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A B S T R A C T

Background: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas. Once
metastasized, prognosis is poor despite regular treatment with conventional cytotoxic drugs. This study reviews
the preclinical and clinical results of non-cytotoxic systemic therapy in MPNST.
Methods: A systematic search was performed in PubMed and Embase databases according to the PRISMA
guidelines. Search terms related to ‘MPNST’, ‘targeted therapy’, ‘immunotherapy’, and ‘viral therapy’ were used.
Only in vivo studies and clinical trials were included. Clinicaltrials.gov was also searched for any ongoing trials
including MPNST patients. Qualitative synthesis was performed on all studies stratifying per target: membrane,
cytoplasmic, nuclear, immunotherapy and oncolytic viruses, and other. In vivo studies were assessed for treat-
ment effect on tumor growth (low/intermediate/high), survival, and metastases. Clinical trials were assessed on
response rate, progression-free survival, and overall survival.
Results: After full-text screening, 60 in vivo studies and 19 clinical trials were included. A total of 13 trials are
ongoing and unpublished. The included trials displayed relatively poor response rates thus far, with patients
achieving stable disease at best. Inhibiting cytoplasmic targets most commonly yielded high treatment effect,
predominantly after mTOR inhibition. Oncolytic viruses and angiogenesis inhibition also demonstrate inter-
mediate to high effect. Therapies including a combination of drugs were most effective in controlling tumor
growth. Several ongoing trials investigate potentially promising pathways, while others have yet to be estab-
lished.
Conclusion: Targeting the PI3K/Akt/mTOR pathway seems most promising in the treatment of MPNSTs.
Oncolytic viruses and angiogenesis inhibition represent emerging therapies that require further study.
Combinations of targeted therapies are most likely key to maximize treatment effect.

1. Introduction

Malignant peripheral nerve sheath tumors (MPNSTs) are rare, but
aggressive soft tissue sarcomas (STS) with high rates of recurrence and
metastasis (Carli et al., 2005; Stucky et al., 2012; Valentin et al., 2016).
Almost half of all cases are related to neurofibromatosis type I (NF1),
while others occur sporadically or after radiation exposure (Stucky
et al., 2012; Zou et al., 2009). The NF1 gene is commonly affected in
MPNSTs causing the loss of neurofibromin, a Ras inhibiting enzyme
(Basu et al., 1992). Ras activation results in the downstream activation

of Ras pathways, leading to upregulation of mitogen-activated protein
kinase (MAPK) and phosphoinositide 3-kinase (PI3K) (Endo et al.,
2013). However, loss of neurofibromin alone is not enough to cause an
MPNST (Kluwe et al., 1999). Research over the last three decades has
implicated multiple factors in the pathogenesis of MPNSTs, including
loss of function in TP53, CDKN2A, SUZ12, and PTEN genes, as well as
amplification of epidermal growth factor receptor (EGFR), platelet-de-
rived growth factor receptor (PDGFR), and MET (Beert et al., 2011; De
Raedt et al., 2014; Legius et al., 1994; Masliah-Planchon et al., 2013;
Upadhyaya et al., 2012). Despite our increased understanding of the
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complex biology underlying MPNSTs, prognosis has remained poor,
with 5-year survival rates ranging from 30 to 60% in patients who have
undergone curative surgery of their tumor, and even lower rates in
those with advanced and metastatic disease (Carli et al., 2005;
Ducatman et al., 1986; Stucky et al., 2012; Valentin et al., 2016).

Surgery with wide negative margins remains the mainstay treat-
ment for MPNST (Stucky et al., 2012; Valentin et al., 2016). Radio-
therapy is commonly used either postoperatively or in a neoadjuvant
setting as it improves local control, but does not affect overall survival
(Bradford and Kim, 2015; Kahn et al., 2014; Stucky et al., 2012). In a
study investigating neoadjuvant chemotherapy, histotype-guided
treatment of four STS types, including MPNST (this cohort was treated
with etoposide-ifosfamide), has not shown any benefit compared to
standard anthracycline based chemotherapy (Gronchi et al., 2017).
Therefore, there has thus far been no rationale for treating MPNST
differently from other STS. Neoadjuvant chemotherapy could be con-
sidered for high-grade, large, and deep MPNST (Gronchi et al., 2017;
Higham et al., 2017), and may allow initially inoperable patients to
become operable (Carli et al., 2005; Kroep et al., 2011). However, over
10% of MPNST patients present with unresectable or metastatic disease
(Carli et al., 2005; Valentin et al., 2016; Wong et al., 1998). Ad-
ditionally, 40–60% of patients receiving treatment with curative intent
will develop metastatic disease (Anghileri et al., 2006; Wong et al.,
1998; Zehou et al., 2013).

For the whole group of STS, first line palliative chemotherapy
consists of an anthracycline (doxorubicin or epirubicin) containing
schedule. This might be combined doxorubicin and ifosfamide or dox-
orubicin monotherapy. Overall, a clinical response rate of approxi-
mately 21% has been reported for MPNST treated with combined
doxorubicin and ifosfamide (Kroep et al., 2011). Adding ifosfamide to
doxorubicin has improved progression-free survival (PFS), but not
overall survival (OS), and comes at the cost of increased toxicity
(Judson et al., 2014).

The high rates of advanced and metastatic disease and poor re-
sponse to standard chemotherapy highlight the need for novel therapies
in the treatment of MPNST. Targeted therapy and immunotherapy has
brought new options to many other cancer types, but is not yet estab-
lished in STS in general or MPNST specifically. Especially target spe-
cific, non-cytotoxic treatments are of interest as they may specifically
target tumors and have limited systemic side-effects. As insights in the
differences between STS subtypes are growing, more specific testing to
allow for identification and subsequent personalization of treatment is
necessary; however, given that MPNST represent a rare sarcoma sub-
type, such personalization has thus far been challenging. To better
understand emerging treatment options, we pooled the available lit-
erature and performed a systematic review of non-cytotoxic systemic
therapies in MPNST, aiming to guide future research efforts by identi-
fying the most relevant targets and combinations.

2. Methods

2.1. Literature search

A systematic search was performed in both PubMed and Embase
databases according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) guidelines, in order to identify all
potentially relevant articles published from 2000 to 2018. The search
string was built with the help of a professional librarian using search
terms related to ‘MPNST’ and non-cytotoxic treatments. The exact
search syntaxes for PubMed and Embase are provided in Supplemental
Table S1. Preclinical studies were included if they studied non-cytotoxic
drugs on MPNSTs in vivo. Clinical studies were included if they pre-
sented results of non-cytotoxic systemic therapy specifically in MPNST
patients. Articles were excluded if they were retrospective or single case
studies, reviews, presented non-specific MPNST data, included data on
cytotoxic drugs or drugs that were only tested in vitro, or did not

provide data on tumor growth, survival, or metastases.
Clinicaltrials.gov was also searched with synonyms of ‘MPNST’ to ob-
tain all ongoing non-cytotoxic drug trials enrolling MPNST patients.
Cross-referencing of included papers and registered trials was per-
formed, which identified six additional papers. These studies did not
include a synonym of MPNST in either their title or abstract. The initial
review was carried out by two independent authors (EM, NL).
Disagreements were solved through discussion, in which one additional
senior author was involved (ID).

2.2. Data extraction and synthesis

Data extracted from preclinical studies included: animal model
used, most effective treatment regimen studied, tissues investigated,
and treatment effect on tumor growth, survival, and metastasis. The
treatment effect on tumor growth was evaluated according to the mean
relative tumor volume (RTV) comparing the latest mean volume mea-
surement of the control group (C) to the mean volume of the treatment
group (T) at that time point (Houghton et al., 2007; Plowman et al.,
1999): T/C ≤15% represented high effect (black); T/C ≤45% but>
15% represented intermediate effect (dark gray); and T/C>45% re-
presented low effect (light gray, Table 1). Tumor growth was either
assessed by tumor volume, weight, or area. Drugs were categorized as
membrane targets, cytoplasmic targets, nuclear targets, im-
munotherapy and oncolytic viruses, or other targets.

Data extracted from clinical trials included: study design, number of
patients, age of population, treatment regimen, and treatment effect on
response rate, PFS, and OS. Study phase, country, intervention, antici-
pated accrual, and end date were extracted from registered unpublished
trials.

Qualitative synthesis was performed summarizing data from pre-
clinical and clinical studies according to target pathway, im-
munotherapy and oncolytic viruses, and a rest group.

3. Results

Following removal of duplicates, a total of 1938 articles and regis-
tered trials were identified in PubMed and Embase databases. Title/
abstract screening resulted in selection of 203 potentially relevant ar-
ticles, of which sixty-six were selected for qualitative synthesis after
full-text screening (Fig. 1). A total of sixty preclinical in vivo studies
were found that used numerous genetically engineered mouse models
(GEMM), (non)-cultured NF1 and sporadic patient xenografts, allografts
from GEMMs, and one zebrafish model (Table 1). Nineteen trials were
identified, of which six have already been published (Table 2), and
thirteen are ongoing (Table 3). Fig. 2 presents the most important target
pathways identified in MPNSTs.

3.1. Membrane targets – in vivo

Eight studies investigated membrane targets in vivo (Table 1). Six
used receptor tyrosine kinase (RTK) targeted treatments with inter-
mediate to high effect on tumor growth (Ki et al., 2017; Lock et al.,
2016; Mo et al., 2013; Ohishi et al., 2013; Torres et al., 2011; Wu et al.,
2018). The addition of verteporfin (TAZ/YAP inhibitor) to sorafenib
yielded intermediate effects on tumor growth in an allograft model,
while monotherapy of either drugs had significantly worse effects (Wu
et al., 2018). The chemokine receptor CXCR4 stimulates cell cycle
progression through PI3K and β-catenin signalling. In one in vivo study,
inhibition of CXCR4 showed intermediate effect on tumor growth and
increased survival of mice (Mo et al., 2013). Two in vivo studies in-
vestigated the effect of estrogen receptor blockade; one found a low
effect on tumor growth (Byer et al., 2011), and another showed that the
addition of a calmodulin inhibitor enhanced the effect on tumor growth
(Brosius et al., 2014).
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Table 1
Preclinical in vivo studies.

a: NF1 patient cells or sporadic patient cells, b: either volume, weight, or area, low activity (light gray), intermediate
activity (dark gray), high activity (black), c: increased survival (black) d: less metastases (black).
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3.2. Membrane targets – trials

Four published clinical trials investigating the effect of an RTK in-
hibitor, of which one (Albritton et al., 2006) specifically examined
MPNST patients (Table 2), were identified. None of the trials found an
appreciable clinical response in MPNST patients, with only 0–20% of
the patients achieving stable disease (Albritton et al., 2006; Chugh
et al., 2009; Maki et al., 2009; Schuetze et al., 2016). Four additional
trials were still ongoing at the time this review was written, one of
which will only include MPNST patients. This study will evaluate the
efficacy of the multikinase inhibitor pexidartinib in combination with
mTOR inhibitor sirolimus (NCT02584647, Table 3). Multiple other
trials were identified that will enroll patients with soft tissue sarcomas
(NCT02584309, NCT02180867) and CD56 expressing tumors
(NCT02452554) targeting additional membrane targets. One of these

trials will investigate the effect of doxorubicin and ifosfamide with the
addition of pazopanib, currently the only registered RTK inhibitor for
STS, in a neoadjuvant setting including patients with resectable soft
tissue sarcomas (NCT02180867).

3.3. Cytoplasmic targets – in vivo

Cytoplasmic targets were investigated in 25 in vivo studies (Table 1).
Most studies (n=22) focused on a target within the MAPK or the PI3K/
Akt/mTOR pathway. In those targeting the PI3K/Akt/mTOR pathway,
a high effect on tumor growth (14/17 cell lines) and survival was ob-
served (3/3 cell lines). Targeting mTOR in combination with membrane
targets (Castellsagué et al., 2015; Johansson et al., 2008; Patwardhan
et al., 2014), other cytoplasmic targets (De Raedt et al., 2011; Malone
et al., 2014; Watson et al., 2014), or an epigenetic target (Malone et al.,

Abbreviations: AA: auto- and/or allograft mouse model; AURKA: aurora kinase A; BET: bromo- and extra-terminal domain; CAPE: caffeic acid phenethyl ester; CDK:
cyclin-dependent kinase; CXCR4: CXC-chemokine receptor 4; DHA: docosahexaenoic acid; DZNep: 3-deazaneplanocin A; EGFR: epidermal growth factor receptor; ER:
estrogen receptor; EZH2: enhancer of zeste homolog 2; FAS: fatty acid synthase; GEMM: genetically modified mouse model; HDAC: histone deacetylase; Hsp90: heat
shock protein 90; JAK2: Janus kinase 2; MEK: mitogen-activated protein kinase kinase; MPNST: malignant peripheral nerve sheath tumor; mTOR: mammalian target
of rapamycin; MU: 4-methylumbelliferone; NA: not applicable/available; NF1: neurofibromatosis type 1; NPcis: mutation of NF1 and p53 gene on both alleles; oHSV:
oncolytic herpes simplex virus; oMV: oncolytic measles virus; OXM: orthotopic xenograft mouse model; PARP: poly (ADP-ribose) polymerase; PEDF: pigment
epithelium-derived factor; PDK1: phosphoinositide-dependent kinase-1; PDX: patient-derived xenograft; PI3K: phosphoinositide 3-kinase; PLK1: polo-like kinase 1;
PTT: phototermal therapy; S: sporadic; STAT3: signal transducer and activator of transcription 3; XM: xenograft mouse model; XPO1: exportin 1; ZFM: genetically
engineered zebrafish model.

Fig. 1. Flowchart depicting study selection.

E. Martin, et al. Critical Reviews in Oncology / Hematology 138 (2019) 223–232

226

http://clinicaltrials.gov/show/NCT02584647
http://clinicaltrials.gov/show/NCT02584309
http://clinicaltrials.gov/show/NCT02180867
http://clinicaltrials.gov/show/NCT02452554
http://clinicaltrials.gov/show/NCT02180867


2017) showed high effect on tumor growth (8/8 cell lines) and survival
(3/3 cell lines). One study found a higher effect of pexidartinib com-
pared to imatinib as an addition to mTOR inhibition (Patwardhan et al.,
2014). The addition of sorafenib (targets include VEGFR, PDGFR, and
Raf) to an mTOR inhibitor showed the best effect on tumor size in NF1-
mutated xenografts, while the addition of doxorubicin showed best
effects in sporadic patient xenografts (Castellsagué et al., 2015). The
addition of a proteasome inhibitor to mTOR inhibition was only ef-
fective if radiotherapy was administered as well (Yamashita et al.,
2014). The addition of a mitogen-activated protein kinase (MEK) in-
hibitor to mTOR inhibition did not prolong survival in a murine model,
but did decrease toxicity compared to single agent usage (Watson et al.,
2014). MEK inhibition itself did not show high effects on tumor growth

(Dodd et al., 2013; Jessen et al., 2013; Kendall et al., 2016; Sweeney
et al., 2016); however in combination with other target inhibitors the
effect on tumor growth improved (5/5 cell lines) (De Raedt et al., 2014;
Lock et al., 2016; Semenova et al., 2017a,b). The addition of silma-
sertib, an epigenetic modulator of CK2, did not have a superior effect
over MEK-inhibiting monotherapy (Kendall et al., 2016). PAK1 influ-
ences the MAPK pathway by activating MEK and ERK. In multiple
studies, inhibition of PAK1 resulted in intermediate to high effects on
tumor growth as a single drug (Demestre et al., 2009; Hirokawa et al.,
2006; Semenova et al., 2017a,b). One study showed that the addition of
a MEK inhibitor to a PAK1 inhibitor increased its effect in both NF1 and
sporadic cell lines (Semenova et al., 2017a,b). Although EGFR in-
hibitors in MPNST have shown poor results in clinical studies,

Table 2
Clinical trials.

Author, year Study design N Age Drug Pathway Outcome

RR PFS OS

Membrane targets
Albritton et al.

(2006)
Phase II unresectable or
metastatic MPNST

20 ≥18 Erlotinib EGFR 1 SD, 19 PD 2 months 4 months

Chugh et al. (2009) Phase II metastatic or
recurrent sarcomas

5 ≥10 Imatinib Multikinase (incl. c-
Kit)

1 SD, 4 PD NA NA

Maki et al. (2009) Phase II metastatic or
recurrent sarcomas

12 ≥18 Sorafenib Multikinase (incl.
VEGFR)

3 SD, 9 PD 1.7 months 4.9 months

Schuetze et al.
(2016)

Phase II high-grade, advanced
sarcomas

14 ≥13 Dasatinib Multikinase (incl.
BCR/ABL)

14 PD 2-month: 14% 4-
month: 7%

NA

Cytoplasmic targets
Widemann et al.

(2016)
Phase II recurrent or
metastatic MPNST

25 ≥18 Everolimus+Bevacizumab mTOR, VEGF 3 SD, 22 PD NA NA

Nuclear targets
Dickson et al.

(2016)
Phase II advanced or
metastatic sarcomas

10 ≥18 Alisertib AURKA No response (SD
and PD)

13 weeks, 12-
week: 60%

69 weeks

Abbreviations: AURKA: aurora kinase A; CI: confidence interval; CR: complete remission; EGFR: endothelial growth factor receptor; mTOR: mammalian target of
rapamycin; N: total MPNST patients included; NA: not available; OS: overall survival; PD: progressive disease; PFS: progression free survival; RR: response rate; SD:
stable disease; VEGF: vascular endothelial growth factor; VEGFR: vascular endothelial growth factor.

Table 3
Current trials in advanced or metastatic MPNST.

NCT number Country Phase Tumor type N Age Drug Pathway Completion date

Membrane targets
NCT02584647 US I STS 49 ≥18 Pexidartinib+ sirolimus Multikinase, mTOR 10-2021

II MPNST
NCT02452554 US II CD56 expressing tumors

(MPNST)
114 1–30 Lorvotuzumab mertansine CD56 03-2020

NCT02584309 US II STS (MPNST) 73 ≥18 Doxorubicin+olaratumab Anthracycline, PDGFRα 10-2023
NCT02180867 US II/III* STS (MPNST) 340 ≥2 Doxorubicin+ ifosfomide ± pazopanib Multikinase, anthracycline,

alkylans
12-2018

Cytoplasmic targets
NCT03433183 US II MPNST 21 ≥18 Vistusertib+ selumetinib mTOR, MEK 09-2021
NCT02008877 US I/II MPNST 20 ≥16 Sirolimus+ ganetespib mTOR, Hsp90 07-2018
NCT02601209 US I STS 137 ≥18 Sapanisertib ± pazopanib mTOR, multikinase 09-2020

II STS (MPNST)

Nuclear targets
NCT02986919 US II MPNST 24 ≥18 CPI-0610 BET 03-2020
NCT03009201 US IB STS (MPNST) 36 ≥12 Ribociclib+doxorubicin CDK4/6, anthracycline 12-2020

Immunotherapy and oncolytic virus
NCT02691026 Norway II MPNST 18 ≥18 Pembrolizumab PD1 12-2025
NCT02834013 US II Rare tumors (MPNST) 707 ≥18 Nivolumab+ ipilimumab PD1, CTLA4 08-2020
NCT02700230 US I MPNST 30 ≥18 MV-NIS oMV 06-2021
NCT00931931 US I Non-CNS solid tumors

(MPNST)
18 7–30 HSV1716 oHSV 03-2018

Abbreviations: BET: bromo- and extra-terminal domain; CDK: cyclin-dependent kinase; CNS: central nervous system; Hsp90: heat shock protein 90; M: months; MEK:
mitogen-activated protein kinase kinase; MPNST: malignant peripheral nerve sheath tumor; mTOR: mammalian target of rapamycin; N: accrual of patients; oHSV:
oncolytic herpes simplex virus; oMV: oncolytic measles virus; PD1: programmed cell death protein 1; PDGFRα: platelet-derived growth factor receptor alpha; STS:
soft tissue sarcoma; US: United States.
* Neoadjuvant in resectable disease.
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downstream inhibition of Janus kinase 2/signal transducer and acti-
vator of transcription 3 (JAK2/STAT3) showed intermediate to high
effect in vivo (Banerjee et al., 2010; Wu et al., 2014).

3.4. Cytoplasmic targets – trials

One trial evaluating the effect of mTOR inhibition in combination
with bevacizumab, a VEGF inhibitor, demonstrated stable disease in 3/
25 patients (Widemann et al., 2016). A total of three trials that were
ongoing at the time of this review were investigating the role of an
mTOR inhibitor in combination with a MEK inhibitor (NCT03433183),
pazopanib (NCT02601209), or heat shock protein 90 (Hsp90) inhibitor
(NCT02008877, Table 3). The latter trial was completed, although its
results were not yet published.

3.5. Nuclear targets – in vivo

The effect of nuclear target inhibitors was investigated in twelve
studies, identifying this class of drugs to have intermediate to high ef-
fects on tumor growth (Table 1). Multiple studies found a high effect on
survival (4/4 cell lines) or tumor growth (5/15 cell lines) via in vivo
inhibition of several epigenetic pathways (Hirokawa et al., 2005; Kivlin

et al., 2016; Lopez et al., 2015, 2011; Mohan et al., 2013; Nair and
Schwartz, 2015; Patel et al., 2014, 2012; Payne et al., 2018). Aurora
kinase A (AURKA) is one of these epigenetic regulators, which regulates
centrosome maturation and chromosome separation. Alisertib, an
AURKA inhibitor was found to have a higher effect on tumor growth
and survival compared to a combination of doxorubicin and ifosfamide
in vivo (Payne et al., 2018).

CDK4/6 and EZH2 act via influence on the cell cycle; in vivo studies
showed that their inhibition has intermediate effect on tumor growth
(Perez et al., 2015; Zhang et al., 2015).

XPO1 is the main nuclear export protein and transports proteins
such as survivin. One in vivo study found intermediate effect of XPO1
inhibition combined with proteasome inhibitor carfilzomib (Nair et al.,
2017).

3.6. Nuclear targets – trials

Although in a preclinical setting alisertib showed positive results, a
trial that included ten MPNST patients found no tumor response
(Table 2) (Dickson et al., 2016). Median PFS was thirteen weeks, with a
median OS of sixty-nine weeks. A trial that was ongoing at time of
publication was investigating the effect of a bromo- and extra-terminal

Fig. 2. Cellular pathways in MPNST. Abbreviations: AURKA: aurora kinase A; BET: bromo- and extra-terminal domain; CDK: cyclin-dependent kinase; CTLA4:
cytotoxic T-lymphocyte associated protein 4; CXCR: CXC-chemokine receptor; EGFR: epidermal growth factor receptor; ER: estrogen receptor; ERK: extracellular
signal-regulated kinases; HDAC: histone deacetylase; JAK: Janus kinase; MEK: mitogen-activated protein kinase kinase; mTOR: mammalian target of rapamycin; PD1:
programmed cell death protein 1; PDGFR: platelet-derived growth factor receptor; PDK1: phosphoinositide-dependent kinase-1; PDL1: programmed death-ligand 1;
PI3K: phosphoinositide 3-kinase; PTEN: phosphatase and tensin homolog; STAT3: signal transducer and activator of transcription 3; VEGFR: vascular endothelial
growth factor receptor.
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domain (BET) inhibitor in advanced or metastatic MPNST patients
(NCT02986919, Table 3). An ongoing phase Ib trial enrolling patients
with MPNSTs, among other soft tissue sarcomas, is investigating the
effect of ribociclib, a CDK4/6 inhibitor, combined with doxorubicin
(NCT03009201).

3.7. Immunotherapy and oncolytic viruses – in vivo

Next to tumor cell specific targeting, immunotherapy may also play
a role in MPNST treatment. With an evolving role in other cancer types,
no in vivo studies have thus far been published investigating im-
munotherapy regimens specifically in MPNST. Oncolytic viruses are
thought to affect tumors in several ways, one of which involves the
upregulation of the immune system. Eight studies investigated the ef-
fect of oncolytic viruses in MPNST in vivo (Table 1). Seven studies used
an oncolytic herpes simplex virus (oHSV) with mostly intermediate to
high effect (10/12 cell lines) on tumor growth (Antoszczyk et al., 2014;
Currier et al., 2017; Liu et al., 2006a,b; Mahller et al., 2007, 2008;
Maldonado et al., 2010). One study used an oncolytic measles virus
(oMV) and showed high efficacy in one xenograft model, but low effect
in another (Deyle et al., 2015). Almost all studies looked at survival and
showed a statistically significant benefit for treatment with oncolytic
viruses compared to a placebo control group. The addition of erlotinib,
an EGFR inhibitor, did not significantly improve the efficacy compared
to oHSV monotherapy in vivo (Mahller et al., 2007). However, addi-
tional AURKA inhibition was found to have a synergistic effect on both
tumor growth and survival (Currier et al., 2017).

3.8. Immunotherapy and oncolytic viruses – trials

Two ongoing trials are investigating the role of PD1 checkpoint
inhibitors (Table 3): one looks at PD1 inhibitors alone and includes
MPNST patients only (NCT02691026), while the other study combines
the PD1 inhibitor nivolumab with CTLA-4 inhibitor ipilimumab and
includes patients with rare tumors, one of which is MPNST
(NCT02834013).

No clinical trial has yet evaluated the effect of oncolytic viruses in
MPNSTs. Two trials are registered of which one will use an oMV in
MPNST patients only (NCT02700230) and the other, which is complete
and whose results are pending, investigated the effect of an oHSV in
non-central nervous system (CNS) solid tumors including MPNSTs
(NCT00931931, Table 3).

3.9. Other targets – in vivo

Eight studies investigated other types of drugs, targeting different
pathways including fatty acid synthase (FAS) (Patel et al., 2015), pig-
ment epithelium-derived factor (PEDF) (Demestre et al., 2013), calcium
channels (Semenova et al., 2017a,b), survivin (Ghadimi et al., 2012),
hyaluronan synthesis (Ikuta et al., 2017), and other apoptosis-inducing
pathways (Table 1) (Mashour et al., 2005; Wang et al., 2012; Zewdu
et al., 2016). Most studies found an intermediate effect on tumor
growth (6/9 cell lines), and only verticillin A and PEDF were found to
have a high effect on tumor growth (Demestre et al., 2013; Zewdu et al.,
2016). Docosahexaenoic acid (DHA) showed an intermediate effect on
tumor growth, but increased survival significantly (Mashour et al.,
2005). None of these drugs has yet been established in a trial setting
that includes MPNST patients.

4. Discussion

MPNST still remains a highly aggressive sarcoma subtype with poor
outcome despite regular cytotoxic treatment. Novel strategies to target
metastatic MPNST and improve its outcomes, both in terms of survival
as well as quality of life, are needed. In locally advanced disease,
neoadjuvant treatment that can downsize the primary tumor and allow

for subsequent surgical resection is also of value.
In this review, we sought to describe new approaches to treat ad-

vanced MPNST. Multiple membrane, cytoplasmic, and nuclear actors
are potential targets in the therapy of MPNST, of which mTOR inhibi-
tion is most commonly investigated in vivo and has frequently resulted
in high responses on tumor growth (81.3% of cell lines) and survival
(100% of cell lines).
In vivo, RTK inhibitors that include VEGFR inhibition have also

shown intermediate to high responses. However, monotherapy with an
RTK inhibitor has not shown tumor regression clinically in MPNSTs
except for a modest prolongation of median progression free survival in
case of pazopanib treatment in all types STS (van der Graaf et al.,
2012). Apart from two in vivo studies using cabozantinib, no other study
has yet investigated the effect of MET inhibition, although it is a known
contributor to malignancy in MPNSTs. RTK inhibitors targeting both
the VEGF pathway as well as other pathways, or combinations with
other treatment types might therefore be of interest.

Unfortunately, although MPNSTs are Ras-driven tumors, no drug
has yet been found to successfully target Ras. Ras inhibitors are difficult
to create due to a lack of well-defined druggable pockets and cavities on
its surface (Simanshu et al., 2017). Targeting upregulated downstream
targets of Ras is nevertheless possible. Besides upregulation of the
PI3K/Akt/mTOR pathway, upregulation of the MAPK pathway in NF1
tumors has been described several times (Endo et al., 2013). In this
review we described the potential of mTOR inhibitors, which might be
increased by the current development of more specific inhibitors of
elements of the mTOR pathway. Although single agent MEK inhibition
has not resulted in tumor suppression (Dodd et al., 2013; Jessen et al.,
2013; Kendall et al., 2016), combinations with mTOR inhibitors might
prove potent in terms of anti-tumorigenic effects, but at the cost of
increased toxicity (Lock et al., 2016; Malone et al., 2014). The, trans-
lationally controlled tumor protein (TCTP), a downstream effector of
both the MAPK and mTOR, can be successfully inhibited leading to cell
death in NF1-associated tumors (Kobayashi et al., 2014), and was found
to increase mTOR activity when upregulated, indicating a positive
feedback loop. In vivo studies on MPNST models are, however, still
warranted. Other targets of interest identified in this review are PAK1
inhibitors (Demestre et al., 2009; Hirokawa et al., 2006; Semenova
et al., 2017a,b), as well as PI3K inhibitors. ERK inhibitors are being
developed as well, which may have less toxicity, but their effect on
MPNST cells is still unknown (Nissan et al., 2013).

While checkpoint inhibitors are gaining interest in other types of
tumors, they have yet to be extensively studied in STS. Two ongoing
trials will hopefully elucidate the role of these types of drugs in MPNST
(NCT02691026, NCT02834013). Oncolytic viruses are showing efficacy
without severe toxicity in various cancers including MPNSTs (Chiocca
and Rabkin, 2014; Lichty et al., 2014). Moreover, as demonstrated for
other tumors, an additional pathway inhibitor may give a synergistic
effect when combined with oncolytic viruses (Currier et al., 2017).
Overall, while therapies with oncolytic viruses appear promising in
MPNST, more in vivo studies are needed to better understand their role
as well at the role for any treatment combinations.

The lack of progress in the treatment of MPNST is multi-factorial.
First, adequate preclinical models representing both NF1-associated
MPNSTs as well as sporadic MPNSTs are lacking. The causal mechan-
isms behind NF1-associated MPNST may differ from those in sporadic
MPNST, resulting in different sensitivity for treatment. This is sup-
ported by the fact that in conventional chemotherapy, NF1 patients are
known to have a lower response rate (Carli et al., 2005; Ferrari et al.,
2011; Higham et al., 2017). However, only few in vivo studies show a
difference in response on tumor growth between NF1 and sporadic
patient-derived models, while others show no difference. Thus, clinical
translation of these differences might be difficult and should ultimately
be assessed in clinical trials. Second, the preclinical data have to be
robust before performing a clinical trial. For example, Albritton et al.
based their trial on evidence found from one in vitro study (Li et al.,
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2002). It is reasonable to consider in vitro studies by themselves as
weaker evidence compared to in vivo studies, and it is therefore un-
surprising that such studies might not effectively translate to the clin-
ical setting (Mak et al., 2014). Third, most studies include all types of
STS since it is challenging to perform a trial in a disease as rare as
MPNST. In this review, four out of the six identified studies were per-
formed in all types of soft tissue sarcomas, for which preclinical evi-
dence was not necessarily found in MPNSTs specifically. The in-
vestigators should however be applauded for their efforts in performing
histotype subanalyses, although likely underpowered, as certain histo-
logical subtypes might well be more sensitive to a particular drug
therapy than others. Finally, as suggested by the present review that is
based on in vivo evidence, a combination of different drugs is likely to
be more potent in MPNST patients compared to monotherapy. How-
ever, many of the published trials only investigated single targeted
therapy.

Unfortunately, quantitative comparison between different studies
investigating different treatments in vivo was not fully feasible. To date,
no tool has been established that shows high reliability of translating
preclinical outcomes into clinical evidence, limiting the ability to make
direct comparisons between preclinical studies. Despite the challenges
in drawing quantitative comparisons across studies, assessing treatment
effect by stratifying outcomes into low, intermediate, and high effect
has been successfully done previously (Houghton et al., 2007). Overall,
despite these limitations, to our knowledge, the current article re-
presents the largest review to date to pool the available literature on in
vivo therapies for MPSNT. By assessing various animal models and
treatment regimens through a descriptive systematic review, we aimed
to facilitate treatment-related decisions in patients with MPNST
(Hooijmans et al., 2018). For now, such animal studies serve as the
cornerstone to the advancement of therapeutics for MPNST in humans
and are therefore necessary to carefully review and assess prior to in-
itiation of human trials (Mak et al., 2014). Identification of multiple
potential MPNST drugs in this review underscore fundamental princi-
ples that will guide optimization of treatment regimens in the future.
For example, novel therapies should focus on improving survival while
simultaneously limiting toxicity and maintaining quality of life. The
utility of ultimately discovering a systemic treatment specifically tar-
geting MPNSTs may drastically alter the course of the MPNST man-
agement, allowing for preoperative tumor reduction and potentially
minimizing the need for higher doses of radiation as well as more in-
tensive surgeries.

5. Conclusion

Non-cytotoxic systemic treatments have not yet demonstrated clin-
ical efficacy for MPNST, but most promising are approaches targeting
the PI3K/Akt/mTOR and VEGFR pathways, as well as utilization of
oncolytic viruses. A combination of therapies will most likely be key to
maximizing treatment effects. With several clinical trials now, at least
in part, recruiting MPNST patients, new insights into therapeutic op-
tions for MPNST will likely result.
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