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This brief communication examines the fluid forces acting on a cylinder free to move in
the streamwise direction throughout its response regime. The amplitude and phase of the
unsteady drag coefficient are estimated from the displacement signals and a simple
harmonic oscillator model. We examine the counter-intuitive reduction in vibration
amplitude observed in streamwise vortex-induced vibrations (VIV) at resonance, which
has remained one of the most poorly understood aspects of VIV. Our results show that it is
not caused by a change in the phase of the fluid forcing with respect to the cylinder
displacement, as suggested by previous researchers; instead, we show that there is a
sudden decrease in the amplitude of the unsteady drag coefficient in this region. The
possible cause of this result, relating to three-dimensionality in the wake, is briefly dis-
cussed.

& 2016 Published by Elsevier Ltd.
1. Introduction

The problem of Vortex-Induced Vibration (VIV) of circular cylinders in crossflow is relevant to a wide range of industrial
structures, such as tall chimneys, bridges, heat exchangers, off-shore platforms and oil risers. It is a classical fluid–structure
interaction problem; the vortices shed from the cylinder induce unsteady fluid forces, which cause the structure to vibrate;
this motion in turn affects the wake and the vortex-induced forces. This results in a complex feedback loop between the
flow field and the structure that is controlled by the fluid forces. When the predicted vortex-shedding frequency (the
Strouhal frequency), f St ¼ St U0=D (where St is the Strouhal number, U0 is the freestream velocity and D is the cylinder
diameter) is close to the vibration frequency of the cylinder, fx, the cylinder motion can cause the vortex-shedding to occur
at fx or a sub-harmonic instead of the Strouhal frequency, a phenomenon known as ‘lock-in’.

The structural response, wake mode and the presence of lock-in are controlled by the so-called ‘true’ reduced velocity
(Cagney and Balabani, 2013c; Govardhan and Williamson, 2000; Aguirre, 1977), UrSt=f

�, where Ur ¼U0=f nD is the con-
ventional reduced velocity, fn is the natural frequency measured in a still fluid, and f � ¼ f x=f n is the frequency ratio. The ‘true’
reduced velocity (henceforth referred to simply as the reduced velocity) is equal to the ratio of the predicted shedding
frequency to the actual response frequency, f St=f x. As the fluctuating drag occurs at twice the shedding frequency, lock-in is
expected to occur in the streamwise direction (i.e. parallel to the flow) at UrSt=f

� ¼ 0:5, and at UrSt=f
� ¼ 1 in the transverse

direction (i.e. normal to the flow). This is typically associated with a change in the arrangement of vortices in the wake (the
‘wake mode’) and an increase in the vibration amplitude, A (Williamson and Roshko, 1988; Morse and Williamson, 2009).
).
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Fig. 1. Amplitude response of a cylinder undergoing streamwise VIV; Jauvtis and Williamson (2003) (pivoted cylinder, m� ¼ 6:9, ζ¼ 0:0014, closed black
circles); Aguirre (1977) (m� ¼ 1:23, ζ ¼ 0:0018, blue diamonds); Okajima et al. (2004) (m�ζ ¼ 0:195, red triangles). These studies did not provide infor-
mation on f n, which is here assumed to remain equal to 1. The characteristic reduction in amplitude at UrSt� 0:5 is clear. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)Q2
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However, when the cylinder is free to move in the streamwise direction, the synchronisation between the unsteady drag
force and the cylinder vibration coincides with a sudden reduction in amplitude (Aguirre, 1977; Jauvtis and Williamson,
2003; Okajima et al., 2004). This paradoxical feature of VIV can be seen in Fig. 1, which shows the results of three previous
studies; the reduction in vibration amplitude at resonance is in contrast to almost all other forms of fluid–structure
interaction and remains poorly understood (Konstantinidis, 2014).

Nishihara et al. (2005) measured the fluid forces acting on a cylinder forced to oscillate in the streamwise direction at
A=D¼ 0:05 for a range of reduced velocities and found that near UrSt=f

� ¼ 0:5 the phase difference between the cylinder
displacement and the drag force changed such that energy was transferred from the cylinder (i.e. it was a damping force),
which they proposed to be the cause of the counter-intuitive reduction in amplitude in this region. A similar argument was
presented by Konstantinidis et al. (2005) and Konstantinidis and Liang (2011), who examined the wake of a cylinder in
pulsating flow and observed a change in the phase of the vortex-shedding near UrSt=f

� ¼ 0:5. However, Morse and Wil-
liamson (2009) showed that the fluid force will always provide negative excitation (i.e. a damping force) if the cylinder is
forced to oscillate at an amplitude above which it would oscillate in the free-vibration case. Konstantinidis and Liang (2011)
also note this issue, pointing out that the forced oscillation experiments do not take into account the fact that the phase of
the drag force with respect to the cylinder displacement will depend on the vibration amplitude. In light of this, the findings
of Nishihara et al. (2005) could be said to be known a priori and the cause of the reduction in A=D near UrSt=f

� ¼ 0:5 remains
unclear.

In order to fully understand the complex coupling between the wake in the structural motion, knowledge of the fluid
forces acting on the cylinder is required. However, it is often difficult in practice to accurately measure the forces acting on a
freely oscillating body; for many experimental configurations it may not be possible to attach strain gauges to the body or its
supports, and the measurements may be inaccurate when the amplitude of the forces is low (Noca et al., 1999). Khalak and
Williamson (1999) showed that by manipulating the equations of motion of a single degree of freedom cylinder, the
amplitude and phase of the fluid forces can be expressed in terms of the displacement and the structural properties of the
cylinder. This approach also captures the dependence of the phase difference between the fluid forces and the cylinder
motion on A/D, which is often neglected in forced oscillation experiments.

This brief communication presents estimates of the fluid forces acting on a cylinder free to move only in the streamwise
direction, using a similar approach to that of Khalak and Williamson (1999), in order to provide insight into the fluid
excitation in streamwise vortex-induced vibrations. In particular, we seek to address the question of what causes the
paradoxical reduction in vibration amplitude at resonance.
2. Experimental details

2.1. Test facilities

The experiments were performed in a closed-loop water tunnel, which has been described in detail by Konstantinidis
et al. (2003) and Cagney and Balabani (2013c). It contained a 72 mm�72 mm test-section, which was made of Perspex, to
allow optical access.

In order to support the cylinder within the flow such that it was free to move only by translation in the streamwise
direction, it was suspended at either end using fishing wires. The wires were aligned normal to the cylinder axis and the
Please cite this article as: Cagney, N., Balabani, S., Fluid forces acting on a cylinder undergoing streamwise vortex-
induced vibrations. Journal of Fluids and Structures (2016), http://dx.doi.org/10.1016/j.jfluidstructs.2016.01.007i
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Fig. 2. Plan and elevation view of the test section used, including fishing wire supports and PIV plane.
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flow direction, as shown in Fig. 2. The cylinder was held in place along the wires using silicon sealant in order to prevent any
transverse motion. Great care was taken to ensure that the stiffness in both wires was approximately equal, such that the
supports were balanced and any non-translational motion (i.e. pitching) was negligible (see Cagney and Balabani, 2013c for
more details). The frequency spectra of the cylinder displacement signals showed that any energy occurring at sub- or
super-harmonics of the primary response frequency was negligible, indicating that the stiffness of the supports was
essentially linear.

The cylinder had a diameter, D, and length, L, of 7.1 mm and 71 mm, respectively. It was made of solid Perspex and had a
mass ratio, m� ¼ ðvibrating massÞ=ðdisplaced fluid massÞ, of 1.17.

A series of tap tests were performed in still water to identify the natural frequency and hydrodynamic damping ratio, and
a further series of tests were performed in air to identify these values in the absence of significant added mass effects
(Sarpkaya, 2004). The natural frequency in water and air was fn¼23.7 Hz and f n;a ¼ 33:11 Hz, respectively. In practice it is
rarely possible to directly measure the structural damping (i.e. the damping caused by internal friction), which can only be
found by performing tap tests in a vacuum (Sarpkaya, 2004). While the damping ratio measured in air, ζa, is often taken to
represent the structural damping, the true value may be as much as an order of magnitude smaller (Sarpkaya, 2004). We
therefore limit our discussion to noting that we found ζa ¼ 0:0037, and the tap tests in water indicated that ζw ¼ 0:02. Both
values include the influence of the structural damping.

2.2. PIV measurements

The flow field surrounding the cylinder was measured using Particle-Image Velocimetry in order to estimate the vortex-
shedding frequency and the freestream velocity. The PIV system and experimental procedure is the same as that described
Please cite this article as: Cagney, N., Balabani, S., Fluid forces acting on a cylinder undergoing streamwise vortex-
induced vibrations. Journal of Fluids and Structures (2016), http://dx.doi.org/10.1016/j.jfluidstructs.2016.01.007i
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in Cagney and Balabani (2013b). An Nd:Yag laser was used to illuminate the plane normal to the cylinder axis at its midspan,
as shown in Fig. 2. The flow was seeded using silver-coated hollow glass spheres that had a mean diameter of 10 μm, and
image-pairs were acquired using a high-speed CMOS camera (IDT X-3) and the Dynamic Studio software package (Dantec
Dynamics). For each reduced velocity examined, 1000 image-pairs were acquired at 200 Hz, which corresponded to
approximately 120 cylinder vibration cycles.

The streamwise and transverse spans of the PIV fields were x=D¼ �1:4 to 4.2 and y=D¼ �1:65 to 1.55, respectively,
where the origin is defined as the mean cylinder position.

The cylinder position and displacement signals were estimated directly from the PIV images, using a template-matching
algorithm, which has been described elsewhere (Cagney and Balabani, 2013c). The method was applied to images of a
cylinder undergoing known static displacements and to images which had been binned (compressed). Based on these tests,
the method was found to be accurate to within 0.4 pixels, which corresponds to 0.2% of the cylinder diameter.

The cylinder response frequency at each reduced velocity was estimated from the power-spectral-density of the dis-
placement signal. The amplitude response was estimated from the displacement signals, which were band-pass filtered,
with cut-off frequencies of 10 Hz and 40 Hz, in order to reduce the effects of noise and any low frequency oscillations that
were not associated with VIV. The vibration amplitude was taken as the mean peak height of the filtered signal.

The vortex-shedding frequency, fv, was estimated from the dominant frequency of the transverse velocity signal
extracted directly from the PIV fields at ðx=D; y=DÞ ¼ ð3;0Þ. The values of fv measured before the onset of lock-in
(UrSt=f

�o0:37) were used to estimate the Strouhal number, St¼0.2. PIV measurements were acquired in the reduced
velocity range UrSt=f

� ¼ 0:19–0:62, which corresponded to a Reynolds number range (Re¼ U0D=ν, where ν is the kinematic
viscosity) of 1150–5400.
3. Force estimation

It is common to model a cylinder undergoing VIV in one direction as a simple harmonic oscillator in order to show the
dependence of the vibration amplitude on various structural properties and the fluid forces (Bearman, 1984; Sarpkaya,
2004; Williamson and Govardhan, 2004). Khalak and Williamson (1999) showed that this approach can also be used to find
information on the fluid forces acting on a freely oscillating cylinder if the cylinder displacement is measured.

The cylinder is assumed to have the characteristic equation of motion:

m €xþc _xþkx¼ ~Fx ðtÞ; ð1Þ
where m is the mass of the cylinder, c is the damping coefficient, k is the stiffness of the system, and ~Fx ðtÞ is the fluctuating
drag force. This equation can be expressed in terms of the known structural properties by dividing both sides by m (and
recalling that the natural frequency in air is given by f n;a ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
=2π and the damping ratio is equal to ζ ¼ c=2

ffiffiffiffiffiffiffi
km

p
Þ;

€xþ2ζ 2πf n;a
� �

_xþ 2πf n;a
� �2x¼ 2U2

0

Dm� ~CD tð Þ; ð2Þ

where ~CD ¼ ~Fx=0:5ρU2
0DL is the unsteady drag coefficient and ρ is the fluid density.

This approach requires a choice of damping ratio and coefficient. Khalak and Williamson (1997, 1999) used the damping
measured in air, referring to it as the ‘structural damping’. However, as noted in Section 2.1, ζa may be larger than the true
structural damping (which is not known), and neglects the role of viscous dissipation as the cylinder vibrates in water. The
damping coefficient which includes these viscous effects can be found from the tap tests performed in water (which
measure ζw and fn) as

cw ¼ ζwk
πf n

: ð3Þ

The damping ratio in Eq. (2) is therefore given by

ζ¼ cw
2
ffiffiffiffiffiffiffi
mk

p : ð4Þ

Combining these expressions we get:

ζ¼ f n;a
f n

� �
ζw ¼ 0:0277: ð5Þ

The cylinder motion and unsteady drag coefficient signals are assumed to be sinusoidal, separated by a phase lag, ϕ:

xðtÞ ¼ A sin 2πf xt
� �

; ð6Þ

~CD ðtÞ ¼ j ~CD j sin 2πf xtþϕ
� �

: ð7Þ
Only the component of the fluid forcing which occurs at the cylinder response frequency will affect the steady-state

response amplitude. Therefore, the assumption in Eq. (7) that the forcing occurs at fx is less restrictive than it may at first
appear; the forcing signal may contain components occurring at a range of frequencies, but j ~CD j relates only to the
Please cite this article as: Cagney, N., Balabani, S., Fluid forces acting on a cylinder undergoing streamwise vortex-
induced vibrations. Journal of Fluids and Structures (2016), http://dx.doi.org/10.1016/j.jfluidstructs.2016.01.007i
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amplitude of the component occurring at fx. Therefore, the analysis presented here is not restricted to cases in which the
fluid forcing is locked-in to the cylinder motion, but is applicable throughout the response regime. However, outside of the
lock-in range, the estimates of the fluctuating drag will relate to the fluid forces caused by turbulent buffeting and the
cylinder motion, rather than those caused by the vortex-shedding.

Eq. (6) can be differentiated to find expressions for the cylinder velocity and acceleration. Inserting these expressions and
the relations for x(t) and ~CD ðtÞ into Eq. (2), and utilising various non-dimensional groups, the components of the unsteady
drag coefficient which are in phase with the cylinder displacement and velocity can be expressed as:

j ~CD j cos ϕ¼ 2π3
A
D

m�

U2
r

f n;a
f n

� �2

1� f �2a
� �

; ð8Þ

and

j ~CD j sin ϕ¼ 2π3
A
D

m�

U2
r

f n;a
f n

� �2

2ζf �a
� �

; ð9Þ

respectively, where f �a ¼ f x=f n;a.
Eqs. (8) and (9) can be combined to produce expressions for the amplitude and phase of the fluid force:

j ~CD j ¼ 2π3
A
D

m�

U2
r

f n;a
f n

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ζf �a
� �2þ 1� f �2a

� �2r
; ð10Þ

ϕ¼ tan �1 2ζf �a
1� f �2a

 !
: ð11Þ
Fig. 3. Amplitude response of the cylinder (a), amplitude of the fluctuating drag coefficient (b) and phase angle between the fluctuating drag and the
cylinder displacement (c) throughout the streamwise response regime. The results in (b) and (c) were calculated using Eqs. (10) and (11), respectively. The
dashed red lines indicate the vibration amplitude and the magnitude of j ~CD j occurring at fx measured by Nishihara et al. (2005) for the case of a cylinder
undergoing forced oscillations at Re¼34 000. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)

Please cite this article as: Cagney, N., Balabani, S., Fluid forces acting on a cylinder undergoing streamwise vortex-
induced vibrations. Journal of Fluids and Structures (2016), http://dx.doi.org/10.1016/j.jfluidstructs.2016.01.007i
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Khalak and Williamson (1999) compared the estimates of the lift force acting on a transversely oscillating cylinder found
from the cylinder displacement signals to those directly measured using strain gauges, for two cylinders with mass ratios of
3.3 and 10.1, respectively. They found the method to be reasonably accurate for the low mass ratio cylinder, but the errors
were quite large for the high mn case; the errors in the maximum root-mean-square (rms) values of the lift force were
approximately 6% and 33%, respectively (see Fig. 12 in Khalak and Williamson, 1999). They attributed this dependence of the
accuracy on mn to the difficulty in accurately measuring the frequency ratio of structures with high mass ratios, which are
only weakly affected by the added-mass. In such cases f n remains close to unity; small absolute errors in the measurement
of fx will therefore correspond to large relative errors if the formulations contain terms such as 1� f �

� �2 in the denominator.
The formulations presented in Eqs. (10) and (11) are dependent on f �a (rather than f n), which does not tend to unity at low
reduced velocities. This provides a further motivation for our use of the current formulations of these equations.

The mass ratio of the present system is low (m� ¼ 1:17) and the changes in f �a were found to be relatively large (f �a ¼ 0:73
and 0.93 at the lowest and highest reduced velocities examined, respectively); therefore this method can be expected to
perform reasonably well with an uncertainty comparable to that found by Khalak andWilliamson form� ¼ 3:3. However, the
uncertainty may be slightly larger when f �a is close to unity (i.e. at high reduced velocities).
4. Results

The variation in the amplitude of the cylinder vibrations throughout the streamwise response regime is shown in
Fig. 3(a). The closed symbols indicate the reduced velocities at which the vortex-shedding was found to be locked-in to the
cylinder motion (i.e. the velocity fluctuations at ðx=D; y=DÞ ¼ ð3;0Þ occurred at f x=2). The cylinder response is characterised
by two branches, separated by a low amplitude region slightly below UrSt=f

� ¼ 0:5, which is consistent with previous
studies examining the response of cylinders with single and multiple degrees of freedom (Aguirre, 1977; Cagney and
Balabani, 2013c; Okajima et al., 2004; Jauvtis and Williamson, 2004; Blevins and Coughran, 2009). The lock-in range is
UrSt=f

� � 0:37–0:6, which corresponds to the peak of the first branch, the low amplitude region and the entirety of the
second branch. The first branch occurs over the range UrSt=f

� � 0:25–0:45, and has a peak amplitude of A=D¼ 0:087. The
second branch has a slightly lower peak amplitude (A=D¼ 0:55), and occurs over the range UrSt=f

� � 0:5–0:6.
The peak of the first branch is characterised by both symmetric and alternate vortex-shedding, with the wake switching

intermittently between the two modes. Instantaneous vorticity fields showing these modes at the peak of the first branch
are presented in Fig. 4(a) and (b). In the second branch, the vortices are also shed alternately, with no switching between
modes, and the vortices forming close to the cylinder base (Fig. 4(c)). See Cagney and Balabani (2013a,b,c) for a complete
discussion of mode-switching and the variation in shedding patterns throughout the response regime.

The variations in the estimated amplitude and phase of the fluctuating drag coefficient found using Eqs. (10) and (11) are
shown in Fig. 3(b) and (c), respectively. The amplitude of the fluctuating drag is large at low reduced velocities
(UrSt=f

�≲0:44). A local maximum occurs at UrSt=f
� ¼ 0:39, which approximately coincides with the peak of the first

response branch and the onset of lock-in. Nishihara et al. (2005) also observed large amplitude fluctuating drag forces acting
on a cylinder undergoing forced streamwise vibrations (A/D¼0.05) at low values of UrSt=f

�. This was also observed in the
numerical simulations of Marzouk and Nayfeh (2009). By decomposing the signal into components in phase with the
cylinder displacement and velocity, they showed that the large amplitude drag was caused by an increase in the inertial
forces associated with the cylinder motion. Fig. 3(c) shows that the phase lag between the forcing and the displacement is
low for UrSt=f

�≲0:25. This indicates that the fluid force acts in phase with the cylinder displacement and the inertial force
acting on it (i.e. the d'Alembert force, �m €x), in agreement with the results of Nishihara et al. (2005) and Marzouk and
Nayfeh (2009). The magnitude of the energy transferred to the cylinder is proportional to j ~CD j sin ϕ (Khalak and Wil-
liamson, 1999). Therefore, the low ϕ value indicates that in spite of the large amplitude fluctuating drag in the region
UrSt=f

�≲0:44, the cylinder does not experience significant levels of fluid excitation, and the response amplitude
remains low.

For UrSt=f
�≲0:3 the vortices are shed at the Strouhal frequency, and the cylinder does not exhibit significant vibrations.

Despite the absence of lock-in, the cylinder experiences some excitation due to turbulent buffeting; therefore the cylinder
response amplitude is non-zero, and Fig. 3(c) indicates that the fluid is transferring some energy to the structure (which
corresponds to ϕ40). Post-lock-in, when the amplitude response is negligible (UrSt=f

�40:6), the phase lag is larger,
indicating a drop in the flow-induced inertial forces. As the inertial forces are low, the total amplitude of the fluctuating drag
also drops to a very low value (Fig. 3(b)).

The dashed red line in Fig. 3(b) indicates the force measurements of Nishihara et al. (2005), obtained for a cylinder forced
to oscillate in the streamwise direction at a constant amplitude of A/D¼0.05. The shaded regions in Fig. 3 indicate the
reduced velocities at which the non-dimensional vibration amplitude was within 0.01 of the value used by Nishihara et al.
(i.e. 0:04rA=Dr0:06). Nishihara et al. used gauges to measure the overall force acting on the oscillating cylinder, and by
cross-correlating the force and the cylinder displacement signals, found the magnitude of the component on the force acting
at fx – i.e. the same quantity predicted by Eq. (10). The vibration amplitude will have a strong effect on the magnitude of the
fluid forces, and the estimates of j ~CD j cannot be expected to match the measurements of Nishihara et al. when the dif-
ferences in A/D are large (i.e. outside the shaded regions). However, Fig. 3(b) shows that during the lock-in range the
estimates are reasonably consistent with the measured values when A=D� 0:05, in spite of the differences between the two
Please cite this article as: Cagney, N., Balabani, S., Fluid forces acting on a cylinder undergoing streamwise vortex-
induced vibrations. Journal of Fluids and Structures (2016), http://dx.doi.org/10.1016/j.jfluidstructs.2016.01.007i
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Fig. 4. Instantaneous vorticity fields showing the symmetric (a) and alternate (b) modes of vortex shedding at the peak of the first response branch
(UrSt=f

� ¼ 0:429), and the alternate shedding mode at the start of the second branch (c), at UrSt=f
� ¼ 0:527.

N. Cagney, S. Balabani / Journal of Fluids and Structures ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7
studies (e.g. the use of forced/free oscillations, Re, and aspect ratio), indicating that the displacement-based method is
reasonably effective. The estimates of j ~CD j found using Eq. (10) are larger than the values measured by Nishihara et al. when
the response amplitude in the current study is also larger (A=D40:05), and vice versa. This is also consistent with the
equations of motion, which show that the unsteady drag coefficient is dependent on the vibration amplitude, j ~CD jpA=D
(Eq. (10)).

The phase lag between the drag and the cylinder motion does not vary significantly between the peak of the first branch
and the low amplitude region at UrSt=f

� � 0:5. This indicates that the sudden decrease in the amplitude response in this
region is not caused by a change in ϕ, as has been previously suggested (Nishihara et al., 2005; Konstantinidis et al., 2005). In
fact, ϕ has a very small local maximum at UrSt=f

� ¼ 0:47. However, there is a dramatic change in j ~CD j over this range. At
UrSt=f

� ¼ 0:47, j ~CD j has approximately the same amplitude as observed post-lock-in, when A/D is also negligible. This
indicates that the low amplitude observed in this region is caused by a reduction in the amplitude of the fluctuating drag
force, rather than a change in its phase. This is discussed further in the following section.

Within the second branch there is an increase in the amplitude of the unsteady drag coefficient, although the peak
amplitude observed, j ~CD j ¼ 0:13, is considerably lower than that observed in the first branch. However, Fig. 3(c) indicates
that the phase angle is larger in the second branch, which is associated with increased levels of energy transfer to the
cylinder and accounts for the reasonably large levels of A/D observed in this region.
Please cite this article as: Cagney, N., Balabani, S., Fluid forces acting on a cylinder undergoing streamwise vortex-
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Fig. 5. Amplitude (a) and phase (b) calculated throughout the response regime for three different choices of damping ratio. Khalak and Williamson (1999)
used the damping ratio measured in air (black circles), while we take into account the effect of viscous drag (red triangles). The effect on j ~CD j is negligible,
while the different damping ratios cause a shift in ϕ, but do not alter its qualitative variation throughout the response regime. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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As noted in Section 3, we define the damping ratio in terms of the damping coefficient measured in still water. In
contrast, Khalak and Williamson (1997, 1999) and Govardhan and Williamson (2000) chose to use an approximation of the
structural damping, based on tests performed in air. In order to study the effect of the choice of damping ratio on the
estimates of the unsteady drag force, j ~CD j and ϕ were calculated for three different values of ζ: the damping ratio measured
in air (as chosen by Khalak and Williamson, 1999 and Govardhan and Williamson, 2000), the damping ratio measured in
water, and damping ratio given by Eq. (5).

Fig. 5(a) shows that the choice of ζ has little effect on the estimates of the amplitude of the unsteady force coefficient.
This implies that the added mass term in Eq. (10) (i.e. ð1� f �2a Þ in the square root) is dominant and the component due to
damping (i.e. 2ζf �a) is relatively insignificant. However, for high mass ratio cylinders, the added mass effects are weaker and
the choice of damping ratio is likely to have a significant effect on the accuracy of the estimates.

A change in the assumed value of ζ leads to a proportional increase in tan ϕ (Eq. (11)), which in turn causes a corre-
sponding increase or decrease in the estimates shown in Fig. 5(b). The increased values of ϕ for ζ¼ f n;a=f n

� �
ζw (red triangles)

relative to the ζa case (black circles) correspond to the increased force that would be required to induce a cylinder to
vibration in viscous water compared to a cylinder in a vacuum. In spite of the changes in the mean values of the phase angle
for each of the cases shown in Fig. 5(b), the choice of the damping ratio results in a uniform change in tan ϕ throughout the
response regime, and therefore does not affect the general trend; i.e. the absence of a reduction in ϕ at UrSt=f

� � 0:5, as has
been predicted in previous studies.
5. Discussion and conclusions

The estimates of the unsteady drag force presented in the previous section do not support the arguments of Nishihara
et al. (2005) and Konstantinidis et al. (2005) that the low amplitude region at UrSt=f

� � 0:5 is caused by a reduction in ϕ, but
instead show that this region coincides with a decrease in the forcing amplitude.

It is clear from the equations of motion that the reduction in the vibration amplitude must coincide with a reduction in
the phase or amplitude of the unsteady forcing, or both. Therefore, it is not sufficient to simply explain the counter-intuitive
low amplitude region as being ‘caused’ by a change in j ~CD j or ϕ, which is knownpriori; rather the wake dynamics must be
examined in order to explain what is causing the change in the fluid forcing.

One such explanation was argued by Aguirre (1977) and Okajima et al. (2004), who showed that when a splitter plate
was installed behind the cylinder the low amplitude region did not occur and the first response branch continued to higher
reduced velocities. At low reduced velocities in the first branch, the vortices are shed symmetrically, but the shedding
becomes alternate at the peak of the first branch and throughout the low amplitude region and second branch (Fig. 4).
Aguirre (1977) and Okajima et al. (2004) argued that the splitter plate prevented the alternate vortex-shedding and
therefore the low amplitude region was caused by the wake transitioning to the alternate shedding mode.
Please cite this article as: Cagney, N., Balabani, S., Fluid forces acting on a cylinder undergoing streamwise vortex-
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Cagney and Balabani (2013a, 2014) examined the vortex-shedding at the centre-span of cylinders with one and two
degrees of freedom, respectively, and showed that at a constant reduced velocity the wake mode can switch intermittently
between the symmetric and alternate shedding modes, but found that this does not cause any change in the streamwise or
transverse vibration amplitudes. The fact that the alternate mode does not produce a noticeable lift force is surprising given
that the same mode is capable of inducing large VIV in the lift direction at other reduced velocities. Similarly, the experi-
ments of Aguirre and Okajima et al. suggest that this change in wake mode should also result in a corresponding change in
the streamwise response. These issues can be explained if the wake is highly three-dimensional in this reduced velocity
range, and the shedding mode is not uniform along the cylinder span. If this is the case, the unsteady fluid forces induced by
the vortex-shedding at different points along the span may destructively interfere, which may cause a reduction in j ~CD j
(which is averaged over the length of the cylinder) and ultimately to a reduction in A/D. In order to test this would require
measurements of the three-dimensionality in the wake of a cylinder which is undergoing free or forced vibrations in the
region UrSt=f

� � 0:5.
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