.7)

The expected and maximum values of the ARI are 0 and 1 (when the two

partitions are exactly the same), respectively [167].

3.3.2 Dimensionality Reduction

We use the t-distributed stochastic neighbour embedding (t-SNE) [143] to vi-

sualise how the vector representations of CNEs are distributed in the feature

space. t-SNE is a dimensionality reduction technique for visualisation of high-

dimensional data. For example, it has been employed to analyse transcriptome

data [168, 169, 170]. The t-SNE algorithm aims to reveal the global structure
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of the data in a low-dimensional space (also called a map), while preserving its

local structure. In addition, in contrast to the clustering algorithms reviewed

in the previous section, using t-SNE we do not need to specify the number of

clusters beforehand. We tested t-SNE in a computer vision task, namely gender

recognition using skin texture features, where it successfully displayed individ-

ual subjects as separate points, while grouping samples from the same subject

together. For a summary of this work, see Appendix A. Below is a summary of

the t-SNE algorithm.

Let xi and xj be two data points in the high-dimensional input space. The

similarity between them is given by the joint probability distribution P with

values

pij =
exp(−d2(xi, xj)/σ

2)∑
k

∑
l 6=k

exp(−d2(xk, xl)/σ2)
∀i, j : i 6= j (3.8)

where d2(xi, xj) is the distance between xi and xj (normally the Euclidean dis-

tance). Here, we use the Jensen-Shannon distances as the initial distances. The

similarity between the counterparts of xi and xj in the low-dimensional tar-

get space, denoted by yi and yj , respectively, is computed using a heavy-tailed

Student t-distribution Q (with one degree of freedom).

qij =
(1 + d2(yi, yj))

−1∑
k

∑
l 6=k

(1 + d2(yk, yl))
−1 ∀i, j : i 6= j (3.9)

To find data points y that reflect the similarities p, t-SNE minimises the

Kullback-Leibler divergence of P and Q:

KLD(P‖Q) =
∑
i

∑
j 6=i

pij log
pij
qij

(3.10)

Tuneable parameters of t-SNE are the dimension of the embedding space,

perplexity and the number of iterations. The so-called perplexity is the number

of neighbours each data point in the high-dimensional space is considered to

have, and determines the balance between the local and global structures of the

data that will be preserved. The t-SNE algorithm is robust to the choice of

the perplexity value [143]. We set the dimension, perplexity and the number of

iterations to 3, 30 and 1000, respectively.
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3.3.3 Network Topology Visualisation

Network analysis methods have been commonly used to study gene regulatory

networks, mostly in Escherichia coli (E. coli) and yeast. For a survey of these

methods, see [171]. Here, we use a simple and effective network visualisation

tool called the bitmap of sorted adjacency matrix (BOSAM) [144], to visualise

the network of CNEs. BOSAM reveals the topological structure of a network

based on its adjacency matrix, and has been employed to characterise various

types of networks, including protein-protein interaction networks [144]. We used

BOSAM to perform an analysis of the structure of user interaction networks

on health-related message boards, where the BOSAM of each network closely

correlated with its characteristics. For a summary of this work, see Appendix B.

Below is a summary of how the BOSAM of a network is generated.

Given an undirected network containing n nodes with indices 1, 2, . . . , n, let

A be the network’s adjacency matrix, where entry aij is 1 if there is an edge

connecting nodes i and j, and 0 otherwise. Matrix A can be represented as a

black and white bitmap where a pixel at coordinate (i, j) is black if aij = 1, and

white otherwise. When the indices of nodes are arbitrary, this bitmap looks like

a collection of random points; however, nodes can be sorted in a way that their

indices correspond to their connectivity. To achieve this, nodes are sorted in the

ascending order of their degrees, i.e., the number of edges they are connected

to. If two nodes have the same degree, then they are ranked in the ascending

order of the largest degree of their neighbours; ties are broken by looking at the

neighbour with the next higher degree. Nodes are then re-indexed accordingly.

The bitmap of the reordered adjacency matrix is the network’s BOSAM. The

BOSAM of a network often exhibits recurring fractal patterns, the components

of which are related to the statistical properties of the network [172].

In the CNE network that we created, each CNE is represented by a node, and

two nodes are connected if their corresponding CNEs have at least one TFBS in

common.

3.4 Experiments

We applied the methods reviewed in Section 3.3 to a set of 5138 candidate human

CNEs, acquired from the UCSC Genome Browser [173]. For the binding sites, we

considered a set of 31 TFBSs for TFs associated with developmental patterning.

For details of these TFBSs, see Section 4.5. The locations of the TFBSs within

the CNEs were identified using FIMO [174] (p-value ≤ 1E-5).
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3.4.1 Results

The results of clustering CNEs using the hierarchical clustering algorithms are

shown in Figure 3.1. The maximum mean silhouette coefficients obtained for

the single-linkage, average-linkage and complete-linkage methods and the Ward’s

method are 0.10, 0.30, 0.38 and 0.30, respectively. The number of clusters in

these partitions is 2 (the lowest number of clusters considered) for the single-

linkage method and 100 (the highest number of clusters considered) for the other

methods. According to the silhouette coefficients, these hierarchical clustering

algorithms did not produce a good clustering.
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(a)

(b)

(c)

(d)

Figure 3.1: Results of clustering CNEs using the (a) single-linkage method, (b) average-linkage
method, (c) complete-linkage method and (d) Ward’s method
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Figure 3.2: Spectral clustering of CNEs. Points are coloured according to the result of the
k -means algorithm.

The result of clustering CNEs using spectral clustering is shown in Figure 3.2.

For spectral clustering, the optimal number of clusters estimated using the eigen-

gap heuristic technique is k=3, and the mean silhouette coefficient obtained for

three clusters is 0.47. The low silhouette coefficient suggests that asymmetric

normalised spectral clustering did not produce a good clustering either.

The result of visualising CNE feature vectors using the t-SNE algorithm and

the BOSAM of CNE network are shown in Figures 3.3 and 3.4, respectively. In

both figures, several groups of CNEs appear to form clusters. We selected the

six largest clusters observed in the t-SNE map and compared them to the six

largest clusters displayed in the BOSAM using the ARI. The ARI for these two

partitions is 0.98; hence, these clusters are nearly identical.

Validation by Functional Assays

We randomly chose one of the six clusters and from this cluster, we randomly

picked 10 CNEs for functional validation. The enhancer activities of the selected

CNEs were detected using functional assays in zebrafish as follows: we amplified

the orthologues of these CNEs from the zebrafish genomic DNA by polymerase

chain reaction (PCR). The PCR products were cloned into plasmids using a

TA cloning strategy (TOPO TA Cloning Kit, Invitrogen, USA) and transferred

to an expression vector containing the green fluorescent protein (GFP) by LR

recombination reaction. The plasmids were isolated using the QIAprep Spin

Miniprep Kit (QIAGEN, Germany) and verified by Sanger sequencing. The
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Figure 3.3: Result of visualising CNE feature vectors using t-SNE

Figure 3.4: BOSAM of the CNE network
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(a) (b)

(c) (d)

Figure 3.5: Expression driven by the assayed CNEs (a) CRCNE00008385, (b) CRCNE00006282
and (c)(d) CRCNE00003046 in different tissues of zebrafish (the elements are named after their
accession numbers in the CONDOR database [175])

expression constructs were injected, together with Tol2 transposase mRNA and

phenol red, into zebrafish embryos. The embryos were incubated at 28◦C and

screened for GFP expression at 24 and 48 hours post fertilisation (hpf) using

fluorescence microscopy. We considered a CNE to be an enhancer if at least 20%

of the embryos were GFP-positive. The detailed protocol used for the assays is

provided in the supplementary materials.

The results show expression in very different tissues, including the neural

crest, notochord and brain (Figure 3.5), and hence, do not suggest a similarity

between the validated CNEs in terms of their regulatory function. Therefore,

t-SNE and BOSAM also did not yield groups of functionally related CNEs.

Furthermore, while the partitions obtained using t-SNE and BOSAM agree with

each other, CNEs in each of the six clusters contain only one TFBS, indicating

that the similarity measures used here do not capture the combinatorial nature

of TF interactions.

Overall, the results show that the regulatory grammar of CNEs is complex,

and a metric defined based on the presence and number of TFBSs alone does not

provide a good measure of similarity between CNEs. This highlights the need

for a metric which incorporates other factors such as the order of TFBSs and
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the distances between them.

3.5 Availability

The following are included in the supplementary materials: the set of CNEs and

the positions of identified TFBSs within each CNE, the matrices containing the

pairwise distances (or similarities) between the CNEs, the scripts for running

all the methods, and the results of functional assays. Related works using the

methods employed in this chapter on other types of data have appeared in

• Bianconi F, Smeraldi F, Abdollahyan M, Xiao P. On the use of skin texture

features for gender recognition: an experimental evaluation. In: Proceedings

of the 6th International Conference on Image Processing Theory, Tools and

Applications (IPTA); 12–15 December 2016. pp. 1–6.

• Abdollahyan M, Mondragón R, Bessant C and Smeraldi F. Visualising the

Topological Structure of Health-related Message Board User Networks. Pro-

ceedings of the 1st International Conference on Applications of Intelligent

Systems (APPIS) 2018. Frontiers in Artificial Intelligence and Applications.

2018;310:274–279.
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Chapter 4

Identifying Regulatory

Signatures in CNEs Using

Transcription Factor Binding

Site (TFBS) Alignment

In Sections 1.3 and 2.3, we explained how gene regulation is mediated by TFs

that bind to DNA in a cooperative manner, and therefore, searching for mul-

tiple TFBSs located in close proximity can lead to the discovery of regulatory

elements. In this chapter, we introduce an approach to identifying regulatory

sequence signatures composed of over-represented co-occurring TFBSs in CNEs,

which can be used to prioritise elements for functional assays.

We do not directly use the DNA sequence of CNEs; instead, we consider

the sequence of TFBSs in a CNE. The idea is to align such TFBS sequences

and find the short subsequences that are frequently matched in the alignments,

i.e., co-occurring TFBSs. Analysis of the co-occurrence of TFBSs is complicated

by the fact that binding sites may overlap. This rules out the use of classic

alignment algorithms [104, 105], which cannot handle overlapping subsequences,

and k -mer-based methods, which count the occurrences of subsequences and

would enumerate overlapping subsequences indiscriminately. To address this

problem, we use partial order graphs to handle overlapping TFBSs and represent

the sequence of TFBSs in a CNE as a directed acyclic graph (DAG). We then

find the optimal alignment between two sequences of TFBSs by aligning their

corresponding DAGs using a dynamic programming-based alignment algorithm,

originally developed in the context of multiple sequence alignment. This reduces

the effect of spurious matches that are unlikely to occur in the same order in
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multiple sequences, while taking into account the spatial order of TFBSs. To

identify over-represented co-occurring TFBSs, we measure the relative frequency

of aligned TFBSs with respect to a background model. We evaluate our approach

on a set of functionally validated CNEs.

4.1 Related Work

The assumption that TFBSs which appear in clusters are more likely to act as

regulatory elements than solitary binding sites is the rationale behind numer-

ous methods for identifying cis-regulatory elements and modules, as covered in

Section 2.3.

Methods such as Ahab [176] and MSCAN [177] use a sliding window to scan

the sequences for putative TFBSs. Each window that contains multiple hits is

assigned a score. Windows containing statistically significant hits (compared to

windows in a background model) are potential regulatory regions. For details

of how the scores are calculated and their significance is determined, see [176,

177].

Other tools such as Cluster-Buster [178], MCAST [179] and MORPH [180],

use probabilistic models. They estimate a log-likelihood ratio for each subse-

quence in the sequence, i.e., the likelihood that the subsequence was generated

by a cluster model, rather than a background model. The cluster model consists

of a distribution of motifs based on position weight matrices (PWMs). A PWM

specifies the probability distribution of nucleotides at each position in the mo-

tif. Subsequences with log-likelihood ratios higher than a specific threshold are

candidates for regulatory elements.

Our approach differs from the above in that CNEs are not directly aligned;

instead, we align the sequences of TFBSs identified in the CNEs, ignoring the

differences in the distances between adjacent binding sites. Another advantage of

this approach is that, in comparison, it has fewer parameters. A similar approach

was presented in [181]. The difference between our approach and theirs is that

we handle the uncertainty (due to overlapping TFBSs) in the sequences, while

they do not handle this.

4.2 Graph Representation of CNEs

Given a conserved non-coding sequence S = s1s2 . . . sn over the alphabet N =

{A, T,C,G}, its graph representation is constructed as follows: first, we assign
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(a)

α

β γ

δ ε ε γ

(b)

Figure 4.1: (a) An example CNE with seven example TFBSs. TFBSs β and γ overlap with
TFBS δ. (b) Graph representation of the CNE shown in (a). Nodes have the same colour as
their corresponding binding sites.

a symbol to each TFBS identified in S to obtain the partially ordered multiset

T = {t1, t2, . . . , tm}. This partial order reflects the relative positions of the

TFBSs in S, i.e., ti ≺ tj (i 6= j) if and only if in S, every nucleotide in ti comes

before every nucleotide in tj . Next, we transform this set into a DAG G. For

each symbol in T , we create a node and label it with that symbol. In cases

where the same TF binds to overlapping sites, only a single node is created. We

add an edge between two nodes if their corresponding symbols are consecutive

in T , i.e., ti ≺ tj and @k ∈ {1, . . . ,m} : ti ≺ tk ≺ tj . In this graph, each

path from a source to a sink node (there may exist multiple source/sink nodes

since G can start/end with overlapping nodes) corresponds to a sequence of non-

overlapping TFBSs that were identified in S. Figure 4.1 shows an example of the

graph representation of a CNE. A more formal definition of this representation

is provided in Section 5.2.

Note that in contrast to usual graph representations of biological sequences

such as those presented in [99] and [100], the alternative paths in a CNE graph

are not necessarily of equal length.

4.3 Partial Order Alignment of CNE Graphs

We use the partial order-partial order (PO-PO) alignment algorithm [182] to

find the optimal alignment between a pair of DAGs, each representing a CNE.
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The PO-PO algorithm is a generalisation of the partial order alignment (POA)

algorithm [183], which was proposed as an approach to multiple sequence align-

ment (MSA). In [183], linear representation of an MSA was replaced by a DAG

called a partial order MSA (PO-MSA), and classic dynamic programming-based

alignment algorithms [104, 105] were modified to find the optimal alignment

between a sequence and a PO-MSA. This involved adding the branches of the

PO-MSA as additional ‘surfaces’ to the score matrix (for an example of a score

matrix, see Figure 2.2). The set of possible moves at each position in the matrix

was extended accordingly to allow moves to any surface at junctions between

the surfaces. The PO-PO algorithm generalised the above approach to align

two PO-MSAs. Here, we reformulate this algorithm in a graph framework as a

dynamic programming approach to finding an optimal path (corresponding to

an optimal alignment) in the strong product graph of two DAGs.

We denote the node set and the edge set of a DAG G by V (G) and E(G),

respectively. A directed edge from node u to node v is written as uv. Given two

DAGs G1 and G2, their strong product graph G1 � G2 has node set V (G1) ×
V (G2), where nodes (v1, v2) and (u1, u2) are connected if and only if for k ∈ {1, 2}
either vk = uk or vkuk ∈ E(Gk) (e.g., in Figure 4.2c, nodes (α, ε) and (α, β) are

connected since they share node α and εβ is an edge in the DAG shown in

Figure 4.2b, while nodes (α, ε) and (γ, β) are connected since αγ and εβ are

edges in the DAGs shown in Figures 4.2a and 4.2b, respectively). In this graph,

which generalises the score matrix, each path corresponds to an alignment of

a path in G1 against a path in G2. The objective is to find the path with

the optimal alignment score in the set of all paths in G1 � G2. This requires

finding the move (incoming edge) with the optimal score at every node (m,n)

in G1 � G2. Possible moves are aligning two symbols with substitution score

s(m,n) and indels with gap penalty g. Nodes in G1 and G2 may have multiple

predecessors, and hence, when computing score S(m,n) of a node (m,n), all

possible incoming edges must be considered:

S(m,n) = max


S(p, q) + s(m,n) pm ∈ E(G1) and qn ∈ E(G2)

S(m, q) + g qn ∈ E(G2)

S(p, n) + g pm ∈ E(G1)

(4.1)

In the case of sequences that do not contain overlapping TFBSs, the cor-

responding DAGs do not branch and m and n can be thought of as simply

positions in the sequences, with the product graph reverting to a score matrix.

Tracing the path that leads to the optimal alignment is done in the same way

as in classic alignment algorithms: for global alignments, back-tracking starts
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from node (m,n), where m and n are sink nodes in G1 and G2, respectively;

for semi-global alignments, back-tracking starts from the highest scoring node

(m,n), where m or n is a sink node. Starting from the chosen start node, the

optimal alignment is traced back along the product graph to node (s1, s2), where

si is a source node in Gi for at least one i ∈ {1, 2} (semi-global alignment) or

both (global alignment). Figure 4.2 shows an example of the PO-PO alignment

between two DAGs.

Note that using the Needleman-Wunsch algorithm [104], finding the opti-

mal alignment between two sequences with overlapping subsequences requires

aligning all possible pairs of sequences (without overlapping subsequences) cor-

responding to all choices of alternative paths in their respective DAGs. This

results in an exponential time complexity as the number of overlaps increases.

In contrast, the above algorithm finds the optimal alignment between two DAGs

efficiently, with a complexity that is quadratic with respect to the number of

nodes.

We find the partial order alignments between all pairs of CNEs in the main

dataset. For each pair of CNEs, we obtain two alignments, one for each of the two

possible relative orientations of the sequences. The alignment with the highest

score is chosen as the optimal alignment.

4.4 Measuring the Frequency of Aligned TFBSs

We search the alignments for words composed of up to four aligned symbols, i.e.,

co-occurring TFBSs. We then compute the relative frequency of each word with

respect to a background model as follows: let C be the set of words that appear

in the alignments of sequences from the main dataset, and let B be the set of

words that appear in the alignments of sequences from the background model,

obtained using the same type of alignment (global, semi-global or local. For a

definition of each type of alignment, see Section 2.2). Let nC(w) be the number

of occurrences of word w in C, and let nB(w) be the number of occurrences of

w in B. We denote the length of w by |w|. Not all words that are present in C

are present in B, and vice versa, i.e., nB(w) = 0 or nC(w) = 0 for some w. To

account for unseen words, we apply Laplace smoothing by adding the constant

λ to all counts of w. The probability of occurrence of w in the alignments of

main sequences is computed as follows:

PC(w) =
nC(w) + λ∑

w′∈C∪B
|w′|=|w|

(nC(w′) + λ)
(4.2)

52



α

δ

β

γ

ε

(a)

ε β ε

ζ

(b)

α ε

δ ε

β ε

γ ε

ε ε

α β

δ β

β β

γ β

ε β

α ε

δ ε

β ε

γ ε

ε ε

α ζ

δ ζ

β ζ

γ ζ

ε ζ

(c)

αβ δ ε
εβ−ε

(d)

Figure 4.2: (c) Strong product graph of DAGs shown in (a) and (b). The path corresponding to
the optimal global alignment shown in (d) is coloured in red. (d) An optimal global alignment
between the two sequences represented by DAGs shown in (a) and (b)
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TF Family Names

CDX MEIS RFX
ETS NKX RUNX
FOX NRF SIX
GATA PAX SOX
HMX PBX TCF
HOX PITX TFAP
IRX POU ZIC
MAF RA

Table 4.1: Names of TF families from which the representative TFs were chosen

Note that in computing PC(w), only words of the same length as w are

considered. The probability of occurrence of w in the alignments of background

sequences, PB(w), is computed in the same way. The relative frequency of w is

given by

RCB(w) =
PC(w)

PB(w)
(4.3)

4.5 Evaluation

We evaluated our approach to identifying over-represented motifs on a set of

CNEs from the CONDOR database [175]. The main dataset consists of 426

sequences in four orthologous sets of CNEs from human, mouse, rat/dog and

pufferfish. We generated the background model as follows: each background

sequence was generated by randomly shuffling a CNE from the main dataset

using the MEME Suit toolkit [184]. We repeated this process ten times to

generate ten different sets of shuffled sequences, i.e., 4260 sequences.

We chose a set of 31 TFBSs for representative family members of TFs known

to be involved in developmental patterning, and retrieved their binding prefer-

ences from the UniPROBE [185] and JASPAR [186] databases (Table 4.1). We

scanned the sequences in both the main dataset and the background model for

the occurrences of these TFBSs (specified by their consensus sequences using

IUPAC codes) using FIMO [174] (p-value ≤ 0.001).

We obtained both the global and semi-global partial order alignments of

CNEs in the main dataset, which we refer to as the Global and Semi-global sets,

respectively. The alignment parameters were set as defined in the following sec-

tion. We computed the relative frequencies of words of lengths two, three and

four in each of the Global and Semi-global sets with regards to its respective

background model, i.e., words in the global and semi-global alignments of se-
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quences from the background model, respectively. The number of occurrences of

each word from the background model was averaged over the ten shuffled sets.

The Laplace smoothing constant (λ) was set to 1.

Scoring the TFBS Alignments

We defined the scores for aligned TFBSs in a way that takes the number of each

TFBS in the main dataset into consideration, i.e., the more rare the TFBSs, the

higher their matching score. Let n(t) be the number of times that TFBS t has

been identified in CNEs from the main dataset and N be the total number of

TFBSs in the same dataset. The matching score s(t, r) is defined as

s(t, r) =


log

1

P 2(t)
if r = t

0 otherwise
(4.4)

where P (t) = n(t)/N . The linear gap penalty was set to -1 (comparable to the

obtained matching scores).

4.5.1 Results

The Global and Semi-global sets contain 229 and 270 words, respectively; 207

words appear in both sets. The number of words of lengths three and four is low

and collectively, they constitute less than 14% of the words in the two sets. In

over 99% of cases, words from the Global set that are over-represented are also

over-represented in the Semi-global set, and vice versa. Hence, the results are

stable irrespective of the type of alignment. The top five words of length two

with the highest relative frequency are listed in Table 4.2.

The words ‘δε’ and ‘γε’ are of note since ZIC has been shown to regulate

retinoic acid (RA) signalling during early embryogenesis, which affects the ex-

pression levels of HOX and MEIS during hindbrain patterning [187]. Moreover,

both MEIS and ZIC are involved in the patterning of the brain and spinal cord,

and as such, are likely to be co-expressed spatially and temporally in the em-

bryo [188, 189]. The word ‘βγ’ represents the known interaction of MEIS with

HOX [190].

The highest-ranked word ‘γδ’ represents the previously reported interaction

of MEIS with the PBX-HOX complex [191, 192]. The regulatory activity of this

word has been functionally validated in elements from our dataset [193]. In [193],

this syntax was identified in a set of conserved vertebrate hindbrain enhancers.
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Word TFs Relative Frequency

γδ MEIS, PBX-HOX 20.3
δε PBX-HOX, ZIC 5.4
γε MEIS, ZIC 2.3
αγ CDX2, MEIS 1.8
βγ HOXD10-HOXD13, MEIS 1.5

Table 4.2: Top five over-represented words of length two from the Global set and their relative
frequency (symbols used to represent TFBSs are arbitrary and are only included to allow a
rapid assessment of the similarities between the words)

It was shown that MEIS motifs are frequently proximal (within 100bp) to PBX-

HOX motifs, and that both are required for hindbrain enhancer function. This

syntax was then used to predict hindbrain enhancers in this dataset with an

accuracy of 89%. Furthermore, this syntax was refined and used to predict over

3,000 hindbrain enhancers across the human genome.

The results demonstrate the predictive power of our approach, which can be

used as a fast alternative to wet-lab methods for the analysis of a large set of

CNEs in order to prioritise the elements for functional assays.

4.6 Availability

The scripts for aligning CNEs and retrieving words from the alignments are

available at https://bitbucket.org/mabdollahyan/cnealign. The following are

provided in the supplementary materials: the main dataset, the background

model, the TFBS sequences and their matching scores, the FIMO output files,

the script for computing the frequencies of words, and the complete list of words

along with their frequencies. The work presented in this chapter has appeared

in

• Abdollahyan M, Smeraldi F, Noyvert B and Elgar G. Transcription factor

binding site-based alignment of conserved non-coding elements. Poster pre-

sented at the 15th European Conference on Computational Biology (ECCB);

3–7 September 2016. DOI: 10.7490/f1000research.1113029.1.

• Abdollahyan M, Smeraldi F and Elgar G. Identifying Potential Regulatory

Elements by Transcription Factor Binding Site Alignment using Partial Order

Graphs. 1st Conference on Mathematical Foundations in Bioinformatics (Mat-

Bio) 2016 [Special Issue]. International Journal of Foundations of Computer

Science. 2018;29(8):1345–1354.
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Chapter 5

The Partial Order Kernel

(POKer) for Comparing

Strings with Alternative

Substrings

In Chapter 3, we showed that existing metrics are unable to capture the regu-

latory sequence signatures in CNEs. And in Chapter 4, we presented a method

for identifying the regulatory signatures in CNEs by aligning the sequences of

TFBSs identified in the elements, and showed that it successfully captures the

regulatory grammar of CNEs in terms of co-regulatory TFs. However, the score

of such an alignment is not necessarily metric and therefore impractical for use

in numerous learning algorithms. In this chapter, we introduce a kernel for com-

parison of strings that contain alternative substrings, i.e., substrings that can be

substituted with each other. The sequence of TFBSs identified in a CNE is an

example of this type of strings, where overlapping TFBSs constitute the alterna-

tive substrings. Our kernel, named the partial order kernel (POKer), provides

(via the induced norm) a metric interpretation of the score of the alignment

method presented in Chapter 4, and can be used in combination with other

algorithms beyond kernel methods.

The POKer is a convolution kernel defined over the product of two DAGs,

each representing a partial order over the characters of a string with alterna-

tive substrings, and is computed using dynamic programming. We evaluate the

POKer on artificial data generated by detecting motifs in simulated DNA se-

quences. We use the POKer in conjunction with SVMs to classify these strings.

In order to have a benchmark against which to compare the POKer’s perfor-

57



Figure 5.1: Relation between alignment algorithms and kernel methods for comparing strings
with alternative substrings

mance, we extend the state-of-the-art spectrum kernel [132] to handle strings

with alternative substrings.

5.1 Related Work

Classic sequence alignment algorithms based on dynamic programming, such as

the Needleman-Wunsch (NW) [104] and the Smith-Waterman (SW) [105] align-

ment algorithms (see Section 2.2.1), can handle single character substitutions.

Variations of these algorithms can, in addition, deal with alternative substrings.

The alignment scores returned by these methods, however, are not necessar-

ily metric since they do not always satisfy all the properties of a metric, i.e.,

identity of indiscernibles, non-negativity, symmetry and triangle inequality. For

example, the score of a partial order-partial order (PO-PO) alignment [182] (see

Section 4.3) can violate the non-negativity and triangle inequality conditions.

Specifically, given two strings X and Y , the score of their PO-PO alignment,

depending on the choice of parameters, may lack the non-negativity property.

Moreover, this score corresponds to a minimum of the weighted Levenshtein dis-

tances between all pairs of strings in AltX×AltY , where AltX is the set of strings

with no alternative substrings extracted from X, and thus can violate the tri-

angle inequality condition. This makes the PO-PO alignment scores impractical

for use with methods that require a metric dissimilarity. String kernels (see Sec-

tion 2.4.1), on the other hand, produce a measure of similarity between strings

that is metric (via the induced norm). They, however, cannot handle strings

with alternative substrings. Specifically, the local alignment (LA) kernel [140],
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Figure 5.2: DAG representation of AB[CD|E]FB′[H|C′|F ′]

which computes an exponentially weighted sum of the scores of all the possible

local alignments between two strings as given by the SW algorithm, cannot han-

dle alternative substrings. This motivated us to develop a novel kernel for the

comparison of this type of strings (Figure 5.1).

The POKer offers a metric interpretation of the sum of the scores of PO-PO

alignments between two strings. The LA kernel is a special case of the POKer,

i.e., when the two strings contain no alternative substrings, the value of the

POKer is equal to that of the LA kernel.

5.2 Representing Strings with Alternative

Substrings

Before introducing the POKer, we formally define the graph representation of

strings with alternative substrings, which was described specifically for CNEs in

Section 4.2. Let x be a string with alternative substrings. For example, consider

the string x = AB[CD|E]FB′[H|C ′|F ′] (Figure 5.2), where the brackets contain

the alternative substrings (e.g., [CD|E] indicates that substring CD appears in x

as an alternative to character E). Here, we use the prime symbol for convenience

to distinguish between multiple occurrences of the same character. We denote

the multiset of characters in x by X = {x1, x2, . . . , xn} and the set of standard

strings, generated by iterating over all possible choices of alternative substrings

in x, by Altx (e.g., ABEFB′C ′ ∈ Altx). Note that in X , repeated characters

count as distinct elements. For any two characters xi, xj ∈ X , we write xi ≺ xj

if xi precedes xj in some string in Altx. The relation ≺ is a partial order on X
since, for instance, A ≺ E and C ≺ D but neither H � C ′ nor C ′ � H.

We represent (X ,≺) as a directed acyclic graph (DAG)Gx, where V (Gx) = X
is the set of nodes and an edge exists between xi and xj if and only if they are

consecutive in X . Each path in Gx, from a source to a sink node, corresponds

to a string in Altx. There may exist multiple source/sink nodes since x can

start/end with alternative substrings.
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5.3 Partial Order Kernel

Let x and y be two strings with alternative substrings, represented by DAGs

Gx and Gy, respectively. The partial order kernel (POKer) K(x, y) is defined

as a convolution of (several instances of) two kernels Ka and Kg with respect

to relations Rmx and Rmy over the nodes of paths in Gx and Gy, respectively.

We define Rmx as the set of lists (X1, X2, . . . , X2m−1), Xi ⊆ V (Gx) with the

conditions that

1. there exists a path πx in Gx such that Xi ⊆ V (πx) ∀i and ∪iXi = V (πx),

and

2. the Xi are consecutive, i.e., for all v ∈ Xi and u ∈ Xi+1 we have v ≺ u.

Note that the Xi are disjoint, and some of them may be empty. Rmy is

defined in a similar way. Intuitively, Rmx and Rmy represent a local alignment

of m characters along πx, possibly separated by gaps, with m characters along

a path πy in Gy. This intuition guides the definition of the two kernels to

be convolved, namely the substitution kernel Ka and the gap kernel Kg. Let

X ⊆ V (πx) and Y ⊆ V (πy). Similarity of aligned characters is measured by the

substitution kernel

Ka
(β)(X,Y ) =

exp(βs(X,Y )) if |X| = 1 and |Y | = 1

0 otherwise
(5.1)

where β ≥ 0 is a parameter and s(X,Y ) is the substitution score for the labels

of nodes in X and Y specified by, for instance, a scoring matrix. Valid values

for β are those for which the kernel remains positive semi-definite. Penalty for

gaps is quantified by the gap kernel

Kg
(β)(X,Y ) = exp (βg (|X|+ |Y |)) (5.2)

where g is a linear gap penalty. We convolve the above kernels to construct the

kernel Km.

Km(x, y) = (Ka ∗Kg)
m−1 ∗Ka =∑

X∈Rm
x ,Y ∈Rm

y

[
m−1∏
k=1

Ka
(β)(X2k−1, Y2k−1)Kg

(β)(X2k, Y2k)

]
Ka

(β)(X2m−1, Y2m−1)

(5.3)

It is clear from the definition of Ka that the terms in the above sum are zero
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unless all the Xi and Yi with odd indices are singletons, and that

Km(x, y) =
∑

X∈Rm
x ,Y ∈Rm

y

exp(βS(X,Y )) (5.4)

where S(X,Y ) is the score of the local alignment of m characters along πx with

m characters along πy specified by the two lists X and Y . Note that Km is zero

when m is larger than the length of the longest path in Gx or Gy. With the

above definitions, we now define the POKer as

K(x, y) =
∑
m≥0

Km(x, y) =
∑
m≥0

∑
X∈Rm

x ,Y ∈Rm
y

exp(βS(X,Y )) (5.5)

The POKer is equal to an exponentially weighted sum of the scores of all the

local alignments between any number of characters in x and the same number of

characters in y, selected from any paths in Gx and Gy, that is, from any choice

of alternative substrings. The importance of the contributions of non-optimal

alignments to the kernel value is controlled by parameter β; for β → ∞, only

the best alignments are taken into account. In the next section, we show how

this finite sum is computed efficiently using dynamic programming.

Note that simply computing the local alignment score for each pair of strings

in Altx×Alty using the LA kernel, and then summing these scores for all possible

pairs does not yield the same measure of similarity as the one produced by the

POKer. This approach considers the contributions of those substrings that are

common to all the strings (e.g., AB in ABCDFB′H and ABEFB′H shown

in Figure 5.2) more than once. Moreover, it results in a time complexity that

is exponential in the number of alternative substrings. In contrast, the POKer

takes the contributions of such substrings into account only once and, as we show

in the next section, its value is computed with quadratic complexity.

5.3.1 Computation

The POKer is computed efficiently using dynamic programming over the strong

product graph Gxy = Gx � Gy, with a time complexity that is linear in the

number of nodes of Gxy (here, each node is denoted simply as (i, j)).

Theorem 1. We assume, without loss of generality, that both x and y begin

with a start character x0 = y0 = φ, that is, Gx and Gy each have a single source

node labelled φ, and s(φ, φ) = s(xi, φ) = s(φ, yj) = 0 for all i and j. We then
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have

K(x, y) = 1 +
∑

(i,j)∈V (Gxy)

M(i, j) (5.6)

where M(i, j) is computed recursively as follows:M(i, φ) = M(φ, j) = 0

N(i, φ) = N(φ, j) = 0
(5.7)

and 

M(i, j) = exp(βs(i, j))

1 +
∑
m,n

mi∈E(Gx),nj∈E(Gy)

N(m,n)


N(i, j) = exp(βg)

∑
m

mi∈E(Gx)

N(m, j)

+ exp(βg)
∑
n

nj∈E(Gy)

N(i, n)

− exp(2βg)
∑
m,n

mi∈E(Gx),nj∈E(Gy)

N(m,n)

+ M(i, j).

(5.8)

where β ≥ 0 is a parameter and g is the gap penalty.

The proof of this theorem is provided in Appendix C.

Each local alignment corresponds to a path in Gxy. The POKer (Equa-

tion 5.6) is a sum over the exponentiated scores of all the local alignments,

including the empty alignment, ending at each node (i, j) in Gxy. The contribu-

tions of all the local alignments ending at (i, j), including those with the labels of

i and j being the only aligned characters are accounted for by M(i, j). Penalties

for inserting gaps in x or y at the end of a partial alignment are included in

N(i, j). A gap in x followed by a gap in y, and a gap in y followed by a gap

in x, are equivalent in terms of aligned characters; this is accounted for by the

negative term in Equation 5.8.

5.4 Experiments

We tested the POKer in conjunction with SVMs in two multi-class classification

scenarios using artificial data and compared its performance to that of a gener-

alised spectrum kernel introduced in the following section. The aim of the first

set of experiments is to assess the classification accuracy of the POKer, while

the aim of the second set of experiments is to assess the ability of the POKer to
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capture both the global and local structures of the data.

5.4.1 Generalised Spectrum Kernel

To the best of our knowledge, no other kernels have been specifically designed

for strings with alternative substrings of variable length. However, the popular

spectrum kernel [132] can be extended in order to deal with such strings and

provide a baseline for comparison. We define this generalised kernel as follows:

let x be a string with alternative substrings over an alphabet A and Gx be its

DAG representation. We denote the set of all paths of length k in Gx, i.e., k -

mers in x, by Π(k,x). We define the feature map indexed by the set of all k -length

substrings α from Ak as

Φk(x) =
(∣∣{π ∈ Π(k,x)|(V (π)) = α}

∣∣)
α∈Ak (5.9)

where (V (π)) is the sequence of labels of nodes in π. The generalised spectrum

kernel is then defined as

Kk(x, y) = 〈Φk(x),Φk(y)〉 (5.10)

Note that this is not equivalent to accumulating the occurrences of each k -

mer over all the strings in Altx, since then substrings common to multiple strings

in Altx would be counted more than once.

5.4.2 Data Simulation and Parameters

The dataset for the first set of experiments was created as follows: we used

rMotifGen [194], a tool for generating random DNA sequences containing short

motifs, to create 40 classes of strings by following these steps: first, we produced

a dictionary consisting of 50 randomly generated motifs, where each motif rep-

resents a TFBS. We assigned a unique character to each motif. To generate

the strings in each class, we randomly chose 10 motifs from the dictionary. We

then generated 200 random DNA sequences containing these motifs. We set

the parameters so that each motif (out of 10) appears in 70% of the sequences,

and used the default values for the rest of the parameters. Finally, we scanned

each sequence for the occurrences of all 50 motifs (as motifs others than those

explicitly inserted in the sequence can appear in it by chance) in order to ob-

tain a string of characters corresponding to the detected motifs. Since two or

more motifs can overlap, but only one TF can bind to overlapping TFBSs at a

given time, such a string is a string with alternative substrings. We repeated
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Figure 5.3: Sample strings from the dataset for the second set of experiments. Strings in the
top row are both from class seven. The string in the lower left is from class eight, generated
from a prototype sequence seeded with a permutation of the motifs found in class seven. The
string in the lower right is from class four (unrelated).

this procedure 40 times to generate 40 classes of 200 strings, i.e., a total of 8000

strings.

For each of the two kernels, we built 40 SVM classifiers, one for each class,

as follows: we trained each classifier on 160 sequences from one class (using

39×160 = 6240 training sequences from other classes as negative examples) and

tested it on the remaining 40 sequences from that class (using the remaining

1560 test sequences from other classes as negative examples) in a one-versus-all

strategy. We performed a 10-fold cross-validation on the training set for selecting

the parameters. The match score, mismatch score and gap penalty were set to 4,

0 and -2, respectively. We ran the POKer with several β values, ranging from 0

to∞, and chose the one that yielded the best performance in the cross-validation

(β=0.1). Similarly, we ran the generalised spectrum kernel with several k values

k ∈ {2, 3, 4, 5} and chose the one for which the kernel performed best in the

cross-validation (k=3).

The dataset for the second set of experiments was created as follows: we

considered an alphabet A of 26 characters, represented by uppercase letters (A-

Z). To each character, we associated a randomly generated motif of 6 letters

in {a, t, c, g} (the four nucleobases in DNA). Starting from a prototype random

nucleotide sequence, we generated a further 199 nucleotide sequences by intro-

ducing random mutations (substitutions with 0.1 probability) in the prototype

sequence. We then identified all characters from A in each sequence by matching

the corresponding motifs. This yielded a class of strings with alternative sub-

strings. We repeated this procedure 5 times to generate 5 classes of 200 strings.

Next, we took a single string from each of these 5 classes, permuted its charac-

ters and used it to seed another prototype nucleotide sequence by expanding its

motifs into nucleobases. We repeated the above procedure of introducing ran-

dom mutations in these new prototype sequences. Motif detection then yielded
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Mean AUROC

Number of classes POKer Generalised spectrum kernel

5 0.984 0.934
10 0.981 0.901
20 0.978 0.864
40 0.964 0.82

Table 5.1: Mean AUROC values obtained by the POKer and the generalised spectrum kernel
for different number of classes in the first set of experiments

a further 5 classes of 200 strings with alternative substrings, where strings in

each class consist of noisy permutations of motifs present in the strings in their

respective seed class.

For each kernel, we built 10 SVM classifiers, one for each class, as follows:

we trained each classifier on 160 sequences from one class (using 9 × 160 =

1440 training sequences from other classes as negative examples) and tested it

on the remaining 40 sequences from that class (using the remaining 360 test

sequences from other classes as negative examples) in a one-versus-all strategy.

We performed a 10-fold cross-validation on the training set for selecting the

parameters. The match score, mismatch score and gap penalty were set to 4, 0

and -2, respectively. Similar to the first set of experiments, we ran the POKer

with a range of β values and chose the one that yielded the best performance in

the cross-validation (β=0.01). And we ran the generalised spectrum kernel with

different k values and chose the one for which the kernel performed best in the

cross-validation (k=3).

5.4.3 Results

We use the value of the area under the receiver operating characteristic (ROC)

curve (AUROC), averaged over the classes, to compare the performances of the

two kernels.

In the first set of experiments, as shown in Table 5.1, the POKer outperforms

the generalised spectrum kernel, with its performance decreasing only marginally

as the number of classes increases. The POKer appears to be robust to the choice

of β. For instance, in the case of 40 classes, β=0.1 yields the mean AUROC value

of 0.96, while β=0.01 and β=1 (that is, varying β by a factor of 10 in either

direction) yield 0.96 and 0.91, respectively.

Figure 5.4 displays the individual ROC curves for all classes, produced by

each kernel in the second set of experiments. The POKer achieves a higher
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Figure 5.4: ROC curves obtained by the POKer and the generalised spectrum kernel in the
second set of experiments

AUROC in all cases, with a mean AUROC value of 0.98 against 0.94 achieved

by the generalised spectrum kernel, and an average interpolated equal error rate

(EER) of 0.05 against 0.16 for the generalised spectrum kernel. The POKer is

fairly robust to the choice of β, its performance being consistent in the range

of β=0.01 (yielding the mean AUROC value of 0.98) to β=0.6 (yielding a mean

AUROC value of 0.95), and decreasing only slightly to a mean AUROC value of

0.90 when β=1.

By assigning each string to the class with the highest score, the confusion

matrices for the POKer and the generalised spectrum kernel are obtained. As

shown in Figure 5.5, the POKer outperforms the generalised spectrum kernel in

all cases. Notably, the confusion matrix for the latter is roughly block diagonal,

as the generalised spectrum kernel does not capture the global order of motifs

(being insensitive to where each k -mer occurs within the strings). Hence, it

discriminates poorly between the classes generated from series of motifs that

are permutations of each other (shown as contiguous in the matrix). These

mainly contain rearrangements of the same characters (e.g., DC[F |B]AMOD

and BAM [F |N ]D[C|I]A in Figure 5.3). On the contrary, the POKer handles

these cases almost as well as the easier case of strings that differ substantially in

the motifs which they contain (e.g., DC[F |B]AMOD and HG[I|J |F ]CDBH in

Figure 5.3).

66



c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
c1 33 4 1 1 0 0 0 1 0 0
c2 1 34 0 2 2 0 0 0 1 0
c3 1 1 34 3 0 0 0 1 0 0
c4 0 0 3 35 0 0 0 0 2 0
c5 0 0 0 0 33 2 3 1 1 0
c6 0 0 0 0 1 39 0 0 0 0
c7 0 1 0 1 0 0 38 0 0 0
c8 0 0 0 0 1 1 0 36 2 0
c9 0 0 1 3 1 0 0 2 29 4
c10 0 1 1 1 0 1 0 1 1 34

(a)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
c1 30 4 1 0 2 1 1 1 0 0
c2 5 28 3 3 0 0 1 0 0 0
c3 2 4 21 12 0 1 0 0 0 0
c4 2 1 7 26 0 0 1 0 3 0
c5 0 2 2 0 23 13 0 0 0 0
c6 0 2 4 0 11 23 0 0 0 0
c7 0 0 0 0 0 1 32 7 0 0
c8 1 0 3 0 0 3 7 26 0 0
c9 0 0 1 2 1 0 0 0 27 9
c10 2 2 3 1 0 0 1 1 2 28

(b)

Figure 5.5: Confusion matrices for (a) the POKer and (b) the generalised spectrum kernel

Overall, the results demonstrate the effectiveness of the POKer in discrimi-

nating between classes of strings with alternative substrings. With richer math-

ematical properties than non-metric alignment scores and efficient computation,

the POKer can be a powerful tool in the analysis of this type of strings.

5.5 Availability

The scripts for the POKer are available at https://bitbucket.org/mabdollahyan/

poker. The following are provided in the supplementary materials: the two

artificial datasets, including the sequences and motifs, the script for generating

the dataset for the second set of experiments, the script for detecting motifs,

the script for the generalised spectrum kernel, the Gram matrices produced by

each kernel, and the script for running the SVM classifiers and obtaining the

ROC curves and the mean AUROC values. This work utilised the Apocrita

HPC facility (see https://docs.hpc.qmul.ac.uk), supported by QMUL Research-

IT [195]. Part of the work presented in this chapter has appeared in

• Abdollahyan M, Smeraldi F. POKer: a Partial Order Kernel for Comparing

Strings with Alternative Substrings. In: Proceedings of the 25th European

Symposium on Artificial Neural Networks, Computational Intelligence and

Machine Learning (ESANN); 26–28 April 2017. pp. 263–268.
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Chapter 6

Evaluating the POKer: a

Computer Vision

Application

In Chapter 5, we presented the partial order kernel (POKer) for comparison of

strings that contain alternative substrings, and demonstrated its classification

effectiveness using artificial data. In this chapter, we evaluate the POKer in a

real-world setting. Specifically, we employ the POKer in an approach that ad-

dresses a problem in computer vision, namely visual localisation in the presence

of changes in the appearance of the environment.

A visual localisation system aims to answer the question of whether an im-

age is of a place it has seen before, and, if so, which one? This is an important

problem in robotics and autonomous systems. For a comprehensive survey of

visual localisation, see [196]. Real-world scenarios pose many challenges for au-

tonomous navigation systems. One such challenge is the presence of mismatches

between images of the same place which occur due to changes in the appear-

ance of the environment. Appearance changes are caused by a number of fac-

tors, including illumination variations, different weather conditions and seasonal

changes.

We propose a sequence-based visual localisation approach that consists of

two steps: in the first step, we build the graph representations of database im-

age sequences, obtained during the exploration phase, using the partial order

alignment (POA) algorithm [183]. In Chapter 4, we employed such a repre-

sentation to model the sequence of (possibly overlapping) TFBSs detected in a

CNE. Here, we consider the same representation to model alternative sequences
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of images, i.e., sequences of images of the same place that differ in appearance.

Using this representation not only allows us to model the temporal sequential

nature of images, but also efficiently models the alternative image sequences in

the form of alternative paths in a partial order graph. Moreover, it does not

require the alternative paths in the graph to be of equal length, and therefore,

is robust to differences in the traversal speed. In the second phase, we compare

these graphs to query image sequences, obtained during the localisation phase

and represented as DAGs without alternative paths, using the POKer. We test

our approach on a dataset which consists of image sequences of a train journey

collected across four different seasons. The sequences from three seasons consti-

tute the training dataset, while the sequence from the remaining season is used

for testing, in a cross-validation fashion. We compare the performance of the

POKer to those of two state-of-the-art localisation methods.

6.1 Related Work

Various approaches have been proposed to address the problem of appearance

changes in visual localisation. In [197], a probability distribution is learnt in

order to model the illumination variations in images. In [198], to reduce illumi-

nation variations, images are transformed into an illumination-invariant colour

space. A number of approaches exploit image descriptors such as SIFT and

SURF to handle appearance changes (e.g., see the approach proposed in [199]).

More recently, the use of convolutional neural networks (ConvNets) to extract

descriptors that are robust to appearance changes has gained a lot of attention.

In [200], a neural network is trained to learn illumination-invariant descriptors

that map the image patches into a low-dimensional space where non-matching

images are easily separable. Incorporating features learnt using ConvNets has

been shown to improve the performance of place recognition systems, as these

features are more robust to appearance changes [201, 202, 203]. Here, we employ

the recently released ConvNet VGG-Places365 [204] to extract the descriptors.

This ConvNet was trained on a dataset of images from diverse types of environ-

ments. ConvNets specifically trained for place recognition have been shown to

outperform networks trained using generic data [205, 206].

A number of approaches, relying on the fact that some appearance changes

such as seasonal changes are cyclic and therefore predictable, learn a transfor-

mation between the images [207, 208]. In [208], a superpixel vocabulary for each

season and a dictionary to translate the words from one season to their matches

in another are generated. This, however, requires the pairs of training images to

be perfectly aligned. In contrast, our approach does not make any assumptions
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on the nature of appearance changes or pixel alignment of images.

Another category of approaches leverage the sequential nature of images to

handle appearance changes. The state-of-the-art method SeqSLAM [209] con-

siders sequences of images instead of single images. Given an image, it finds the

local best match within every short image sequence; localisation is then done

by searching the image similarity matrix for sequences of local best matches.

SeqSLAM assumes constant speed during the traversals. A modified version of

SeqSLAM that is invariant to speed variations was introduced in [210]. In our

approach, we represent the multiple sequences of images of the same place col-

lected at different times and possibly at different speeds as a partial order graph.

As shown in Section 5.2, in this representation, the sequences can diverge from

one another to form alternative paths in the graph. These paths may be of dif-

ferent lengths. This allows us to deal with mismatches between the images that

are due to speed variations. In [211], a hidden Markov model (HMM) is used to

compute the most likely path through the image similarity matrix. While the

method, similar to ours, uses dynamic programming (the Viterbi algorithm) to

align the sequences, transitions between states are probabilistic. By contrast,

our proposed graph representation specifies exactly which transitions are possi-

ble at each point. In [212], a modified version of the Smith-Waterman alignment

algorithm [105] was used to find matching subsequences within the image se-

quences in order to detect intersections between maps. The POA algorithm

used in our approach is also an extended version of the Smith-Waterman align-

ment algorithm, however, it works with partial order graphs instead of standard

sequences.

The methods described in [213] and [214] build a directed acyclic data asso-

ciation graph to model the matching between an image sequence and a database.

The localisation task then becomes a minimum-cost flow problem, i.e., comput-

ing a shortest path in this graph. Our approach differs in that the graphs are

constructed from database image sequences only and are later compared to query

image sequences using the POKer.

6.2 Visual Localisation Using the POKer

In Section 5.2, we showed how a string with alternative substrings can be repre-

sented as a directed acyclic graph (DAG). Here, we convert each set of alternative

image sequences from the database to a string with alternative substrings, rep-

resented as a DAG. The graph representations of the database and query image

sequences are built as follows: we represent an image sequence as a simple di-
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Figure 6.1: (a) DAG representation of two image sequences. Each letter denotes a single image
(b) DAG representation of the MSA obtained by aligning the image sequences shown in (a)
using the POA algorithm

rected graph, where nodes represent images and there exist edges between nodes

whose corresponding images are consecutive in the sequence (Figure 6.1a).

Given a set of alternative database image sequences, we align the sequences

using the partial order alignment (POA) algorithm [183]. For the score of an

aligned pair of images we use the cosine similarity between their descriptors, and

for the gap penalty we use a linear gap model. The output is an MSA in the

form of a DAG (Figure 6.1b). This process of building database image sequence

graphs is reminiscent of dynamic time warping (DTW) [215], an algorithm for

aligning temporal sequences that vary in speed (e.g., sequences of images of the

same place taken at different speeds). In fact, DTW is closely related to sequence

alignment (for instance, see [216]).

Given a query image sequence, we represent it simply as a DAG without any

alternative paths (similar to one of the sequences in Figure 6.1a). We compute

the similarity between each pair of database and query graphs using the POKer,

and choose the most similar database graph to the query graph as the matching

database image sequences to the query image sequence.

6.3 Experiments

6.3.1 Dataset and Parameters

We chose the standard Nordland dataset1 for evaluating our approach. The

dataset consists of video footage of a 728km-long train journey between two

cities in Norway, recorded from the perspective of the train driver. The journey

was recorded once in every season. We subsampled each video at 0.5fps, which

1https://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-season-by-season/
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Figure 6.2: Overview of our method applied to the Nordland dataset. On the left: three
database image sequences of a place in spring, summer and autumn, respectively. A DAG
representation of these alternative sequences is built using the POA algorithm. On the right: a
query image sequence of the same place in winter, represented as a DAG. Query and database
graphs are compared using the POKer which produces a measure of similarity between the two
graphs.

yielded a total of four image sequences. We refer to these image sequences as the

Spring, Summer, Autumn and Winter sequences. Note that all sequences are of

equal length and that images with the same index are from the same place (this

serves as the ground truth). The dataset features severe appearance changes due

to different weather conditions and seasonal changes. The train occasionally goes

through tunnels and stops at stations. As customary for this dataset [206, 201],

we removed all the images taken inside the tunnels and at the stops.

The descriptors were extracted from the fifth layer of the VGG-Places365

ConvNet [204], and we applied locality-sensitive hashing (LSH) [217] to reduce

their dimensionality from 100,352 to 4,096.

We performed four sets of experiments, each time using the image sequence

belonging to a different season for generating the query image sequences. The

data for each set of experiments was generated as follows: during the explo-

ration phase, we consider three of the image sequences in the dataset, i.e., three

seasons. We cut each sequence into subsequences of length 15. As a result, for
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each location, there exist three alternative image sequences in the database (one

per season). We generate triplet image sequences by selecting the three image

sequences of the same place in different seasons, according to the ground truth.

For each triplet, we align the image sequences in that triplet and build its graph

representation, as explained in Section 6.2 (e.g., left column in Figure 6.2).

During the localisation phase, we consider the remaining image sequence in

the dataset, i.e., the fourth season. We generate the query image sequences by

cutting this sequence into subsequences of length 15. We convert each of these

to a DAG without alternative paths, as explained in Section 6.2 (e.g., right

column in Figure 6.2). We then compare them to the database triplets using the

POKer.

In both the database and query graphs, each node is labelled with the index

of its corresponding image. For the alignment parameters, we used the Hamming

distance between the descriptors as scores, since after applying LSH, the cosine

similarity between the original high-dimensional data is approximated by the

Hamming distance between the low-dimensional data. The gap penalty was set

to -1. For the POKer, we used β=1.

6.3.2 Baseline Methods

We used two state-of-the-art localisation methods as baselines: the algorithm

presented in [213] using network flows, and SeqSLAM utilising ConvNet features.

We refer to these methods as NetFlow and CNN+SeqSLAM, respectively. For

both baselines, we used the same features as those used for our method, i.e.,

descriptors extracted by the pre-trained VGG-Places365 ConvNet.

Note that these methods match an image to another, not an image sequence

to multiple image sequences (here, a triplet). Therefore, to obtain a measure

of similarity between a query image sequence and a triplet of database image

sequences, we proceeded as follows: we compared the query image sequence to

each database image sequence in the triplet separately. The results are three

matrices, where each matrix stores the similarity scores between all pairs of

images from the query sequence and from one of the database sequences. We

then fused the three matrices by choosing the maximum score for each pair of

images as their final similarity score (we considered both average and maximum

of scores and chose the maximum as it yielded a better performance). The

similarity between the query sequence and the database triplet is the average

of entries in this matrix. Parameters for both baselines were set to those that

performed best for the most challenging image sequences in the dataset, i.e.,
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Precision (%) Recall (%)

Our approach NetFlow CNN+SeqSLAM

100 90.7 37.0 75.5
95 99.9 99.2 92.6
90 99.9 99.6 95.1

Table 6.1: Comparison of the average recall values obtained by our method and the baselines

Summer vs Winter.

6.3.3 Results

We compare the performances of the POKer and the baseline methods based on

the highest precision and recall values achieved by each method.

The precision-recall curves for the four sets of experiments are shown in

Figure 6.3. In each case, our method either matches or outperforms the baselines

in all parts of the curve. Table 6.1 reports the recall values obtained by each

method for three precision values of practical interest, averaged over the four

experiments. Our approach achieves a high level of recall (>90%) with 100%

precision, and by sacrificing 5% precision, almost 100% recall is achieved. In

comparison, both NetFlow and CNN+SeqSLAM achieve lower recall values, with

their performances being significantly low at 100% precision.

The results show that the POKer accurately computes the similarities be-

tween image sequence graphs, in an approach that is robust to appearance

changes and outperforms two state-of-the-art methods, and demonstrate the

classification effectiveness of the POKer in a real-world setting.
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Figure 6.3: Precision-recall curves obtained for the four sets of experiments using the (a) Spring,
(b) Summer, (c) Autumn and (d) Winter sequences as the query image sequence, respectively
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6.4 Availability

The pre-processed Nordland sequences and the similarity matrices produced by

all the methods are included in the supplementary materials. For the POA al-

gorithm, we used the implementation at https://github.com/ljdursi/poapy. The

work presented in this chapter has appeared in

• Abdollahyan M, Cascianelli S, Bellocchio E, Costante G, Ciarfuglia T A, Bian-

coni F, Smeraldi F and Fravolini M. Visual Localization in the Presence of Ap-

pearance Changes Using the Partial Order Kernel. In: Proceedings of the 26th

European Signal Processing Conference (EUSIPCO); 3–7 September 2018. pp.

702–706.
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Chapter 7

Functional Classification of

CNEs Based on Their

TFBSs

The sequence of TFBSs identified in a CNE belongs to the class of strings with

alternative substrings, as the binding sites may overlap but only one of them can

be bound by a TF at any given time. In Chapter 4, we showed how these se-

quences can be efficiently represented as partial order graphs. And in Chapter 5,

we introduced the partial order kernel (POKer) for the comparison of two such

graphs. We demonstrated the effectiveness of the POKer in the classification

of real-world data in Chapter 6. In this chapter, we present an approach that

employs the POKer to classify CNEs into groups of functionally related elements

based on their TFBSs composition.

We train an SVM classifier with the POKer as its kernel on a set of CNEs

that have been functionally validated. We then use this classifier to predict the

regulatory activity of elements in another set of CNEs that have been shown

to act as enhancers in different tissues. To evaluate our approach, we compare

the results to those obtained by functional assays. Moreover, we apply kernel

PCA to the output of the POKer in order to reduce the dimensionality of the

feature space and extract features which can be used to distinguish regulatory

elements from non-regulatory ones. Next, we select the top ranked features and

analyse the sequence properties of the elements grouped based on these features.

According to our findings, we define a regulatory grammar for CNEs that can

be used to predict their regulatory activity in a specific tissue. We discuss the

biological relevance of these findings and compare them to the evidence available

from the existing literature.
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7.1 Related Work

The two main approaches to understanding the grammar of regulatory elements

are functional assays and methods for identifying cis-regulatory elements (see

Section 2.3). In order to predict regulatory activity from sequence, these ap-

proaches try to infer the rules of transcriptional grammar, including the activity

and specificity of TFs, and the number, nucleosome positioning, orientation and

order of TFBSs, as well as their co-association [218].

In reporter assays, the sequence of interest is fused to a reporter gene (a

gene whose expression is easy to observe, e.g., the green fluorescent protein)

and the expression driven by it is measured [219]. However, since each sequence

is tested individually, this approach is time-consuming and labour-intensive and

therefore low-throughput. In contrast, in high-throughput assays, variants of the

sequence of interest are synthesised and each of them is inserted into a plasmid

containing a unique ‘barcode’. All plasmids are then simultaneously transfected

into cells. The regulatory activity of each variant is identified by its barcode

using next-generation sequencing. This approach, however, also has a number

of limitations [16]. To address these problems, functional assays are commonly

combined with computational methods such as phylogenetic footprinting [108]

and composite motif discovery methods [220]. As described in Section 2.3, these

methods rely on sequence conservation and the combinatorial nature of TF in-

teractions, respectively. Computational methods that do not exploit this infor-

mation instead often rely on ChIP data [221, 222]. There exist methods that do

not use the above information and focus on sequence features alone. An exam-

ple is the k -mer-based method presented in [223] and its gapped variant [224].

These methods use various k -mer-based kernels (e.g., the spectrum kernel [132])

to compare the sequences. Our approach is similar, with the difference that it

considers the sequence of TFBFs identified in a CNE, rather than its nucleotide

sequence, and uses the POKer to compare the sequences.

7.2 Detecting Regulatory Signatures in CNEs

We apply kernel principal component analysis (kernel PCA) [225] for feature

extraction to detect the regulatory sequence signatures in CNEs.

Principal component analysis (PCA) is a technique which, given N variables,

aims to find a set of M (M � N) uncorrelated variables, called principal com-

ponents and defined as linear combinations of the initial variables, that would

explain most of the variance in the data [226]. Hence, PCA is commonly used for
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two purposes: to reduce the dimensionality of the data and to extract features

(local and global). An example of the use of PCA for these purposes is the pop-

ular eigenfaces approach to face recognition [227]. In this approach, PCA is used

to find the principal components (the eigenvectors of the covariance matrix) of a

set of vectors representing face images. When visualised, each of these eigenvec-

tors resembles a ghostly face called an eigenface. From an information theoretic

point of view, eigenfaces capture the information content in a face image. The k

most informative eigenfaces, i.e., the eigenvectors corresponding to the k largest

eigenvalues, define the face space. A face image can be projected onto this space

and be represented as a linear combination of these eigenfaces, where the weights

of the linear combination determine the identity of the person.

While PCA is successful in removing second-order dependencies in the data,

it does not deal with higher-order dependencies, i.e., the relationships among

three or more variables. In some cases, removing second-order dependencies is

not sufficient and important information is contained in higher-order dependen-

cies. Kernel PCA allows extracting such non-linear features. For instance, the

kernel eigenfaces approach has been shown to outperform the classic eigenfaces

approach [228]. Following is a description of kernel PCA.

Given data points x1, x2, . . . , xn (xi ∈ RN , 1 ≤ i ≤ n) and the mapped data

φ(x1), φ(x2), . . . , φ(xn) (see Section 2.4), the covariance matrix in the feature

space F is given by

C =
1

n

n∑
j=1

φ(xj)φ(xj)
T (7.1)

The aim is to find eigenvalues λ ≥ 0 and eigenvectors v ∈ F\{0} that sat-

isfy

λv = Cv (7.2)

Substituting Equation 7.1 in Equation 7.2 shows that all solutions v lie in

the span of φ(x1), φ(x2), . . . , φ(xn), that is, there exist coefficients α1, α2, . . . , αn

which satisfy

v =
n∑
k=1

αkφ(xk) (7.3)

Furthermore, from Equation 7.2 we have

λ(φ(xi).v) = (φ(xi).Cv) ∀i = 1, . . . , n (7.4)
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Substituting Equations 7.1 and 7.3 into Equation 7.4 yields

nλKα = K2α (7.5)

where Kij := (φ(xi).φ(xj)) is an n × n matrix and α = [α1, α2, . . . , αn]T . For

non-zero eigenvalues, the solution to Equation 7.5 is equivalent to the solution

to

nλα = Kα (7.6)

Solving Equation 7.6, solutions αm, . . . , αn are obtained, where λm is the

first non-zero eigenvalue (eigenvalues are sorted in the ascending order). The

solutions are normalised by requiring that (vi.vi) = λi(α
i.αi) = 1 (m ≤ i ≤ n).

To extract the principal components, a test data point x is projected onto the

eigenvectors vi according to

(vi.φ(x)) =

n∑
k=1

αik(φ(xk).φ(x)) =

n∑
k=1

αikK(xk, x) (7.7)

where φ(xk).φ(x) is computed using the kernel.

Note that we assumed that the mapped data is centred, i.e.,
∑n

i=1 φ(xi) = 0;

otherwise, the centred data points are given by φc(xi) = φ(xi) − 1
n

∑n
i=1 φ(xi),

and the centred K is given by Kc = K − 1nK −K1n + 1nK1n, where (1n)ij :=
1
n .

In an approach similar to the kernel eigenfaces, we use kernel PCA to capture

higher-order correlations in the data in terms of TFBSs composition, and define

a regulatory sequence signature for hindbrain enhancers. Note that in kernel

PCA, unlike in the classic PCA, reconstruction of the data from the principal

components in the original input space is not straightforward; one can only

find an approximate reconstruction using a suitable method (e.g., a regression

method) depending on the choice of kernel [229]. Therefore, we analyse the data

by looking directly at the projection coefficients from Equation 7.7.

7.3 Experimental Setup

To begin with, we built a binary SVM classifier using the POKer to predict

whether a CNE drives the expression of genes in the hindbrain.

In Chapter 4, we identified the shared sequence signatures made up of co-

occurring motifs in a set of 426 CNEs from the CONDOR database [175], a

subset of which (103 sequences) has been functionally validated for enhancer
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activity in the hindbrain [193]. Here, we used these 103 CNEs for training our

classifier. We labelled the elements that tested positive for hindbrain enhancer

activity in at least 20% of the expressing embryos within 48hpf as hindbrain

positive (hb+) and the remaining elements as hindbrain negative (hb−). To

test our classifier, we used a set of 56 CNEs chosen as follows: we searched the

CONDOR database for functionally annotated CNEs that were shown to drive

the expression of genes in the hindbrain and other tissues in at least 20% of the

expressing embryos within 48hpf. From the results, we removed those elements

that appear in the set used for training the classifier. The sequences in both sets

were scanned by FIMO [174] (p-value ≤ 0.001) to find the occurrences of TFBSs

for 31 TFs involved in developmental patterning. For details of these TFBSs,

see Section 4.5.

Before training the classifier, we performed a 5-fold cross-validation on the

first set of CNEs in order to obtain the mean accuracy of the classifier on this

dataset. We compared this value to the accuracy of signature search-based

predictions, where a shared sequence signature composed of MEIS and PBX-

HOX motifs co-occurring within 100bp of one another was identified and used

to predict hb+ elements in this dataset. An element was considered to be a

hindbrain enhancer if it contained this signature [193].

We then trained the classifier on the 103 CNEs from the first set, using the

hb+ elements as positive examples and the hb− elements as negative examples,

and tested it on the 56 CNEs from the second set. In all cases, the match and

mismatch scores for the POKer were set as described in Section 4.5, and the gap

penalty was set to -1. We ran the POKer with several β values, ranging from 0 to

∞, and chose the one that yielded the best performance in the cross-validation

(β=0.5).

Finally, we applied kernel PCA to the second set of CNEs and visualised the

result.

7.3.1 Results

The mean accuracy achieved by our classifier in the cross-validation on the set

of 103 CNEs is 0.73. In comparison, searching for the presence of the MEIS plus

PBX-HOX signature yields an accuracy of 0.81. Hence, the classifier achieves a

comparable accuracy to the signature search-based approach in this case. Note

that, contrary to the signature search-based approach, our classifier does not

make use of any information on the known interactions between TFs or their

function; it only scores the alignments between TFBSs based on their frequency
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Figure 7.1: Projection of CNEs onto the third and fourth principal components. Points corre-
sponding to the hb+ and hb− elements are coloured in blue and red, respectively.

in the dataset.

We evaluated the performance of the POKer on the set of 56 test CNEs using

the AUROC value obtained by the classifier. The classifier achieves an AUROC

value of 0.76, indicating a good performance.

Figure 7.1 shows the projection coefficients of the test CNEs obtained using

kernel PCA. The principal components 3 to 5 separate the two clusters. We refer

to the clusters overlapping with the hb+ and hb− sets of test CNEs as the hb+

and hb− clusters, respectively. For each cluster, we examined the distribution of

the considered TFBSs in its elements. Specifically, we analysed the enrichment

of each TFBS using AME [230], available in the MEME Suit toolkit [184].

Among the TFBSs enriched in CNEs from the hb+ cluster are motifs from the

TFAP, SOX, POU, PBX-HOX, ZIC and MEIS families. TFAP is essential for the

development of the hindbrain [231], both SOX and POU have been shown to be

involved in the development of the central nervous system (CNS) [232], and the

interactions between PBX-HOX, ZIC and MEIS were discussed in Section 4.5.1.

The contributions of these TFBSs to identifying hindbrain enhancers have also

been reported in other studies. For an example study, see [233]. In comparison,

CNEs from the hb− cluster are enriched for motifs from the POU and HMX

families. While POU is enriched in CNEs from both clusters, its enrichment

in the hb+ cluster is slightly stronger (p-value=3.65E-04 vs p-value=4.82E-04).
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Additionally, we looked at the orientation and spacing (up to 100bp) of these

TFBSs. We observed no preferences for the orientation of these motifs in CNEs

from either cluster. In a number of CNEs from the hb+ cluster, PBX-HOX and

MEIS co-occur multiple times within a short window of 50bp. In comparison,

CNEs from the hb− cluster contain fewer co-occurrences of these two motifs at

larger average inter-motif distances (44.7bp vs 21.8bp). Proximity of PBX-HOX

motifs to MEIS motifs has also been observed in the dataset used for training

the classifier [193]. In Chapter 4, we detected this syntax in CNEs from the same

dataset using an alignment-based approach, suggesting that it may be important

for hindbrain enhancer function. According to these findings, a shared sequence

signature consisting of enriched TFAP, SOX, POU and ZIC TFBSs plus PBX-

HOX and MEIS TFBSs in close proximity characterises the hindbrain enhancers

in the dataset on which the classifier was tested.

The kernel PCA results show that the POKer captures the regulatory signa-

tures in CNEs. Hence, as shown by the classification results, our approach using

the POKer successfully groups CNEs into functionally related elements, and can

be employed to define a tissue-specific regulatory grammar which can be used

to predict the enhancer activity of additional CNEs.

7.4 Availability

The following are provided in the supplementary materials: the training and test

datasets, the FIMO output files, the results of functional assays, the CONDOR

database search results, the Gram matrix produced by the POKer, the script for

running cross-validation, the script for running kernel PCA and visualising the

projected data, and the AME output.

84



Concluding Remarks

In this thesis, we investigated the use of machine learning algorithms for pre-

dicting the regulatory functions of CNEs in order to gain new insights into the

nature of their extreme conservation. To do so, we required, first, a model of

CNEs that encapsulates the regulatory sequence signatures present in the ele-

ments; and second, a measure of similarity between the modelled CNEs that

incorporates their regulatory grammar.

In modelling CNEs, we took a different approach from the current meth-

ods by representing the elements based on the TFBSs they contain, instead of

their primary sequence. In doing so, we asked the question “which model of TF

interactions is the regulatory grammar of CNEs consistent with?”. We began

by considering metrics that take only the number of TFBSs into account, and

used them with several existing algorithms which we had previously successfully

employed in other works (Appendices A and B) in an attempt to group function-

ally related CNEs together. We validated the results of applying this approach

to a set of CNEs by functional assays, which suggested that such metrics do

not fully capture the regulatory signatures in CNEs (Chapter 3). To obtain a

better TFBS-based representation of CNEs, we modelled the elements as partial

order graphs, and used a dynamic programming algorithm to align the graphs

and identify the regulatory signatures composed of over-represented co-occurring

TFBSs that are indicators of potential regulatory activity. The results of testing

this approach on a set of CNEs showed that our proposed model, which accounts

for the number of TFBSs as well as their relative position, better captures the

regulatory signatures in CNEs (Chapter 4).

With an efficient model of CNEs at hand, we searched for a way to measure

the similarity between two CNEs. The score of the graph alignment method that

we presented in Chapter 4 is not metric; hence, we developed the partial order

kernel (POKer) for comparison of partial order graphs, which provides a met-

ric interpretation of this score. To overcome the lack of a suitable benchmark

for assessing the POKer’s performance, we extended a popular string kernel.
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In a series of experiments on artificial data, we demonstrated the effectiveness

of our kernel in classifying strings with alternative substrings in comparison to

this kernel (Chapter 5). We further evaluated the POKer in a computer vision

task, where we represented image sequences as partial order graphs, and used

the POKer to compare and match the graphs. The results of experiments on a

standard dataset demonstrated the robustness of our proposed visual localisa-

tion method as compared to the state-of-the-art methods (Chapter 6). Finally,

we employed the POKer in an approach to classifying CNEs, modelled as par-

tial order graphs, into groups of functionally related elements. We tested this

approach on a set of CNEs and showed that it achieves a comparable accuracy

to predictions made based on the presence of known regulatory signatures. In

addition, we applied kernel PCA using the POKer to detect the regulatory sig-

natures in this set of CNEs, and discussed the biological relevance of the results,

supported by findings reported in the literature (Chapter 7).

In summary, we introduced a new representation of CNEs and novel meth-

ods for both identifying the regulatory signatures in CNEs and predicting the

regulatory functions of these elements based on the detected signatures. This

was made possible by the introduction of the POKer, a new graph-based kernel

of general applicability. Our approach, compared to the existing methods (e.g.,

gene knockdown experiments), is fast and does not require any prior knowledge

of the sequences, although such information can be incorporated into our meth-

ods in the future, for instance through the choice of scoring matrices. Another

possible future direction is to find an approximate reconstruction of prototypi-

cal sequences from the non-linear principal components extracted by the kernel

PCA. These could be used to infer a tissue-specific regulatory grammar for CNEs.

The problem of reconstruncting data from non-linear principal components has

been considered for marginalised kernels and undirected graphs [234].

Overall, the results presented in this thesis further confirm the relationship

between the syntax of conserved non-coding sequences and the expression pat-

terns driven by these elements. The methods used in this thesis can be applied

to characterise such relationships and learn tissue-specific regulatory grammars

for CNEs, which, in turn, allow us to uncover the functions that contribute to

the conservation of CNEs.
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Appendix A

What Skin Texture Tells Us

About Gender

As a case study on the t-SNE dimensionality reduction technique [143] (see Sec-

tion 3.3.2), we investigated the use of skin microtexture for gender recognition.

We considered a variety of approaches for feature extraction and applied them

to a set of images acquired by two different imaging modalities, namely digital

dermoscopy and capacitive imaging using a fingerprint sensor. We then classi-

fied the feature vectors using two different methods. Moreover, we performed

dimensionality reduction on the features using t-SNE. Statistical analysis of the

significance of classification results and the maps obtained using t-SNE both indi-

cate that while skin texture contains useful information for person identification,

little can be inferred from it about gender.

A.1 Data Acquisition, Feature Extraction and Clas-

sification

Images in our dataset were acquired from 43 subjects (24 males and 19 females)

with average age 32.1±14.2 and of various ethnic backgrounds. From each of

the back of the hand (BH), forearm (FR) and palm (PL) of the upper left limb

of each participant, four images were taken using both a digital dermoscope

(ProScope HR2, Bodelin Technologies, USA) and a fingerprint sensor (Epsilon,

Biox Systems Ltd, UK). Various features were extracted from each image us-

ing the following methods: autocorrelation [235], Gabor filters [236], grey-level

co-occurrence matrices (GLCM) [237], local binary patterns (LBP) [238], gran-

ulometry [239] and semi-variogram [240]. We considered the feature vectors
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Classifier Image descriptor
Epsilon ProScope Epsilon + ProScope

BH FR PL BH FR PL BH FR PL

1-NN

Autocorrelation 49.42 44.19 50.00 50.58 49.42 47.09 49.42 44.19 50.00
Gabor filters 50.00 61.05 51.74 45.93 53.49 48.84 50.00 61.05 51.74
GLCM 47.67 58.72 49.42 44.77 44.77 48.84 47.67 58.72 49.42
Granulometry 51.74 54.07 44.77 51.16 51.74 51.16 51.74 54.07 44.77
LBP 45.93 40.70 52.91 46.51 54.07 44.77 45.93 40.70 52.91
Semi-variogram 52.33 51.16 51.74 52.33 47.67 52.33 52.33 51.16 51.74

SVMs

Autocorrelation 48.26 52.33 49.42 51.16 63.37 55.23 49.42 51.74 52.33
Gabor filters 43.60 53.49 53.49 53.49 58.72 57.56 43.02 54.65 53.49
GLCM 53.49 53.49 53.49 53.49 53.49 52.91 53.49 53.49 53.49
Granulometry 55.81 51.74 52.33 59.88 53.49 53.49 49.42 51.74 51.16
LBP 45.35 52.91 53.49 43.60 51.16 55.23 50.00 56.98 51.74
Semi-variogram 47.09 51.16 53.49 52.91 54.07 49.42 55.81 51.16 53.49

Table A.1: Overall accuracy values achieved by each feature and classifier combination in the
gender recognition task

obtained by the Epsilon and those obtained by the ProScope separately, as well

as the concatenation of the two vectors (denoted by Epsilon + ProScope).

We classified the images into two classes (male or female) using two differ-

ent methods: 1-NN classifiers with Euclidean distances (L2) and SVMs with

radial basis kernel. In each case, accuracy was computed using a leave-one-out

cross-validation strategy, i.e., for each acquisition zone (BH, FR and PL), all

four images of each subject in turn were removed from the dataset and images

of the remaining subjects were used for training the classifier. The classifier was

then tested on the images which had been removed. This way we controlled

for the effect of identity-specific information. To further investigate the gen-

der information in these features, we visualised the features that yielded the

highest classification accuracy values (autocorrelation/FR/ProScope and Gabor

filters/FR/Epsilon + ProScope) using t-SNE.

A.2 Results and Conclusion

As shown in Table A.1, the accuracy values achieved by all classifier and feature

combinations are poor. Furthermore, 1-tailed Fisher’s exact test to assess the

statistical significance of the results (where the null hypothesis is that the es-

timated and true genders are uncorrelated) yielded a p-value of 0.1, indicating

a weak correlation between skin texture and gender. In contrast, consistently

good accuracy values were achieved when the same features were used for per-

son identification. For instance, using the Gabor filters/FR/Epsilon + ProScope

combination, an accuracy of over 92% was achieved. The results are further

confirmed by the t-SNE maps shown in Figure A.1. In these maps, individual

subjects are fairly separable, however, their gender does not appear to be. Over-

all, although far from exhaustive, these results suggest that skin texture carries

little information on gender.
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Figure A.1: t-SNE maps displaying the distribution of features used by the two best performing
classifiers. Numbers denote identities (there exist four points for each subject), while colours
denote gender.
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Appendix B

Visualising the Topology of

Message Board User

Networks

As a case study on the BOSAM algorithm [144], a simple yet effective network

visualisation tool (see Section 3.3.3), we present an analysis of the topological

structure of user interaction networks on several health-related message boards.

We used BOSAM to visualise the network of interactions among users and be-

tween users and site administrators on six forums of different scopes and sizes.

The results reveal major differences between the user interaction networks of

these forums, and show that the BOSAM of each network closely correlates

with the characteristics of its respective message board, in terms of coverage

(single-topic or multi-topic), presence of user communities, nature of the forum

(commercial or voluntary) and administration style.

B.1 Data

We acquired data from six health-related forums: Crohn’s Forum (CROHN)1,

HealthBoards (HBOARDS)2, Huntington’s Disease Association (HDA)3, Inspire

(INSPIRE)4, Patient Info (PINFO)5 and Psoriasis Association (PSORIASIS)6

(Table B.1). To model the user interaction network for a forum, we created a

1www.crohnsforum.com
2www.healthboards.com
3www.hdmessageboard.com
4www.inspire.com
5patient.info
6www.psoriasis-association.org.uk
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Name No. of users No. of posts Multi-topic Commercial

CROHN 21703 673162 No No
HBOARDS 403682 4929836 Yes Yes
HDA 1245 34173 No No
INSPIRE 221432 3725555 Yes Yes
PINFO 139567 1699131 Yes Yes
PSORIASIS 1816 4402 No No

Table B.1: Details of the modelled networks

node for each user and linked two nodes if their corresponding users had posted

to the same conversation thread.

B.2 Results and Discussion

As shown in Figure B.1, in the HDA network connectivity is dominated by the

nodes with high degrees, represented by pixels that are densely distributed along

the upper right corner of its BOSAM, meaning that low degree users tend to

interact with high degree users. Hence, the HDA forum appears as a single-

topic forum that patients use to ask questions from expert users. In contrast,

in the PSORIASIS network, users tend to interact with other users of similar

degrees, indicated by the ‘squares’ near the diagonal of its BOSAM. These show

the formation of communities of nodes of similar degrees, with noticeably larger

communities for nodes of a high degree. These node communities correspond

to the patient communities on the PSORIASIS forum, where patients in each

community have been diagnosed with a different type of psoriasis. The CROHN

forum, also a single-topic forum being run by a community, shows a mixture of

the above two characteristics.

The HBOARDS, INSPIRE and PINFO forums, being large commercial fo-

rums, have a much richer structure (Figure B.1). The lines radiating from the

upper right corners of their bitmaps are a feature specific to social networks [172].

The HBOARDS and INSPIRE bitmaps exhibit regions of dense shading which

correspond to posts from the site administrators. This is notable since all of

these forums are multi-topic, and therefore, would normally divide into commu-

nities with little interaction between them. However, particularly in the case

of INSPIRE, administrators routinely cross-post across the threads and also, to

some extent, allow cross-posting by users in the form of journals. This tends to

obliterate the communities structure. Part of such structure can still be observed

in the BOSAM of the PINFO network, which suggests that, in comparison, this

forum is more lightly managed.
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(a) HDA (b) PSORIASIS

(c) CROHN (d) HBOARDS

(e) INSPIRE (f) PINFO

Figure B.1: BOSAMs of the modelled networks

113



Appendix C

Proof of Theorem 1 in

Section 5.3.1

Proof. Let x and y be two strings with alternative substrings, represented by

graphs Gx and Gy, respectively. We denote the set of all non-empty local align-

ments, i.e., paths, ending at node (i, j) ∈ Gxy, with the labels of nodes i and j

being the last aligned characters, by Ai,j , where Gxy is the strong product graph

of Gx and Gy:

Ai,j =
⋃
n≥1

{(X,Y ) ∈ Rnx ×Rny |V (X2n−1) = {i} and V (Y2n−1) = {j}} (C.1)

For i = φ or j = φ, let

M(i, φ) = M(φ, j) = 0

N(i, φ) = N(φ, j) = 0
(C.2)

where φ is the start character. First, we show that the following holds.

M(i, j) =
∑
a∈Ai,j

exp(βS(a))

N(i, j) =
∑

m�i,n�j,a∈Am,n

exp(βS(a) + βg(|mi|) + βg(|nj|))
(C.3)

where |mi| denotes the length of the path from m to i and � is the partial order

specified by Gx or Gy, as appropriate. We prove the above by induction on nodes
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(i, j) of Gxy. For M(i, j), with (i 6= φ, j 6= φ), we have∑
a∈Ai,j

exp(βS(a)) = exp(βs(i, j))

+ exp(βs(i, j))

 ∑
m�i′,n�j′,a∈Am,n

i′i∈E(Gx),j′j∈E(Gy)

exp(βS(a) + βg(|mi′|) + βg(|nj′|))



= exp(βs(i, j))

1 +
∑
m,n

mi∈E(Gx),nj∈E(Gy)

N(m,n)


= M(i, j)

(C.4)

where the first equality is obtained using the definition of local alignment score,

the second equality holds for nodes before (i, j) by induction and the last equality

is the definition of M(i, j) in Equation 5.8. Similarly, for N(i, j), with (i 6= φ, j 6=
φ), we have ∑

m�i,n�j,a∈Am,n

exp(βS(a) + βg(|mi|) + βg(|nj|)) =

∑
m�i,n�j′,a∈Am,n

j′j∈E(Gy)

exp(βS(a) + βg(|mi|) + βg(|nj′|) + βg)

+
∑

m�i′,n�j,a∈Am,n

i′i∈E(Gx)

exp(βS(a) + βg(|mi′|) + βg(|nj|) + βg)

−
∑

m�i′,n�j′,a∈Am,n

i′i∈E(Gx),j′j∈E(Gy)

exp(βS(a) + βg(|mi′|) + βg(|nj′|) + 2βg)

+
∑
a∈Ai,j

exp(βS(a))

= exp(βg)
∑
m

mi∈E(Gx)

N(m, j) + exp(βg)
∑
n

nj∈E(Gy)

N(i, n)

− exp(2βg)
∑
m,n

mi∈E(Gx),nj∈E(Gy)

N(m,n) +M(i, j)

= N(i, j)

(C.5)

where the second equality is obtained as follow: since in the ground case, values

of both N and M are 0, it is possible to calculate the value of N for each node

(m,n) before (i, j), where either m � i and n ≺ j or m ≺ i and n � j. This

gives us the first and second terms. The third term holds for nodes before (i, j)

by induction, and the fourth term is the definition of M(i, j) in Equation C.3
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proven above. The last equality is the definition of N(i, j) in Equation 5.8. Now,

in order to prove the theorem, we have∑
n≥0

∑
X∈Rn

x ,Y ∈Rn
y

exp(βS(X,Y )) = 1 +
∑
n≥1

∑
X∈Rn

x ,Y ∈Rn
y

exp(βS(X,Y ))

= 1 +
∑

(i,j)∈V (Gxy)

∑
a∈Ai,j

exp(βS(a))

= 1 +
∑

(i,j)∈V (Gxy)

M(i, j)

(C.6)

where 1 is for the empty alignment. The second equality is obtained using the

definition of Ai,j and the last equality is obtained using the definition of M(i, j)

in Equation C.3. �

116


