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We investigate the surface adsorption transition of interacting self-avoiding square lattice trails
onto a straight boundary line. The character of this adsorption transition depends on the strength
of the bulk interaction, which induces a collapse transition of the trails from a swollen to a collapsed
phase, separated by a critical state. If the trail is in the critical state, the universality class of the
adsorption transition changes; this is known as the special adsorption point. Using flatPERM, a
stochastic growth Monte Carlo algorithm, we simulate the adsorption of self-avoiding interacting
trails on the square lattice using three different boundary scenarios which differ with respect to
the orientation of the boundary and the type of surface interaction. We confirm the expected
phase diagram, showing swollen, collapsed, and adsorbed phases in all three scenarios, and confirm
universality of the normal adsorption transition at low values of the bulk interaction strength.
Intriguingly, we cannot confirm universality of the special adsorption transition. We find different
values for the exponents; the most likely explanation is that this is due to the presence of strong
corrections to scaling at this point.

PACS numbers: 05.50.+q,05.10.Ln,05.70.Fh,61.41.+e

I. INTRODUCTION

When a polymer in solution is in contact with an at-
tractive surface, it adsorbes upon decreasing temperature
[1–10]. In the presence of attractive bulk interactions, a
polymer collapses from a swollen coil to a collapsed glob-
ule [11, 12]. Additionally, a polymer can also undergo a
collapse transition when adsorbed on a two-dimensional
surface. To complicate matters, introduction of stiffness
can give rise to a collapsed crystalline phase [13], giving
rise to a complex phase diagram.

It hence is helpful to consider the simpler scenario of
two-dimensional flexible interacting polymers adsorbing
onto a line, where we find a two-dimensional phase dia-
gram with three phases: swollen coil, collapsed globule,
and adsorbed polymer [14]. The canonical lattice model
for this is given by self-avoiding walks on the square lat-
tice tethered to a point on the surface, with energetic con-
tributions from the number of non-consecutive nearest-
neighbor sites of the walk (bulk interactions) and the
number of sites of the walk in the surface (surface inter-
actions). This model has been extensively studied previ-
ously, and theoretically predicted critical exponents have
been confirmed numerically with high accuracy [15].

Recently, there has been renewed interest in the poly-
mer adsorption transition. In [10, 16], it was argued
based on numerical simulations in three dimensions, that
the generally accepted scaling theory for polymer adsorp-
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tion in terms of a single crossover exponent may break
down in the presence of bulk interactions. Specifically,
it was claimed that the exponent involved in the tem-
perature scaling of the free energy around the adsorption
critical point is distinct from the exponent describing the
scaling of the order parameter at this critical point, and
moreover that these two exponents are not universal with
respect to varying the strength of the bulk interactions.

Thus, there was need to examine the adsorption tran-
sition more carefully in a variety of two- and three-
dimensional models [17, 18], in order to both test the
universality assumption as well as the validity of the nu-
merical methods used to estimate the scaling exponents.
The main conclusion of that work was that existing meth-
ods for extracting critical exponents for the adsorption
transition from numerical data do not seem to be able
to capture the effect of finite-size corrections. Different
methods produced different exponent estimates with sta-
tistical errors much smaller than the difference between
the estimates, and there also was no clear indication as
to which method was most reliable. It therefore seemed
likely that any apparent non-universal behaviour was due
to the fact that the methods used could not account suf-
ficiently well for systematic error.

One of the models studied in [17] was the model of
self-avoiding trails on the square and simple cubic lattice,
weighted by the number of sites in the surface. Trails are
lattice paths which may repeatedly visit sites but tra-
verse bonds only once. If one associates a contact inter-
action to every multiply-visited lattice site, then one can
view self-avoiding walks as self-avoiding trails with infi-
nite repulsion. It is known that self-avoiding trails and
self-avoiding walks on the square lattice are in the same
universality class, with subtle differences in the correc-
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tions to scaling [19]. Interacting self-avoiding trails on
the square lattice undergo a collapse transition, which
however is not in the same universality class as the col-
lapse transition of interacting self-avoiding walks [20, 21].

In the current paper we extend previous studies by
considering the adsorption transition for interacting self-
avoiding trails on the square lattice. We analyse the ad-
sorption transition in the presence of bulk interactions of
varying strength. In addition to the normal adsorption
transition from the swollen to the adsorbed phase, we also
study the special surface transition occurring when col-
lapsing polymers adsorb. The value of the bulk interac-
tion at which interacting self-avoiding trails on the square
lattice collapse is exactly known, as is the free energy at
this point [20], which is a major advantage of studying
this model in contrast to interacting self-avoiding walks,
where only a numerical estimate of the collapse transition
point is available.

The temperature of the adsorption transition is sen-
sitive to the orientation of the boundary and type of
boundary interaction, but the same universal critical ex-
ponents are expected. However, previous works [20, 22]

which have considered different surface interactions are
in disagreement about the value of the exponents for the
special transition. Alternatively to considering the num-
ber of sites of a trail in the surface [17], one can consider
the number of bonds of a trail in the surface [22]. Also,
while conventionally a horizontal surface is considered,
for interacting self-avoiding trails at the collapse point
it is advantageous to consider weighting the number of
sites along a diagonal line, as in this case the value of
the surface interaction at which collapsing trails adsorb
is exactly known [20]. We hence investigate normal and
special adsorption for all three scenarios: a horizontal
boundary with either site or bond interactions, and a
diagonal boundary with site interactions.

The paper is structured as follows. In Section II we
define the lattice model we investigate, and introduce
relevant thermodynamic quantities. In Section III we re-
view scaling laws and critical exponents, and describe the
methods by which we extract exponents from numerical
data. In Section IV we describe the simulation methods
used in this work, and Section V describes our findings
in detail.

FIG. 1: Examples of trails for the three cases of surface interaction studied. The trail starts at the solid circle in the surface.
Bulk and surface interactions are indicated by dashed circles and are denoted by ω and κ, respectively. Panel (a) shows
monomer-surface interactions in a horizontal surface, panel (b) shows bond-surface interactions in a horizontal surface, and
panel (c) shows monomer-surface interactions in a diagonal surface. Note that the starting point does not contribute for the
surface energy.

II. THE MODEL

A self-avoiding trail (SAT) is a finite lattice path on
a regular lattice in which every bond may only be tra-
versed once. We identify the monomers of a polymer with
the site visits of the path, and allow for more than one
monomer on a site. In this work we are interested in the
adsorption and collapse transition in the SAT model on
the square lattice. To achieve this we need to introduce
two types of interaction: a bulk interaction εb between
doubly visited sites (i.e. monomers on the same site),
and a surface interaction εs for a monomer (or bond) ly-
ing in the surface, which we take to be the boundary of
a half-plane. We fix the boundary to contain the ori-
gin and consider trails starting at the origin, i.e. on the
boundary.

We consider two ways to define the interaction between
a trail and the surface, given by either the monomers
or bonds of the lattice path in the surface. We shall
denote this the monomer-surface or bond-surface case.
Examples of this are shown in panels (a) and (b) of Fig. 1,
respectively, where the surface is aligned with one of the
lattice directions. When the surface is not aligned, then
bonds cannot lie in the surface, and it only makes sense
to consider the monomer-surface case. An example of a
surface oriented at 45◦ is shown in panel (c) of Fig. 1.

The canonical (fixed length) partition function for ad-
sorbing and interacting trails is given by

Zn(κ, ω) =
∑
ms,mb

C(n)
ms,mb

κmsωmb , (1)

where κ = eβεs , ω = eβεb and C
(n)
ms,mb is the number
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of n-step lattice paths with ms surface contacts and mb

doubly visited sites, and β = 1/kBT with T the temper-
ature. The reduced finite-size free energy is

fn(κ, ω) = − 1

n
logZn(κ, ω) , (2)

which in the thermodynamic limit gives

f∞(κ, ω) = lim
n→∞

fn(κ, ω) . (3)

Any general thermodynamic quantity Q gives rise to av-
erages

〈Q〉(κ, ω) =
1

Zn(κ, ω)

∑
ψn

κms(ψn)ωmb(ψn)Q(ψn) , (4)

where the sum ranges over all n-step lattice trails ψn.
In particular, we are interested in the surface internal
energy

un(κ, ω) =
〈ms〉
n

. (5)

As this can be interpreted as the fraction of the trail that
is adsorbed in the surface, it is an order parameter for
the surface adsorption transition.

We also consider the components of the mean-squared
end-to-end radius R2

n parallel and perpendicular to the
surface. For a horizontal surface these are defined as

R2
⊥,n(κ, ω) = 〈x2

n〉, (6)

R2
‖,n(κ, ω) = 〈y2

n〉, (7)

with the endpoint of the trail being at (xn, yn), whereas
for a diagonal surface they are defined as

R2
⊥,n(κ, ω) =

1

2
〈(xn + yn)2〉, (8)

R2
‖,n(κ, ω) =

1

2
〈(xn − yn)2〉. (9)

III. SCALING LAWS AND CRITICAL
EXPONENTS

The surface internal energy un is the order parameter
of the adsorption transition. For long lengths at the crit-

ical point un scales as un ∼ nφ
(a)−1. For finite lengths,

finite-size corrections need to be included:

un ∼ nφ
(a)−1f (0)

u (X)
[
1 + n−∆f (1)

u (X) + ...
]
, (10)

where f
(i)
u are scaling functions of the variable X = (Ta−

T )n1/δ and ∆ is the first correction term.
As a consequence, for a fixed value of X (i.e. near a

critical transition), this induces a relationship between
T and n and therefore we can infer a dependence of the

finite-size transition temperature T
(n)
a of the form

T (n)
a ∼ Ta + const n−1/δ, (11)

and hence 1/δ is identified as the crossover exponent for
the adsorption transition. Both critical exponents, φ(a)

and 1/δ are believed to be universal and equal to each
other [17]. For the normal surface transition in two di-
mensions it is expected that φ(a) = 1/δ = 1/2.

In what follows, we need to modify our notion of tem-
perature to take into account only the surface interac-
tions, and not the bulk interactions. We accomplish
this by formally introducing two temperature variables
by writing κ = eβεs = e1/Ts and ω = eβεb = e1/Tb . For
the adsorption transition, we fix Tb and in a slight abuse
of notation identify T with Ts. We can then measure
1/δ independently of φ(a) by calculating the logarithmic
derivative of un:

Γn =
d log un
dTs

= (log κ)2

〈
m2
s

〉
− 〈ms〉2

〈ms〉
. (12)

Γn is related to a second derivative of the free energy,
therefore the peaks of Γn have the following scaling form:

max Γn ∼ n1/δf
(0)
Γ (X)

[
1 + n−∆f

(1)
Γ (X) + ...

]
. (13)

Using the dependence of max Γn we can therefore de-
terminate the adsorption transition temperature and the
exponent 1/δ.

Another way to determine the adsorption point is using
metric quantities. Using the scaling behaviour of the
parallel and the perpendicular components R2

⊥/‖,n with

respect to the surface

R2
⊥/‖,n ∼ n

2ν⊥/‖ , (14)

where ν⊥/‖ is the respective Flory exponent, we can cal-
culate finite-size estimates of these exponents simply by
using Eqn. (14):

ν⊥/‖,n =
1

2 log 2
log

(
R2
⊥/‖,n

R2
⊥/‖,n/2

)
. (15)

In the desorbed phase both components have the same
value in the thermodynamic limit. For an adsorbed con-
figuration the polymer becomes a quasi-one-dimensional
system and ν⊥ → 0 while ν‖ → 1. For some intermediate
temperature the components of ν cross, and using these
crossing points we can locate the finite-size temperatures

of adsorption T
(n)
a .

Similarly, we can use the asymptotic scaling of R2
n to

determine and locate the collapse transition point as ω
changes in the desorbed regime, i.e. for small values
of κ. At high temperatures ν assumes the Flory value
of ν = 3/4 for the swollen phase, and for low tempera-
tures the value of ν = 1/2 for the collapsed phase. At
the collapse point a transition occurs and the exponent ν
assumes a different value. In the literature one can find
ν = 12/23 [21] and also ν = 1/2 with the presence of
logarithmic corrections [20] (this is different from inter-
acting self-avoiding walks, where the value νθ = 4/7 is
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well established [23]). We can estimate the finite-size col-
lapse temperature and the corresponding exponent ν by
locating the crossing point in νn(ω) curves for different
lengths. Note that while for the adsorption transition
we considered the crossing of exponent estimates from
two different components at the same length, here we
consider the crossing of exponent estimates of different
lengths.

While for the adsorption transition we use Γn to find
the crossover exponent, in the collapse transition the
quantity of interest is the bulk specific heat per monomer:

cn(Tb) =
(logw)2

n

(〈
m2
b

〉
− 〈mb〉2

)
. (16)

Around the collapse temperature a tricritical crossover
scaling form is expected. Assuming that in the ther-
modynamic limit the specific heat diverges as c(Tb) ∼
|Tb − T (c)|−α, and assuming that the tricritical scaling
relation

2− α =
1

φ(c)
(17)

holds, the finite size specific heat cn(Tb) has the following
scaling:

cn(Tb) ∼ n2φ(c)−1f (0)
c (Y )

[
1 + n−∆f (1)

c (Y ) + ...
]
, (18)

where Y = (Tb − T (c))nφ
(c)

. The exponent φ(c) is the
crossover exponent for the collapse transition.

IV. NUMERICAL SIMULATIONS

We sample trail configurations using the flatPERM al-
gorithm [24]. This method is an extension of the Pruned-
Enriched Rosenbluth method (PERM) [25]. Both PERM
and flatPERM are stochastic growth algorithms based on
the Rosenbluth method; the addition of pruning and en-
richment allows to overcome attrition and to efficiently
sample large configurations. PERM gives an estimate
of the partition function Zn for a specific temperature
while flatPERM samples a flat histogram giving a good
estimate of the density of states, i.e., the number of con-

figurations C
(n)
ms,mb .

We perform simulations for three different scenar-
ios, (a) a horizontal boundary with monomer-surface
(MS) interactions, (b) a horizontal boundary with bond-
surface (BS) interactions, and (c) a diagonal surface (DS)
with monomer-surface interactions. In all three scenar-
ios we first run a two-parameter flatPERM simulation.
In this case the algorithm samples a flat histogram in
both ms and mb (as well as n up to a maximal length)
and estimates the full density of states at these lengths,
allowing us to construct a finite-size approximation to
the phase diagram.

The two-parameter flatPERM simulation produces a
two-dimensional density of states, and it is necessary

to generate sufficiently many samples for each box of
the histogram. Therefore this is only feasible for rela-
tively short lengths. For all three scenarios we perform a
two-parameter flatPERM simulation for trails with up to
128 steps with 1010 trails reaching the maximum length.
From these simulations we can then determine the differ-
ent phases and the approximate location of phase bound-
aries.

To determine more precisely the location of and the
behaviour around the phase boundaries we perform one-
parameter flatPERM simulations for fixed values of ω or
κ and generating a one-dimensional density of states for
ms or mb, respectively. This allows for a more detailed
analysis in specific regions of the phase diagram. As we
only need to generate a one-dimensional density of states,
we can perform simulations for longer lengths than for the
two-parameter flatPERM simulations. We can generate
trails with up to 1024 steps with 1010 trails reaching the
maximum length for a wide range of ω and κ.

As we want to pay particular attention to the nor-
mal and the special surface transitions, we also perform
PERM (i.e. zero-parameter flatPERM) simulations for
all three scenarios, as this allows us to perform simu-
lations for much larger lengths. We generate trails with
length up to 10240 steps with an average sample of 5×108

trails at maximum length for a set of fixed values of ω
and κ. At these large lengths the finite-size corrections to
scaling are significantly smaller than at shorter lengths,
which allows for a more reliable estimate of the adsorp-
tion exponents for both ordinary and special surface tran-
sitions.

V. RESULTS

For all three scenarios we first generate a finite-size
approximation to the phase diagram. Transition regions
between different phases are characterised by large fluctu-
ations in the number of bulk and surface interactions mb

and ms. To identify the regions of maximal fluctuations,
it is advantageous to consider the covariance matrix[ 〈

m2
s

〉
− 〈ms〉2 〈msmb〉 − 〈ms〉 〈mb〉

〈msmb〉 − 〈ms〉 〈mb〉
〈
m2
b

〉
− 〈mb〉2

]
. (19)

The covariance matrix is positive semi-definite and its
leading eigenvalue is the greatest variance, with the corre-
sponding eigenvector representing the linear combination
(in this case of ms and mb) that gives rise to this vari-
ance. We produce finite-size fluctuation maps by plotting
the logarithm of this eigenvalue as a function of ω and κ
for trails with n = 128 steps.

In Fig. 2 the logarithm of the largest eigenvalue is
shown in a density plot as a function of ω and κ. As
expected, in each scenario we find three phases, which
by considering averages of ms and mb we identify with
the coil, collapsed and adsorbed states of the trail.

Qualitatively, the phase diagrams in the three scenar-
ios are similar, and we therefore only discuss the MS case
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in detail, which is shown in Fig. 2 (a). For small values
of ω and κ we find configurations dominated by a small
number ms of surface contacts and a small number mb

of double visited sites. We therefore conclude that this
region can be identified with the swollen coil phase.

When increasing ω while keeping κ constant at a small
value (κ . 2) the number of double visited sites increases

through the region 2 < ω < 5 and gets saturated for large
ω, where the trail configurations are dominated by a large
number mb of double visited sites, which is a character-
istic of the collapsed phase in this model. We therefore
conclude that there is a collapse transition, which for
short trail lengths is smoothed out over a wide range.

FIG. 2: Finite size fluctuation map for 128-step trails for the three boundary cases MS, BS, and DS. Darker colors represent
regions of small fluctuations, while brighter colors (yellow/orange) represent regions with strong fluctuations.

For small values of κ, the average number ms of surface
contacts is small, and the trail remains desorbed, but for
large values of κ we find an adsorbed phase characterised
by trail configurations with a large number ms of sur-
face contacts. This phase exists for all values of ω, and
we therefore have a transition between the desorbed and
adsorbed regime. The transition between the desorbed

phases and the adsorbed one can occur in three different
ways.

For small values of ω there is a weak transition be-
tween the swollen coil and the adsorbed phase which is
known as the “normal surface transition”, and for large
values of ω there is a strong transition between the col-
lapsed and the adsorbed phase. For the latter transition
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we find a bimodal density of states which is indicative
of a first-order transition. Between these two different
transitions we expect to see another adsorption transition
when increasing κ along the line of critical collapse. This
transition is known as the “special surface transition”. It
occurs at a multi-critical point at which three transition
lines meet: the normal surface, the coil-collapsed and the
collapsed-adsorbed lines.

In order to estimate the location of the transitions and
the associated critical exponents we simulate configura-
tions of longer lengths by fixing either ω or κ., and use
the following procedure for the analysis of the data. For
the adsorption transition we choose a fixed value of ω
and find the maximum point (κn,max Γn) as a function
of n, shown as small circles in Fig. 3 (a). We then use the
asymptotic behaviour of Eq. 13 to find the value of the
exponent 1/δn. By extrapolating these values to large
n we then estimate the final value of 1/δ. As shown in
[17, 18], a good way to estimate the adsorption point is
to find the crossing points of the parallel and the perpen-
dicular length scale exponents ν⊥/‖,n (Fig. 3 (b)). Find-
ing these points and using the scaling of Eq. 11 and the
value of 1/δ previously estimated, we locate the transi-
tion point (ω(a), κ(a)). Knowing this adsorption point,
we then calculate the average number of surface contacts
〈ms〉 (Fig. 3 (c)) at (ω(a), κ(a)) as a function of n. As ex-
pected, 〈ms〉 grows linearly in the adsorbed regime and
tends to a constant in the desorbed regime, while follow-
ing a distinct power law growth with an exponent around
0.5 at the adsorption transition. Similarly our method of
estimating 1/δ we use Eqs. 5 and 10 to find the finite-

size values of φ
(a)
n and then we extrapolate these values

to estimate the value of φ(a).
To characterize the collapse transition for a fixed value

of κ we first calculate the bulk specific heat per monomer
(Eq. 16) as a function of ω. By looking at the maxima
(Fig. 3 (d)) and using the equation Eq. 18 we estimate
the exponent φ(c). To locate the collapse transition point
we proceed similar to the adsorption transition, but we

consider crossing points (ω
(c)
n , ν

(c)
n ) of the graphs of νn

as a function of ω for two lengths n and n + ∆n. Using
the value of φ(c) we estimate ω(c) by extrapolating from

finite-size estimates ω
(c)
n .

In the asymptotic estimation of the exponents above
we assume that the finite size estimates ηn of an exponent
η asymptotically satisfies the Ansatz

ηn = η∞ + const n−0.5 + . . . . (20)

In most cases, this Ansatz appears to fit our data reason-
ably well, and changing the power in the correction-to-
scaling term slightly does not seem to affect our results.

For the MS case we applied this procedure to the re-
sults of the one-parameter flatPERM simulation for trails
with up to 1024 steps in the range of 1 6 κ . 3.5 and
1 6 ω 6 5. In Fig. 4 the phase diagram for the MS case
is shown.

On the square lattice, the collapse transition for trails
is expected to occur at ω(c) = 3 [20]. At this value,

1.5 2 2.5
κ

2

4

6

8

Γ
n

128
256
512
1024

n

(a)

1.8 2 2.2 2.4
κ

-0.5

0

0.5

1

ν

1.92 1.94 1.96

0.56

0.58

0.6

(b)

100 1000
n

1

10

100

1000

<
m

s>

κ = 1.000

κ = 1.500

κ = κ
(c) 

= 1.805

κ = 2.000

κ = 2.500

(c)

2 2.5 3 3.5 4
ω

0

0.75

1.5

C
n
(ω

)

0 500 1000
n

0.4

0.8

1.2

1.6

2

(d)

FIG. 3: (a) Graphs of Γn as a function of κ for ω = 2.
The black circles denote the maximum points (κn,max Γn)
of the Γn curves. (b) Graphs of the length scale exponents
ν⊥,n (solid line) and ν‖,n (dashed line) as a function of κ for
w = 3. The inset shows the crossing points (black circles) of
these exponents. (c) The average number of contacts 〈ms〉 as
function of n for ω = 1 for five different values of κ. (d) The
bulk specific heat per monomer for κ = 1. The inset shows
the location of the maximum values of the bulk specific heat
as function of the length n.

the probabilities of a stochastic growth process are per-
fectly balanced by the Boltzmann weight ω(c). This has
also been confirmed numerically [21, 22], where a value of
3.000(1) was found. The presence of a weakly interacting
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1 2 3 4 5
ω

1

1.5

2

2.5

3

3.5

4

κ

Coil

Collapsed

Adsorbed

FIG. 4: The phase diagram for the MS case. The red square
is the location of a multicritical point where the special sur-
face transition occurs. The solid lines are critical transitions,
i.e. the coil-collapsed transition and the normal surface tran-
sition. The dashed line is the coexistence line of the collapsed-
adsorbed transition.

surface is not expected have any effect on the location of
this transition. This is because desorbed trails have o(n)
contacts with the surface, so that the free energy of des-
orbed trails is expected to be independent of the strength
of the surface attraction. Upon increasing the strength
of the surface interaction κ, the collapse transition re-
mains therefore at ω(c) = 3 until a multi-critical point is
reached at κ = κ(s), where the special surface transition
takes place. Our simulations of interacting trails in the
presence of a non-interacting surface (i.e. κ = 1) gives
a value of ω(c) = 3.013(10) for the MS case, and values
very close to 3 were also found for the BS and the DS
cases. We further confirm that the location of the col-
lapse transition does not change upon increasing κ, as
shown in Fig. 4.

Together with estimating the location of the collapse
transition, we also obtain estimates of the length-scale
exponent ν(c) at collapse, as well as the collapse crossover
exponent φ(c). On the line ω = ω(c) at the values of κ
indicated in Fig. 4., we find 0.538 < ν(c) < 0.560 and φ(c)

very close to 0.78. The values found for ν match well with
finite-size estimates from the data presented in [20] at
corresponding lengths when assuming simple power law
scaling. They are not close to ν(c) = 12/23 reported in
[21] or ν(c) = 1/2 found in [20], but rather indicative
of strong finite-size corrections to scaling at the collapse
transition. The value of the collapse crossover exponent
φ(c) is also not close to the expected φ(c) ≈ 0.88 [20], but
mirror what was found for similar lengths in [26], again
indicative of strong finite-size corrections.

We now turn to the discussion of the adsorption tran-
sition in the three regimes. For fixed ω > 3, upon in-
creasing κ we find a collapsed-adsorbed transition with
a bimodal behaviour in the density of states and an ex-
ponent α close to 1, which is a clear indication of a first
order transition. For ω 6 3 we observe a critical ad-
sorption transition upon increasing κ. The value of κ
at which adsorption occurs changes monotonically from
1.805(3) at ω = 1 [17] to 1.924(2) at ω = 3. For the nor-

mal surface transition (ω < 3) the surface exponents 1/δ
and φ(a) are expected to be equivalent and equal to 1/2
in two dimensions. For the special surface transition at
ω = 3, however, a different value is expected. For the DS
case, the value φ(s) ≈ 0.44 was found previously in [20],
and for the BS case values slightly lower were reported:
0.379 < φ(s) < 0.414 [22].

1 1.5 2 2.5 3
ω

0.4

0.45

0.5

0.55

1/δ
φ

(a)

(a)   Monomer-Surface

1 1.5 2 2.5 3
ω

0.4

0.45

0.5

0.55

(b)   Bond-Surface

1 1.5 2 2.5 3
ω

0.4

0.45

0.5

0.55

(c)   Diagonal-Surface

FIG. 5: Surface exponents as function of the bulk interaction
parameter ω for trails with up to 10240 steps. The red circles
are the values for the φ(a) and the black circles values for
1/δ. The dashed line represents the expected value in two
dimensions. On (a) the MS case, (b) the BS and on (c) the
DS boundary scenario.

By performing simulations with PERM for trails with
up 10240 steps we estimate the values of 1/δ and φ(a)

for the normal and the special surface transition for all
three boundary scenarios. For the normal surface tran-
sition we investigate the four different values ω = 1.0,
1.5, 2.0, and 2.5 in detail. In Fig. 5 our estimates of the
surface exponents are shown as a function of ω. In all
cases our estimates satisfy 1/δ = φ(a) within error bars,
and also agree with the expected value φ = 1/2 in two
dimensions. We conclude that the normal surface transi-
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tion shows universal behaviour as expected: the standard
scaling hypothesis predicting 1/δ = φ(a) = 1/2 is correct
in the presence of attractive bulk interactions and differ-
ent surface boundary conditions.

1 2 3

ω

0.2

0.3

0.4

0.5

0.6

n = 10240

n = 2048

FIG. 6: Surface exponents 1/δ and φ(a) as function of ω for
the BS case for trails with 2048 and 10240 steps. The black
and red circles are the values of 1/δ and φ(a), respectively,
for trails with 2048 steps (lower symbols)), and the blue and

orange circles are the values of 1/δ and φ(a), respectively, for
trails with 10240 steps (upper symbols).

At this point we note that we find strong corrections to
scaling in the estimation of these exponents. Fig. 6 shows
surface exponent estimates obtained for trails with 2048
and 10240 steps for the BS case. While the exponent es-
timates appear converged to the expected value of 1/2 for
the longer trails, there is a clear deviation for estimates
from the shorter trails. Importantly, error bars at shorter
lengths are misleading and would seem to support claims
of non-universality. Similar deviations are evident for the
other two cases.

In the remainder of this section we discuss the special
surface transition in detail. As established above, the
special transition occurs at ω = 3 in all three scenarios,
albeit at different values of κ(s). From an analysis of

R2
⊥/‖,n, we find κ

(s)
(MS) = 1.924(2), κ

(s)
(BS) = 2.442(4), and

κ
(s)
(DS) = 3.001(2). The latter value confirms the expected

exact value κ
(s)
(DS) = 3; similar to the identification of

ω(c) = 3, at this value the probabilities of a stochastic
growth process are perfectly balanced by the Boltzmann

weight κ
(s)
(DS). There is no known exact value for the other

two cases. The BS case has been investigated previously

and a value κ
(s)
(BS) = 2.45(5) was found [22]. We are not

aware of any previous work regarding the value of κ
(s)
(MS).

We note that our estimates satisfy κ
(s)
(MS) < κ

(s)
(BS) <

κ
(s)
(DS), which make sense heuristically due to the den-

sity of contacts in adsorbed configurations for each of
the boundary scenarios.

While we have strong confirmation of universality for
the normal adsorption transition, our findings do not
support universality for the special transition. Intrigu-
ingly, we find different exponent values depending on the

0 0.01 0.02

n
-0.5

0.28

0.32

0.36

0.4

0.44

0.48

0.52

0.56

φ
(s

)

Monomer-Surface
Bond-Surface
Diagonal Surface

(a)

0 0.01 0.02

n
-0.5

0.24

0.28

0.32

0.36

0.4

0.44

0.48

0.52

1
/δ

(s
)

(b)

FIG. 7: (a) The surface exponent φ(s) for different sizes as
function of n−0.5 on the special surface point. Black circles
are the values for the MS case, red squares BS and blue tri-
angles the DS case. The dashed black line is the expected
value of 0.44. (b) Exponent 1/δ(s) as function of n−0.5 for the
boundary scenarios.

boundary studied. Fig. 7 shows finite-size estimates of
φ(s) (panel a) and 1/δ(s) (panel b) for all three bound-
ary scenarios. The estimates for φ(s) seem to have no
strong size dependence, and seem to converge to three
distinct values in the thermodynamic limit. We estimate

φ
(s)
(MS) = 0.338(17), φ

(s)
(BS) = 0.387(10), and φ

(s)
(DS) =

0.447(18), with the values for the DS and the BS cases
being in a good agreement with those found in [20, 22].
The estimates for 1/δ(s) show a stronger size dependence.

We find 1/δ
(s)
(MS) = 0.303(22), which is not too dissim-

ilar from φ
(s)
(MS) = 0.338(17), and 1/δ

(s)
(DS) = 0.449(22),

which is in reasonable agreement with φ
(s)
(DS) = 0.447(18).

We could thus be tempted to conclude that in both
of these cases the equality 1/δ(s) = φ(s) holds, albeit
with different exponent values. However, we also find

1/δ
(s)
(BS) = 0.299(33), which does not support this equal-

ity. Our findings are summarised in Table I.

monomer-surface bond-surface diagonal surface

κ(s) 1.924(2) 2.442(4) 3.001(2)

φ(s) 0.338(17) 0.387(10) 0.447(18)

1/δ(s) 0.303(22) 0.299(33) 0.449(22)

TABLE I: Values found for the surface exponents 1/δ(s) and

φ(s) for the boundary scenarios at the special surface transi-
tion point.
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These results do not support universality of the special
surface exponents. Neither can we confirm 1/δ(s) = φ(s),
nor seem the exponent values independent of the details
of the boundary.

It is important to notice that the estimate of φ(s) is
highly dependent on the precise location of the adsorp-
tion point, but no such argument can be made for the
method of estimating 1/δ(s). However, it is also im-
portant to highlight that the presence of strong finite-
size corrections seriously affects exponent estimates for
the ordinary surface transition, having recently led to
claims of non-universality in the case of self-avoiding
walks [10, 16].

1.4 1.6 1.8 2
κ

0.0258

0.0264

C
n
(κ

)/
n

2
φ

 (c
)  
- 

1

1024
2048

FIG. 8: Bulk specific heat per monomer normalized with φ ≈
0.78 as function of κ for ω = 3 for the MS case. Two different
sizes are shown, 1024 steps (black curve) and 2048 steps (red
curve).

We also find evidence for strong finite-size corrections
at the special point. When looking more closely at the
line of critical collapse approaching the special adsorption
transition, we find two peaks in the bulk specific heat
near the special transition, as shown in Fig. 8 for the
MS case. These two peaks were only found in the MS
and the BS scenarios. This could be an indication of two
neighbouring phase transitions. These two peaks persist
in the vicinity of ω = ω(s), however one of those peaks
became weaker for longer lengths (2048) which indicates
that instead of a second phase transition we are dealing
with strong finite-size corrections. While we cannot see
the weakening of one of those peaks (or merging of both
peaks) near the special transition, we believe that this is
likely to happen for longer trails. With trails with up to
10240 steps it was not possible to resolve this question
due to statistical errors of the simulations, and we suggest
that simulations with even longer configurations have to
be performed to understand the precise nature of these
finite size corrections and how they affect the estimates
of the critical exponents.

VI. CONCLUSIONS

We performed simulations of the model of absorbing
interacting self-avoiding trails on the square lattice using
flatPERM, a uniform sampling stochastic growth algo-

rithm. We used a two-parameter version of flatPERM
to sample the density of states for trails with up 128
steps, and a one-parameter version of flatPERM to sam-
ple trails with up to 1024 steps, going up to 2048 steps for
specifically chosen values. We also performed PERM for
trails with length up to 10240 steps. Three different sce-
narios for the surface interaction were studied: monomer-
surface interactions (MS), bond-surface interactions (BS)
and monomer interactions at a diagonal surface (DS).

By analysing the fluctuation map for these three sce-
narios we found similar phase diagrams with coil, col-
lapsed and adsorbed phases. In all three scenarios the
coil-collapsed transition was found to occur at a constant
line at ω = 3. We also found evidence of a first-order
transition between the collapsed phase and the adsorbed
phase.

The main focus of this work was the analysis of ad-
sorption from the coil phase via the normal surface tran-
sition and of adsorption from the bulk-critical phase via
the special surface transition.

We found for all three scenarios that the normal surface
transition occurs along a critical line. The estimated val-
ues of the surface exponents 1/δ and φ(a) are both close
to the expected value of 1/2, showing that the normal
surface transition is universal for trails and that the re-
lation φ(a) = 1/δ holds for different solvent conditions
and different types of boundary conditions. We point
out that even for trails with 2048 steps strong finite-
size corrections led to exponent estimates that indicated
non-universality, and that we needed to simulate consider
considerably longer trails to observe the actual exponent
values.

These findings are relevant with regards to the recently
claimed non-universality of the adsorption transition for
polymers in the presence of bulk interactions [10, 16].
This was based on simulations of relatively short self-
avoiding walks of lengths up to 503 steps on the sim-
ple cubic lattice. A similar variability of exponent esti-
mates was found for self-avoiding walks and trails in two
and three dimensions for different lattices and varying
interaction strengths [17, 18]. In the latter works it was
pointed out that different methods of analysis resulted
in significantly different exponent estimates for configu-
rations with steps up to length 1024, and that choosing
any single method of estimation leads to exponent es-
timates with erroneously small error bars. The present
work indicates that increasing the size of the configura-
tions by an order of magnitude is needed to go beyond
finite-size correction terms which are seemingly not cap-
tured by any of the methods used in estimating the ex-
ponents.

When analysing the special adsorption transition for
ω = 3, we found critical behaviour in all three scenarios.
One of the aims of the present study was to investigate
the discrepancy between the previously reported values
of φ(s) for the (DS) and (BS) cases. Our estimates, sum-
marised in Table I, do not resolve this discrepancy. In
addition, for the (MS) case we find yet another value of
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φ(s). Moreover, our estimates of 1/δ(s) deviate from the
respective values of φ(s) with the exception of the (DS)
case, where we find good agreement within error bars.

We would like to argue that the discrepancy between
all of these estimates is likely due to very strong finite-
size corrections to scaling around a higher order critical
point. Support for this comes from the observation that
near this point we find two weak but clearly separated
peaks in the bulk-specific heat, which seem to weaken
and move closer to each other at longer lengths. This
behaviour is not captured by our scaling assumptions,
and hence one needs to either amend these assumptions
to capture this behaviour, or to perform simulations at
even longer lengths than 10240 steps to get beyond these
corrections to scaling.

We should like to point out the presence of confluent
logarithms in some thermodynamic quantities at the trail
collapse transition. For example, at the bulk collapse
point (in the absence of a boundary) the partition func-
tion scales as 3n/ log n, the end-to-end distance grows
as n1/2 log n [20], and the collapse crossover exponent is
extremely difficult to determine, with the best estimate
φ = 0.84(3) to date coming from simulations using trails
with over 2×106 steps [27]. While we have no explicit evi-
dence of logarithmic corrections for scaling at the special
surface transition, they may well be present and intro-
duce additional complications.

As the simulations in [20] have been performed for 106

steps at the exact value κ(s) = 3, and as this is the only
scenario for which in the present work we find agreement

between φ(s) and 1/δ(s), we assert that most likely the
special surface transition is universal and that the asso-
ciated surface exponent equals φ(s) = 1/δ(s) = 0.45(2).
If there existed different sets of surface exponents for the
special transition, then one would have to still identify a
mechanism that would be capable of inducing this differ-
ence. We cannot discount this completely, as collapsing
trails have a length scale exponent ν = 1/2(log), and
in a scaling limit the lattice structure near the bound-
ary only becomes irrelevant if ν > 1/2. One possible
mechanism to cause a change, suggested to us by Tiago
José de Oliveira, is that for the horizontal boundary long
adsorbed segments of the trail in the surface suppress in-
teractions in the layer above, which is not the case for
the DS case. More work is needed to resolve this issue.
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