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Abstract

In the Ising model, we consider the problem of estimating the covariance of the spins at
two specified vertices. In the ferromagnetic case, it is easy to obtain an additive approx-
imation to this covariance by repeatedly sampling from the relevant Gibbs distribution.
However, we desire a multiplicative approximation, and it is not clear how to achieve this
by sampling, given that the covariance can be exponentially small. Our main contribution
is a fully polynomial time randomised approximation scheme (FPRAS) for the covariance
in the ferromagnetic case. We also show that that the restriction to the ferromagnetic
case is essential — there is no FPRAS for multiplicatively estimating the covariance of an
antiferromagnetic Ising model unless RP = #P. In fact, we show that even determining
the sign of the covariance is #P-hard in the antiferromagnetic case.

1 Introduction

Let G = (V,E) be a graph and let β : E → Q be an edge weighting of G. A configuration of
the Ising model is an assignment σ : V → {−1,+1} of spins from {−1,+1} to the vertices of
G. The weight of a configuration is

wtIsing
G,β (σ) =

∏
e={u,v}∈E:
σ(u)=σ(v)

β(e).

The Ising partition function is ZIsing
G,β =

∑
σ:V→{−1,+1}wtIsing

G,β (σ). It is the normalising factor

that makes the weights of configurations into a probability distribution, πIsing
G,β (·), which is

called the Gibbs distribution of the Ising model. Thus, the probability of observing configu-
ration σ is πIsing

G,β (σ) = wtIsing
G,β (σ)/ZIsing

G,β .
We say that an edge weighting is ferromagnetic if β(e) > 1 for all e ∈ E. The correspond-

ing Ising model is also said to be ferromagnetic in this case. We say that an edge weighting
and the corresponding Ising model are antiferromagnetic if 0 < β(e) < 1 for all e ∈ E.

Given specified vertices s, t, we are interested in computing E
πIsing
G,β

[σ(s)σ(t)]. Since

E
πIsing
G,β

[σ(s)] = E
πIsing
G,β

[σ(t)] = 0,
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this quantity is equal to the covariance of the spins at s and t.
Interestingly, none of the existing work on computational aspects of the ferromagnetic Ising

model provides an efficient algorithm for estimating this covariance. Jerrum and Sinclair [7]
presented a polynomial-time algorithm for approximating the partition function ZIsing

G,β within
specified relative error, and Randall and Wilson [10] observed that this algorithm could be
used to produce samples from the Gibbs distribution. Therefore, by repeated sampling we
can easily get an additive approximation to the covariance. Specifically, the covariance may
be estimated to additive error ε using O(ε−2) samples.

Our main contribution (Theorem 2) is a polynomial-time algorithm to approximate the
covariance within small multiplicative error. This is much more challenging than obtaining an
additive approximation since the covariance may be exponentially small in n, as will typically
be the case when the system is in the uniqueness regime. The computational problem that
we study is the following.

Name. FerroIsingCov.

Instance. A graph G = (V,E) with specified vertices s and t. An edge weighting β : E → Q>1

of G.

Output. E
πIsing
G,β

[σ(s)σ(t)].

The reason that we restrict the range of the edge weighting β to the rationals (rather
than allowing real-valued weights) is to avoid the issue of how to represent real numbers
in the input. Each weight β(e) satisfies β(e) > 1. For concreteness, we assume that it is
represented in the input by two positive integers P (e) and Q(e) (specified in unary1 in the
input) such that and β(e) = 1+P (e)/Q(e). Our main result is that there is a polynomial-time
approximation algorithm for FerroIsingCov. In order to state the result precisely, we need to
recall a definition from computational complexity. We view a problem, such as FerroIsingCov,
as a function f : Σ∗ → Q from problem instances to rational numbers.

Definition 1. A randomised approximation scheme for f : Σ∗ → Q is a randomised algorithm
that takes as input an instance x ∈ Σ∗ (e.g., an encoding of a labelled graph) and an error
tolerance ε > 0, and outputs a number z ∈ Q (a random variable on the “coin tosses” made
by the algorithm) such that, for every instance x,

Pr

[
e−ε ≤ z

f(x)
≤ eε

]
≥ 3

4
,

where, by convention, 0/0 = 1. The randomised approximation scheme is said to be a fully
polynomial randomised approximation scheme, or FPRAS, if it runs in time bounded by a
polynomial in |x| and ε−1. (See Mitzenmacher and Upfal [9, Definition 10.2].)

The slight modification of the more familiar definition is to ensure that functions f taking
negative values are dealt with correctly.

Theorem 2. There is an FPRAS for FerroIsingCov.

The restriction to the ferromagnetic case in Theorem 2 is crucial. Consider the unrestricted
version of the problem.

1The assumption that P (e) and Q(e) are specified in unary is a technical simplification, but is not essential:
see Remark 20.
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Name. IsingCov.

Instance. A graph G = (V,E) with specified vertices s and t. An edge weighting β : E → Q>0

of G.

Output. E
πIsing
G,β

[σ(s)σ(t)].

We show the following.

Theorem 3. There is no FPRAS for IsingCov unless RP = #P.

Theorem 3 holds even in the restricted setting where, for some fixed b ∈ (0, 1), the edge
weighting β is the constant function which assigns every edge weight β(e) = b. Theorem 23
in Section 5 shows that even showing whether E

πIsing
G,β

[σ(s)σ(t)] is at least 0 or at most 0 is

#P-hard, in this restricted setting. Theorem 3 is an immediate consequence of Theorem 23.
In Section 4 we prove Theorem 2 by providing an FPRAS for FerroIsingCov. Our FPRAS

is based on Markov-chain simulation. Like the known MCMC algorithms for approximating
the partition function of the Ising model, it is explained in terms of a related model called
the even subgraphs model. Our Markov chain is a modification of a process known as the
worm process.

2 The even subgraphs model and the worm process

An instance of the even subgraphs model is a graph G = (V,E) with an edge weighting
λ : E → Q>0. A configuration of the model is a subset A ⊆ E such that every vertex in the
subgraph (V,A) has even degree.

Definition 4. We use the notation λ(A) to denote the product λ(A) =
∏
e∈A λ(e) of edge-

weights of the edges in A.

It is convenient to generalise the even subgraphs model to allow a small set S ⊆ V
of “exceptional vertices” of odd degree. The configuration space of the (extended) even
subgraphs model is given by

ΩS =
{
A ⊆ E : deg(v) is odd in (V,A) iff v ∈ S

}
,

and the corresponding partition function is given by

ZS(G;λ) =
∑
A∈ΩS

λ(A).

Despite appearances, there is a close connection between the Ising model and the even
subgraphs model. Suppose that, for every e ∈ E, λ(e) = (β(e) − 1)/(β(e) + 1). Van
der Waerden [14] showed that there is an easily-computable scaling factor C such that
ZIsing
G,β = C Z∅(G;λ). Note that a ferromagnetic Ising model corresponds to an even-subgraphs

model in which 0 < λ(e) < 1 for all e ∈ E. We do not use precisely van der Waerden’s iden-
tity, but we do use a closely related one which is captured by the following lemma, which can
be found, e.g., in [1, Lemma 2.1].
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Lemma 5. Let G = (V,E) be a graph with edge weighting β. Let λ be the edge weighting of
G defined by λ(e) = (β(e)− 1)/(β(e) + 1). Then, for any set S ⊆ V ,

E
πIsing
G,β

[∏
v∈S

σ(v)

]
=
ZS(G;λ)

Z∅(G;λ)
. (1)

Proof. Observe that

wtIsing
G,β (σ) =

∏
e={u,v}∈E

β(e) + 1

2

[
1 +

β(e)− 1

β(e) + 1
σ(u)σ(v)

]
.

since the factor corresponding to e = {u, v} contributes β(e) if σ(u) = σ(v) and contributes 1
otherwise. Thus, setting λ as in the statement of the lemma,

ZIsing
G,β =

∑
σ

wtIsing
G,β (σ) =

∏
e∈E

β(e) + 1

2

∑
σ

∏
e={u,v}∈E

[
1 + λ(e)σ(u)σ(v)

]
=
∏
e∈E

β(e) + 1

2

∑
σ

∑
A⊆E

∏
e={u,v}∈A

λ(e)σ(u)σ(v)

= 2n
∏
e∈E

β(e) + 1

2

∑
A∈Ω∅

∏
e∈A

λ(e)

= cZ∅(G;λ), (2)

where c = 2n
∏
e∈E [(β(e) + 1)/2], and σ ranges over configurations V → {−1,+1}. The

third equality is explained as follows. If (V,A) contains an odd degree vertex u, then σ(u)
appears to an odd power in the term corresponding to A; the term is then annihilated by the
summation over σ.

Arguing similarly,∑
σ

wtIsing
G,β (σ)

∏
w∈S

σ(w) =
∏
e∈E

β(e) + 1

2

∑
σ

∏
e={u,v}∈E

[
1 + λ(e)σ(u)σ(v)

] ∏
w∈S

σ(w)

=
∏
e∈E

β(e) + 1

2

∑
σ

∑
A⊆E

∏
e={u,v}∈A

λ(e)σ(u)σ(v)
∏
w∈S

σ(w)

= 2n
∏
e∈E

β(e) + 1

2

∑
A∈ΩS

∏
e∈A

λ(e)

= cZS(G;λ). (3)

The identity in the statement of the lemma is obtained by dividing (3) by (2).

We remark that the interesting case of the lemma is when |S| is even. If |S| is odd, then
both sides of identity (1) are zero. Lemma 5 provides a way to approximate the correlation
E[σ(s)σ(t)] in the Ising model by estimating the ratio of two partition functions in the even-
subgraphs model. At first sight it might seem that existing Markov chain Monte Carlo
approaches might be up to this task. One such Markov chain is the so-called “worm process”.
The state space of this chain is defined as follows.
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Definition 6. Let Ω =
⋃
S⊆V :|S|≤2 ΩS =

⋃
S⊆V :|S|∈{0,2}ΩS .

The “worm process” is a Markov chain on Ω whose stationary distribution assigns prob-
ability proportional to λ(A) =

∏
e∈A λ(e) to each configuration A ∈ Ω. A transition of the

worm process simply flips a single edge of the graph from being in the configuration A to
being out of A or vice versa. Thus, as transitions occur, the two odd degree vertices move in
random paths along the edges of G, occasionally becoming adjacent and disappearing.

The worm process is rapidly mixing, as was shown by Collevecchio, Garoni, Hyndman
and Tokarev [1, Theorem 1.3]. In principle, to estimate the ratio appearing in the right-hand
side of equation (1) with S = {s, t}, we could just run the worm process and observe the
relative time that the process spends in states in Ω{s,t} compared with the time that it spends
in states in Ω∅, However, if the spins at s and t are only weakly correlated, then the ratio
Z{s,t}(G;λ)/Z∅(G;λ) will be small, and the process will spend a small (possibly exponentially
small) proportion of time in Ω{s,t}.

Following [8], we modify the worm process by artificially weighting configurations so that
each subset in the partition {ΩS : |S| ≤ 2} of Ω has roughly equal weight in the stationary
distribution. We will give the details of the modified process in Section 3. First, we need to
define the Random Cluster model [6] (which, in the special case we consider, is also equivalent
to the Ising model) and use the Random Cluster model to prove a lemma (Lemma 10 below),
which will help with the analysis of the weighted worm process.

An instance of the Random cluster model is a graph G = (V,E) with an edge weighting
p : E → Q ∩ (0, 1). A configuration of this model is a subset A ⊆ E. The weight of
configuration A is

wtRC
G,p(A) =

∏
e∈A

p(e)
∏

e∈E\A

(1− p(e)) 2κ(A),

where κ(A) is the number of connected components in the graph (V,A). There is an associated
partition function ZRC

G;p =
∑

A⊆E wtRC
G,p(A), but we are more concerned with the probability

distribution on configurations given by πRC
G,p = wtRC

G,p(A)/ZRC
G;p for all A ⊆ E. Following Fortuin

and Kasteleyn [4], Edwards and Sokal [3] showed that there is a simple coupling between the
distributions πIsing

G,β and πRC
G,p given by the following trial.

Definition 7. (Edwards-Sokal Distribution) Given a graph G = (V,E) with an edge weight-
ing p : E → Q ∩ (0, 1), let DG,p be the following distribution on pairs (A, σ).

1. Select A ⊆ E according to the distribution πRC
G,p.

2. Independently and uniformly, for each connected component of (V,A), choose a spin
from {−1,+1} and assign that spin to all vertices in the connected component. Let
σ : V → {−1,+1} be the resulting spin configuration.

The following lemma shows that the output of the Edwards-Sokal coupling is a sample
from πIsing

G,β .

Lemma 8. (Edwards and Sokal [3]) Let G = (V,E) be a graph with edge weighting β : E →
Q>1. Let p be the edge weighting of G defined by p(e) = 1− 1/β(e). Let (A, σ) be drawn from
the Edwards-Sokal distribution DG,p. Then the distribution of σ is πIsing

G,β .

We say that an event E ⊆ 2E is monotonically increasing if, for all A ⊂ A′ ⊆ E, we have
A ∈ E implies A′ ∈ E . In the random cluster model as defined here, monotonically increasing
events are positively correlated.
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Lemma 9. Suppose that events E1, E2 ⊆ 2E are monotonically increasing. Then

PrπRC
G,p

(E1 ∧ E2) ≥ PrπRC
G,p

(E1) PrπRC
G,p

(E2).

Proof. This inequality is stated as Part (b) of Theorem (3.8) of [6], for the situation where
p(e) is the same for all edges e. However the proof is essentially the same when p(e) varies
with e. The main step, in order to apply the FKG inequality, is to prove the well-known fact
that the distribution πRC

G,p satisfies the FKG lattice condition, which says that, for any sets
A1, A2 ⊆ E,

PrπRC
G,p

(A1 ∪A2) PrπRC
G,p

(A1 ∩A2) ≥ PrπRC
G,p

(A1) PrπRC
G,p

(A2).

To see this, recall the definition of πRC
G,p. The denominators cancel, so the FKG lattice condi-

tion is equivalent to

wtRC
G,p(A1 ∪A2)wtRC

G,p(A1 ∩A2) ≥ wtRC
G,p(A1)wtRC

G,p(A2).

Recalling the definition of wtRC
G,p, note that, for any edge e, the quantities p(e) and 1 − p(e)

occur the same number of times on the left-hand-side and right-hand-side. Thus, the FKG
lattice condition is equivalent to 2κ(A1∪A2)2κ(A1∩A2) ≥ 2κ(A1)2κ(A2). The proof in [6] now
applies without any further changes.

The following lemma will be used in the analysis of the weighted worm process.

Lemma 10. Let G = (V,E) be a graph with edge weighting λ : E → Q ∩ (0, 1). Suppose
S, S′ ⊆ V are subsets of V of even cardinality, and assume that it is not the case that
∅ ⊂ S′ ⊂ S. Then

Z∅(G;λ)

ZS(G;λ)
≤ Z∅(G;λ)

ZS′(G;λ)
× Z∅(G;λ)

ZS⊕S′(G;λ)
.

Proof. Fix G = (V,E), λ, S and S′ as in the statement of the lemma. Let β be the edge
weighting of G defined by β(e) = (1 + λ(e))/(1− λ(e)). Taking reciprocals, the inequality in
the statement of the lemma is equivalent by Lemma 5 to

E
πIsing
G,β

[∏
v∈S

σ(v)

]
≥ E

πIsing
G,β

[ ∏
v∈S′

σ(v)

]
× E

πIsing
G,β

[ ∏
v∈S⊕S′

σ(v)

]
. (4)

Now let p be the edge weighting defined by p(e) = 1 − 1/β(e). Let (A, σ) be drawn
from the Edwards-Sokal distribution DG,p. For any subset T of V , let “T is connected” be a
shorthand for the event “T is contained within a single connected component of (V,A)”. Let
YT be the random variable YT =

∏
v∈T σ(v). Then

EDG,p [YT ] = PrDG,p(T is connected)EDG,p [YT | T is connected]

+ PrDG,p(¬ T is connected)EDG,p [YT | ¬ T is connected].

The definition of DG,p (Definition 7) ensures that, for any set T with even cardinality,
EDG,p [YT | T is connected] = 1 and EDG,p [YT | ¬ T is connected] = 0. Hence, EDG,p [YT ] =
PrDG,p(T is connected). Using Lemma 8,

E
πIsing
G,β

[YT ] = EDG,p [YT ] = PrDG,p(T is connected) = PrπRC
G,p

(T is connected).
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Plugging this into (4) with T = S, T = S′ and T = S ⊕ S′, we find that (4) is equivalent to
the following inequality.

PrπRC
G,p

(S is connected) ≥ PrπRC
G,p

(S′ is connected)× PrπRC
G,p

(S ⊕ S′ is connected). (5)

By considering the possible intersections of S and S′, recalling from the statement of the
lemma that it is not the case that ∅ ⊂ S′ ⊂ S, it is easy to see that

PrπRC
G,p

(S is connected) ≥ PrπRC
G,p

(S′ is connected ∧ S ⊕ S′ is connected). (6)

Now observe that “S′ is connected” and “S ⊕ S′ is connected” are both monotonically in-
creasing events, and hence (5) follows from (6) by Lemma 9.

3 The weighted worm process

Consider a graph G = (V,E) with an edge weighting λ : E → Q ∩ (0, 1).

Definition 11. A subset weighting of G is a function w that assigns a weight wS ∈ Q>0 to
each subset S of V (G) with |S| ∈ {0, 2}. We refer to the pair (λ,w) as a weighting of G.
Given a subset A ⊆ E(G), there is a unique S(A) ⊆ V (G) such that A ∈ ΩS(A). If |S(A)| ≤ 2
we define Λ(A) = λ(A)wS(A). The partition function that we study is

ẐS(G;λ,w) =
∑
A∈ΩS

Λ(A) =
∑
A∈ΩS

λ(A)wS = wSZS(G;λ).

We also define Ẑ(G;λ,w) =
∑

S⊆V ;|S|≤2 ẐS(G;λ,w).

Later, we shall need to extend the above definition to subsets S ⊆ V (G) with |S| ≤ 4 in
the obvious way.

Recall from Definition 6 that Ω =
⋃
S⊆V :|S|≤2 ΩS . The weighted worm process is a

Markov chain with state space Ω. The transitions of the process are given in Figure 1.
It is easy to see from the definition of the transitions that the weighted worm process is
ergodic and time-reversible and that the stationary probability of a configuration A ∈ Ω is
π(A) = Λ(A)/Ẑ(G;λ,w).

Given a subset S of V (G) with |S| ≤ 2, the probability of ΩS in the stationary distribution
of the weighted worm process is∑

A∈ΩS

π(A) =
wSZS(G;λ)

Ẑ(G;λ,w)
=

wSZS(G;λ)∑
S′ wS′ZS′(G;λ)

,

where the sum is over all subsets S′ ⊆ V (G) with |S′| ≤ 2.
Thus, we will be most interested in the weighted worm process when the weighting satisfies

wS = Z∅(G;λ)/ZS(G;λ) so that all subsets S have equal weight. We show in Section 3.2 how
to “learn” such a weighting by running the process multiple times. First, we consider the
mixing rate of the process itself.
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(* One transition from state A ∈ Ω *)
Choose the type of transition T uniformly at random from {“self-loop”, “move”}
if T = “self-loop” then

the next state is A
else

Choose an edge e ∈ E uniformly at random
if A⊕ {e} ∈ Ω then
A′ ← A⊕ {e}

else
A′ ← A

end if
With probability min{Λ(A′)/Λ(A), 1} the next state is A′, otherwise A

end if

Figure 1: One transition of the weighted worm process for graph G = (V,E) with weighting
(λ,w), starting at state A ∈ Ω, where Λ(A) = λ(A)wS(A).

3.1 Rapid mixing of the weighted worm process

In broad outline, the proof of rapid mixing follows existing work [7, 1], but is complicated by
the need to deal with the subset weightings.

We use W(G) to denote the set of weightings (λ,w) where λ : E → Q ∩ (0, 1) is an edge
weighting of G and w is a subset weighting of G satisfying

wS = 1, if |S| = 0,

wS = 0, if |S| = 1, and (7)

1

2
≤ ẐS(G;λ,w)

Ẑ∅(G;λ,w)
≤ 2, if |S| = 2.

The purpose of this section is to prove that the weighted worm process is rapidly mixing
if (λ,w) ∈ W(G) (see Lemma 15 below).

In order to prove rapid mixing, given a weighting (λ,w) of G it will be useful to extend
the subset weighting w by defining wS = Z∅(G;λ)/ZS(G;λ) for every S with |S| = 4. The
extended weighting will be used in the proof, but not in the Markov chain. The following
lemma will be used in the proof of rapid mixing.

Lemma 12. If (λ,w) ∈ W(G) then, for every subset S of V (G) with |S| ∈ {0, 4} we have
wS = Z∅(G;λ)/ZS(G;λ). For every size-2 subset S of V (G) we have

Z∅(G;λ)

2ZS(G;λ)
≤ wS ≤

2Z∅(G;λ)

ZS(G;λ)
.

Proof. The lemma follows trivially from the definition of wS if |S| = 0 or |S| = 4, so suppose
that |S| = 2. From (7) and the definitions of ZS(G;λ) and ẐS(G;λ,w) we have

1

2
≤ wSZS(G;λ)

Z∅(G;λ)
≤ 2,

as required.
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In order to bound the mixing time of the weighted worm process we use the canonical path
method or, more precisely, a well-known generalisation of the method that replaces paths by
flows. We briefly describe the method, using notation that is slightly more general than that
of the weighted worm process. Consider a Markov chainM on a state space Ω∗ with transition
matrix P and stationary distribution π∗. A path from a state I ∈ Ω∗ to a state F ∈ Ω∗ is a
sequence I = T0, . . . , Tk = F of states, all of which are distinct except possibly I and F , such
that, for each i ∈ {0, . . . , k − 1}, PTi,Ti+1 > 0. A flow fI,F is a distribution whose support is
the set of paths from I to F which is normalised so that

∑
p fI,F (p) = π∗(I)π∗(F ). Typically,

when we refer to a flow fI,F , we refer to I as the “initial state” and to F as the “final state”.
The collection of all flows is F = {fI,F : I, F ∈ Ω∗}. The congestion of this collection of flows
is

%(F) = max
(T,T ′)

 1

π(T )P (T, T ′)

∑
I,F∈Ω∗

∑
p=I,...,T,T ′,...,F

fI,F (p) |p|

 ,

where the maximisation is over all transitions (T, T ′) with P (T, T ′) > 0, the second sum is
over all paths p from I to F that use transition (T, T ′), and |p| denotes the length of path p.

The mixing time tmix,T (δ) ofM, when starting from state T , is defined to be the minimum
time t such that the total variation distance between the t-step distribution P t(T, ·) and the
stationary distribution π∗ ofM is at most δ. The existence of a collection of flows with small
congestion implies rapid mixing. The following lemma is due to Sinclair [12], building on work
of Diaconis and Stroock [2]. The explicit statement that we use is taken from [8, Lemma 2.2]

Lemma 13. Let M be an ergodic time-reversible Markov chain with state space Ω∗ and
stationary distribution π∗ whose self-loop probabilities satisfy P (T, T ) ≥ 1/2 for all states T .
Suppose that M supports a collection F of flows. Given any state T0 ∈ Ω∗,

tmix,T0(δ) ≤ %(F)

(
ln

(
1

π∗(T0)

)
+ ln

(
1

δ

))
.

A standard method for defining a collection of flows is to partition the state space Ω∗ into
two parts Ω∗1 and Ω∗2, define canonical paths from every state I ∈ Ω∗1 to every state F ∈ Ω∗2,
and then use an idea similar to Valiant’s randomised routing [13] to obtain a collection of
flows. Thus, for each pair or initial and final states (I, F ) ∈ Ω∗1×Ω∗2 we specify a path γ(I, F )
from I to F . The collection of all such canonical paths is Γ = {γ(I, F ) : (I, F ) ∈ Ω∗1 × Ω∗2}.
For each possible transition (T, T ′) of the Markov chain, denote by

cp(T, T ′) =
{

(I, F ) ∈ Ω∗1 × Ω∗2 : γ(I, F ) uses the transition (T, T ′)
}

the set of canonical paths using (T, T ′). The congestion of Γ is then given by

%(Γ) = max
(T,T ′)

 1

π∗(T )P (T, T ′)

∑
(I,F )∈cp(T,T ′)

π∗(I)π∗(F ) |γ(I, F )|

 . (8)

The next step is to use the canonical paths in Γ to induce a collection F of flows, via
randomised routing: If I and F are in Ω∗1 then the flow fI,F is constructed by choosing
intermediate states T ∈ Ω∗2 and routing flow via the path γ(I, T ) followed by the reversal of the
path γ(F, T ). Similarly, flow from Ω∗2 to Ω∗2 is routed via a random intermediate state in Ω∗1.
The following lemma shows that if the congestion %(Γ) is low then the resulting collection F
also has low congestion. The lemma is a direct translation of Lemma 4.4 of [8] into the more
general language of this section. A similar lemma was used earlier by Schweinsberg [11].
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Lemma 14. Given a partition {Ω∗1,Ω∗2} of the state space Ω∗ of a time-reversible Markov
chain, and a collection Γ of canonical paths from Ω∗1 to Ω∗2 with congestion %(Γ), there exists
a collection of flows F with congestion

%(F) ≤
(

2 + 4

(
π∗(Ω∗1)

π∗(Ω∗2)
+
π∗(Ω∗2)

π∗(Ω∗1)

))
%(Γ).

A bound on the mixing time of the Markov chain M can be derived by constructing
low-congestion canonical paths from Ω∗1 to Ω∗2, using Lemma 14 to derive a collection of flows
with low congestion, and then applying Lemma 13. We next apply these methods to bound
the mixing time of the weighted worm process.

Lemma 15. Suppose that G = (V,E) is a connected graph with n vertices and m edges and
(λ,w) ∈ W(G). Let λmin = mine∈E λ(e). Then the weighted worm process, started in the
empty configuration on G, has mixing time tmix,∅(δ) = O(λ−2

minn
4m2)

(
O(m) + ln

(
1
δ

))
.

Proof. As we observed earlier, the weighted worm process is a time-reversible Markov chain
with state space Ω =

⋃
S⊆V :|S|≤2 ΩS . Our goal will be to apply Lemma 14. To this end, let

Ω∅ = Ω\Ω∅ =
⋃
S⊆V :|S|=2 ΩS . We will define a collection Γ of canonical paths from Ω∅ to Ω∅.

We will bound the congestion %(Γ) and use Lemma 14 and Lemma 13 to bound the mixing
time.

We start by constructing a canonical path from any configuration I ∈ Ω∅ to any config-
uration F ∈ Ω∅. Let a and b be the two odd-degree vertices in I. The vertices of the graph
(V, I ⊕ F ) all have even degree, except for a and b. Choose a canonical partition of I ⊕ F
into a path Π from a to b, and a number of cycles C1, C2, . . . , Ck; also choose a distinguished
end vertex for Π and a distinguished vertex and orientation for each cycle. To unwind a path
or cycle, start at the distinguished vertex and travel along the path or around the oriented
cycle flipping all edges along the way. The act of flipping changes the status of an edge from
absent to present or vice versa. The canonical path γ(I, F ) is obtained by unwinding first the
path Π and then the cycles C1, C2, . . . , Ck, in order. Note that all of the flips are transitions
of the Markov chain corresponding to the weighted worm process.

Fix any transition (T, T ′) that can be made by the Markov chain, and let

cp(T, T ′) = {(I, F ) ∈ Ω∅ × Ω∅ : γ(I, F ) uses the transition (T, T ′)}

be the set of canonical paths using this transition. Our goal is to bound the congestion
through the transition (T, T ′).

Denote by Ω̂ the extended state space Ω̂ =
⋃
S⊆V :|S|≤4. Consider the function ηT,T ′ :

cp(T, T ′)→ Ω̂ defined by ηT,T ′(I, F ) = I ⊕ F ⊕ T . (Note that the range of ηT,T ′ is contained

in Ω̂.) We claim that ηT,T ′ is injective. To see this, suppose (I, F ) ∈ cp(T, T ′) and let
X = ηT,T ′(I, F ). Since I ⊕ F = T ⊕ X, we can use the fixed configuration T from the
transition and the known value X to recover I ⊕ F and hence the path Π and the cycles
C1, C2, . . . , Ck. The set T ⊕T ′ contains a single edge e, which tells which of Π, C1, C2, . . . , Ck
is having its edges flipped by the particular transition (T, T ′). Using this information, we can
apportion the edges in Π∪C1∪C2∪· · ·∪Ck = I⊕F between I and F . (Each edge is either in I
or F but not both.) Say that I⊕F is the disjoint union of I ′ and F ′, with I ′ ⊆ I and F ′ ⊆ F .
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We can then recover I and F themselves using the equalities I = I ′ ∪ (I ∩F ) = I ′ ∪ (T ∩X)2

and F = F ′ ∪ (I ∩ F ) = F ′ ∪ (T ∩X). Thus, we have shown that ηT,T ′ is injective.
We now proceed to bound the congestion through the transition (T, T ′). Note that

λ(I)λ(F ) = λ(T )λ(X), which is exactly what we would need for the analysis of the un-
weighted case, i.e., when wS = 1 for all S. To analyse the weighted case we need to relate
Λ(I)Λ(F ) to Λ(T )Λ(X). There are three cases, depending on where the transition (T, T ′)
occurs on the canonical path from I to F .

• The transition is the first one of all. Then T = I and X = F , and so Λ(I)Λ(F ) =
Λ(T )Λ(X).

• The transition is on the unwinding of the path Π. Then T ∈ Ω{b,c}, where c is a vertex
on the path Π, from which it follows that X ∈ Ω{a,c}. We will show

Λ(I)Λ(F ) = w{a,b}λ(I)w∅λ(F ) ≤ 8w{b,c}λ(T )w{a,c}λ(X) = 8Λ(T )Λ(X).

To establish the inequality recall that λ(I)λ(F ) = λ(T )λ(X) so, cancelling these out,
and noting that w∅ = 1, it suffices to show w{a,b} ≤ 8w{b,c}w{a,c}. Using Lemma 12, it
suffices to show

2Z∅(G;λ)

Z{a,b}(G;λ)
≤ 8

Z∅(G;λ)

2Z{b,c}(G;λ)

Z∅(G;λ)

2Z{a,c}(G;λ)
,

which follows from Lemma 10 taking S = {a, b} and S′ = {b, c}.

• The transition is the first one in the unwinding of a cycle. Then T ∈ Ω∅ and and
X ∈ Ω{a,b}, and hence

Λ(I)Λ(F ) = w{a,b}λ(I)w∅λ(F ) = w∅λ(T )w{a,b}λ(X) = Λ(T )Λ(X).

• The transition arises during the unwinding of a cycle but is not the first such transition.
Then T ∈ Ω{c,d} for vertices c and d on the cycle, and X ∈ Ω{a,b,c,d}. We will show

Λ(I)Λ(F ) = w{a,b}λ(I)w∅λ(F ) ≤ 8w{c,d}λ(T )w{a,b,c,d}λ(X) = 8Λ(T )Λ(X).

As in the second case, it suffices to show w{a,b} ≤ 8w{c,d}w{a,b,c,d}. Using Lemma 12, it
suffices to show

2Z∅(G;λ)

Z{a,b}(G;λ)
≤ 8

Z∅(G;λ)

2Z{c,d}(G;λ)

Z∅(G;λ)

Z{a,b,c,d}(G;λ)
,

which follows from Lemma 10 (with a factor of 2 to spare) taking S = {a, b} and
S′ = {c, d}.

Note that in all instances, Λ(I)Λ(F ) ≤ 8Λ(T )Λ(X). Given a set Ψ ⊆ Ω̂, we use Λ(Ψ) to
denote

∑
C∈Ψ Λ(C). The probability of a configuration C ∈ Ω in the stationary distribution

2 To see that I ∩ F = T ∩ X consider some e ∈ I ∩ F . Note from the definition of γ(I, F ) that e is in
every configuration along way from I to F . Hence e is in T . By the definition of X, e is also in X. The other
direction is similar.
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of the weighted worm process is then π(C) = Λ(C)/Λ(Ω). We can then bound the congestion
through transition (T, T ′) arising from the canonical paths Γ as follows.∑

(I,F )∈cp(T,T ′)

π(I)π(F ) =
1

Λ(Ω)2

∑
(I,F )∈cp(T,T ′)

Λ(I)Λ(F )

≤ 8

Λ(Ω)2

∑
(I,F )∈cp(T,T ′)

Λ(T )Λ(ηT,T ′(I, F ))

≤ 8

Λ(Ω)2

∑
X∈Ω̂

Λ(T )Λ(X)

= 8× Λ(Ω̂)

Λ(Ω)
× Λ(T )

Λ(Ω)

= O(n2)π(T ). (9)

The second inequality uses the fact that ηT,T ′ is injective. The final equality follows from the
observation that

Λ(Ω) =
∑

S:|S|∈{0,2}

ẐS(G;λ,w) and Λ(Ω̂) =
∑

S:|S|∈{0,2,4}

ẐS(G;λ,w).

The first sum has O(n2) terms and the second O(n4). Thus,

Λ(Ω̂)

Λ(Ω)
≤ O(n2)

maxS:|S|∈{0,2,4} ẐS(G;λ,w)

minS:|S|∈{0,2} ẐS(G;λ,w)
= O(n2)

maxS:|S|∈{0,2,4}wSZS(G;λ)

minS:|S|∈{0,2}wSZS(G;λ)
.

By Lemma 12, this is at most

O(n2)
2Z∅(G;λ)
1
2Z∅(G;λ)

= O(n2),

so the final equality holds.
By establishing (9), we have done most of the work required to estimate the congestion

%(Γ) in (8). Since the paths have length at most m, the only remaining task is to lower bound
the transition probability P (T, T ′). Let e = {u, v} ∈ E be any edge, and let S ⊆ V be any
subset of vertices of even cardinality. There is a bijection between ΩS and ΩS⊕{u,v} obtained
by flipping the edge e. Since this operation changes only a single edge, we see that

λ(e)ZS(G;λ) ≤ ZS⊕{u,v}(G;λ) ≤ λ(e)−1ZS(G;λ).

Then, from Lemma 12,

λmin

4
≤ ZS(G;λ)

4ZS⊕{u,v}(G;λ)
≤
wS⊕{u,v}

wS
≤ 4ZS(G;λ)

ZS⊕{u,v}(G;λ)
≤ 4

λmin
.

Since T and T ′ differ by a single edge, this implies

λ2
min

4
≤ Λ(T ′)

Λ(T )
≤ 4

λ2
min

.
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Going back to the definition of the weighted worm process in Figure 1, it follows that
P (T, T ′) ≥ 1

2
1
m min{Λ(T ′)/Λ(T ), 1} ≥ λ2

min/(8m).
Now, starting from (8), and plugging in the bound that path-lengths are at most m and (9)

and then this bound, we get

%(Γ) = max
(T,T ′)

 1

π(T )P (T, T ′)

∑
(I,F )∈cp(T,T ′)

π(I)π(F ) |γ(I, F )|


≤ max

(T,T ′)

{
1

π(T )P (T, T ′)
O(n2)π(T )m

}
= O(λ−2

minn
2m2)

In order to apply Lemma 14 we must find an upper bound for π(Ω∅)/π(Ω∅) and π(Ω∅)/π(Ω∅).
Using the upper bound in Lemma 12,

π(Ω∅)

π(Ω∅)
=

∑
A∈Ω∅

Λ(A)∑
A∈Ω∅

Λ(A)
=

∑
S:|S|=2 ẐS(G;λ,w)

Ẑ∅(G;λ,w)
=

∑
S:|S|=2wSZS(G;λ)

w∅Z∅(G;λ)
= O(n2).

Similarly, π(Ω∅)/π(Ω∅) = O(1/n2) = O(n2).
Now applying Lemma 14, there is a collection of flows F with %(F) ≤ O(n2)%(Γ) =

O(λ−2
minn

4m2).
In order to apply Lemma 13 starting from state T0 = ∅ we need an upper bound for

ln(1/π(∅)). For this we use

ln

(
1

π(∅)

)
= ln

(
Ẑ(G;λ,w)

Λ(∅)

)
= ln(Ẑ(G;λ,w)).

By the definition of Ẑ(G;λ,w) and (7),

ln(Ẑ(G;λ,w)) ≤ ln(n2Ẑ∅(G;λ,w)) = ln(n2Z∅(G;λ)) ≤ ln(n22m) = O(m),

where the asymptotic bound uses the fact that G is connected.
Finally, by Lemma 13,

tmix,∅(δ) ≤ %(F)

(
O(m) + ln

(
1

δ

))
= O(λ−2

minn
4m2)

(
O(m) + ln

(
1

δ

))
.

The following lemma captures how we will use Lemma 15.

Lemma 16. There is an algorithm that takes as input an n-vertex connected graph G = (V,E)
with a weighting (λ,w) ∈ W(G) and a set S ⊆ V with |S| = 2, also an accuracy parameter
ε ∈ (0, 1) and a desired failure probability δ∗. With probability at least 1 − δ∗, the algorithm
produces as estimate R̂ such that

e−εR̂ ≤ Ẑ∅(G;λ,w)

ẐS(G;λ,w)
≤ eεR̂.

Let λmin = mine∈E λ(e). The running time of the algorithm is at most a polynomial in n,
1/λmin, 1/ε, and log(1/δ∗).
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Proof. Let θ = ε/8, δ = ε/(32n2) and T = dln(6/δ∗)e8n2δ12n2/θ2e. Let λmin = mine∈E λ(e).
Let t be the upper bound on the mixing time tmix,∅(δ) of the weighted worm process, from
Lemma 15. Given the definition of δ, t is at most a polynomial in n, 1/λmin, and log(1/ε). For
i ∈ [T ], the algorithm will run the weighted worm process for t steps, starting from the empty
configuration, computing xi, the indicator for the event that the output is in Ω∅, Similarly,
for i ∈ [T ], the algorithm will run the weighted worm process for t steps, starting from the
empty configuration, computing yi, the indicator for the event that the output is in ΩS . Let
x =

∑T
i=1 xi and y =

∑T
y=1 yi. The output is then R̂ = x/y. The calculation of errors is

standard. Let p∅ = Λ(∅) = Ẑ∅(G;λ,w)/Ẑ(G;λ,w). Since (λ,w) ∈ W(G), by the definition
of W(G), we have the loose inequality 1/(4n2) ≤ p∅ ≤ 4/n2. By the total variation distance
guarantee of Lemma 15, the probability p̂∅ that xi = 1 satisfies p̂∅ ≤ p∅ + δ = (1 + δ/p∅)p∅ ≤
eδ/p∅p∅ ≤ e4n2δp∅ and p̂∅ ≥ p∅− δ = (1− δ/p∅)p∅ ≥ e−2δ/p∅p∅ ≥ e−8n2δp∅. Then by a Chernoff
bound, for any θ ∈ (0, 1),

Pr(x ≥ eθTe4n2δp∅) ≤ Pr(x ≥ (1 + θ)T p̂∅) ≤ 2 exp(−θ2p̂∅T/3) ≤ 2 exp(−θ2T/(e8n2δ12n2)).

Similarly,

Pr(x ≤ e−2θTe−8n2δp∅) ≤ Pr(x ≤ (1− θ)T p̂∅) ≤ exp(−θ2p̂∅T/2) ≤ exp(−θ2T/(e8n2δ8n2)).

Similarly, with pS = Λ(S) = ẐS(G;λ,w)/Ẑ(G;λ,w), the probability that y fails to satisfy
e−2θe−8n2δpST ≤ y ≤ eθe4n2δpST is at most 3 exp(−θ2T/(e8n2δ12n2)). The accuracy guaran-
tee follows from the choice of θ and δ, which ensure that e2θe8n2δ = eε/2.

The failure probability guarantee comes from the fact that 6 exp(−θ2T/(e8n2δ12n2)) ≤ δ∗.
The worm process is simulated for t steps O(T ) times, giving the running time bound in the
statement of the lemma.

3.2 Learning appropriate weights for the worm process

Lemma 15 shows that the weighted worm process is rapidly mixing as long as the weighting
(λ,w) is in W(G). Let G = (V,E) be a connected graph with |V | = n and |E| = m. Let
λ : E → Q ∩ (0, 1) be an edge weighting of G.

In this section we show how to learn a sequence (λ[0], w[0]), . . . , (λ[t], w[t]) of weightings so
that each weighting (λ[i], w[i]) is in W(G). The sequence will satisfy

λ[i](e) = max(1/(1 + 1
2m)i, λ(e)), (10)

so taking t = maxe∈E
⌈
log(1/λ(e))/ log(1 + 1

2m)
⌉
, we have λ[t] = λ. The results of the section

are summarised in Lemma 19.
Although the definition of λ[i], from Equation (10), is straightforward, the definition of

the subset weighting w[i] is more complicated. In order to conform with the definition (7) of

W(G), we will set w
[i]
∅ = 1 for all i ∈ {0, . . . , t}. Also, for sets S with |S| = 1, we set w

[i]
S = 0.

This leaves the definition of w
[i]
S where |S| = 2. For this, we start by defining the base case,

which is i = 0. Then, we show how to learn w[i+1] from w[i] by running the weighted worm
process. As quantified by Lemma 19, there is a probability that the process does not converge
sufficiently quickly to its stationary distribution. Thus, throughout this section we take δ to
be the desired failure probability, from Lemma 19. We will give an algorithm which, with
probability at least 1 − δ, learns the weights. We start by defining the base case. For every

size-2 set S ⊆ V , we set w
[0]
S = 1.
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Observation 17. The weighting (λ[0], w[0]) is in W(G).

Proof. First note that, for every e ∈ E, λ(e) ≤ 1 so λ[0](e) = 1.
Consider any S ⊆ V with |S| = 2 and note that

ẐS(G;λ[0], w[0])

Ẑ∅(G;λ[0], w[0])
=

∑
A∈ΩS

1∑
A∈Ω∅

1
.

We will show below that |ΩS | = |Ω∅|. This ensures that (λ[0], w[0]) satisfies Equation (7) so it
is in W(G) and the observation follows.

To see that |ΩS | = |Ω∅|, we establish a bijection τ between ΩS and Ω∅. Let S = {u, v}
and let P be the set of edges in any fixed path from u to v in G — such a path exists since
G is connected. The bijection is straightforward. Given any A ∈ ΩS , let τ(A) = A ⊕ P and
note that τ(A) ∈ Ω∅.

Now consider the weighting (λ[i], w[i]). If i < t then, for every size-2 subset S of V ,

we define w
[i+1]
S by running the weighted worm process, as follows. Set ε = 1/8 and set

δ∗ = δ/(n2t). Now run the weighted worm process with weighting (λ[i], w[i]) to obtain (by

Lemma 16) an estimate R̂
[i]
S which, with probability at least 1− δ∗, satisfies

e−εR̂
[i]
S ≤

Ẑ∅(G;λ[i], w[i])

ẐS(G;λ[i], w[i])
≤ eεR̂[i]

S .

In the proof of Lemma 19, we will use Lemma 16 to account for how long this run of the

weighted worm process takes. To conclude with the definition of w
[i+1]
S , let w

[i+1]
S = w

[i]
S R̂

[i]
S .

Lemma 18. Assuming that the algorithm from Lemma 16 does not fail when it is called to

learn R̂0
S , . . . , R̂

[i]
S , The weighting (λ[i+1], w[i+1]) is in W(G).

Proof. Consider any S ⊆ V with |S| = 2. Then

ẐS(G;λ[i+1], w[i+1])

Ẑ∅(G;λ[i+1], w[i+1])
=

∑
A∈ΩS

w
[i+1]
S

∏
e∈A λ

[i+1](e)∑
A∈Ω∅

w
[i+1]
∅

∏
e∈A λ

[i+1](e)

=
w

[i]
S R̂

[i]
S

∑
A∈ΩS

∏
e∈A λ

[i+1](e)∑
A∈Ω∅

∏
e∈A λ

[i+1](e)
.

Using the upper bound on R̂
[i]
S and λ[i](e)

(1+
1

2m )
≤ λ[i+1](e) ≤ λ[i](e), this quantity is at most

w
[i]
S e

εẐ∅(G;λ[i], w[i])
∑

A∈ΩS

∏
e∈A λ

[i](e)

ẐS(G;λ[i], w[i])
∑

A∈Ω∅

∏
e∈A

λ[i](e)

1+
1

2m

≤ eε(1 + 1
2m)

mw
[i]
S Ẑ∅(G;λ[i], wi)

∑
A∈ΩS

∏
e∈A λ

[i](e)

ẐS(G;λ[i], wi)
∑

A∈Ω∅

∏
e∈A λ

[i](e)

= eε(1 + 1
2m)

m ≤ 2.

Similarly, the quantity is at least 1/2.

Collecting what we have done in this section, we get the following lemma.
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Lemma 19. There is a randomised algorithm that takes as input a connected graph G =
(V,E) with |V | = n and |E| = m and an edge weighting λ : E → Q ∩ (0, 1). The algorithm
also takes a failure probability δ. With probability at least 1−δ, it computes a subset weighting
w of G so that (λ,w) is inW(G). Let λmin = mine∈E λ(e). The running time of the algorithm
is at most a polynomial in n, 1/λmin, and log(1/δ).

Proof. Let t = maxe∈E
⌈
log(1/λ(e))/ log(1 + 1

2m)
⌉
. Note that t = O(m log(1/λmin)). The

algorithm constructs the sequence (λ[0], w[0]), . . . , (λ[t], w[t]) of weightings as described in this
section where λ[t] = λ.

We just have to collect the failure probabilities and running times. As note earlier, for

i ∈ {0, . . . , t − 1}, for each size-2 subset S of V , we estimate R̂
[i]
S using the weighted worm

process (Lemma 16) with ε = 1/8 and specified failure probability δ∗ = δ/(n2t).

The running time from Lemma 16 is at most a polynomial in n, 1/λ
[i]
min, and log(1/δ∗).

Recall that λ[i](e) ≥ λ(e). Thus, the overall running time is at most a polynomial in n,
1/λmin, and log(1/δ). By a union bound, the overall failure probability is at most δ.

4 The Proof of Theorem 2

Theorem 2. There is an FPRAS for FerroIsingCov.

Proof. We start by reviewing what are the inputs and outputs of an FPRAS for FerroIsingCov.
The input consists of an input to FerroIsingCov, an accuracy parameter ε ∈ (0, 1), and a

failure probability δ ∈ (0, 1). An input to FerroIsingCov consists of a graph G = (V,E) with
specified vertices s and t and an edge weighting β : E → Q>1 of G. Let n = |V |. We need to
be more specific about how the edge weighting β is represented. Recall from the introduction
that each weight β(e) satisfies β(e) > 1 and is represented in the input by two positive integers
P (e) and Q(e) (specified in unary in the input) such that and β(e) = 1 + P (e)/Q(e).

With probability at least 1− δ, the output Ĉ of the FPRAS should satisfy

e−εĈ ≤ E
πIsing
G,β

[σ(s)σ(t)] ≤ eεĈ. (11)

Finally, in order to be an FPRAS, the running time should be at most a polynomial in n,∑
e∈E(P (e) +Q(e)), 1/ε, and log(1/δ).
If s and t are in different connected components of G then E

πIsing
G,β

[σ(s)σ(t)]=0, so we can

just output 0 in this case. If s and t are in the same connected component, G′, of G then
E
πIsing
G,β

[σ(s)σ(t)] = E
πIsing

G′,β
[σ(s)σ(t)]. So assume without loss of generality, for the rest of the

proof, that G is connected.
Now let λ be the edge-weighting of G defined by λ(e) = (β(e) − 1)/(β(e) + 1). Let

λmin = mine∈E λ(e).
The FPRAS should first run the algorithm of Lemma 19 with input G, λ and δ/2. With

probability at least 1− δ/2, it computes a subset weighting w of G so that (λ,w) is in W(G).
Let S = {s, t}. Suppose that the algorithm of Lemma 19 has succeeded. Recall from

Lemma 5 that E
πIsing
G,β

[σ(s)σ(t)] = ZS(G;λ)
Z∅(G;λ) . Also, by plugging in the definitions of ẐS(G;λ,w)

(from the beginning of Section 3) and ZS(G;λ) (from the beginning of Section 2) we have

E
πIsing
G,β

[σ(s)σ(t)] =
ZS(G;λ)

Z∅(G;λ)
=

ẐS(G;λ,w)

wSẐ∅(G;λ,w)
.
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Since we already know wS , the goal is to compute a quantity Q̂ such that

e−εQ̂ ≤ ẐS(G;λ,w)

Ẑ∅(G;λ,w)
≤ eεQ̂.

Then we satisfy (11) by taking Ĉ = Q̂/wS .
The estimate Q̂ can be obatined by running the algorithm of Lemma 16 with input G,

weighting (λ,w), set S = {s, t}, accuracy parameter ε, desired failure probability δ∗ = δ/2,
letting R̂ be the output of the algorithm, and taking Q̂ = 1/R̂.

The running time of both algorithms is at most a polynomial in n, log(1/δ), 1/ε and

1/λmin = max
e∈E

β(e) + 1

β(e)− 1
= max

e∈E

{
1 +

2

β(e)− 1

}
= max

e∈E

{
1 +

2Q(e)

P (e)

}
.

Remark 20. It is possible to improve the run-time of the algorithm of Theorem 2 so that

the dependence on 1/λmin = maxe∈E

{
1 + 2

β(e)−1

}
is logarithmic, rather than polynomial.

To do this, we pre-process the graph G. If an edge e has a weight β(e) that is very close
to 1 then it is replaced with a subgraph J . The weights of the edges of J are constants
bounded above 1, but the overall effect of J is to simulate the weight β(e) with exponential
precision. The technical details of the simulation are very similar to what we do in Lemma 22
of Section 5. We omit the details since polynomial-time algorithms (as opposed to strongly
polynomial-time algorithms) are sufficient for our purposes.

5 The Antiferromagnetic Case

Consider the antiferromagnetic Ising model on a graph G = (V,E) as defined in Section 1.
We will consider the situation where, for some b ∈ (0, 1), G = (V,E) is a graph with an edge
weighting β that assigns value β(e) = b to every e ∈ E. We will simplify the notation by
defining

wtIsing
G,b (σ) = b|{e={u,v}∈E:σ(u)=σ(v)}|

with the corresponding partition function ZIsing
G,b =

∑
σ:V→{−1,+1}wtIsing

G,b (σ) and Gibbs distri-

bution πIsing
G,b (·). We will be interested in the following computational problem, with parameter

b ∈ (0, 1).

Name. SignIsingCovb.

Instance. A graph G with specified vertices s and t

Output. A correct statement of the form “E
πIsing
G,b

[σ(s)σ(t)] ≥ 0” or “E
πIsing
G,b

[σ(s)σ(t)] ≤ 0”.

The purpose of this section is to prove Theorem 23 which states that, for any b ∈ (0, 1),
SignIsingCovb is #P-hard. Note that the #P-hardness does not come from the difficulty of
determining whether or not E

πIsing
G,b

[σ(s)σ(t)] is zero — an algorithm for SignIsingCovb is allowed

to give either answer in this case. Theorem 23 implies that it is #P-hard to approximate
E
πIsing
G,b

[σ(s)σ(t)] within any specified factor, since such an approximation would allow one to

determine either E
πIsing
G,b

[σ(s)σ(t)] ≥ 0 or E
πIsing
G,b

[σ(s)σ(t)] ≤ 0.
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We start with some notation. Given vertices s and t of G, let Ψs+,t+ be the set of
assignments σ : V → {−1,+1} that satisfy σ(s) = +1 and σ(t) = +1. Let

Z Ising
G,b,s+,t+ =

∑
σ∈Ψs+,t+

wt(σ).

Define the sets of assignments Ψs+,t−, Ψs−,t+, Ψs−,t− and the partition functions Z Ising
G,b,s+,t−,

Z Ising
G,b,s−,t+, and Z Ising

G,b,s−,t− similarly. We use the following notation of implementation.

Definition 21. A graph J is said to b-implement a rational number b′ if there are vertices s
and t of J such that Z Ising

J,b,s+,t+/Z
Ising
G,b,s+,t− = b′. We call s and t the terminals of J .

We will use the following lemma for implementations.

Lemma 22. Fix b ∈ (0, 1). There is a polynomial-time algorithm that takes as input

• A positive integer n, in unary,

• a target-edge weight b′ ∈ [bn, b−n], and

• a rational accuracy parameter ε ∈ (0, 1), in binary.

The algorithm produces a graph J with terminals s and t that b-implements a value b̂ satisfying
|b̂− b′| ≤ ε. The size of J is at most a polynomial in n and log(1/ε), independently of b′.

Proof. If b′ = 1 then J is the graph with vertices s and t and no edges. So suppose b′ 6= 1.
Let P` be an `-edge path with endpoints s and t. Let f` = Z Ising

P`,b,s+,t+
and a` = Z Ising

P`,b,s+,t−.
Then f1 = b, a1 = 1 and we have the system f` = bf`−1 + a`−1 and a` = f`−1 + ba`−1. Thus,
f` = (1/2)((b+ 1)` + (b− 1)`) and a` = (1/2)((b+ 1)` − (b− 1)`). Let ζ` = f`/a`. Then

ζ` =
f`
a`

=
(b+ 1)` + (b− 1)`

(b+ 1)` − (b− 1)`
= 1 +

2

c` − 1
,

where c = (b + 1)/(b − 1) < −1. Note that for odd ` the values of ζ` are in (0, 1) and they
increase. Also, for even ` the values of ζ` are greater than 1 and they decrease.

The graph J is constructed by combining copies of P` (for different values of `), identifying
the vertex s in all copies, and identifying the vertex t in all copies. Let

L =

⌈
log
(

2
bnε + 1

)
log(c2)

⌉
.

We will use paths P` with ` ≤ 2L + 1. The value of L is defined so that L is at most a
polynomial in n and log(1/ε), as required in the statement of the lemma, and also

c2L ≥ 2b−n/ε+ 1. (12)

The graph J is constructed as follows.

• If b′ > 1: Set B0 = b′ > 1. For odd j ∈ {2, . . . , 2L + 1}, let dj = 0. For even

j ∈ {2, . . . , 2L+ 1}, let dj be the largest non-negative integer such that ζ
dj
j ≤ Bj−2 and

let Bj = Bj−2/ζ
dj
j ≥ 1.
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• If b′ < 1: Set B1 = b′ < 1. For even j ∈ {2, . . . , 2L + 1}, let dj = 0. For odd

j ∈ {2, . . . , 2L+ 1}, let dj be the largest non-negative integer such that ζ
dj
j ≥ Bj−2 and

let Bj = Bj−2/ζ
dj
j ≤ 1.

The graph J is constructed by taking dj copies of Pj for j ∈ {2, . . . , 2L+ 1}, identifying the
vertex s in all copies and identifying the vertex t in all copies. The value that J b-implements
is

b̂ =
Z Ising
J,b,s+,t+

Z Ising
J,b,s+,t−

=

2L+1∏
j=2

ζ
dj
j

We next show that |b̂− b′| ≤ ε.

• If b′ > 1: The construction guarantees b′

ζ2L
≤ b̂ ≤ b′. But (12) implies ζ2L ≤ 1 + ε

b−n ≤
1 + ε

b′ ≤
1

1− ε
b′

, so b′ − ε ≤ b′/ζ2L.

• If b′ < 1: The construction guarantees b′ ≤ b̂ ≤ b′

ζ2L+1
. But (12) implies |c|2L+1 ≥ c2L ≥

2b−n/ε+ 1 so ζ2L+1 ≥ 1− 2
|c|2L+1+1

≥ 1− ε
b−n+ε

≥ 1− ε
b′+ε = b′

b′+ε , so b′/ζ2L+1 ≤ b′ + ε.

To finish the bound on the size of J , we will show that d2 and d3 are O(n) and that, for
every j ∈ {4, . . . , 2L + 1}, dj = O(1). First, d2 ≤ logζ2(b′) where ζ2 = (b2 + 1)/(2b). Also,
d3 ≤ log1/ζ3(1/b′) where 1/ζ3 = (1 + 3b2)/(b(3 + b2)).

Finally, let d = dc4/(c2 − 1)e. Note that we could replace “c” with “|c|” in the definition
of d without changing the definition, so, plugging the definition in, we find, for j ≥ 4, that
|c|j − 1 ≤ d(|c|j−2 − 1). This implies(

1 +
2

|c|j − 1

)d
≥ 1 +

2d

|c|j − 1
≥ 1 +

2

|c|j−2 − 1
. (13)

If j ≥ 4 is even then (13) implies ζdj ≥ ζj−2, so dj ≤ d. If j ≥ 4 is odd then (13) gives(
|c|j − 1

|c|j + 1

)d
≤ |c|

j−2 − 1

|c|j−2 + 1
,

and all numerators and denominators are negative, so multiplying them by −1 we get(
cj + 1

cj − 1

)d
≤ cj−2 + 1

cj−2 − 1
,

so ζdj ≤ ζj−2 and dj ≤ d.

Theorem 23. Let b ∈ (0, 1) be a rational number. Then SignIsingCovb is #P-hard.

Proof. Fix b ∈ (0, 1). We will show how to use an oracle for SignIsingCovb to give a polynomial
time algorithm for exactly computing ZIsing

G,b , a problem that is known to be #P-hard (see [7,
Theorem 14] for #P-hardness of a multi-variate version and [15, Corollary 2] for a result that
implies #P-hardness of the version considered here).

Let G = (V,E) be a graph with n vertices and m > 0 edges. We will show how to compute
ZIsing
G,b using the given oracle for SignIsingCovb.
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As we will see, the information provided by the oracle for SignIsingCovb can naturally be
used to provide a multiplicative approximation to ZIsing

G,b . Since we need additive approxima-

tions in order to compute ZIsing
G,b precisely, we have to switch back and forth between additive

and multiplicative approximations. To this end, let b = p/q for integers p and q. Choose
m′ = O(m) such that bm

′ ≤ (1/q)m.
Note that ZIsing

G,b =
∑m

j=0 b
jcj , where cj is the number of configurations σ : V → {−1,+1}

which induce j edges with like spins in G. This implies that bm2n ≤ ZIsing
G,b ≤ 2n. Now let

δ = bm
′
2−(n+3). Suppose that Ẑ satisfies

e−δZIsing
G,b ≤ Ẑ ≤ e

δZIsing
G,b (14)

so that (1− δ)ZIsing
G,b ≤ Ẑ ≤ (1 + 2δ)ZIsing

G,b . We conclude that

|Ẑ − ZIsing
G,b | ≤ 2δZIsing

G,b ≤ 2δ2n ≤ bm′/4

so from Ẑ we learn ZIsing
G,b precisely. To see this, note that any interval of length bm

′
/2 contains

the value of at most one polynomial of the form
∑m

j=0 b
jcj with integer coefficients. Consider

two such polynomials Z1 =
∑m

j=0 b
jcj and Z2 =

∑m
j=0 b

jc′j , both with integer coefficients. Set
aj = cj − c′j . Then

Z1 − Z2 =
m∑
j=0

ajp
j

qj
≤
∑m

j=0 ajp
jqm−j

qm
,

but the numerator is an integer, so if Z1 6= Z2 then |Z1 − Z2| ≥ 1/qm ≥ bm
′
, so Z1 and Z2

cannot both be in an interval of length bm
′
/2.

Thus, from now on, our goal will be to show how to use the given oracle for SignIsingCovb
to obtain Ẑ satisfying (14). This will complete the proof of Theorem 23 and, a fortiori,
Theorem 3.

Let the edges of G be e1, . . . , em and, for j ∈ [m], let Gj = (V, {e1, . . . , ej}). Denote
the endpoints of ej by sj and tj . Using the notation from the beginning of the section,

let νj = Z Ising
Gj−1,b,sj+,tj−/Z

Ising
Gj−1,b,sj+,tj+

and let αj = (b + νj)/(1 + νj). Observe that ZIsing
Gj ,b

=

2(bZ Ising
Gj−1,b,sj+,tj+

+Z Ising
Gj−1,b,sj+,tj−) and ZIsing

Gj−1,b
= 2(Z Ising

Gj−1,b,sj+,tj+
+Z Ising

Gj−1,b,sj+,tj−), and hence

ZIsing
Gj ,b

= αjZ
Ising
Gj−1,b

. Therefore,

ZIsing
G,b = ZIsing

Gm,b
=

 m∏
j=1

αj

ZIsing
G0,b

= 2n
m∏
j=1

αj ,

so to finish it suffices to show, for j ∈ [m], that we can use an oracle for SignIsingCovb to
approximate αj with multiplicative error exp(±δ/m).

Suppose that we could produce ν̂j satisfying |ν̂j − νj | ≤ bδ/(5m). Then, setting α̂j =
(b+ ν̂j)/(1 + ν̂j), we have αj exp(−δ/m) ≤ α̂j ≤ αj exp(δ/m), as required.

So, to finish it suffices to show, for j ∈ [m], that we can use an oracle for SignIsingCovb to
approximate νj with additive error at most δ′ = bδ/(5m). Our basic approach is the binary-
search method that the authors used in [5] to show that it is #P-hard to compute the sign
of the Tutte polynomial.
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The invariant that we will maintain is that νj lies in an interval [νmin, νmax]. We will
repeatedly use the oracle to reduce the length of the interval by a constant factor, until the
length is at most δ′ (in which case we can take ν̂j to be any point in the interval). To initialise
the search interval, we take [νmin, νmax] = [bn, b−n]. It is clear that νj lies in this interval,
since flipping the spin at tj affects at most n − 1 incident edges, and therefore changes the
weight of a configuration by a factor that is at least bn and at most b−n.

Our basic approach is as follows. Suppose that we can construct a graph J with terminals
s and t to b-implement a point b̂ in the middle third of the interval. Let β be the edge-labelling
of Gj that assigns value b̂ to edge ej and b to all other edges. Let Gj(J) be the graph formed
from Gj by replacing the edge ej with the graph J (identifying the terminal s of J with the
vertex sj of Gj and identifying the terminal t of J with the vertex tj of Gj). Then

E
πIsing
Gj(J),b

[σ(sj)σ(tj)] = E
πIsing
Gj,β

[σ(sj)σ(tj)] =
b̂Z Ising

Gj−1,b,sj+,tj+
− Z Ising

Gj−1,b,sj+,tj−

b̂Z Ising
Gj−1,b,sj+,tj+

+ Z Ising
Gj−1,b,sj+,tj−

.

Using an oracle for SignIsingCovb we can determine either that this quantity is at least 0 (in
which case b̂ ≥ νj and we can recurse on [νmin, b̂]) or that it is at most 0 (in which b̂ ≤ νj and

we can recurse on [b̂, νmax]). Either way, the length of the new interval is at most 2/3 of the
length that it was, so after O(log(1/b)(m′+n)) iterations, the length of the interval will have
shrunk to length at most δ′, as required.

Finding the required J is straightforward — this can be done by taking b′ = (νmin+νmax)/2
to be the centre of the interval and using Lemma 22 with inputs n, b′ and ε = δ′/6. The size
of J is at most a polynomial in n and log(1/ε), which is polynomial in n.
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