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ABSTRACT

The bispectrum will play an important role in future galaxy surveys. On large
scales it is a key probe for measuring primordial non-Gaussianity which can help
differentiate between different inflationary models and other theories of the early uni-
verse. On these scales a variety of relativistic effects come into play once the galaxy
number-count fluctuation is projected onto our past lightcone. We show for the first
time that the leading relativistic correction from these distortions in the galaxy bispec-
trum generates a significant dipole, mainly from relativistic redshift space distortions.
The amplitude of the dipole can be more than 10% of the monopole even on equality
scales. Such a dipole is absent in the Newtonian approximation to the redshift space
bispectrum, so it offers a clear signature of relativistic effects on cosmological scales
in large scale structure.
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Introduction

The bispectrum provides an increasingly important probe of
large-scale structure, complementing the information in the
power spectrum and improving constraints on cosmological
parameters. It has the potential to detect primordial non-
Gaussianity, a key goal of large-scale galaxy surveys. The
inclusion of redshift space distortions (RSD) in the bispec-
trum is essential for this purpose (Verde et al. 1998; Scocci-
marro et al. 1999). Though this adds complexity, this means
that more information can potentially be extracted (Tellar-
ini et al. 2016).

The dominant RSD effect on galaxy number counts at
first order is given by δg(k) = (b1+fµ2)δ(k), where µ = n·k̂,
with n the line of sight direction, f the growth rate, and b1 is
the linear bias (we omit the dependence on redshift here and
below for convenience). The leading correction to this effect
is a Doppler term (Kaiser 1987; McDonald 2009; Challinor &
Lewis 2011) (see also Raccanelli et al. (2018); Hall & Bonvin
(2017); Abramo & Bertacca (2017)) proportional to v · n,
where v is the peculiar velocity:?

δg(x) = b1δ(x)− 1

H∂r(v · n) +Av · n → (1)

? Challinor & Lewis (2011) provides the relativistic correction to

the coefficient of v · n given in Kaiser (1987); McDonald (2009).

δg(k) =
(
b1 + fµ2 + iAfµ

H
k

)
δ(k) , (2)

where A = be + 3Ωm/2− 3 + (2− 5s)(1− 1/rH). Here be =
∂(a3n̄g)/∂ ln a is the evolution of comoving galaxy number
density, s = −(2/5)∂ ln n̄g/∂ lnL is the magnification bias
(L is the threshold luminosity), r is the comoving radial
distance (∂r = n ·∇) and we have assumed a ΛCDM back-
ground (H′/H2 = 1−3Ωm/2, whereH is the conformal Hub-
ble rate, a prime is differentiation with respect to conformal
time, Ωm is the evolving density contrast). In the Fourier
space expression (2) we can read off the relative contribu-
tion of each term by how they scale with k: terms like H/k
are suppressed on small scales when H/k � 1 but become
important around and above the equality scale.

Although the galaxy density contrast (2) is complex,
the power spectrum is real:

〈
δg(k)δg(−k)

〉
=
[(
b1 + fµ2)2 +

(
Afµ

H
k

)2]〈
δ(k)δ(−k)

〉
,

since µ−k = −µk enforces a cancellation of the imaginary
part, and the RSD contribution is separate from the Doppler
term. However, if we consider the cross-power spectrum for
two matter tracers, this cancellation breaks down and there
is an imaginary part in the cross-power (McDonald 2009;
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Bonvin 2014):

Pgg̃(k) =
{[(

b1 + fµ2)(b̃1 + fµ2)+AÃf2µ2H2

k2

]
+i fµ

[(
b̃1 + fµ2)A− (b1 + fµ2)Ã]H

k

}
P (k) .

While the Doppler contribution to Pg is O((H/k)2), the
Doppler contribution to Pgg̃ mixes with the density and RSD
to give an additional less suppressed part, i.e. O(H/k). The
nonzero multipoles of Pg are ` = 0, 2, 4, whereas Pgg̃ has a
nonzero dipole (as well as an octupole). There are also fur-
ther relativistic corrections to this dipole part of the cross
power spectrum (Di Dio & Seljak 2018).

A natural question is: what about the galaxy bispec-
trum? In the standard ‘Newtonian’ approximation, with
only RSD, the galaxy bispectrum for a single tracer at fixed
redshift has no dipole, and only has even multipoles (Scocci-
marro et al. 1999; Nan et al. 2018). But with a lightcone cor-
rected galaxy density contrast, the 3-point correlator, even
for a single tracer, will no longer be an even function of
ka · n (a = 1, 2, 3). In order to compute the consequent con-
tribution to the galaxy bispectrum, (1) is not sufficient: we

need its second-order generalisation, δg → δg + δ
(2)
g /2.

Relativistic contributions to the galaxy bispectrum

At second order, the Doppler correction in (1) generalises to
Av(2) · n, but there are also quadratic coupling terms. The
couplings involve not only the Doppler effect but also ra-
dial gradients of the potential (‘gravitational redshift’), vol-
ume distortion effects, and second-order corrections to the
density contrast. Most of these contributions are small, but
those that scale as (H/k)δ2 are not, even on equality scales.
Except on super-equality scales we can often neglect any
terms O((H/k)2) and higher, which makes the calculation
considerably simpler.

The leading correction can be extracted from the gen-
eral expressions that include all relativistic corrections to
the Newtonian approximation, as given in Bertacca (2015)
(see also Bertacca et al. (2014); Yoo & Zaldarriaga (2014);
Di Dio et al. (2014); Jolicoeur et al. (2017); Di Dio & Seljak
(2018)):

δ
(2)
gD = Av(2)· n + 2C(v · n)δ + 2

E

H (v · n)∂r(v · n) (3)

+2
b1
Hφ∂rδ +

2

H2

[
v · n ∂2

rφ− φ∂2
r (v · n)

]
− 2

H∂r(v · v),

where φ is the gravitational potential, C = b1(A+f)+b′1/H+
2(1 − 1/rH)∂b1/∂ lnL and E = 4− 2A− 3

2
Ωm. (This is in

agreement with the independent re-derivation of the lead-
ing correction given in Di Dio & Seljak (2018). We have
corrected a typo in the last bracket of line 1 of Eq. (2.15):
−fevo → −2fevo ≡ −2be. Note that our n is minus theirs,
and they use the convention δg + δ

(2)
g .) All but one of the

contributions to this leading term contain Doppler contri-
butions, so we label these terms with a D subscript. In this
sense they can be thought of as the relativistic correction
to redshift space distortions, but their origin is considerably
more subtle than in the Newtonian picture (Bertacca et al.
2014; Di Dio & Seljak 2018). These relativistic corrections
all arise as projections along the line of sight n. It is this
projection that is responsible for the dipole in the observed
bispectrum. Beyond these leading terms in (3) there are a
host of local coupled terms which appear on larger scales.
We follow most work on the Fourier bispectrum and neglect
the effect of lensing magnification. This is reasonable for
correlations at the same redshift and when using very thin
redshift bins allowed by spectroscopic surveys (Di Dio et al.
2018). We also use the standard plane-parallel approxima-
tion, which is reasonable on ultra-large scales. However, we
note that wide-angle effects in the power spectrum can be
of the same order of magnitude as the Doppler-type effects
in certain circumstances (Tansella et al. 2018), and these
should be incorporated in a more complete treatment.

The galaxy bispectrum is defined in Fourier space by

Bg(k1,k2,k3) = K(k1)K(k2)K(2)(k1,k2,k3)P (k1)P (k2)

+2 cyclic permutations . (4)

The first-order kernel K = KN +KD is given by the term in
brackets in (2). At second order, K(2) = K(2)

N + K(2)
D , where

the Newtonian kernel is (Verde et al. 1998)

K(2)
N = b2 + b1F2 −

2

7
(b1 − 1)S2 + f G2µ

2
3 + Z2 . (5)

Here F2(k1,k2,k3), G2(k1,k2,k3) are the second-order
density and velocity kernels, and Z2(k1,k2,k3) is the
second-order RSD kernel. We use a local bias model (Des-
jacques et al. 2016), which includes tidal bias with kernel
S2(k1,k2,k3). The kernels are given in Tellarini et al. (2016).

The Doppler correction to (5) in Fourier space follows from (3) (Jolicoeur et al. 2018b):

K(2)
D (k1,k2,k3) = iH

[
− 3

2

(
µ1
k1
k22

+ µ2
k2
k21

)
Ωmb1 + 2µ12

(
µ1

k2
+
µ2

k1

)
f2 +

(
µ1

k1
+
µ2

k2

)
Cf

− 3

2

(
µ3
1
k1
k22

+ µ3
2
k2
k21

)
Ωmf + µ1µ2

(
µ1

k2
+
µ2

k1

)(3

2
Ωm − Ef

)
f +

µ3

k3
G2(k1,k2,k3)Af

]
, (6)

where µab = k̂a · k̂b and µa = k̂a ·n. The Newtonian kernel (5) scales as (H/k)0, while the Doppler kernel (6) scales as (H/k).
Using (5) and (6) in (4), and dropping terms that scale as (H/k)2 and (H/k)3, we find that

BgN(k1,k2,k3) = KN(k1)KN(k2)K(2)
N (k1,k2,k3)P (k1)P (k2) + 2 cyclic permutations , (7)

BgD(k1,k2,k3) =
{
KN(k1)KN(k2)K(2)

D (k1,k2,k3)

+
[
KN(k1)KD(k2) +KD(k1)KN(k2)

]
K(2)

N (k1,k2,k3)
}
P (k1)P (k2) + 2 c.p. (8)

Since (6) scales as H/k it is purely imaginary, as all these contributions have at least one k projected along the line of
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sight – i.e., they contain odd powers of µa’s. This means that the leading relativistic correction in the observed galaxy Fourier
bispectrum of a single tracer is a purely imaginary addition to the Newtonian approximation. On larger scales, terms O((H/k)2)
and higher appear in both the real and imaginary parts, with the kernels given in Umeh et al. (2017); Jolicoeur et al. (2017,
2018b,a). (We include these in our plots below.)

Extracting the dipole

The bispectrum can be considered as a function of k1, k2, k3, µ1, µ2, µ3 and ϕ, which is the azimuthal angle giving the orientation
of the triangle relative to n. In order to extract the dipole it is easiest to write µ3 = −(k1µ1 + k2µ2)/k3, so that we can write
Bg =

∑
i,j Bij(iµ1)i(iµ2)j , where i, j = 0 . . . 6 which factors out the angular dependence multiplying real coefficients Bij with

no angular dependence. Then, use the identity µ2 = µ1 cos θ +
√

1− µ2
1 sin θ cosϕ , where θ = θ12 (and we define µ = cos θ –

note that θ is the angle outside the triangle as the ka’s are head-to-tail). We use standard orthonormal spherical harmonics
with the triangle lying in the y−z plane, with k1 aligned along the z-axis (Nan et al. 2018). Then we have Y`m(µ1, ϕ), so that
we can write Bg =

∑
`mB`mY`m(µ1, ϕ). The leading relativistic terms we consider here generate odd-power multipoles up to

` = 7, and the full expression generates even and odd multipoles up to ` = 8. Different powers of (iµ1) and (iµ2) contribute
to the dipole,

∫
dΩ(iµ1)i(iµ2)jY ∗1m = δm,0

i
√

3π

15



0 10µ 0 −6µ
10 0 −4µ2 − 2 0 · · ·
0 −6µ 0 12µ3+18µ

7

−6 0 24µ2+6
7

0
...

. . .

+ δm,±1

√
6π

15


0−5 0 3
0 0 2µ 0 · · ·
0 1 0 − 6µ2+3

7

0 0 − 6
7
µ 0

...
. . .

 sin θ , (9)

where each matrix element corresponds to a particular combination of i, j, where the matrix indices run over the values
i = 0 . . . 6, j = 0 . . . 6, with powers above 3 not written above; these are polynomials in µ up to order 6. From this we can read
off the terms from KD contribute to differing m = 0,±1. In particular, if i+ j is even – i.e., the real part of the bispectrum –
there is no contribution: only the imaginary terms, corresponding to i+ j odd, contribute. For the monopole, only i+ j even
contribute. Therefore, at O(H/k), the monopole of the bispectrum is the Newtonian part, while the dipole is purely from the
relativistic corrections. The presence of the dipole is therefore a ‘smoking gun’ signal for the leading relativistic correction to
the bispectrum. At order O((H/k)2), relativistic terms appear in the monopole, which were considered in Umeh et al. (2017);
Jolicoeur et al. (2017, 2018b,a).

Squeezed, equilateral and flattened limits

It is relatively straightforward to understand the type of
dipole generated in different triangular configurations in our
conventions. In particular, for theO(H/k) relativistic dipole:

• The squeezed case is zero for m = 0, and is non-zero
for m = ±1. We see this directly from (9): with µ = −1
the m = 0 contribution is anti-symmetric in i, j while Bij is
symmetric in this limit.
• In the equilateral case, the dipole is zero (this is the

case for all orders in H/k).
• The flattened case (k1 = k2 = k3/2, θ = 0) is zero for

m = ±1 (for all orders in H/k), but is non-zero for m = 0.
This can be seen directly from (9) with θ = 0.

To show the equilateral case is zero is a lengthy calcula-
tion involving many cancellations. Let us illustrate instead
the squeezed case. We write k1 = k2 =

√
1 + ε2kS , k3 =

2εkS . In this case the triangle has small angle 2ε and equal
angles π/2 − ε, where the squeezed limit is ε → 0. It is
convenient to replace (1, 2, 3) by (S,−S,L). Then to O(ε),
k−S = kS , kL = 2εkS , µ−S = −µS − 2εµL , µL =
−
√

1− µ2
S cosϕ − εµS . In this limit, the permutations of

the relativistic kernels become

K(2)
D (kL,kS ,k−S) = iH

[
− 3

2
Ωmb1µS

kS
k2L

+ Cf
µL
kL

−3

2
Ωmfµ

3
S
kS
k2L

+
(3

2
Ωm − Ef

)
fµ2

S
µL
kL

]
(10)

and K(2)
D (k−S ,kL,kS) = K(2)

D (kL,kS ,k−S)
∣∣
µS→µ−S

while K(2)
D (kS ,k−S ,kL) = 0. In the squeezed limit

of the cyclic sum (4), the terms K(2)(kL,kS ,k−S)
and K(2)(k−S ,kL,kS) appear only in the form
K(2)(kL,kS ,k−S) +K(2)(k−S ,kL,kS). This sum regularises
the divergent kS/kL = (2ε)−1 and kS/k

2
L = (2εkL)−1

terms. We obtain the bispectrum in the squeezed limit,

Bsq
g = b1Sb1LbSL PLPS + i b1S

{
bSLfA+

3

2
Ωmb1Sb1L

+2b1LfC + b1Lµ
2
S

[3

2
Ωm − Ef

]}
PLPS µL

H
kL ,

(11)

where PS,L = P (kS,L), b1S,L ≡ b1 + fµ2
S,L and

bSL ≡ 2b2 +
43

21
b1 −

4

21
+
(

2b1 +
5

7

)
fµ2

S + fµ2
Lb1S .

Note that only the first term in the squeezed bispectrum
comes from the Newtonian limit.

The type of dipole extracted from this term is seen as
follows. To this order we can write µ2

S = µSµ−S . Then, since
µL = −2(µS + µ−S)/ε, we see that the m = 0 term is zero

MNRAS 000, 000–000 (0000)
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Figure 1. The absolute value of the bispectrum dipole at z =
1 as a function of triangle size, in the flattened (Left, θ = 2◦,
for intensity mapping bias) and squeezed (Right, θ = 178◦, for
Euclid-like bias) configurations, with k3 as the horizontal axis.

Red is the m = 0 part and blue is m = ±1. Dashed (and dotted)

lines show up to the O(H/k) terms considered analytically here,
while solid lines indicate larger-scale contributions. For reference

the monopole is in black, with the dotted line the Newtonian

part. (The zero-crossing in the monopole for the squeezed case is
a result of the tidal bias.)

Figure 2. (Left) We show the dipoles as a function of θ with
a bias appropriate for a Euclid-like survey, for k1 = k2 =

0.01 Mpc−1. The left of the plot corresponds to the flattened

case where the m = 0 (red) dipole reaches 10% of the monopole.
(Right) We show the IM signal with k1 = k2 = 0.1 Mpc−1 versus

the long mode k3. Except for very long modes θ ≈ π, our O(H/k)

truncation is a very good approximation in these examples.

because Bsq
gD is symmetric in µiSµ

j
−S under i↔ j, while the

m = 0 term is antisymmetric in (9). This leaves just the
m = ±1 contribution in (9).

The dipole in intensity mapping and galaxy surveys

We now consider the amplitude of the dipole relevant for up-
coming galaxy surveys, which have different bias parameters.
We consider two different types of survey: an SKA intensity
mapping of 21 cm radio emission, as well as a Euclid-like
optical/infrared spectroscopic survey. An intensity map of
the 21cm emission of neutral hydrogen (HI) in the post-
reionization Universe records the total emission in galaxies
containing HI, without detecting individual galaxies. There
is an equivalence between the brightness temperature con-

trast and number count contrast (Umeh et al. 2016). For
IM we use the bias parameters at z = 1, b1 = 0.856, b2 =
−0.321, b′1 = −0.5 × 10−4, be = −0.5, b′e = 0, s = 2/5 (Fon-
seca et al. 2018; Umeh et al. 2016) while for the spectroscopic
survey we use b1 = 1.3, b2 = −0.74, b′1 = −1.6 × 10−4, be =
−4, b′e = 0, s = −0.95 (Camera et al. 2018; Yankelevich &
Porciani 2019). For intensity mapping, ∂b1/∂lnL = 0 and
we assume it is zero for simplicity for the spectroscopic
survey. We use a LCDM model with standard parameters
Ωm = 0.314, h = 0.67, fbaryon = 0.157, ns = 0.968. Plots
are presented using linear power spectra generated using
CAMB (Lewis et al. 2000).

In Fig. 1 we show how changing the scale of a fixed
triangle changes the amplitude of the dipole, with reference
to the monopole. In the flattened case with m = 0 we see
the signal peaks for triangles below the equality scale, while
for squeezed shapes, with m = ±1, the signal is smaller, and
peaks when the long mode approaches the Hubble scale. In
Fig. 2 we change the shape with fixed k1 = k2 for both
galaxy and IM surveys. We confirm our analytical results
that the equilateral limit is zero, as well as the other limits.
For triangles between right-angle and flattened the dipole is
more than 10% of the monopole, and the signal is largest
in the flattened case – except in the extreme squeezed limit
(not shown).

Conclusions

We have shown for the first time that the relativistic galaxy
bispectrum has a leading correction which is a local dipole
with respect to the observers line of sight. In contrast to the
power spectrum, this dipole exists even for a single tracer.
We have shown analytically how the dipole is generated for
the leading terms, and numerically we have included all local
contributions, which show up above the equality scale. We
have neglected integrated terms which will also contribute
to the dipole, but their inclusion in a Fourier space bispec-
trum is non-trivial. Local relativistic corrections will induce
all multipoles up to ` = 8 at every m, in contrast to the
Newtonian case which only induces even ` = 0, 2, 4. We will
investigate these new multipoles in a forthcoming publica-
tion.

We have shown that this dipole is large with respect
to the monopole in both the flattened and squeezed lim-
its, which excite different orders of the dipole orientation
m. We have shown that even on equality scales it is about
10% of the monopole at z = 1 for flattened shapes which
have the largest amplitude. In more squeezed cases where
the short mode is ∼ 10 Mpc the dipole can also be a large
part of the IM signal. Furthermore, although we have only
considered Gaussian initial conditions here, the dipole will
be unaffected by non-Gaussianity at leading order because
these corrections start at O((H/k)2), making our predic-
tions relatively robust to this. This implies that the dipole
of the bispectrum is a unique signature of general relativity
on cosmological scales, and therefore offers a new observa-
tional window onto modifications of general relativity.
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