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Abstract—In this paper, we investigate the uplink transmission
performance of low-power wide-area (LPWA) networks with
regards to coexisting radio modules. We adopt long range (LoRa)
radio technique as an example of the network of focus even
though our analysis can be easily extended to other situations.
We exploit a new topology to model the network, where the
node locations of LoRa follow a Poisson cluster process (PCP)
while other coexisting radio modules follow a Poisson point
process (PPP). Unlike most of the performance analysis based
on stochastic geometry, we take noise into consideration. More
specifically, two models, with a fixed and a random number of
active LoRa nodes in each cluster, respectively, are considered.
To obtain insights, both the exact and simple approximated
expressions for coverage probability are derived. Based on them,
area spectral efficiency and energy efficiency are obtained. From
our analysis, we show how the performance of LPWA networks
can be enhanced through adjusting the density of LoRa nodes
around each LoRa receiver. Moreover, the simulation results
unveil that the optimal number of active LoRa nodes in each
cluster exists to maximize the area spectral efficiency.

Index Terms—Low-power wide-area networks, LoRa, Poisson
cluster process, stochastic geometry.

I. INTRODUCTION

Internet of Things (IoT) is envisioned as a means to connect
billions of small computing devices embedded in different en-
vironments (e.g., walls and soil) and even implanted in human
bodies [2]–[5]. Aiming to provide connectivity opportunities
for massive numbers of devices, two possible networking
approaches have been proposed. One is the evolution from the
existing communication systems, i.e., fifth generation (5G) or
the beyond for intelligent communications [6], with the pur-
pose of supporting machine-type communications (MTC) [7],
[8]. Another is to design MTC-dedicated networks from
scratch, such as low-power wide-area (LPWA) networks [9]–
[12].

In LPWA networks, the transmission range is a dedicating
factor for highly scalable smart metering or other related
applications where only a small portion of data is transmitted,
perhaps after considerable analysis or filtering from sensors.
Another critical factor in LPWA networks is energy consump-
tion since they consist of energy-constrained devices. The
battery lifetime of some smart city sensors is required to be
no less than ten years for IoT applications [13]. Two technical
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options have been proposed for LPWA networks to enhance
signal-to-noise ratio (SNR) ratio and to increase transmission
ranges with enhanced power efficiency; they are the ultra
narrrowband approach and the coding gain approach. The ultra
narrowband approach enhances SNR by focusing signal in a
narrowband. One of the classic technologies, Sigfox [14] uses
the narrowband approach to implement an LPWA network.
The other approach exploits coding gain to combat high
noise power in a wideband receiver. Long range (LoRa) radio
technique [15] is an example of the code gain approach.

LoRa has a relatively long transmission range and low
energy consumption, which has attracted much attention in IoT
field and became the most widely deployed LPWA technique.
Furthermore, the chirp spread spectrum technology used in
LoRa allows the usage of cheap oscillators with high stability
guaranteed at the receiver [15]. These advantages make LoRa
a popular candidate for smart city scenarios. LoRaWAN is
a medium access control (MAC) protocol for LoRa, and
supports star-topologies providing high capacity and longer
transmission ranges [15]. The uplink of LoRaWAN is sched-
uled by end-devices based on their transmission requirements,
regardless of the channel occupancy. LoRaWAN achieves low
energy consumption since it does not sense the medium before
sending its packet and does not require any synchronization
to access the medium. However, packet collision remains a
problem. The coverage probability of LoRa networks has been
analyzed [16] by considering the interfering signals using
the same spreading factor (SF). However, we believe that
both intra-interference, i.e., from LoRa users in the same
and neighbouring networks, and inter-interference, i.e., from
other LPWA users sharing the same spectrum, combat the
performance of LPWA networks [1]. So far, some experiments
on LoRa and other LPWA techniques have been carried out as
the initial trials in wireless sensor networks [12], [17]–[21].
Particularly, we have deployed LoRa devices in the Queen
Elizabeth Park, London, to collect data and installed a LoRa
gateway to forward the collected data to a cloud server for
further processing and analyzing [12]. Based on this imple-
mentation, we have further investigated the resource efficiency
and energy efficiency in LoRa networks by optimizing the
channel selection and transmit power of LoRa users [22], [23].

To make this work more general, we theoretically analyze
the performance of clustered LPWA networks with partic-
ular focus on the interference from coexisting LoRa users
and other LPWA users, as they all work over unlicensed
spectrum. Stochastic geometry is a powerful mathematical
tool for designing and analyzing wireless networks, partic-
ularly dense networks [24], such as LPWA networks that
potentially provide massive connectivity. When wireless nodes
are uniformly distributed in an area, homogeneous Poisson
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point processes (PPPs) can accurately model dense networks.
However, when sensors are clustered, such as in smart city
scenarios, PPP is unable to model interference [25]. In this
situation, Poisson cluster process (PCP), where parent points
form a PPP and offspring points form clusters centred at the
parent point, is necessary to model wireless networks using
random cluster topologies arising from geographical factors
or MAC protocols [25], [26].

PCPs have attracted lots of attention in cellular networks
and wireless sensor networks [27]–[33], recently. In [27], an
interference alignment approach has been used for a cluster
topology to address intra-cluster interference for multiple-
input multiple-output (MIMO) systems, where a spatial PCP
process is used to model the nodes in a random access
network. For heterogeneous cellular networks, PCP has been
adopted in [28], [29] to model nodes clustering at hot spots
while taking into consideration the fact that base stations
belonging to different tiers may differ in terms of transmit
power, node density, and link reliability. In [30], the PCP
model has been applied to wirelessly powered backscatter
communications, where power beacons (PBs) form the parent
PPP and the backscatter nodes are children points in the
cluster. A Thomas PCP model can capture the fact that a
given device typically has multiple proximate devices, any
of which can potentially act as a serving device. It has been
used to model the device locations for device-to-device (D2D)
networks in [31]. Moreover, a Matern PCP has been used
to model wireless networks exhibiting device clustering and
the distance distribution has been derived to describe the
interference statistics and connection probability in clustered
networks [32]. Based on the results, the Matern PCP and
modified Thomas PCP have been investigated when they are
adopted to model the out-of-band D2D networks [33]. Further-
more, it has been pointed out that clustering is beneficial for
long range transmissions in ad-hoc networks [25]. Therefore,
the PCP can model LPWA networks well.

While the aforementioned research contributions have laid
a solid foundation and provided a good understanding on the
PCP model, the performance analysis using PPP/PCP based
stochastic geometry approach to investigate LPWA networks is
still missing. Different from the clustered D2D networks, LoRa
works over unlicensed spectrum, which makes the network
suffering from the most severe interference caused by: i) The
LoRa nodes in the same cluster, which is due to the non-
orthogonality of SFs; ii). The LoRa nodes clustered in the
neighbouring clusters accessing the same channel; iii). The
non-LoRa nodes that are using other radio access networks
over the same unlicensed channel. In this paper, we adopt
Matern cluster process [34] to model LPWA networks, where
the LoRa receivers forms PPP cluster centers and the active
LoRa nodes in each cluster form the children process since
sensor nodes, like metering sensors distributed in a building,
are highly clustered based on geography. We also assume that
the coexisting non-LoRa nodes are modelled as PPP. This
topology is motivated by the fact that we can only control the
clustering deployment of LoRa nodes rather than non-LoRa
ones. Therefore, non-LoRa nodes may use any coexisting
radio and locate at any location within the considered area.

Moreover, unlike existing research that mostly considers the
interference-limited case, we additionally consider the impact
of noise on the system performance. The reason is that LPWA
networks are not necessary interference-limited due to the long
transmission distance with relatively low transmit power.

To the best of our knowledge, this work is the first attempt
to model and analyze LPWA networks using the Matern PCP
model. In this paper, we attempt to explore the potential
performance enhancement brought by PCP as well as to
answer the following questions:

1) What is the impact in terms of the cluster radius on the
system performance?

2) Is there an optimal number of active LoRa nodes in each
cluster?

3) What is the most appropriate transmit power for LoRa
users?

The major contributions of this paper are summarized as
follows:

1) We use the spatial distributions of PCP to model the
LoRa system by considering the potential interference
from both co-existing LoRa users and non-LoRa users
working over the same channel. Specifically, By con-
sidering the uplink transmission of LoRa networks, the
Marten cluster process is invoked to model the locations
of LoRa nodes as well as receivers. Moreover, the PPP
model is adopted to model non-LoRa nodes communi-
cating over the same channel as the LoRa users.

2) To characterize the performance of the LPWA networks,
three performance metrics, including coverage probabil-
ity, area spectral efficiency, and energy efficiency, are
adopted. By using Gaussian-Chebyshev approximation,
we derive both exact and simple approximated expres-
sions of these three metrics with considering the impact
of channel noise.

3) We analytically prove that significant performance gains
can be achieved by decreasing the radius of each cluster.
We also demonstrate that there exists an optimal number
of active LoRa nodes for each cluster that can maxi-
mize the area spectral efficiency. These remarks provide
insightful guidelines for the implementation of LPWA
networks.

The rest of the paper is organized as follows. In Section
II, the system model for LPWA networks with LoRa is
introduced. In Section III, new analytical expressions for the
coverage probability of the considered networks are derived.
Then area spectral efficiency and energy efficiency are investi-
gated in Section IV. Numerical results are presented in Section
V, which is followed by the conclusions in Section VI.

II. SYSTEM MODEL

In this section, the system settings and propagation model
are introduced for the considered LoRa LPWA networks and
other coexisting LPWA radio modules that work over the same
frequency.

A. Spatial Setup and Key Assumptions
We consider the uplink transmission in LPWA networks

where the system under study is LoRa with interference from
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Fig. 1. System model of the clustered low-power wide-area networks with
LoRa and coexisting radios.

other LPWA radio modules (e.g., Sigfox). A star-topology is
adopted and the nodes use single-hop wireless communica-
tions to gateways [15]. As shown in Fig. 1, the locations of all
LoRa nodes are modeled by a PCP, where the LoRa receivers
follow the parent point process and the offspring point process
(one per parent) are conditionally independent. Specifically,
the locations of the LoRa receivers are modeled as a PPP,
ΦG, with density λG. In each cluster, the locations of the
LoRa nodes served by the parent receiver are conditionally
independent. The union of all the offspring LoRa nodes
constitute a PCP, namely, a Matern cluster process. In this
LoRa network, we consider two models for the number of
active LoRa nodes distributed in each cluster. One is that the
number of active LoRa nodes in each cluster is fixed as n.
Another is that the number of active LoRa nodes is random and
follows a Poisson distribution with average n̄. Different LoRa
nodes communicate with the same receiver over the same
channel simultaneously by adopting different SFs. Different
SFs will lead to different transmission ranges and data rates,
for instance, SF 7 can achieve the highest data rate while the
transmission distance is limited compared to SF 12.1

As in many practical environments, we also assume that
there exist non-LoRa nodes transmitting on the same channel,
which refer to nodes connecting to other non-LoRa radio
modules, as LoRa is working on the unlicensed spectrum.
Those nodes are modeled as a PPP, Φco, with density λco,
labeled by diamonds in Fig. 1, shows coexistence interference
at the LoRa receiver. In a network with LoRa modules only,
coexistence interference becomes zero by tuning the density
of the non-LoRa nodes as λco = 0.

B. Propagation Model

As shown in Fig. 1, for a typical LoRa node, Ux0
, the signal-

to-interference-plus-noise ratio (SINR) received at a typical
LoRa receiver, Gy0

, can be expressed as

SINR =
Px0

hx0,y0
L (R)

Iintra + Iinter + Ico + σ2
, (1)

1How to allocate SFs among different users is out the scope of this paper.

where Iintra, Iinter, and Ico refer to the average powers
of intra-interference caused by the non-orthogonality of SFs
adopted by LoRa nodes within the same cluster, inter-cluster
interference caused by LoRa nodes in the neighboring clusters,
and coexistence interference from nodes connecting to non-
LoRa radio modules, respectively. These interferences are
independent since they are from different sources, and σ2

is the power of additive white Gaussian noise (AWGN), and
Px0 refers to the transmit power from the typical LoRa node,
Ux0

, and hx0,y0
∼ exp (1) and L (R) refer to small-scale

fading coefficient and large-scale fading coefficient between
the desired LoRa node and its receiver, Gy0

, respectively.
In (1), L (R) = η‖x0‖−α, where η is a frequency dependent
factor, ‖x0‖ is the distance between the desired LoRa node
and its receiver, and α is the path loss exponent.

To get an analytical expression of SINR, we will find Iintra,
Iinter, and Ico subsequently.

1) Intra-cluster interference: At Gy0
, interference from

LoRa nodes within the same cluster except the typical one
is

Iintra =
∑

x∈Ny0\x0

Pxhx,y0
η‖x‖−α, (2)

where Px refers to the transmit power of the interference LoRa
nodes within the same cluster, and hx,y0

∼ exp (1) is the
small-scale fading coefficient, and ‖x‖ is the distance between
LoRa node and the LoRa receiver in the same cluster, as shown
in Fig. 1. Here, Ny0 is the number of the active LoRa nodes
that simultaneously transmit to the same receiver, Gy0 , within
a cluster, which is n for the fixed number of active LoRa nodes
model and follows a Poisson distribution with average n̄ for
the random model.

2) Inter-cluster interference: The interference from LoRa
nodes in the adjacent clusters is

Iinter =
∑

y∈ΦG\y0

∑
x∈Ny

Pxhx,yη‖y + x‖−α, (3)

where Px is the transmit power from the LoRa nodes served
by the neighboring LoRa receiver, Gy , and hx,y ∼ exp (1)
is the small-scale fading coefficient, and ‖y + x‖ refers to
the distance between the LoRa node, Ux, which is served by
the neighboring LoRa receivers, Gy , and the typical LoRa
receiver, Gy0

, as shown in Fig. 1. Ny is the number of active
LoRa nodes served by the LoRa receiver, Gy , in the same
cluster.

3) Coexistence interference: We also consider interference
from non-LoRa nodes transmitting over the same frequency,
which follows a PPP, Φco, with a density λco. As such, the
interference from these nodes can be expressed as

Ico =
∑
z∈Φco

Pzhz,y0
η‖z‖−α, (4)

where Pz is the transmit power from the non-LoRa node, Uz ,
served by non-LoRa radio modules, the distance between the
LoRa node, Uz , and the typical LoRa receiver, Gy0 , is ‖z‖,
and hz,y0

∼ exp (1) is small-scale fading coefficient, as shown
in Fig. 1.
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III. INTERFERENCE ANALYSIS

In this section, we analyze the intra interference, inter
interference and coexistence interference for the models with
a fixed and a random number of LoRa nodes in each cluster,
where we consider both the ordered case and unordered case.
The unordered case refers to that the typical LoRa node in the
typical cluster is chosen randomly from the set of active LoRa
nodes in one cluster. The ordered case refers to that the typical
LoRa node is located at the k-th closest distance to the LoRa
receiver among the active nodes in one cluster. Therefore, there
are four scenarios. In this section, we are going to investigate
the interference for the four scenarios, respectively.

A. Distance Distributions

1) Unordered distance PDF for intra-cluster: For a Matern
cluster process, the probability density function (PDF) of the
distance, r, between a typical receiver centered at a cluster
and a connected LoRa node is [25]

f‖x‖ (x) =

{
1
πa2 , ‖x‖ ≤ a.
0, otherwise,

(5)

where a is the cluster radius. When converting (5) to polar
coordinates, we have

fR (r) =

{
2r
a2 , r ≤ a.
0, otherwise.

(6)

2) Ordered distance PDF for intra-cluster: In the ordered
case, the PDF for intra-cluster can be given by the following
lemma.

Lemma 1. If nι active LoRa nodes are uniformly distributed
within a cluster with radius, a, then the PDF of the distance
of the k-th closest LoRa node connecting to the typical LoRa
receiver is given by

fr̃k (r) =

{
2nι!

∑nι−k
p=0 (−1)pa−2(p+k)r2(p+k)−1

(nι−k)!(k−1)! , r ≤ a.
0, otherwise,

(7)

where nι ∈ {n, n̄}.

Proof. With the aid of order statistics [35], the ordered dis-
tance PDF is given by

fr̃k (r) =
nι!(FR (r))

k−1
(1− FR (r))

nι−kfR (r)

(nι − k)! (k − 1)!
, (8)

where

FR (r) =
r2

a2
(9)

is the CDF of the unordered intra-cluster distance. Substituting
FR (r) and (6) into (8) and applying binomial series expansion,
we can obtain (7). The proof is completed.

3) PDF of the ordered distance for intra-cluster interfer-
ence LoRa nodes: Since we are interested in the performance
of the k-th closest LoRa node, its corresponding intra-cluster
interference nodes are dependent on the distance rank k. To
better incorporate our analytical procedure, besides the k-
th LoRa node, we further divide the rest (nι − 1) nodes
into two sets. Those closer than the k-th one, Knear =
{1, · · · , k − 1}, and those farther away than the k-th one,
Kfar = {k + 1, · · · , nι}.

Lemma 2. The PDF of the ordered LoRa nodes that interfere
the k-th closest node in the same cluster is given by

fR̃ (r| r̃k) =

{
2r
r̃2
k
, r ≤ r̃k.
2r

a2−r̃2
k
, r̃k < r ≤ a, (10)

where r̃k denotes the distance from the k-th closest LoRa node
to the serving receiver.

Proof. Following the same procedure for obtaining Lemma 4
in [31], with the aid of ordered statistics (7) and applying the
symmetry property, we can obtain the distance PDF of the or-
dered intra-cluster for Knear and Kfar as frnear (rnear| r̃k) =
fR(rnear)
FR(r̃k) and frfar (rfar| r̃k) =

fR(rfar)
1−FR(r̃k) , respectively. Then

with the aid of (8) and (9), we can obtain the desired result
in (10). The proof is completed.

B. Laplace Transforms for Interferences of Unordered LoRa
Nodes

In the following, we turn our attention to obtaining the
Laplace transforms of the interference parts for the unordered
cases with a fixed and a random number of active LoRa nodes
in each cluster, respectively.

1) Intra-cluster interference: We first address the intra-
cluster interference.

Lemma 3. For the unordered case with a fixed number of
active nodes n in each cluster, the Laplace transform of intra-
cluster interference can be expressed as

LInintra
(s) =

[
aαδ

sPxη (δ + 1)
2F1

(
1, δ + 1; δ + 2;− aα

sPxη

)]n−1

,

(11)

and for the unordered case with with a random number of
active LoRa nodes of average n̄ in the cluster, the Laplace
transform of intra-cluster interference can be expressed as

LIn̄intra
(s) = exp

(
− (n̄− 1) 2F1

(
1, δ; δ + 1;− aα

sPxη

))
,

(12)

where 2F1 () is the is the Gauss hypergeometric function.

Proof. See Appendix A.

To obtain more insightful and simple expressions, we use
Gauss-Chebyshev approximation, which is regarded as a tight
approximation and has been widely used [36]–[40], to approx-
imate (11) and (12). It is shown by the following corollary.
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Corollary 1. For the unordered case with a fixed number of
active LoRa nodes in the cluster, the Laplace transform of the
intra-cluster interference can be approximated as

LapInintra
(s) ≈

[
ωT

T∑
t=1

µtc
α+1
t

cαt + a−αsPxη

]n−1

, (13)

and for the unordered case with a random number of active
LoRa nodes with average n̄ in the cluster, the Laplace trans-
form of the intra-cluster interference can be approximated as

LIn̄,apintra
(s) ≈ exp

(
− (n̄− 1)ωT

T∑
t=1

µtct
cαt a

α

sPxη
+ 1

)
, (14)

where ωT = π
T , ψt = cos

(
2t−1
2T π

)
, ct = (ψt+1)

2 , and µt =√
1− ψ2

t .

2) Inter-cluster interference: Here, we provide the Laplace
transforms of the inter-cluster interference for a fixed and a
random number of active LoRa nodes in the cluster, respec-
tively.

Lemma 4. The Laplace transform of the inter-cluster inter-
ference with a fixed number of active nodes n in the cluster
is upper bounded by

LupIninter
(s) = (15)

exp

(
−πλG(sPxη)

δ
δ

n∑
p=1

(
n

p

)
B (p− δ, n− p+ δ)

)
,

where B (·, ·) is the Beta function. Here, B (x, y) =∫∞
0

tx−1

(1+t)x+y dt for x, y > 0.
The Laplace transform of the inter-cluster interference with

a random number of active nodes of average n̄ in a cluster is
lower bounded by

LlowIn̄inter
(s) = exp

(
−π2λGn̄(sPxη)

δ δ

sin (πδ)

)
. (16)

Proof. For the proof of (15), see Appendix B. For the proof
of (16), see Appendix C.

3) Coexistence interference: For coexistence interference,
we can obtain the following lemma.

Lemma 5. The Laplace transform of coexistence interference,
which comes from the nodes connecting to non-LoRa radio
modules, can be expressed as

LIco
(s) = exp

(
−πλcoΓ (1 + δ) Γ (1− δ) (sPzη)

δ
)
, (17)

where δ = 2
α .

Proof.

LIco
(s) = EIco

{
exp

(
−s

∑
z∈Φco

Pzhz,y0
η‖z‖−α

)}
(a)
= EΦco

{ ∏
z∈Φco

Ehz,y0
[
exp

(
−sPzhz,y0η‖z‖

−α
)]}

(b)
= exp

(
−2πλco

∫ ∞
0

(
1− 1

1 + sPzηr−α

)
rdr

)
,

(18)

where (a) is obtained by applying the generating function, and
(b) is obtained by the fact that gz,y0 follows a Rayleigh fading
distribution. By applying [41, Eq. (3.241) .4], we can obtain
(17). The proof is completed.

C. Laplace Transforms for Interferences of Ordered LoRa
Users

Lemma 6. For the ordered case with a fixed number of active
nodes n in the cluster, the Laplace transform of intra-cluster
interference can be expressed as

LIn,kintra
(s) =

[
r̃αk δ

sPxη (δ + 1)
Z1 (r̃k)

]k−1

(19)[
δ

(a2 − r̃2
k) sPxη (δ + 1)

(
aα+2Z1 (a)− r̃α+2

k Z1 (r̃k)
)]n−k

,

where

Z1 (r̃k) = 2F1

(
1, δ + 1; δ + 2;−(sPxη)

−1
r̃αk

)
, (20)

and

Z1 (a) = 2F1

(
1, δ + 1; δ + 2;−(sPxη)

−1
aα
)
. (21)

For the ordered case with a random number of active LoRa
nodes in the cluster, with the number of active LoRa users,
N , no fewer than the average number, n̄, the correspond-
ing Laplace transform of intra-cluster interference can be
expressed as

LIn̄,Nintra
(s) = exp

[
−(n̄− 1)2F1

(
1, δ; δ + 1;−(sPxη)

−1
r̃αN

)]
,

(22)

where r̃N is the distance from the LoRa node to the serving
receiver.

Proof. For the proof, see Appendix D.

From Lemma 6 and using Gauss-Chebyshev approximation,
we can obtain the following corollary.

Corollary 2. For the ordered case with a fixed number of
active LoRa nodes n in the cluster , the Laplace transform of
intra-cluster interference can be approximated as

Lap
In,kintra

(s) ≈

[
ωT

T∑
t=1

µtc
α+1
t

cαt + r̃−αk sPxη

]k−1

× (23)

[
ωT

a2 − r̃2
k

(
a2

T∑
t=1

µtc
α+1
t

cαt + a−αsPxη
− r̃2

k

T∑
t=1

µtc
α+1
t

cαt + r̃−αk sPxη

)]n−k
,

and for the ordered case with a random number of active LoRa
nodes with average n̄ in the cluster, the Laplace transform of
intra-cluster interference can be approximated as

Lap
In̄,Nintra

(s) ≈ exp

(
− (n̄− 1)ωT

T∑
t=1

µtct
cαt r̃

α
N

sPxη
+ 1

)
. (24)

Note that the Laplace transforms of inter-cluster interference
and coexistence interference for the ordered case are the same
as those in the unordered case, which are given in the last
subsection.
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IV. COVERAGE PROBABILITY ANALYSIS

In this section, we derive the coverage probability for a
typical LoRa node based on the interference analysis in the
previous section. The coverage probability is defined as the
probability that a typical user can be successfully decoded at
the receiver, that is SINR of the typical user received at the
receiver is higher than a threshold, γth. It can be expressed as

Pcov (γth) = ER [Pr {SINR (R) ≥ γth}|R] , (25)

where R is the distance between the desired LoRa node and
the serving receiver in the same cluster.

By applying (1) and (5) into (25), the transmission coverage
probability of a typical LoRa node can be expressed as

Pcov (γth) =

∫
Pr {SINR (R) ≥ γth} fR (r) dr. (26)

From (25), we can obtain

Pr {SINR (R) ≥ γth} = Pr

{
Px0

hx0,y0
L (R)

Iintra + Iinter + Ico + σ2
≥ γth

}
= Pr

{
hx0,y0

≥
(
Iintra + Iinter + Ico + σ2

) ηRαγth
Px0

}
= e−ρσ

2

EIintra+Iinter+Ico

{
e−ρ(Iintra+Iinter+Ico)

}
= e−ρσ

2

LIintra
(ρ)LIinter

(ρ)LIco
(ρ) , (27)

where ρ = Rαγth
Px0

η , LIintra (ρ) = E
{
e−ρIintra

}
, LIinter (ρ) =

E
{
e−ρIinter

}
, and LIco

(ρ) = E
{
e−ρIco

}
are the Laplace

transforms of the power density distributions of Iintra, Iinter

and Ico, respectively.

A. Coverage Probability of Unordered LoRa Users

Based on the derived results in Section III, we can obtain the
coverage probability of a typical LoRa node for the unordered
case in this subsection.

Theorem 1. If the LoRa nodes follow a Matern cluster process
centered around each receiver, for the unordered case with a
fixed number of LoRa nodes in the cluster, the upper bound
of the coverage probability of a typical LoRa node can be
expressed as

Pncov,up (γth) =
2

a2

∫ a

0

e−ρσ
2

LInintra
(ρ)LupIninter

(ρ)LIco
(ρ) rdr,

(28)

where LInintra
(ρ), LupIninter

(ρ), and LIco
(ρ) are given by (11),

(15), and (17).
For the unordered case with a random number of LoRa

nodes in the cluster with average n̄, the lower bound of the
coverage probability of a typical LoRa node can be expressed
as

P n̄cov,low (γth) =
2

a2

∫ a

0

e−ρσ
2

LIn̄intra
(ρ)LlowIn̄inter

(ρ)LIco (ρ) rdr,

(29)

where LIn̄intra
(ρ), LlowIn̄inter

(ρ), and LIco
(ρ) are given by (12),

(16), and (17).

Proof. Substituting (6) and (27) into (26), and basing the
derived results of Lemmas 3, 4 and 5, we can obtain the
desired result in (28). The proof procedure of obtaining (29)
is similar to the above for (28), and is hence skipped here.

Note that it is hard to see insights directly from (28) and
(29). To obtain more insightful expressions, we derive the
following corollary.

Corollary 3. If the LoRa nodes follow a Matern cluster
process centered around each receiver, for the unordered case
with a fixed number of LoRa nodes in the cluster, the coverage
probability of a typical LoRa node can be approximated as

Pn,apcov,up (γth) ≈

ωM

M∑
m=1

ϑmlm exp
(
−ρmσ2

) [
ωT

T∑
t=1

µtc
α+1
t

cαt + γthP̃
−1
x

]n−1

exp

[
−a2l2mπλGδ

n∑
p=1

(
n

p

)
B (p− δ, n− p+ δ)

(
γthP̃

−1
x

)δ]

exp

[
−a

2l2mπ
2δ

sin (πδ)
λco

(
γthP̃

−1
z

)δ]
, (30)

where P̃x =
Px0

Px
, P̃z =

Px0

Pz
, ωM = π

M , νm = cos
(

2m−1
2M π

)
,

lm = (νm+1)
2 , ρm =

lαma
αγth

Px0
η , and ϑm =

√
1− ν2

m, ωT =
π
T , ψt = cos

(
2t−1
2T π

)
, ct = (ψt+1)

2 , and µt =
√

1− ψ2
t .

For the unordered case with a random number of active
LoRa nodes in the cluster with average n̄, the coverage
probability of a typical LoRa node can be approximated as

P n̄,apcov,low (γth) ≈ ωM
M∑
m=1

ϑmlm exp
{
−ρmσ2 − (n̄− 1)ωT

T∑
t=1

µtct
cαt P̃x
lαmγth

+ 1
− a2l2mπ

2δ

sin (πδ)

(
λGn̄

(
γth

P̃x

)δ
+ λco

(
γth

P̃z

)δ) .

(31)

Proof. For simplicity, by using the approximated expressions
of the Laplace transform rather than the exact expressions, we
can obtain

Pn,apcov,up (γth) ≈ 2

a2

∫ a

0

e−ρσ
2

LapInintra
(ρ)LupIninter

(ρ)LIco
(ρ) rdr.

(32)

Then based on the derived results of Corollary 1, Lemmas
4 and 5, with the aid of Gauss-Chebyshev approximation, we
can obtain the desired results in closed-form as (30). The proof
procedure to obtain (31) is similar to the above for (30), and
is hence skipped here.

Remark 1. The coverage probability is a monotonic decreas-
ing function of nι ∈ {n, n̄}, λG, and λco. This indicates
that increasing the average number of LoRa nodes that si-
multaneously transmit to the same LoRa receiver degrades
the coverage probability. It is further observed that one either
increases the density of active LoRa nodes, or the density of
active non-LoRa nodes degrades the coverage probability, as
more intra-interference and inter-interference are introduced.
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Remark 2. The coverage probability is a monotonic decreas-
ing function of the cluster radius, a. Hence, if the LoRa nodes
are densely deployed around each LoRa receiver, the coverage
probability of LoRa nodes will be enhanced.

If the considered networks are intra-interference limited,
that is, Iinter = Ico = 0 and σ2 = 0, then from (30) and (31),
we can obtain the following propagation.

Proposition 1. For the unordered intra-interference limited
case, the coverage probability of the case with a fixed number
of active nodes n in the cluster can be expressed as

Pn,apintra,up (γth) ≈ ωM
M∑
m=1

ϑmlm

[
ωT

T∑
t=1

µtc
α+1
t

cαt + γthP̃
−1
x

]n−1

,

(33)

and the coverage probability of the case with a random number
of active LoRa nodes in the cluster with average n̄ can be
expressed as

P n̄,apintra,low (γth) ≈

ωM

M∑
m=1

ϑmlm exp

− (n̄− 1)

T∑
t=1

ωTµtct
cαt P̃x
lαmγth

+ 1

. (34)

Remark 3. When the networks are intra-interference limited,
from (30) and (34), the coverage probability is independent
of the cluster radius, a, which is intuitive.

B. Coverage Probability of Ordered LoRa Users

Based on the derived results in Section III, we can obtain
the coverage probability of the k-th closest LoRa node in the
ordered case in this subsection.

The transmission coverage probability of the k-th closest
LoRa node can be expressed as

P kcov (γth) =

∫
R+

Pr {SINR (r̃k) ≥ γth} fr̃k (r̃k) dr̃k, (35)

Theorem 2. If the LoRa nodes follow a Matern cluster process
centered around each receiver, the coverage probability of the
k-th closest LoRa node located in a cluster of n active LoRa
nodes can be expressed as

Pn,kcov,up (γth) =

∫ a

0

e−ρkσ
2

LIn,kintra
(ρk)LupIninter

(ρk)LIco (ρk)

×
2n!r̃2k−1

k

(
1− r̃2

ka
−2
)n−k

a2k (n− k)! (k − 1)!
dr̃k, (36)

where ρk =
r̃αk γth
Px0η

, LIn,kintra
(ρk), LupIninter

(ρ), and LIco
(ρ) are

given by (19), (15), and (17).
The coverage probability of the k-th closest LoRa node

located in a cluster with a random number of active nodes
with average n̄ can be expressed as

P n̄,kcov,low (γth) =

∫ a

0

e−ρkσ
2

LIn̄,kintra
(ρk)LlowIn̄inter

(ρk)LIco (ρk)

×
2n!r̃2k−1

k

(
1− r̃2

ka
−2
)n−k

a2k (n− k)! (k − 1)!
dr̃k, (37)

where ρk =
r̃αk γth
Px0

η , LIn̄,kintra
(ρk), LlowIn̄inter

(ρk), and LIco
(ρk) are

given by (22), (16), and (17).

Proof. By applying (7) and (1) into (35), we obtain the desired
results. The proof is completed.

Corollary 4. If the LoRa nodes follow a Matern cluster pro-
cess centered around each receiver, the coverage probability
of the k-th closest LoRa node, which is located in a cluster
with a fixed number of active nodes n, can be approximated
as (38), which is given on the next page.

For the cluster with a random number of active LoRa nodes
of average n̄, the coverage probability of the k-th closest LoRa
node can be approximated as

V. AREA SPECTRAL EFFICIENCY AND ENERGY
EFFICIENCY

Spectral efficiency and energy efficiency are two critical
factors for the design of LPWA networks, as LPWA networks
are required to support massive connectivity with minimal
energy consumption at sensor nodes. We will investigate the
area spectral efficiency and energy efficiency in this section.

A. Area Spectral Efficiency

The area spectral efficiency is defined as the average data in
bits that all transmitters can contribute per unit area. Therefore,
based on section III, we can get the area spectral efficiency in
the following proposition.

Proposition 2. The area spectral efficiency of a given network
can be expressed as

τ = nιλGRtP
ap
cov, (40)

where Rt = log2 (1 + γth) is the transmission rates of all
LoRa nodes, P apcov is given by (30), (31), (38), and (39) for the
four scenarios considered in this paper, respectively.

If the density of LoRa receivers λG, the density of non-
LoRa receivers λco, and the number of active LoRa nodes in
each cluster nι = {n, n̄} are fixed, according to (40), we have
the following remarks.

Remark 4. The area spectral efficiency is a monotonically
decreasing function of the cluster radius a according to (40).
Therefore, the area spectral efficiency can be enhanced by
densely deploying LoRa nodes around each LoRa receiver.

Remark 5. The area spectral efficiency is not a monotonic
function of the number of active LoRa nodes nι in the cluster
according to (40). Therefore, the area spectral efficiency can
be maximized by adjusting the number of active LoRa nodes
around each LoRa receiver properly. Due to the complex
expressions of (30), (31), (38), and (39), the number of active
LoRa nodes in the cluster that achieves the maximal area
spectral efficiency is shown in the simulation results.
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P k,apcov,up (γth) ≈ ωM
M∑
m=1

ϑm
n!lm

2k−1
(
1− lm2

)n−k
(n− k)! (k − 1)!

× exp
(
−ρmσ2

) [
ωT

T∑
t=1

µtc
α+1
t

cαt + γthP̃
−1
x

]k−1

×

[
ωT

1− lm2

(
T∑
t=1

µtc
α+1
t

cαt + lm
αP̃−1

x γth
− lm2

T∑
t=1

µtc
α+1
t

cαt + γthP̃
−1
x

)]n−k

× exp

[
−a2l2mπλGδ

n∑
p=1

(
n

p

)
B (p− δ, n− p+ δ)

(
γthP̃

−1
x

)δ
−a

2l2mπ
2δ

sin (πδ)
λco

(
γthP̃

−1
z

)δ]
. (38)

Pw,appcov,low (γth) ≈ ωM
M∑
m=1

ϑm
n̄!lm

2k−1
(
1− lm2

)n̄−k
(n̄− k)! (k − 1)!

× exp
(
−ρmσ2

)
exp

(
− (n̄− 1)ωT

T∑
t=1

µtct

cαt P̃x(γth)
−1

+ 1

)

× exp

[
−a

2l2mπ
2δ

sin (πδ)

(
λGn̄

(
γthP̃

−1
x

)δ
+ λco

(
γthP̃

−1
z

)δ)]
. (39)

B. Energy Efficiency

For a given network, the total power consumption for nodes
within per unit area is nιλGPx, where Px is the transmit
power. Energy efficiency is defined as the ratio of the total
amount of data delivered and the total energy consumed.

Proposition 3. Based on (40), we can obtain the energy
efficiency of the considered network as

EE =
nιλGRtP

ap
cov

nιλGPx
=
RtP

ap
cov

Px
, (41)

where Rt and P apcov are same as defined in (40).

Remark 6. Energy efficiency is a monotonically decreasing
function of cluster radius, a. Therefore, the energy efficiency of
a given network can be enhanced by densely deploying LoRa
nodes around each LoRa receiver.

VI. NUMERICAL RESULTS

We first validate the analytical results presented in the earlier
sections and investigate the tightness of various approxima-
tions derived for coverage probability. In our simulation, the
locations of LoRa nodes are drawn from a PCP over a circle
region with radius Rn = 20 km as LoRa claims that it is able
to support long range transmission in terms of kilometers. The
simulation parameters are set according to the LoRa specifi-
cations unless stated otherwise. The transmission frequency
is fc = 868 MHz as it is used for LoRa in Europe [15].
The bandwidth is BW = 125 KHz as one of most common
setting-ups for LoRa networks. The thermal noise in dBm
level is calculated as σ2 = −174 + 10log10 (BW ). The path-
loss exponent for the communication links is α = 3.5. For
the ordered case, we take k = N to show the achievable
performance of the LoRa node that locates farthest away from
the LoRa receiver.

Fig. 2 plots the coverage probability of the networks with
different SINR thresholds at the receivers γth. We can see that
the derived closed-form expressions in Corollaries 3 and 4 are
well matched with Theorems 1 and 2. Therefore, we use the
approximations given in Corollaries 3 and 4 as the analytical
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Fig. 2. Verification of exact and approximated results versus SINR thresholds
γth, transmit power is Px = 14 dBm, and density of LoRa receivers and
coexisted non-LoRa nodes are λG = λco = 10−1/

(
5002π

)
, cluster radius

is a = 500 m, and the number of active LoRa nodes in the cluster is nι = 6.

results in the following figures. It is also worth noting that
the unordered case always achieves better coverage probability
than the ordered case. The reason is that in the ordered case
the farthest LoRa node is chosen as the the typical one by
taking k = N . For the unordered case, the LoRa node of
interest is selected randomly among the active nodes in the
same cluster, which results in an average performance of the
considered networks.

Fig. 3 plots the coverage probability of the networks for
the ordered and unordered cases versus the number of active
LoRa nodes in each cluster nι. For the curve, we can observe
the following:

1) The coverage probability decreases with larger cluster
radius a, which is consistent with the discussion in
Remark 2. This is due to the fact that larger a not
only increases the distance of the desired link but also
the inter-cluster interference, because larger a shortens
the distance between sources of inter-cluster interference
and the typical receiver.
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Fig. 3. Verification of approximated and simulation results versus number of active LoRa nodes in each cluster with different cluster radii a, density of LoRa
receivers and non-LoRa nodes are λG = λco = 10−1/

(
5002π

)
, transmit power is Px = 14 dBm, SINR threshold is γth = −10 dB.

2) It is also worth noting that the approximated results
given in (30), (31), (38) and (39) are well matched
with the simulation results when the cluster radius is
a = 100 m. With increasing a, there is a small but
notable gap between the approximated results and the
simulation results, which is caused by using the distance
approximation, q (x, y, θ) ≈ y, in Section III. In a
practical scenario of LPWA networks, the cluster radius
a is typically a value in terms of kilometers. Here, we
provide results with a = 100 m is just to justify the
tightness of our derived approximated results.

As observed from Fig. 2 and Fig. 3, the unordered case
behaves similarly to the ordered case. In order to save space
without losing any important insights, in the following figures,
we only present the results of the ordered case with a fixed
and a random number of active LoRa nodes, respectively.

Fig. 4 plots the coverage probability of the networks for
ordered cases versus density of active LoRa nodes nιλG with
different densities of non-LoRa nodes λco. Both the cases
with fixed and random numbers of active LoRa nodes in
each cluster are presented. It is worth noting that coverage
probability is monotonically decreasing with density of active
LoRa nodes nιλG and the density of non-LoRa nodes λco. The
reason is that larger densities of active LoRa nodes and non-
LoRa nodes bring higher intra-interference, inter-interference,
and coexistence interference. This phenomenon is consistent
with the discussion in Remark 1.

Fig. 5 plots the area spectral efficiency of the networks
versus the number of active LoRa nodes nι simultaneously
transmitting in each cluster with different cluster radii a.
From the curve, the area spectral efficiency is monotonically
decreasing with the cluster radius a, which is consistent with
the discussion in Remark 4. We can also observe that the
area spectral efficiency is not a monotonic function of nι as
discussed in Remark 5. In other words, there exists an optimal
number of active LoRa links. This behavior can be explained
as follows: on the one hand, more simultaneously transmitting
LoRa links bing larger intra-cluster interference, as such, the
coverage probability decreases, which in turn decreases the
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Fig. 4. Coverage probability versus density of ordered active LoRa nodes with
different density of non-LoRa nodes λco, transmit power is Px = 14 dBm,
SINR threshold is γth = −10 dB, cluster radius is a = 500 m, number of
active LoRa nodes in the cluster is nι = 6.

area spectral efficiency. On the other hand, as seen from (40),
larger nι results in more efficient spectrum unitization per unit
area, which enhances the area spectral efficiency.

Fig. 6 plots the energy efficiency of the networks versus
the cluster radius a with different transmit powers Px. We can
see that the energy efficiency is monotonically decreasing with
the cluster radius a, which is consistent with the discussion in
Remark 6. We also observe that the energy efficiency is not a
monotonically decreasing function with the transmit power Px
according to (41). However, when the transmit power is set to
0 dBm, 7 dBm and 14 dBm as specified in LoRa networks,
the energy efficiency decreases monotonically.

Fig. 7 verifies the necessity of considering noise in the
analysis by comparing the coverage probability for cases
with and without noise. It can be shown that the coverage
probability of the interference-limited case is always higher
than that with both interference and noise. This is mainly
because that the distance from LoRa users to gateway is
usually very long with low transmit power in LPWA networks.
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As part of a smart city project, the above observations are
capable of providing insights when determining the system pa-
rameters of LoRa networks in practical scenarios. For example,
with the purpose of maximizing the area spectral efficiency of
an LPWA network, there exists an optimal number of LoRa
nodes transmitting to the the LoRa receiver simultaneously.
This inspires the strategy for when and how to scale the LoRa
network by introducing new LoRa gateways in order to achieve
the optimal area spectral efficiency. Another example is that in
order to improve the energy efficiency of an LPWA network,
transmit power should be minimized if the LoRa node is within
the coverage of a LoRa receiver.

VII. CONCLUSIONS

In this paper, the uplink transmission of low-power wide-
area (LPWA) networks with multiple radio modules has been
studied. By using LoRa as an application of our technique
and accounting for coexistence interference from other types

of radio modules sharing the space, we investigated the
performance of the LPWA networks with invoking the poisson
cluster process (PCP) to model the locations of LoRa nodes.
Specifically, we consider the scenarios that the number of
active LoRa nodes in each cluster is fixed and random,
respectively, and that the typical LoRa node is chosen ran-
domly or according to the distance from the typical node to
its serving receiver. Besides the exact expressions, we have
also derived the simple and approximated expressions for the
coverage probability of a typical LoRa node, its area spectral
efficiency, and its energy efficiency. According to our analyses,
an effective approach for enhancing network performance is to
deploy nodes more densely but there exists an optimal number
of active LoRa nodes in each cluster to maximize the area
spectral efficiency. Furthermore, energy efficiency decreases
monotonically with the transmit power using the values that
are specified in LoRa specification. As part of a smart city
project, our results here can provide insightful guidelines to
inform our real world deployment of the large-scale LPWA
networks.
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APPENDIX A: PROOF OF LEMMA 3

For the unordered case with n active LoRa nodes in each
cluster, the Laplace transforms of intr-cluster interference is
given by

LInintra
(s) = Ex∈Ny0\x0

exp

−s ∑
x∈N\x0

Pxhx,y0η‖x‖
−α


= Ex∈Ny0\x0

 ∏
x∈Ny0

Ehx,y0
[
exp

(
−sPxhx,y0

η‖x‖−α
)]

(a)
= Ex∈Ny0\x0

 ∏
x∈Ny0\x0

1

1 + sPxη‖x‖−α


=

[∫
R

(
1

1 + sPxη‖x‖−α

)
f‖x‖ (x) dx

]n−1

(b)
=

[∫ a

0

(
1

1 + sPxηr−α

)
fR (r) dr

]n−1

, (A.1)

where (a) follows the fact that hx,y0
follows a Rayleigh

fading distribution with unit mean, (b) is obtained by changing
the integration from the Cartesian coordinates into the polar
coordinates. Plugging (6) into (A.1) and letting t = rα, we
can obtain

LInintra
(s) =

[
δ

a2sPxη

∫ aα

0

(
tδ

t(sPxη)
−1

+ 1

)
dt

]n−1

.

(A.2)

Then applying [41, Eq. (3.194).1], we can obtain (11).



11

1 2 3 4 5 6 7 8
10-2

10-1

100

C
o

ve
ra

g
e

 p
ro

b
a

b
ili

ty
 P

co
v

Interference limited
Interference+noise

(a)

1 2 3 4 5 6 7 8

Mean number of active LoRa nodes in a cluster n

10-2

10-1

100

C
o

ve
ra

g
e

 p
ro

b
a

b
ili

ty
 P

co
v

Interference limited
Interference noise

(b)

Fig. 7. Coverage probability versus the number of active LoRa nodes in each cluster, density of LoRa receivers and non-LoRa nodes are λG = λco =
10−1/

(
5002π

)
, cluster radius is a = 1000 m, transmit power is Px = 7 dBm, SINR threshold is γth = −10 dB.

Following the similar procedure of obtaining (11), we have

LIn̄intra
(s)

(a)
= Ex∈Ny0\x0

 ∏
x∈Ny0\x0

1

1 + sPxη‖x‖−α


(b)
= exp

[
(n̄− 1)

∫
R+

(
1− 1

1 + sPxη‖x‖−α

)
f‖x‖ (x) dx

]
,

(A.3)

where (a) follows the fact that hx,y0 follows a Rayleigh fading
distribution with unit mean, (b) is obtained by applying the
moment-generating function. Substituting (5) into (A.3) and
changing the integration from the Cartesian coordinates into
the polar, we have

LIn̄intra
(s) = exp

(
−2 (n̄− 1)

a2

∫ a

0

sPxηr
−α

1 + sPxηr−α
rdr

)
.

(A.4)

With the aid of [41, Eq. (3.194).1], we obtain (12). The proof
is completed.

APPENDIX B: PROOF OF (15) IN LEMMA 4

Based on (3), the the Laplace transform for inter-cluster
interference with n active LoRa nodes in the cluster is given
by

LIninter
(s)

= EΦG

 ∏
y∈ΦG\y0

exp

−s ∑
x∈Ny

Pxhx,yη‖y + x‖−α


(a)
= EΦG

 ∏
y∈ΦG\y0

Ex

 ∏
x∈Ny

(
1

1 + sPxη‖y + x‖−α

)
(b)
= exp [−λG ×∫
R2

1−

Ex
 1(

1 + sPxη‖y + x‖−α
)n
n dy

 ,
(B.1)

where (a) is obtained by hx,y follows the Rayleigh distribution
with unit mean, (b) is obtained with using the generating
functional of Matern point process with a fixed number of
points n in each cluster. With the aid of Jensen inequality
[Ex (x)]

n ≤ Ex ((x)
n
), we can obtain a tight upper bound for

the Laplace transform of inter-cluster interference, which is
given by

LIninter
(s) ≤ LupIninter

(s)

(a)
= exp

[
−λG

∫
R2

f‖x‖ (x) dx )

×

∫
R2

1− 1(
1 + sPxη‖y∗‖−α

)n
 dy∗


(b)
= exp

(
−2πλG

∫ ∞
0

(
1− 1

(1 + sPxηr−α)
n

)
rdr

)
(c)
= exp

(
−2πλG

n∑
p=1

(
n

p

)
(sPxη)

p
∫ ∞

0

r−αp+1

(1 + sPxηr−α)
n dr

)
(d)
= exp

(
−πλG

n∑
p=1

(
n

p

)
(sPxη)

δ
δ

∫ ∞
0

(t)
p−δ−1

(1 + t)
n dt

)
(e)
= exp

(
−πλG(sPxη)

δ
δ

n∑
p=1

(
n

p

)
B (p− δ, n− p+ δ)

)
,

(B.2)

where (a) is obtained by changing variables as y∗ → y+x, (b)
is obtained by changing from cartesian to polar coordinate, (c)
is obtained by applying Binomial expansion, (d) is resulted
from using the variable changes of t = sPxη

rα , and (e) is
simplified with applying the definition of Beta function [41,
Eq. (8.380) .3].

APPENDIX C: PROOF OF (16) IN LEMMA 4

Similar to (B.2), the the Laplace transform for inter-cluster
interference with a random number of active LoRa nodes in
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the cluster with an average n̄ is written by

LIn̄inter
(s)

= EΦG

 ∏
y∈ΦG\y0

Ex

 ∏
x∈Ny

(
1

1 + sPxη‖y + x‖−α

) .
(C.1)

Applying the the generating functional of Matern point process
with a random number of points of average n̄, and similar to
(B.2) with the variables changes of y∗ → y+x, we can obtain

LIn̄inter
(s)

= exp

(
−λG

∫
R2

(
1− exp

(
−n̄
(

sPxηy
∗−α

1 + sPxηy∗
−α

)))
dy∗
)

= exp

(
−2πλG

∫ ∞
0

[
1− exp

(
−n̄
(

sPxηr
−α

1 + sPxηr−α

))]
rdr

)
.

(C.2)

With the aid of Taylor series expansion, we can have the
approximation as 1− exp (−x) ≤ x. Then we can obtain

LIn̄inter
(s) ≥ LlowIn̄inter

(s)

= exp

(
−2πλGn̄

∫ ∞
0

(
sPxηr

−α

1 + sPxηr−α

)
rdr

)
(a)
= exp

(
−πλGn̄(sPxη)

δ
δΓ (δ) Γ (1− δ)

)
(b)
= exp

(
−π2λGn̄(sPxη)

δ δ

sin (πδ)

)
, (C.3)

where (a) is obtained by applying [41, Eq. (3.241).4], and
(b) is obtained with the aid of the Euler’s reflection formula.
The proof is completed.

APPENDIX D: PROOF OF LEMMA 6
The Laplace transform of intra-cluster interference can be

divided into two disjoint sets, as mentioned in Section III. By
doing so, the Laplace transform of intra-cluster interference
for the case with n active LoRa nodes in the cluster can be
expressed as

LIn,kintra
(s)

= E

 ∏
x∈Knear

1

1 + sPxη‖x‖−α
∏

x∈Kfar

1

1 + sPxη‖x‖−α


(a)
=

[∫
R+

(
1

1 + sPxηr−α

)
f R̃|r≤r̃k (r| r̃k) dr

]k−1

×
[∫

R+

(
1− 1

1 + sPxηr−α

)
f R̃|r>r̃k (r| r̃k) dr

]n−k

(b)
=

 2

r̃2
k

∫ r̃k

0

(
1

1 + sPxηr−α

)
rdr︸ ︷︷ ︸

Q1


k−1

×

 2

a2 − r̃2
k

∫ a

r̃k

(
1

1 + sPxηr−α

)
rdr︸ ︷︷ ︸

Q2


n−k

, (D.1)

where (a) is obtained by applying generating functional of
Matern point process with fixed number of points n, (b) is
obtained by plugging (10) inside, which is PDF of the ordered
distance for intra-cluster interference nodes.

Using the similar approach as obtaining (A.2), we can obtain

Q1 =
δ

2sPxη

r̃α+2
k

δ + 1
2F1

(
1, δ + 1; δ + 2;− r̃αk

sPxη

)
(D.2)

and

Q2 =
δ

2sPxη

aα+2

δ + 1
F1

(
1, δ + 1; δ + 2;− aα

sPxη

)
− δ

2sPxη

r̃α+2
k

δ + 1
F1

(
1, δ + 1; δ + 2;− r̃αk

sPxη

)
, (D.3)

respectively. Substituting into (D.2) and (D.3) into (D.1), we
can obtain (19).

The proof of (22) follows on the same procedure as (19)
and is hence skipped.
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