
530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 1PDF page: 1PDF page: 1PDF page: 1

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 1PDF page: 1PDF page: 1PDF page: 1

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 1PDF page: 1PDF page: 1PDF page: 1

Microbial Methane Oxidation 
in Paddy Fields

Mohammad Ghashghavi



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 2PDF page: 2PDF page: 2PDF page: 2

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 2PDF page: 2PDF page: 2PDF page: 2

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 2PDF page: 2PDF page: 2PDF page: 2

Mohammad Ghashghavi 2019
Microbial Methane Oxidation in Paddy Fields
PhD Thesis, Radboud University

This PhD project was financially supported by ERC Advanced Grant EcoMoM 339880

ISBN/EAN: 978-94-028-1486-6
Design layout: Bregje Jaspers, ProefschriftOntwerp.nl
Cover: Identification of methanotrophs from various environment, focusing on their 
community in paddy fields versus meadow, cultivating them in microcosms and isolating  
a novel methanotroph
Printed by: Ipskamp Printing, Enschede
Copyright: © Mohammad Ghashghavi,2019



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 3PDF page: 3PDF page: 3PDF page: 3

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 3PDF page: 3PDF page: 3PDF page: 3

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 3PDF page: 3PDF page: 3PDF page: 3

Microbial Methane Oxidation 
in Paddy Fields

Proefschrift
ter verkrijging van de graad van doctor 
aan de Radboud Universiteit Nijmegen 

op gezag van de rector magnificus prof. dr. M.A.J. Huijbregts, 
volgens besluit van het college van decanen 

in het openbaar te verdedigen op woensdag 29 mei, 2019 
om 15.30 uur precies

door
Mohammad Ghashghavi 

geboren op 21 September 1986 
te Tehran (Iran)

mghash
Stamp



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 4PDF page: 4PDF page: 4PDF page: 4

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 4PDF page: 4PDF page: 4PDF page: 4

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 4PDF page: 4PDF page: 4PDF page: 4

Promotor
Prof. dr. ir. M.S.M. Jetten

Copromotors
Dr. S. Lücker
Dr. C. Lüke

Manuscriptcommissie
Prof. dr. H. J. Op den Camp, IWWR (Chair)
Prof. dr. J.C. Murrell, University of East Anglia (UEA)
Prof. dr. L.Y. Stein, University of Alberta (U of A) 



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 5PDF page: 5PDF page: 5PDF page: 5

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 5PDF page: 5PDF page: 5PDF page: 5

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 5PDF page: 5PDF page: 5PDF page: 5

 

 

 

 تقدیم به پدر و مادرم که بی نهایت برایم زحمت کشیدند.

 



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 6PDF page: 6PDF page: 6PDF page: 6

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 6PDF page: 6PDF page: 6PDF page: 6

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 6PDF page: 6PDF page: 6PDF page: 6



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 7PDF page: 7PDF page: 7PDF page: 7

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 7PDF page: 7PDF page: 7PDF page: 7

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 7PDF page: 7PDF page: 7PDF page: 7

CONTENTS 

Summary
Samenvatting

Chapter 1	

Chapter 2	

Chapter 3	

Chapter 4 

Chapter 5	

Chapter 6	

Introduction

Survey of methanotrophic diversity in various ecosystems by 
degenerate methane monooxygenase gene primers

Comparison of the bacterial and methanotrophic diversities between 
an Italian paddy field and its neighboring meadow

Enrichment of novel methanotrophic communities from paddy 
soils using laboratory scale microcosms with methane and oxygen 
counter-gradients

A novel type Ib gammaproteobacterial methanotroph adapted to 
freshwater environments, Methylotetracoccus oryzae str. C50C1

Integration and outlook

Bibliography
Acknowledgements
Publication list
Curriculum vitae

9
12

17

31

51

71

87

113

119
143
149
151



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 8PDF page: 8PDF page: 8PDF page: 8

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 8PDF page: 8PDF page: 8PDF page: 8

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 8PDF page: 8PDF page: 8PDF page: 8

Summary

8



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 9PDF page: 9PDF page: 9PDF page: 9

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 9PDF page: 9PDF page: 9PDF page: 9

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 9PDF page: 9PDF page: 9PDF page: 9

Summary

9

SUMMARY

	 Both anthropogenic and natural sources of the greenhouse gas methane (CH
4
) contribute 

each year to the global CH
4
 budget. Since natural and cultivated wetlands are the main 

contributors, the role of methanotrophs in these environments has been more extensively 
investigated. Aerobic methanotrophs are a unique subset of methylotrophic bacteria capable of 
utilizing CH

4
 as a sole energy source. After their first discovery in 1906 by Söhngen, extensive 

research has been done to decipher their diversity and methanotrophic capabilities in various 
environments. These microorganisms were found to be ubiquitous in nature, and are currently 
affiliated with the Gammaproteobacteria, Alphaproteobacteria, Verrucomicrobia and NC10 phyla. 
The objectives of the research presented in this thesis were to develop new molecular methods to 
investigate methanotrophic diversity in different ecosystems (chapter 2), unravel the differences 
in their community composition between a source and a sink environment (chapter 3), use 
lab-scale microcosms to study the role they have on the establishment of a CH

4
 and O

2
 counter-

gradient in wetlands and to enrich for novel methanotrophs (chapter 4), and to explore the 
phenotypical and genotypical properties of a novel isolate from a paddy field (chapter 5). 
Chapter 1 of this thesis presents an introduction to the ecophysiology of methanotrophs and 
a summary of the main findings, while chapter 6 puts the results in perspective and gives an 
outlook.
	 The first chapter presents an overview of our current understanding of methanotrophy, 
the environmental distribution of methane-oxidizing bacteria (MOB) and their global impact on 
the methane budget. The conversion of CH

4
 to methanol in MOB takes place via a copper- and/

or iron-containing enzyme called methane monooxygenase (MMO). This enzyme exists in two 
forms: a soluble MMO (sMMO) and a membrane-bound particulate MMO (pMMO). Although 
the process of methane oxidation is generally similar in MOB, other cellular metabolisms (such 
as carbon fixation, nitrogen fixation, etc.) and their cell structures are vastly different. This has 
resulted into the classification of methanotrophs. This chapter also includes a short overview on 
methane oxidation in wetlands and more specifically paddy fields, which is the environment that 
this thesis has mostly focused on.
	 The second chapter investigates the diversity of methanotrophs and aims at extending 
their molecular detection through the use of methane monooxygenase gene-targeted primers. 
A novel set of degenerate primers were designed based on the full pmoCAB operon sequence. 
The conserved regions used as target sites were found in the pmoC and pmoA genes, covering the 
intergenic region between those genes. The use of this primer set on various ecosystems resulted 
in the detection of the pmoCA gene fragment from methanotrophs of all phyla discovered to 
date. Neither ammonia oxidizers, nor the ammonia monooxygenase containing comammox 
Nitrospira were detected. Lastly, we were able to generate MOB lineage-specific fragments due to 
the primer binding sites immediately flanking the intergenic region. This unique property could 
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be further explored in future high throughput amplicon studies to distinguish different MOB 
lineages in various environments.
In the third chapter the differences in the total bacterial community composition, and 
more specifically methanotrophs, between a CH

4
 source and a CH

4
 sink environment were 

investigated. We found that interestingly, CH
4
 fluxes can be highly variable between a wetland 

(traditionally known as a source) and its neighboring meadow (traditionally known as a sink) 
with no real statistical differences observed between the two areas. However, the total bacterial 
community compositions showed significant differences, with the family of Fimbriimonadaceae 
being highly enriched in the paddy field. Focusing on the MOB community, the paddy field 
was found to be more enriched in various methanotrophic families such as Methylomirabilaceae, 
Methylomonaceae, and Methylophilaceae. Lastly, based on the findings of this chapter and previous 
literature, we proposed two possible working hypotheses responsible for the observations made 
in this chapter. 
	 In the fourth chapter, we used lab-scale microcosms for a three month incubation of 
methanotrophs in soil slurries, potentially enriching for previously uncultured MOB groups. 
The slurries became highly active, with all CH

4
 provided oxidized before it reached the top 

compartment. The vertical oxygen profiles measured at various time points changed over time, 
indicating that the bacterial community is the drivers of this counter gradient occurring naturally 
in soil. Metagenomic analyses indicated that the orders Methyloccales and Myxococcales become 
highly enriched over time. The pmoA sequences extracted from both top and bottom layers of the 
soil slurries suggested that type I methanotrophs become more dominant in the top layer, while 
type II showed dominance in the bottom layer. Lastly, our subsequent enrichment strategies 
resulted in three different highly enriched methanotrophic consortia containing novel pmoA 
sequences most closely related to Methylocystis and Methylomonas genera.
	 The fifth chapter describes the phenotypical and genotypical properties of a novel 
methanotrophic isolate from a paddy field using microcosms as a pre-enrichment step.  Based 
on 16S rRNA phylogeny and PLFA profiles, this strain was found to be closely related to type Ib 
methanotrophs and contained C

16:1
ω9c as the major membrane phospholipid fatty acids, which 

has not been found in other methanotrophs previously. The draft genome obtained from this 
organism demonstrated a potential for metabolic diversity with enzymes involved in the sulfur 
cycle. 
	 The thesis is concluded in chapter six through the integration of the results, presented 
in earlier chapters (Chapter 2, 3, 4, and 5), into our current understanding of the role that 
methanotrophs play in cultivated wetlands. Furthermore, this chapter elaborates on uncertainties 
that remain to be investigated in future research. Therefore, additional experiments and 
recommendations are provided to aid in resolving these questions and gain further insights into 
the environmental impact of methanotrophs. 
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SAMENVATTING

	 Aan het wereldwijde methaan-budget dragen elk jaar zowel antropogene als natuurlijke 
bronnen van het broeikasgas methaan (CH

4
) bij. Omdat natuurlijke en gecultiveerde draslanden 

de belangrijkste spelers zijn binnen dit budget is de rol van methanotrofen in deze milieus 
uitgebreider onderzocht. Aerobe methanotrofen zijn een unieke groep bacteriën binnen de 
methylotrofe bacteriën die CH

4
 als energiebron kunnen gebruiken. Nadat Söhngen deze groep 

bacteriën ontdekte in 1906 is uitgebreid onderzoek gedaan naar het ontcijferen van hun diversiteit 
en methanotrofe vermogens in verschillende omgevingen. Deze micro-organismen bleken overal 
aanwezig te zijn in de natuur en worden op dit moment verwant aan de Gammaproteobacteria, 
Alphaproteobacteria, Verrucomicrobia en NC10 phyla.
In dit proefschrift wordt het onderzoek gepresenteerd met als doel het ontwikkelen van 
nieuwe moleculaire methodes om de methanotrofe diversiteit in verschillende ecosystemen te 
onderzoeken (hoofdstuk 2), het ontrafelen van de diversiteit aan soorten tussen ecosystemen 
die methaan produceren of consumeren (hoofdstuk 3), het gebruik van microcosms om de 
door methanotrofen CH

4
- en O

2
-gradiënt een in draslanden te onderzoeken en tevens voor het 

verrijken van nieuwe methanotrofen (hoofdstuk 4), en om de fenotypische en genotypische 
eigenschappen van een nieuw isolaat uit een rijstveld te onderzoeken (hoofdstuk 5). Hoofdstuk 
1 van deze thesis zal een introductie geven op de ecofysiologie van methanotrofen en geeft een 
samenvatting van de belangrijkste vindingen. Hoofdstuk 6 geeft een groter perspectief op de 
resultaten en geeft voorstellen voor vervolg onderzoek
Hoofdstuk 1 van dit proefschrift geeft een overzicht van de huidige kennis die we hebben over 
methanotrofie, hoe de methaan oxiderende bacteriën (MOB) verdeeld zijn over verschillende 
ecosystemen en wat hun impact is, wereldwijd, op het methaan budget. In MOB’s vind de 
conversie van CH

4
 naar methanol plaats via een koper en/of ijzerhoudend enzym dat methaan 

monooxygenase (MMO) wordt genoemd. Dit enzym komt in de natuur in twee vormen voor. 
De eerste vorm een de oplosbare vorm MMO (sMMO) en de tweede een membraan gebonden 
MMO (pMMO). Hoewel het proces van methaan oxidatie behoorlijk gelijk is in verschillende 
MOBs, variëren andere eigenschappen zoals koolstof- en stikstoffixatie en de cel structuur wel. 
Door deze fenotypische en genetische verschillen tussen methanotrofen is het mogelijk geweest 
deze in verschillende groepen op te delen. Dit hoofdstuk zal tevens een kort overzicht geven over 
de methaan oxidatie door methanotrofen in draslanden maar specifieker rijstvelden, hetgeen 
waar de focus ligt van het onderzoek in dit proefschrift. 
Hoofdstuk twee richt zich op het ontwikkelen van moleculaire bio markers die de diversiteit 
van methanotrofen binnen verschillende ecosystemen zichtbaar maken. Een nieuwe set primers 
werd daarbij ontworpen gebaseerd op de gehele pmoCAB operon sequentie. De geconserveerde 
regio’s die werden gebruikt als target sequentie werden gevonden in de pmoC- en pmoA-genen. 
Het gebruik van deze primer set op monsters uit verschillende ecosystemen resulteerde in 
de detectie van het methanotrofe pmoCA-gen fragment van alle tot nu toe ontdekte phyla. 
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Noch ammonium oxiderende bacteriën, noch de comammox Nitrospira (die een ammonium 
monooxygenase bevat), werden gedetecteerd. Ten slotte waren we in staat om MOB specifieke 
afstammingslijn fragmenten te genereren vanwege de primerbindingsplaatsen die onmiddellijk 
het intergene gebied flankeren. Deze unieke eigenschap zou verder kunnen worden onderzocht 
in toekomstige amplicon-studies met hoge doorvoer om verschillende MOB afstammingslijnen 
in verschillende omgevingen te onderscheiden.
In hoofdstuk drie wordt de diversiteit aan methanotrofe soorten in ecosystemen die methaan 
produceren of consumeren onderzocht. Uit de resultaten bleek dat de CH

4
 stromen erg variable 

kunnen zijn tussen draslanden (bekend als producenten van CH
4
) en de naburige grasland (bekend 

als consument van CH
4
) met geen duidelijke statistische verschillen tussen deze verschillende 

systemen. De totale microbiële gemeenschap vertoonde echter significante verschillen waarbij 
de familie van Fimbriimonadaceae sterk verrijkt was in het rijstveld. Als er wordt gekeken naar 
de MOB gemeenschap in het rijstveld zagen we meer verrijking in verschillende methanotrofen 
families zoals Methylomirabilaceae, Methylomonaceae, and Methylophilaceae. Gebaseerd op de 
resultaten van dit  hoofdstuk werden twee werk hypothesis geformuleerd. 
Met behulp van een drie maanden lange incubatie, van bodem monsters, in microcosms wordt 
in Hoofdstuk 4 geprobeerd ongecultiveerde MOB groepen te verrijken. De bodem monsters 
werden erg actief waarbij alle CH

4
 die werd toegevoegd werd geoxideerd voordat het de bovenste 

compartimenten bereikten. Tijdens de verrijking werden op verschillende momenten de verticale 
zuurstof gradiënten gemeten, deze bleken de variëren in tijd. Een indicatie dat de microbiële 
gemeenschap een rol speelt in deze gradiënt. Na metagenoom analyses bleek dat de ordes 
Methyloccales and Myxococcales hoog verrijkt waren. De pmoA sequenties die werden geïsoleerd 
uit de bovenste en onderste lagen uit de bodem monsters suggereerden dat type I methanotrofen 
meer dominant zijn in de bovenste laag en type II methanotrofen meeer verrijkt leken te zijn 
in de onderste laag. Concluderend kan hiermee worden vastgesteld dat onze strategieën om te 
verrijken resulteerden in drie verschillende hoog verrijkte methanotrofe consortia die nieuwe 
pmoA sequenties bevatten het meest verwant aan Methylocystis en Methylomonas genera.
Hoofdstuk 5 omschrijft de fenotypische en genotypische eigenschappen van een uit drasland 
geïsoleerde nieuwe methanotroof door het gebruik van micocosms. Gebaseerd op 16S rRNA 
fylogenie en PLFA profielen blijkt dat deze soort dicht verwant is aan de type Ib methanotrofen. 
En bleek dat deze een C

16:1
ω9c als membraan fosfolipide heeft wat nog niet eerder is gezien in 

methanotrofen. Het concept genoom van dit organisme laat zien dat er een potentieel is voor 
diversiteit in metabolisme met enzymen betrokken in de zwavel cyclus.
Dit proefschrift wordt afgesloten met een zesde hoofdstuk waar doormiddel van de integratie 
van eerdere verkregen resultaten (hoofdstukken twee, drie, vier en vijf ) een visie wordt gegeven 
op het huidige inzicht op de rol van methanotrofen in draslanden. Daarnaast wordt in dit 
hoofdstuk gesproken over de onduidelijkheden die in de toekomst verder onderzocht moeten 
worden. Daarom worden aanvullende experimenten en aanbevelingen gedaan om deze vragen op 
te lossen en meer inzicht te krijgen in de milieu-impact van methanotrofen.
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1BACKGROUND

	 A diverse group of microorganisms exist that are capable of oxidizing reduced one-
carbon compounds, such as methanol, known to as methylotrophs. One unique subset of 
methylotrophs is further classified as methanotrophs. These are microorganisms that oxidize 
methane (CH

4
) aerobically and use it as their sole energy source (Hanson & Hanson, 1996; 

Trotsenko & Murrell, 2008; Semrau et al., 2010). They are ubiquitous in nature, inhabiting 
a wide array of environments where both oxygen (O

2
) and CH

4
 are available (Hanson & 

Hanson, 1996; Nazaries et al., 2013; Knief 2015). The enzyme required for the activation of 
CH

4 
is called methane monooxygenase (MMO).  Two forms of this enzyme exist, a cytoplasmic 

soluble form (sMMO) and a membrane bound particulate form (pMMO). sMMO is encoded 
by a gene cluster mmoXYZ encoding for the αβγ subunits of the hydroxylase, respectively. 
On the other hand, pmoCAB gene cluster encodes for the αβγ subunits of the hydroxylase 
in pMMO (Murell et al., 2000).  According to current knowledge, the particulate form 
of this enzyme is much more widespread and has become the target of molecular studies. 

sMMO

pMMO
CH4 CH3OH HCHO HCOOH CO2

Methane Methanol

Formaldehyde

Formate

cell biomass

Methanol 
dehydrogenase

Formaldehyde 
dehydrogenase

Formate 
dehydrogenase

Carbon Dioxide

Figure 1: Methane oxidation pathway in methane oxidizing bacteria. All enzymes involved in each step 
of the reaction are shown. sMMO: soluble methane monooxygenase, pMMO: particulate methane 
monooxygenase.

Since their discovery over 100 years ago, methanotroph’s number and diversity have been 

gradually increasing to 16 described genera affiliated with the bacterial phyla Proteobacteria, 
Verrucomicrobia and the candidate division NC10 (Knief, 2015). Despite their diversity, 
nearly all described methanotrophic isolates and cultures belong to the Proteobacteria and 
are affiliated with the classes Gammaproteobacteria (type I) and Alphaproteobacteria (type II). 
In fact, methanotrophic Verrucomicrobia were only recently discovered and are represented 
by a limited number of cultures (Op den Camp et al., 2009). Within the NC10 phylum, the 
“Candidatus Methylomirabilis oxyfera”-like methanotrophs are able to oxidize CH

4
 via an intra-

aerobic pathway in anoxic habitats (Ettwig et al., 2010). However, no pure isolates have been 
obtained from this group of methanotrophs. In this chapter, the discovery and phylogeny of 
methanotrophs, the process of methanotrophy, and the importance of methane oxidation in 
natural and cultivated wetlands are further discussed.



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 20PDF page: 20PDF page: 20PDF page: 20

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 20PDF page: 20PDF page: 20PDF page: 20

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 20PDF page: 20PDF page: 20PDF page: 20

Chapter 1

20

Discovery, phylogeny and taxonomy of methanotrophs
	 In 1906, Nicolas Söhngen discovered bacteria that were capable of oxidizing methane 
(CH

4
) at the expense of oxygen (Söhngen, 1906). Finally, in the 1970s extensive isolation and 

characterization of these aerobic methanotrophs occurred (Whittenbury et al., 1970). This gave 
rise to the initial three methanotroph ‘Types’ known as Type I, II, and X. The differentiation 
and characterization for these groups were based on multiple factors including intracytoplasmic 
membranes throughout the cell as bundles of vesicular disks (Type I) versus being aligned along 
the periphery of the cell (Type II), the utilization of ribulose monophosphate (RuMP) (Type I) 
versus serine pathway (Type II) for carbon assimilation and signature phospholipid fatty acids 
of 14 and 16 (Type I) versus 18 (Type II) carbons in length. However, some isolates showed 
characteristics of both Type I or Type II, which is why Type X was created (Hanson & Hanson, 
1996). Follow-up studies proposed that Proteobacterial methanotrophs should be grouped as 
Type I or II with Type X strains being reclassified as a subset of Type I (Type Ib) methanotrophs 
(Bowman et al., 1993). Moreover, two filamentous methane oxidizers have also been described, 
Crenothrix polyspora (Stoecker et al., 2006), and Clonothrix fusca (Vigliotta et al., 2007), possessing 
the pmoA enzyme. Both belong to the Gammaproteobacteria and are closely related to the Type I 
methanotrophs.
Methanotrophs were first grouped into six genera within the Proteobacteria (Hanson & 
Hanson, 1996). This classification was based on 16S rRNA gene sequence analyses, with 
the gammaproteobacterial Type I methanotrophs grouped as Methylobacter, Methylococcus, 
Methylomicrobium, and Methylomonas. The alphaproteobacterial Type II methanotrophs 
were classified as Methylocystis or Methylosinus. This classification has since been updated to 
16 genera (see Figure 2 for overview): 12 within the Gammaproteobacteria and four in the 
Alphaproteobacteria (Bodrossy et al., 1997, 1999; Bowman et al., 1997; Wise et al., 1999; Heyer 
et al., 2005; Kalyuzhnaya et al., 2005; Rahalkar et al., 2007; Dedysh et al., 2000, 2002, 2004; 
Dunfield et al., 2003). 
When independent reports of isolation and characterization of methanotrophs belonging to the 
phylum of Verrucomicrobia from volcanic ecosystems were published, our previous knowledge 
on methanotroph diversity greatly expanded (Dunfield et al., 2007; Pol et al., 2007; Islam et al., 
2008). These volcanic isolates are proposed to be representatives of the genus Methylacidiphilum 
(Op den Camp et al., 2009) with most lacking any intracytoplasmic membranes, possessing a 
complete Calvin-Benson-Bassham cycle and carboxysome-like structures, and growth stimulated 
by carbon dioxide (CO

2
) (Dunfield et al., 2007; Pol et al., 2007).  The growth of verrucomicrobial 

methanotrophs is dependent on rare earth elements (lanthanides), which are incorporated into 
the active center of an XoxF-type methanol dehydrogenase (Pol  et  al.  2014). Furthermore, 
mesophilic acidophilic isolates belonging to a novel Methylacidimicrobium genus within the 
Verrucomicrobia phylum have also been discovered from a volcanic soil in Italy. These strains 
are capable of autotrophic growth via the Calvin cycle with some containing intracytoplasmic 
membrane stacks (Islam et al., 2008; van Teeseling et al., 2014).
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1

Methylocystis/Methylosinus

USC-α
Methylocapsa

Methylococcus

USC-ɣ

Deep sea
Methylothermus

Methylocaldum

Methylomonas
Deep sea

Methylobacter

Methylomonas

Methylovulum
MethylosarcinaJR-2

Verrucomicrobia

TUSC

Nitrosococcus oceani

Verruco.

Crenothrix

AOB

Others

Type II

Type Ib

Type Ia

NC10

Figure 2: Representation of methanotrophic diversity with both solely environmental and isolated 
pmoA sequences. Dark branches represent only environmental sequences while branches with isolates are 
highlighted in red. The tree is rooted with amoA sequences from ammonia oxidizers (AOB). Type Ia, type 
Ib, and type II are clearly distinguished.

While methane oxidation has been described to proceed through an aerobic pathway in bacteria, 
a recently discovered bacterium Candidatus ‘Methylomirabilis oxyfera’ has greatly challenged 
this dichotomy (Ettwig et al., 2010). This methanotrophic bacterium belonging to the NC10 
phylum grows in an anaerobic condition, yet produces its own supply of oxygen by converting 
nitrite via nitric oxide into O

2
 and N

2
 gas. The produced O

2
 is then used via a classical aerobic 

methane oxidation pathway involving a particulate methane monooxygenase to activate methane. 
Therefore, this bacterium performs anaerobic methane oxidation coupled to denitrification, via 
an intra-aerobic pathway (Wu et al., 2011).
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Environmental distribution of methanotrophs
	 Methanotrophs can be found in many environmental samples such as in wetlands, freshwater 
and marine sediments, sewage sludge, groundwater, paddy fields, and peat bogs (Bowman, 2006 
and references therein; Hanson & Hanson, 1996 and references therein; Dedysh et al., 1998b 
and references therein). Most isolated methanotrophs are neutrophilic and mesophilic, growing 
at moderate pH (5-8) and temperature ranges (20-35°C), but thermophilic, psychrophilic, 
alkaliphilic, and acidophilic methanotrophs have been discovered, too. 
The isolation of Methylococcus and Methylocaldum species within the Gammaproteobacteria 
was the first thermotolerant MOB growing at temperatures between 30-60 and 20-47°C, 
respectively. Methylothermus was isolated from a hot spring and grows at temperatures as 
high as 72°C (Bodrossy et al., 1999). Thermophilic strains have also been identified within 
the Verrucomicrobia with optimal growth temperatures of 55°C and above. These cells are also 
acidophilic with growth optima at pH 2, and were isolated from volcanic mud pots in southern 
Italy (Pol et al., 2007), a geothermal active area in New Zealand (Dunfield et al., 2007) and from 
an acidic hot spring in Kamchatka, Russia (Islam et al., 2008). 
Methanotrophy has also been observed in permanently cold areas (Omelchenko et al., 1993; 
Berestovskaya et al., 2002), which cover a significant part of the biosphere (Russwell, 1990). These 
areas contain substantial CH

4 
fluxes (such as polar tundra regions). For example, Methylobacter 

psychrophilus isolated from a tundra soil in Russia grows at optimal temperatures ranging from 
3.5 to 10°C (Omel’chenko et al., 1996; Tourova, 1999). Similarly, Methylomonas scandinavica 
with optimal growth temperatures of 15°C was isolated from deep igneous groundwater in 
Sweden (Kalyuzhnaya et al., 1999). All discovered MOB from these environments belong 
to the Gammaproteobacteria phylum. Lastly, halotolerant/-philic and alkalitolerant/-philic 
methanotrophs have also been discovered from marine waters, estuaries, arctic soil, groundwater 
and soda lakes with growth at salt concentrations between 0.15% and 4% (Sieburth et al., 1987; 
Bowman et al., 1993; Khmelenina et al., 1997, 1999; Smith et al., 1997; Fuse et al., 1998; 
Kaluzhnaya et al., 2001, 2008; Trotsenko & Khmelenina, 2002; Wartiainen et al., 2006). 

The process of methanotrophy
	 Despite this diverse and wide range of growth conditions, CH

4 
oxidation in methanotrophs 

is remarkably similar with regards to the pathway they utilize to produce methanol, formaldehyde 
and formate as intermediates. In fact, most characterized cells to date are obligate methanotrophs 
capable of growing only on the C1 compounds CH

4 
and methanol, with the exception of one 

described Methylocella species that can grow on organic acids (Dedysh et al., 2005). 
CH

4 
oxidation can occur both aerobically and anaerobically, however in this thesis only aerobic 

oxidation is reviewed. The enzyme responsible for the conversion of CH
4 
to methanol is called 

methane monooxygenase. To date, two different forms of this enzyme have been found. One 
form is called particulate methane monooxygenase (pMMO), which is a membrane-associated 
enzyme located in the cytoplasmic membrane encoded by the pmoCAB operon. Due to its 
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1presence in most methanotrophs, pMMO has become the target of functional gene marker 
studies monitoring these microorganisms in a wide array of environments. The other form of 
this enzyme is called soluble methane monooxygenase (sMMO) and its location is within the 
cytoplasm. Relatively speaking, sMMO is far less ubiquitous in methanotrophs. Methylocella and 
Methyloferata do not have pmoCAB genes in their genome, but only possess sMMO.  When both 
MMO’s are present in a methanotroph, their expression is mainly regulated by the presence of 
copper (Cu) (Takeda et al., 1976; Takeda & Tanaka, 1980; Scott et al., 1981; Stanley et al., 1983; 
Dalton et al., 1984).
sMMO has been well characterized and shown to possess three components: a hydroxylase, a 
reductase and a regulatory protein (Colby et al., 1977; Colby & Dalton, 1978, 1979; Woodland 
& Dalton, 1984; Green & Dalton, 1985; Fox et al., 1989; Pilkington & Dalton, 1990; Wallar 
& Lipscomb, 1996, 2001). Electrons from NADH are transferred to the hydroxylase via the 
cofactors of the reductase. The hydroxylase component is composed of three subunits with a 
molecular structure of (αβγ)

2
. Furthermore it has been established, using spectroscopic and 

X-ray crystallography that the ~60 kDa polypeptide α-subunit of the hydroxylase containing an 
oxygen-bridged di-iron cluster is the site of CH

4 
catalysis (Fox et al., 1988, 1989; Rosenzweig 

et al., 1993; Elango et al., 1997). In contrast to sMMO, less is known about pMMO and 
its molecular properties. This is mainly a result of loss of activity occurring during enzyme 
preparations (Zahn & DiSpirito, 1996; Nguyen et al., 1998; Takeguchi et al., 1998; Basu et al., 
2003; Lieberman et al., 2003; Choi et al., 2005). What is known so far, from various studies, is 
that pMMO is a copper-containing enzyme with a subunit molecular structure of (αβγ)

3
. What 

is yet to be proven is the number, type, and function of metal centers associated with pMMO 
and its crystal structure (Zahn & DiSpirito, 1996; Nguyen et al., 1998; Basu et al., 2003; Choi 
et al., 2003; Lieberman & Rosenzweig 2005).

Methane oxidation in wetlands
	 In 1982, Harris and colleagues provided the first evidence for CH

4
 consumption in wetland 

sediments when water levels fell below the sediment surface. Since then, extensive research 
has been done in these ecosystems to understand the affect that microbes have on the global 
geochemical cycles.  In natural and cultivated wetlands, CH

4 
consumption is considered to be 

mainly performed by methanotrophs (Cicerone & Oremland 1988; King, 1992). Although 
determining in situ CH

4 
oxidation on the field scale are challenging, up to 90% of the produced 

CH
4 
in wetlands are reported to be consumed again via methanotrophs residing in the oxic top 

layer or in the oxic rhizosphere (De Bont et al., 1978; Holzapfel-Pschorn & Seiler 1986; Schütz 
et al., 1989; Sass et al., 1990; Fechner & Hemond, 1992; Van der Gon & Neue, 1996; Schipper 
& Reddy, 1996; Lombardi et al., 1997).  
In a typical flooded soil that is fully saturated with water, the biogeochemical cycling is driven 
by the availability of organic compounds and oxygen along with inorganic electron acceptors 
(such as nitrate, sulfate, Fe(III), etc.) (Krüger et al., 2002; Segarra et al., 2013). Before the CH

4
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produced by methanogens reaches the atmosphere, first anaerobic methanotrophs oxidize it 
using a suite of electron acceptors. The remaining CH

4
 reaches the oxic layer of soil where it 

undergoes conversion by aerobic methanotrophs. 
Depending on the availability of these compounds, there are different types of microbes that 
could be present in such environment. If sulfate is readily available, sulfate-dependent anaerobic 
oxidation of CH

4
 (AOM) can take place (Hoehler et al., 1994). In the presence of nitrite or nitrate, 

anaerobic methanotrophy can be coupled to nitrite and nitrate reduction and Raghoebarsing 
et al. (2006) reported the first enrichment of AOM coupled to denitrification. Surveys of 
both 16S rRNA and pmoA genes have revealed that this process can take place in wetlands 
(Welte et al., 2016). Lastly, oxidized iron (Fe3+) can be a suitable alternative electron acceptor 
for AOM. Studies have demonstrated the occurrence of Fe-AOM in paddy field sediments 
(Miura et al. 1992; Watanabe et al., 1994; Ettwig et al., 2016); however, microbial growth has 
not yet been demonstrated. The combination of substrate availability and its thermodynamics 
can result in a functioning community that is responsible for different microbial processes. 
While the remaining CH

4
 reaching the oxic layer of the soil can be oxidized by aerobic 

methanotrophs, these bacteria can also be responsible for methane oxidation at atmospheric 
levels (Dunfield et al., 1999). Both Alpha- and Gammaproteobacteria named upland soil cluster 
(USC) α and γ have been detected in cultured-independent studies (Knief et al., 2003; Kolb et al., 
2005; Ricke et al., 2005). CH

4 
oxidation can be distinguished into two kinds of activity based on 

affinity: high affinity at low atmospheric CH
4 
concentrations (<12 ppm) or low affinity at high 

CH
4 
concentrations (>40ppm) (Roslev et al., 1997; Gulledge et al., 1997). Bacterial populations 

responsible for ‘high affinity oxidation’ are still vastly unknown, estimated to contribute to 10% 
of total CH

4 
consumption (Topp & Pattey, 1997). Recently, Pratscher et al. (2018) obtained an 

85% complete draft genome of a USCα genus within Beijrinckiaceae through various advanced 
methods. Moreover, other studies have indicated that under extremely low oxygen conditions, 
MOB can thrive by coupling methane oxidation to nitrate reduction (Kits et al., 2015a; 2015b; 
Oswald et al., 2016; Gilman et al., 2017). On the other hand, methanotrophs responsible for 
‘low affinity oxidation’ are more easily cultivable and much more studied (Topp et al., 1991). 
In paddy fields, variations in CH

4
 emissions have been mostly attributed to the variation in 

methanotrophic activity (Sass et al., 1990; Schütz et al., 1990).

Molecular tools for the detection of MOB
	 A suitable marker gene for use in molecular ecology studies of organisms is one that has 
sequences available in a database from which primers can be designed. This makes 16S rRNA 
gene an obvious choice due to the large database of sequences available and moreover, newly 
described organisms have their 16S rRNA gene always sequenced first and added to the database. 
A complementary option is the use of a functional gene that is unique to the physiology and 
metabolism of the organisms being studied, which has major advantages over housekeeping 
genes. By using a functional marker gene, researchers narrow down their investigation to the 
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1studied functional group making their detection highly sensitive in a complex environment. 
Furthermore, presence of a homologous gene sequence in putative uncultivated members means 
that they can also be easily identified. The knowledge gained with regards to the thus inferred 
physiology of these novel bacteria cannot be obtained otherwise, through the use of housekeeping 
genes only (McDonald et al., 2008).
In order to study the presence of MOB in various environments, microbiologists have used 
pmoA and mmoX specific primers. pmoA codes for the beta subunit of particulate methane 
monooxygenase that is shown to be highly conserved amongst MOB (Hakemian & Rosensweig, 
2007). While pmoA genes have been sequenced from a considerable number of methanotrophs 
and a large data set of partial sequences is available in GenBank, mmoX sequence availability still 
remains relatively small. However, currently used primers do not always encompass all different 
types of MOB. For instance, recently researchers have had to come up with new and more 
specific primers for certain MOB such as “Candidatus Methylomirabilis oxyfera” (Luesken et 
al., 2011a; 2011b). Furthermore, as mentioned previously, Methylocella lacks a PmoA-coding 
gene in its genome (Chen et al., 2010; Vorobev et al., 2011). Taking a closer look at the full 
pmoCAB operons from the available genomes could give us more insight with regards to putative 
conserved regions. This in turn would result in improved primers and better understanding of 
MOB communities. One such region could be present within pmoB sequences since it has been 
indicated that the active site of particulate methane monooxygenase enzyme is located within the 
soluble region of PmoB protein (Culpepper et al., 2012a; 2012b). 
Besides pmoA and mmoX, other functional gene markers that are not unique to methanotrophs, 
but have suitable datasets available can still be used to identify MOB. For instance, researchers 
have used mxaF coding for the large subunit of methanol dehydrogenase (McDonald & 
Murrell, 1997; Neufeld et al., 2007), nifH coding for dinitrogen reductase (Auman et al., 2001; 
Dedysh et al., 2004) and fhcD coding for the D subunit of formyltransferase/hydrolase complex 
(Kalyuzhnaya et al., 2004). Another technique for the molecular detection of MOB has been the 
use of DNA microarrays. Microchip, biochip and gene chip technology allows for the parallel 
analysis of highly complex gene mixtures in a single assay. While originally meant to be used 
for a genome-wide expression analysis, microarrays were also being developed for diagnostic 
applications. Strain-, subspecies-, species-, genus-, or higher taxon-specific nucleic acid probe 
sets could be used in microbial diagnostic microarrays (Bodrossy & Sessitsch, 2004). Nowadays 
however, they are being replaced by amplicon sequencing.
Lastly as an alternative, lipids can be used in molecular marker studies since methanotrophs 
contain unique phospholipid fatty acids (PLFAs) (Guckert et al., 1991). Type I methanotrophs 
contain the unique PLFAs 16:1ω5t, 16:1ω6c, and 16:1ω8c, while Type II contain 18:1ω8c. The 
measurement of these signature PLFAs has been readily used in biomass distribution studies 
of both type I and type II methanotrophs in various environments (Börjesson et al., 1998; 
Sundh et al., 1995). The use of the 13CH

4
 isotope to label the PLFAs of methanotrophs increases 

the sensitivity of detection of the PLFAs and has provided evidence of methane assimilation 
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at true atmospheric concentrations (Evershed et al., 2006; Maxfield et al., 2006; Knief et al., 
2003; Bull et al., 2000). While these studies have had valuable findings, great care should be 
taken in interpreting PLFA data. First, the PLFA database for methanotrophs is much less 
extensive than the 16S rRNA and functional gene databases (McDonald et al., 2008). Second, 
not all methanotrophs exhibit their corresponding PLFA profile as a recent study showed 
that Methylocystis heyeri strains (type II) contained large amounts of 16:1ω8c, a PLFA that was 
previously associated with type I methanotrophs only (Dedysh et al., 2007).

Methanotroph population and CH
4 
oxidation in paddy soils

	 Both type I and type II methanotrophs have been detected in rice fields (Frenzel, 2000). 
From different studies, it has been reported that the population of methanotrophs largely depends 
on the location of the experimental site (Dubey, 2001; 2003), concentration of CH

4
 in soil 

(Bender & Conrad, 1992), and availability of ammonium (Dubey & Singh, 2000; Joulian et al., 
1997). Furthermore, population size of MOB tends to be higher by several orders of magnitude 
in rhizosphere compared to bulk soil (Dubey & Singh, 2000; 2001; Gilbert & Frenzel, 1998). 
In flooded soil, oxygen diffuses from the atmosphere while CH

4 
is supplied to the upper soil layer 

in µM concentrations from deeper layers. As a result, going down vertically from the surface 
would mean that there is a gradient of continuously lower oxygen concentrations, while the 
opposite would be observed for CH

4 
concentrations (a scheme is depicted in Figure 3). Studies 

have shown that CH
4 
and oxygen gradients in flooded soil overlap at about 2-3 mm depth from 

the surface (Damgaard et al., 1998; Gilbert & Frenzel; 1998), meaning that beyond 3mm, there 
is no oxygen available via diffusion from the surface. This makes oxygen the limiting factor in the 
process of aerobic CH

4 
oxidation by MOB in bulk soil (Krüger et al., 2002).
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Figure 3: Cross-gradient of O
2
 and CH

4
 in natural and cultivated wetlands. Various mixing ratios of O

2
 and 

CH
4
 can exist depending on the depth. O

2
 diffusion from the air is depicted by a red arrow while methane 

ebullition is depicted by a purple arrow. 

Using previously discussed methods to study methanotrophic community in these environments, 
researchers have found more than 30 operational taxonomical units (OTUs) corresponding to 
the species level (Lüke et al., 2010). Therefore, there is a huge diversity of MOB that exists in 
wetlands, most of which are still uncultivated and their niche preferences unknown. Due to 
different factors that can be responsible for the construction of these communities, such as CH

4 

levels (Krause et al., 2012), nitrogen supply (Rudd et al., 1976), disturbances (Ho et al., 2011) 
and grazing (Murase & Frenzel, 2008), researchers have tried to study these systems in laboratory 
scale microcosms that mimic these bacteria’s natural habitat. This system allows for O

2
 and CH

4

gradients to be established as previously mentioned regarding paddy soil. In a study published 
by Reim and colleagues (2012), they used this system to show that within soil that is only 3 mm 
thin, different OTUs within a single guild can share the same microenvironment. They further 
confi rmed that CH

4 
oxidation occurred at its highest rate at the oxic-anoxic interface, which 

separated the MOB according to substrate availability.
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Thesis outline
	 Natural wetlands contribute 20-39% to the global emission of CH

4
. This number would, 

however, be much higher if aerobic methanotrophs that naturally reside in these environments 
were not involved in CH

4
 mitigation. Since the total area of cultivated wetlands has been increasing 

annually, the role of these MOB in oxidation of CH
4
 has become increasingly important. 

Therefore, this thesis aimed at further expanding our understanding of methanotrophs in paddy 
fields. In Chapter 2, a molecular study was conducted to gain a better understanding of the 
diversity of methanotrophs. A novel degenerate primer set was designed based on full pmoCAB 
operon sequences and introduced to target methanotrophs in various environments. As a result, 
members of all known methanotrophic phyla, to date, could be targeted with this primer set, 
which has never been shown before. We were also able to generate MOB lineage specific fragments 
that can be used in future studies to better distinguish the different MOB lineages present in the 
studied sample. In Chapter 3, we aimed at unraveling the potential differences that exist in both 
total bacterial and methanotrophic community compositions between a paddy field (CH

4
 source) 

and a meadow (CH
4
 sink). This chapter illustrates that CH

4
 fluxes can be highly variable, and this 

variability does not necessarily have a direct effect on the relative abundance of methanotrophs. 
Certain bacterial families such as Fimbriimonadaceae and various methanotrophic families such as 
Methylomirabilaceae and Methylomonaceae were found to be present in higher relative abundance 
in paddy soil. In Chapter 4, lab-scale microcosms together with metagenome analyses were 
used to follow and monitor a long-term incubation of paddy soil, and how MOB can effect 
the establishment of CH

4
 and O

2
 counter gradient in this environment. Lastly, our enrichment 

efforts resulted in three highly enriched methanotrophic consortia containing uncultured pmoA 
sequences distantly related to Methylocystis and Methylomonas genera. In Chapter 5, a novel type 
Ib bacterium isolated from a paddy field is introduced, obtained using the method described in 
chapter 4. The phenotypical and genotypical properties of this bacterium are discussed in details 
and compared to other well-described methanotrohpic strains. Finally, Chapter 6 presents an 
overall summary of the findings together with integration and future perspectives of each of the 
chapters. 
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CHAPTER 2
Survey of methanotrophic diversity in 

various ecosystems by degenerate methane 
monooxygenase gene primers
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ABSTRACT 

	 Methane is the second most important greenhouse gas contributing to about 20% of global 
warming. Its mitigation is conducted by methane oxidizing bacteria that act as a biofilter using 
methane as their energy and carbon Source. Since their first discovery in 1906, methanotrophs 
have been studied using a complementary array of methods. One of the most used molecular 
methods involves PCR amplification of the functional gene marker for the diagnostic of copper 
and iron containing particulate methane monooxygenase (pMMO). To investigate the diversity 
of methanotrophs and to extend their possible molecular detection, we designed a new set of 
degenerate methane monooxygenase primers to target an 850 nucleotide long sequence stretch 
from pmoC to pmoA. The primers were based on all available full genomic pmoCAB operons. 
The newly designed primers were tested on various pure cultures, enrichment cultures and 
environmental samples using PCR. The results demonstrated that this primer set has the ability 
to correctly amplify the about 850 nucleotide long pmoCA product from Alphaproteobacteria, 
Gammaproteobacteria, Verrucomicrobia and the NC10 phyla methanotrophs. The new primer 
set will thus be a valuable tool to screen ecosystems and can be applied in conjunction with 
previously used pmoA primers to extend the diversity of currently known methane-oxidizing 
bacteria. 
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2

INTRODUCTION

	 Methane is the second most important greenhouse gas contributing to about 20% of global 
warming (Intergovernmental Panel on Climate Change, 2014). The global methane budget is 
estimated to be around 600 Tg a-1 (Dubey, 2001) which is dominated by biogenic sources, where 
natural wetlands (23%), and rice fields (21%) (Frenzel, 2000) account for almost half of the total 
budget (Chen & Prinn, 2005). Methanogenic archaea are assumed to be the sole producers of 
methane that reside in these environments (Cicerone & Oremland, 1988; Conrad, 1999; Joulian 
et al., 1997). These archaea are also present in waste treatment systems, intestines of ruminants 
and termites and landfills acting as additional CH

4
 sources. Therefore, microbial methanogenic 

activity is responsible for nearly 75% of the methane emitted to the atmosphere (Chen & Prinn, 
2005).
This process, is however, vastly mitigated by methanotrophic microorganisms that oxidize a 
large part of the produced CH

4
 (Cappelletti et al., 2016; Crevecoeur, 2015; Dumont & Murrell, 

2005; Reeburgh et al., 1993; Oshkin et al., 2014). It has been estimated that of the primary 
productivity, roughly 1% ends up in CH

4
; half of which is emitted into the atmosphere while 

the other half is consumed by methanotrophs (Reeburgh, 2007; Aronson et al., 2013). While 
anaerobic methane-oxidizing archaea consume more than 75% of the CH

4
 produced in certain 

marine sediments (Reeburgh, 2007; Beal et al., 2009; Egger et al., 2014), aerobic methane-
oxidizing bacteria (MOB) that live at the interface between anoxic and oxic zones in marine 
environments (Bender & Conrad, 1992; Lüke et al., 2016; Padilla et al., 2016), freshwater 
wetlands and rice fields (Lüke et al., 2014) have been estimated to consume up to 90% of the CH

4
 

produced in these environments (Hanson & Hanson, 1996). Alpha- and gammaproteobacterial 
methanotrophs have further been shown to be dominant methane consumers in acidic peatlands 
(Esson et al., 2016; Deng et al., 2013; Putkinen et al., 2014). Since their discovery over 100 years 
ago (Söhngen, 1906), many aspects of methanotrophic bacteria have been studied (Whittenbury 
et al., 1970; Bédard & Knowles, 1989; Hanson & Hanson, 1996; Lidstrom, 2006; Trotschenko 
& Murrell, 2008).  At the moment, several groups of aerobic bacteria are known that convert 
methane by means of a copper- and/or iron-containing enzyme called methane monooxygenase 
(MMO) (Murrell et al., 2000). Methanotrophic archaea play a prominent role in the anaerobic 
oxidation of methane and use methyl coenzyme-M reductase (MCR) (Knittel & Boetius, 2009; 
Haroon et al., 2013 Welte et al, 2016). 
Two different forms of MMO exist: a soluble MMO (sMMO) encoded by mmoX, mmoY and 
mmoZ and a particulate MMO encoded by pmoCAB (Lieberman & Rosenzweig, 2005). The 
membrane bound particulate methane monooxygenase (pMMO) catalyzes the hydroxylation of 
methane. It exists in virtually all methanotrophs while sMMO has only been shown in certain 
genera such as Methylococcus, Methylosinus, Methylocystis, Methylomonas and Methylocella (Murell 
et al., 2000). The more recent discovery of Methylocella silvestris (Crombie & Murrell, 2014), 
Methyloferula stellata (Dedysh et al., 2015), and Methylocella palustris  (Dedysh et al., 2000) 
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has illustrated that some MOB do indeed possess only sMMO and would not be targeted in 
pMMO-focused molecular studies (Dunfield et al., 2003; Dedysh et al., 2000; Vorobev et al., 
2011; Vekeman  et al., 2016A). pMMO belongs to the ammonia monooxygenase superfamily 
and has been shown to be of high biogeochemical and chemical relevance (Bédard & Knowles, 
1989, Hakemian & Rosenzweig, 2007). This is due to the tight correlation that exists between 
this family and the globally important methane and nitrous oxide flux (Conrad, 1996). 
This makes Copper containing (Cu) MMO genes extremely useful markers in biological 
feedback studies looking at global climate change (Singh et al., 2010). Moreover, PCR-based 
environmental surveys have identified the ecological distribution and relevance of CuMMO-
containing organisms correlated to gas flux, land use and climatic conditions (Coleman and 
the references within, 2012). It has also been postulated that this group of enzymes could be 
correlated to processes other than methanotrophy and ammonia oxidation such as butane-
oxidation (Coleman et al., 2012; Crombie & Murrell, 2014). Therefore molecular approaches, 
such as PCR with specific primer sets are a fast and convenient method to screen for the diversity 
of such enzymes in various environments (Murrell & McDonald, 1998; Mitsumori et al., 2002; 
Siljanen et al., 2012).
The crystal structure of pMMO has been determined to a resolution of 2.8 Å from Methylococcus 
capsulatus (Bath) and the enzyme has been found to be a trimer with an α

3
β

3
γ

3 
polypeptide 

arrangement (Lieberman & Rosenzweig, 2005).  The PmoA subunit contains non-heme iron in 
its center and for long was proposed to be the site of substrate hydroxylation. The soluble PmoB 
subunit hosts two metal centers, modelled as mononuclear copper and dinuclear copper, while a 
third metal center occupied by zinc is located within the membrane (Lieberman & Rosenzweig, 
2005). Molecular surveys showed that MOB are present, amongst others, in natural wetlands 
(Costello et al., 2002; Samad & Bertilsson, 2017), marine ecosystems (Vekeman et al., 2016b),  
permafrost thaw ponds (Crevecoeur et al., 2015), peatlands (Lau et al., 2015) and flooded rice-
fields (Krüger et al., 2001; Lüke et al., 2009; Balasubramanian & Rosenzweig, 2007; Zheng et 
al., 2008).  Since pMMO was initially assumed to be present in all methane oxidizing bacteria, 
it has been used in molecular approaches to investigate methanotrophic diversity (Semrau et 
al., 1995; Holmes et al., 1999; Chi et al., 2012; Saidi-Mehrabad et al., 2013). More specifically 
pmoA, coding for the beta subunit of pMMO, was found to be highly conserved and as a result 
used as a functional gene marker (Holmes et al., 1995, Bourne et al., 2001; Costello et al., 1999; 
Kolb et al., 2003 Luesken et al., 2011B; Wang et al., 2017). 
In addition, pmoA amplicon pyrosequencing has been used to look at methanotrophic diversity 
in depth (Kip et al., 2011; Lüke & Frenzel, 2011; Han & Han & Gu, 2013; Knief, 2015). 
For all the PCR based methods, the used primers unfortunately do not encompass all different 
phyla of MOB to the same extent (Bergmann et al., 2011) nor do they cover new phyla such as 
Verrucomicrobia (Sharp et al., 2014; Erikstad & Birkeland, 2015) and NC10. In the latter cases, 
more phylum specific primers had to be designed to investigate the presence of ‘Candidatus 
Methylomirabilis oxyfera’ in various ecosystems (Luesken et al., 2011B). Recently several genomes 
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of different MOB have been sequenced by the Omega consortium (Khmelenina et al., 2013; Kits 
et al., 2013; Khadem et al., 2012; Stephenson et al., 2017) and thus a much larger gene dataset 
is now available to design new primers to potentially cover larger methanotroph diversity. Here 
we introduce a new set of degenerate primers that can be used to examine the diversity of MOB 
in various environments with the potential ability to target all presently known methanotrophic 
phyla. The new primers have the capability to target pmoC and pmoA and the intergenic region 
in between those genes. Application of the primers to various ecosystem resulted in the detection 
of pmoCA of Alphaproteobacteria, Gammaproteobacteria, Verrucomicrobia and NC10 within their 
respective habitats. Neither ammonia oxidizers, nor the recently discovered comammox (van 
Kessel et al., 2015; Pjevac et al., 2016) were detected with these primers. Furthermore, since the 
binding sites of the primers immediately flank the intergenic region between the genes pmoC 
and pmoA, they generate MOB lineage specific fragments. This unique property could be used 
in high throughput sequence analysis experiments for recovering diverse lineages in further 
environmental studies. 

MATERIALS AND METHODS

Construction of pmoCAB operon database and primer design:
	 A total of 83 different full genomic methane monooxygenase along with the isoenzyme PXM 
and ammonia monooxygenase gene sequences available on MaGe were downloaded (Vallenet 
et al., 2005; Sievers & Higgins, 2014). This included Alpha-, Gamma-, and Betaproteobacteria 
(AOB), Verrucomicrobia, NC10, Mycobacterium, Nocardia, SAR cluster, divergent PXM operon 
and second operons from Methylocystis parvus OBBP, Methylocystis sp. BN69, Methylosinus 
sp. LW3, and Methylosinus sp. LW4 (Table 1). The genes were aligned in pmoCAB operon 
configuration. In cases where an organism’s genome contained more than one copy of the operon, 
all copies were included in the pipeline. Sequences were aligned using MUSCLE (Edgar, 2004) 
and the alignment was imported into ARB (Ludwig et al., 2004). Nucleotide sequences were 
translated into protein sequences and phylogenetic trees were constructed based on the amino 
acid sequences. Furthermore, using the ‘Probe’ tool, primers that were capable of covering all 
(or as much as possible) phyla were designed within ARB. The parameters for the primer design 
were: 18 nucleotides in length, GC content of 50 -70 %, and minimum group coverage of at 
least 50%. Furthermore, the primers were made specific to MOB so that they had more than 
five mismatches with ammonium monooxygenase amo gene sequences of ammonia oxidizing 
bacteria (AOB).
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2

A set of primers covering pmoC, the intergenic region, and pmoA were ultimately designed 
(Table 2) and ordered from Biolegio (Nijmegen, the Netherlands). The forward primer, called 
pmoC374, with the reverse primer, called pmoA344 resulted in product length of roughly 850 
base pairs (bp) (Table 3). There are slight variations between different lineages. This is caused by 
variation in on average, 120 bp long intergenic region between pmoC and pmoA.

Table 2: Comparison of targeting ability between two newly designed degenerate primers and pmoA189.

pmoC374 pmoA344 pmoA189

Phylum Mismatches Mismatches Mismatches

0 1 2 3 0 1 2 3 0 1 2 3

Gammaproteobacteria 10/18 18/18 18/18 18/18 16/18 18/18 18/18 18/18 7/18 18/18 18/18 18/18

Alphaproteobacteria 16/16 16/16 16/16 16/16 14/16 16/16 16/16 16/16 16/16 16/16 16/16 16/16

Verrucomicrobia 3/7 5/7 5/7 6/7 0/7 0/7 1/7 3/7 0/7 0/7 0/7 3/7

NC10 1/1 1/1 1/1 1/1 0/1 0/1 0/1 0/1 1/1 1/1 1/1 1/1

Percent sequence coverage of all pmoCAB available sequences within each phylum were calculated by 
looking at how many sequences each primer could target. Targeting ability is also shown for zero, one, two 
and three mismatches within each primer.

Table 3: The new pMMO primers designed based on aligned pmoC, A, and B compared to pmoA189. MT 
= melting temperature. %GC = GC content in percentage.

Primers Sequence MT %GC

PmoC374 5’-AGCARGACGGYACNTGGC-3’ 42,9 56

PmoA189 5’-GGNGACTGGGACTTCTGG-3’ 40,3 56

PmoA344 5’-ANGTCCAHCCCCAGAAGT-3’ 42,9 50

DNA extraction and PCR conditions:
	 Total DNA was extracted from methanotrophic pure and enrichment cultures and from 
various environmental samples. Table 4 provides an overview on the cultures and samples used 
in this study. DNA was extracted using the PowerSoil® DNA Isolation Kit from MO BIO 
Laboratories (Carlsbad CA, USA) following the protocol of the manufacturer. The primers were 
tested using polymerase chain reaction (PCR), gradient PCR, touchdown PCR and nested PCR 
on all of the samples. The optimized protocol consisted of initial denaturation step at 96°C for 
five minutes, followed by 35 cycles at 96°C for one minute, annealing at 55°C for one minute 
and elongation at 72°C for two minutes. The final elongation step was done for ten minutes at 
72°C. 
Excision from gel after gel electrophoresis, purification, ligation and transformation of the 
amplified PCR products were done following the protocol described by Luesken et al., 2011A. 
At least 20 random clones were picked for each environmental sample in a blue-white screening 
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and the plasmids were isolated for each PCR product with the GeneJet Miniprep Kit (Fermentas, 
Vilnus, Lithuania). The samples were sent to BaseClear (Leiden, the Netherlands) for sequencing 
of the cloned product using M13 forward primer (Luesken et al., 2011A). 

Table 4: Over view of the strains, enrichment culture and environmental samples tested in this study to 
detect pmoCA gene sequences

Name/sample Description Origin/Location reference

Methylocystis rosea
Pure culture
Alphaproteobacteria

DSMZ  17621

Methylosinus sporium
Pure culture
Alphaproteobacteria

DSMZ 17706

Methylomonas lenta
Pure culture
Gammaproteobacteria

Hoefman et al., 2014

Methyloacidimicrobium fagopyrum 3C
Pure culture
Verrucomicrobia van Teeseling et al., 2014

Methyloacidiphilum fumariolicum SolV
Pure culture
Verrucomicrobia Pol et al., 2007

Methylomirabilis oxyfera  (DAMO)
Enrichment culture
NC10 phylum

Ooijpolder, NL
Ettwig et al., 2008

Sludge from waste water treatment plant
(WW )

Environmental sample
Lieshout, NL
Luesken et al., 2011AB

Bulk soil form paddy field (BS) Environmental sample
Vercelli, Italy
Vaksmaa et al., 2016

Rhizosphere of rice plants (ROOT) Environmental sample
Vercelli, Italy
Vaksmaa et al., 2016

Enrichment culture with paddy field soil (RV) Enrichment culture Vaksmaa et al., 2016

Volcanic mud (VM) Environmental sample
Campi Flegrei caldera, Italy
Pol et al., 2012

Sequence analysis
	 The resulting sequences were checked for quality using Chromas Lite 2.1.1.0 (Technelysium 
Pty Ltd). Once erroneous sequences were removed, the results were blasted (BLASTx) using the 
publically available tools on National Center for Biotechnology Information (NCBI). Sequences 
matching with AMO superfamily were imported into ARB, translated into protein sequences and 
aligned to the previously mentioned pmoCAB operon dataset using ARB built-in aligner tools. 
Phylogenetic tree construction was performed on the amino acid alignment using maximum 
parsimony and maximum likelihood methods with bootstrapping of 100 times. Consensus 
sequences based on the fraction and frequency of residues at a specific alignment position within 
pmoC from all sequences were used to generate the tree.
Sequences are deposited in Genbank with accession numbers KY883458-KY883555 (Table 
S1)	
RESULTS 
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	 The design of new primers was obtained by using all available pmoCAB operon sequences 
from MaGe. Interestingly, pmoB contained no conserved sequence stretch as a potential primer 
target site. Looking at the full operons, the only conserved regions resided within pmoC and 
pmoA. A new region at the nucleotide position 374 within the PmoC subunit of Methylococcus 
capsulatus (Bath), as a reference, was found to be highly conserved amongst all the phyla tested 
in this experiment. The forward primer binding site encodes for a glutamine residue at 126th 
base within the crystal structure of pmoC anchored to the membrane in Methylococcus capsulatus 
(Bath) whereas the reverse primer binding site encodes a phenylalanine residue at 107th base 
within pmoA. Our newly designed forward primer was compared to Holmes’ forward primer and 
the results are shown in Table 1 and 2. As the tables illustrate, with zero mismatches, pmoC374 
is able to target three out of seven available sequences from Verrucomicrobia. If a single mismatch 
is allowed, five out of seven sequences from Verrucomicrobia are targeted by pmoC374 whereas 
pmoA189 (Holmes et al., 1995) with one mismatch still does not target any verrucomicrobial 
pMMO gene. The details of the novel primer set with regards to number of mismatches are listed 
in Table 2.
Initially, pmoA189 target region was thought to be a good matching reverse primer, however, 
a secondary conserved region at the 334th position within the pmoA gene was found. The 
pmoC374 with pmoA344 combination yielded a PCR product of the correct size in the samples 
tested, while the same could not always be observed when it was used in combination with 
pmoA189. In Table 1 and 2, it can be observed that pmoA344 has the ability to target 17 out of 
the 19 sequences belonging to Gammaproteobacteria with zero mismatches. Based on sequence 
information, pmoA334 does not have the ability to target NC10 phylum and it needs two or 
more mismatches to target species belonging to Verrucomicrobia. However, this primer improved 
the ability to target both Verrucomicrobia and the NC10 phyla in our study when pure isolates 
were used as positive control in the PCR reaction. The resulting sequences from the various 
enrichment cultures and environmental samples are depicted in Figure 1.
The pmoCA sequences obtained from the paddy field sample were closely related to well-known 
genera including Methylosinus, Methylocystis, Methylococcus, Methylocaldum, Methylohalobius, 
Methylomicrobium, Methylobacter and Methylomonas. Furthermore, the pmoCA of pure cultures of 
Methylocystis rosea and Methylosinus sporium belonging to Alphaproteobacteria and Methylomonas 
lenta (Hoefman et al., 2014) belonging to Gammaproteobacteria could all be amplified with the 
new primer set. From previous studies, two isozymes of pMMO with various methane oxidation 
kinetics were found to be present in Methylocystis p. strain SC2 (Baani & Liesack, 2008), the new 
primers also amplified the second pmoCA in DNA extracted from the paddy soil. Methylocaldum- 
and Methylococcus-like species were also found in Waste Water samples. Furthermore, both alpha- 
and gammaproteobacterial pmoCA were found in the volcanic mud sample. Lastly, the pmoCA of 
the verrucomicrobial methanotroph Methylacidiphilum fumarolicum SolV could be amplified as 
well from a pure culture (Figure 1).
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ROOT and BS clones (12)

VM, WW, BS clones (10)
Methylocaldum szegediense

WW clones (6)
Methylococcus capsulatus Bath

WW clone (KY883539) 
Methylohalobius crimeensis

ROOT clones (9)

BS clones (3)
Methylosarcina lacus LW14 

BS clone (KY883472) 
Methylomicrobium album BG8

BS clone (KY883473)
Methylomicrobium

Methylosarcina fibrata
Methyloglobulus morosus

Methylobacter (2)
BS clone (KY883474)

Methylovulum miyakonense strain HT12
Methylobacter sp. 

BS clone (KY883475)
Methylobacter tundripaludum SV96

DAMO clone (KY883550)
Methylomonas sp. M1

ROOT clone (KY883508)
ROOT clone (KY883509)

AOB−Nitrosococcus (3)
BS clones (5)

BS clone (KY883481) 
ROOT clone (KY883510)
Methylocystis parvus OBBP
Methylocystis sp. ATCC

ROOT clone (KY883511)
ROOT clone (KY883512)

VM clone (KY883522)
VM clone (KY883523)

BS clone (KY883482) 
BS clone (KY883483) 

Methylocystis sp BN69
BS clone (KY883484) 

Methylocystis rosea SV97T 
Methylocystis SB2 

BS clone (KY883486)
WW clone (KY883540)

BS clone (KY883487)
Methylosinus (2)

BS clone (KY883488)
VM clones (5)

VM clone (KY883530)
Methylosinus sp. LW3 

BS clone (KY883490)
Methylocystis parvus OBBP 

Methylocystis sp BN69
BS clone (KY883491)

DAMO clone (KY883551)DAMO clone (KY883552)
Methylocapsa acidiphila B2

RV clones (8)
Candidatus Methylomirabilis oxyfera DAMO

DAMO clone (KY883553)
RV clone (KY883549)

RS clone (KY883554)
RS clone (KY883555)
Methylacidiphilum fumariolicum SolV

Methylacidiphilum infernorum V4 
Methyloacidiphilum (2)

Verrucomicrobium sp.

Alkane monooxygenase (2)
SAR324 cluster bacterium

pXMO (10)

0.10

Bootstrap value ≥ 90%

Bootstrap value ≥ 70%

BS clone (KY883485) 

Methylacidiphilum fumariolicum SolV (operon 3) (2)

VM clone (KY883529)

BS clone (KY883489)

ROOT clone (KY883513)

Gammaproteobacteria

Alphaproteobacteria

Verrucomicrobia

NC10

Figure 1:  Representing available pMMO sequences including the sequence obtained in this study. The tree 
was constructed using consensus sequence, based on the fraction and frequency of residues at an alignment 
position chosen within pmoC using both ARB’s PHYML (amino Acids) tool within the maximum likelihood 
method and Phylip PROTPARS within the maximum parsimony method. Since the two trees were highly 
similar, only maximum likelihood is shown here. Due to size limitation, the tree is partially collapsed for an 
easier illustration and pXMO is used as the out-group instead of AOB sequences that are omitted from this 
fi gure. The tree was built with 100 bootstraps and the ranges of values are shown with the respective colored 
circles at each node. Clone sequences with their respective accession numbers are highlighted in blue and 
the numbers in the brackets correspond to the number of sequences within a group. Gammaproteobacteria, 
Alphaproteobacteria, NC10 and Verrucomicrobia are clearly distinguished in the fi gure. Origin of clones: BS 
bulk soil, ROOT rhizosphere, VM volcanic mud, WW waste water sludge, RV bioreactor enrichment from 
vercelli, RS Methylacidiphilum fumariolicum SolV, DAMO Methylomirabilis oxyfera enrichment culture

In our experiment, only the Verrucomicrobia pMMO sequence most closely related to the ones 
in Alphaproteobacteria and Gammaproteobacteria could be detected. The new primer set was also 
used on a pure mesophilic Verrucomicrobia strain Methyloacidimicrobium fagopyrum 3C resulting 
in gene product of the correct size and gene sequence. The primers do not amplify sequences 



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 43PDF page: 43PDF page: 43PDF page: 43

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 43PDF page: 43PDF page: 43PDF page: 43

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 43PDF page: 43PDF page: 43PDF page: 43

Survey of Methanotrophic Diversity in Various Ecosystems

43

2

related to the pmoC3 group. In both anoxic enrichment cultures (DAMO and RV) tested, the 
pmoCA of NC10 phylum bacterium Methylomirabilis oxyfera could be amplified (Figure 1). In the 
case of Methylomonas lenta that does contain the genes for pXMO, only pmoCA gene sequences 
were detected, while the pXMO was not amplified. Lastly, no AMO (ammonia monooxygenase), 
PXM (alternative methane monooxygenase) or the recently discovered commamox amo were 
targeted nor amplified with this primer set in any of the environmental samples or the negative 
controls used in this study.

DISCUSSION

	 In the era of ‘omics’, molecular approaches using either specific or degenerate primers are still 
of high importance, especially in ecological studies where many samples need to be investigated 
or screened. They allow for a quick and robust detection of uncultivated microbes and aid in 
hypothesizing the community structure and the key processes that occur in certain environments, 
at the molecular level. As our knowledge and understanding of these environments expands, the 
tools that are used to investigate also need to be updated. More specifically, identification of 
the diverse organisms responsible for the oxidation of methane within various environments 
will help to better understand the key players involved in the methane cycle and evaluate their 
potential effectiveness as a biological methane filter. The currently available pmoA based primers 
are over ten years old and since known MOB diversity has since been extended, a novel primer 
set with broader amplification ability would be highly beneficial in molecular studies. It is also 
important to distinguish between copper monooxygenases belonging to the AMO superfamily 
to ensure the detection of MOB and not AOB or the more recently discovered comammox (van 
Kessel et al., 2015; Pjevac et al., 2016; Pinto et al., 2015).
The use of all available pmoCAB operon sequences from MaGe allowed for the design of new 
primers (Table 1). Interestingly pmoB, which in previous studies has been suggested as the active 
site of the methane monooxygenase enzyme (Culpepper & Rosenzweig, 2012; Lieberman & 
Rosenzweig, 2005) contained no conserved sequence stretch as a potential primer target site. The 
only conserved regions that could be observed resided within pmoC and pmoA, both of which 
encode for primarily membrane bound subunits (Lieberman & Rosenzweig, 2005). Overall, 
PmoA is by far the most conserved subunit of this enzyme. Since for long it was thought to be 
the catalytic subunit as well, primers were designed based on this gene and have since become 
the academic standard in this line of research and used to date in many studies (Lüke & Frenzel, 
2011; Rastogi et al., 2009; Kip et al., 2011). However, due to the two mismatches that occur at 
the 10th position within pmoA target region, previously unknown phyla (i.e. Verrucomicrobia or 
NC10) remain undetected and demand the design of phylum specific primers (Lueksen et al, 
2011B). This variation in sequence identity is also one of the reasons why this study focused on 
the whole pmoCAB operon instead of the PmoA subunit alone (Table 2).	
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Previous studies have looked into analysis of MOB community in rice fields by targeting 16S 
rRNA, pMMO and methanol dehydrogenase (Henckel et al., 1999) and observed a large variety 
of MOB. The new primer set used in this study was also able to detect a wide array of pmoCA 
sequences from both the bulk soil as well as the rhizosphere of an Italian rice paddy field, a waste 
water treatment sample, and volcanic mud samples. Further in anoxic Methylomirabilis oxyfera 
enrichment cultures started with paddy field or Ooijpolder sediment, many different pmoCA 
sequences could be retrieved (Figure 1). Furthermore, the pmoCA of the verrucomicrobial 
methanotroph Methylacidiphilum fumarolicum SolV could be amplified. This strain contains 
three complete pmoCAB operon structures that resemble the one observed in proteobacterial 
methanotrophs, plus a fourth pmoC copy. As expected, the primers do not amplify sequences 
related to the pmoC3 group as it is further downstream in the genome and the primers do not 
bind there.
Most sequences from the waste water treatment plant biomass used in this study were closely 
related to Methylococcus genus as was previously observed (Luesken et al., 2011A). Lastly, no 
AMO (ammonia monooxygenase), PXM (alternative methane monooxygenase) or the recently 
discovered commamox amo were targeted nor amplified with this primer set in any of the 
environmental samples which is an indication of the specificity. However, with some modification 
of the primer sequence, the same or similar sites can be used to only target AOB instead of MOB 
(Pjevac et al., 2016; Wang et al., 2017).
This study illustrates that when primer pmoC374 was used in combination with pmoA344, 
PCR amplification yielded the correct gene product from various environmental samples and 
MOB strains. Such observation could not be made when pmoA189 was used as the reverse 
primer. At times, there were multiple bands that occurred at the expected size within the gel. 
When each band was excised from the gel, all corresponded to the correct product. Since the 
pmoCA sequence covers the intergenic region, the slightly different nucleotide length observed 
in the PCR product is possibly due to the variation that exists in this region. This was more 
apparent when environmental samples were used as opposed to pure isolates, which further 
supports our hypothesis. 
The obtained results expand our knowledge with regard to primer target ability based solely on 
in silico coverage as supposed to experimental results, since the new targeting sites would not 
be desirable due to occurring mismatches. Furthermore, the new pMMO primer set was able 
to amplify the correct product and sequence from all currently known methanotrophic phyla. 
If used in conjunction with Holmes’ forward primer, the resulting product could be used in 
future next generation sequencing studies for a more extensive look at the bacterial community 
structure. The concurrent use of this primer set along with ones based solely on pmoA would 
allow for a much lesser bias when it comes to studies that look at the general diversity of the 
methanotrophic community within various environments. It also permits for the simultaneous 
detection of Alphaproteobacteria, Gammaproteobacteria, Verrucomicrobia and NC10 phyla with 
broader sequence variation.  
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SUPPLEMENTARY MATERIAL

Table S1: Sequences belonging to each environmental samples and their respective accession numbers from 
Genbank. 

Sequence number Clone ID 	 Accession number

Seq1 BS1 KY883458

Seq2 BS2 KY883459

Seq3 BS3 KY883460

Seq4 BS4 KY883461

Seq5 BS5 KY883462

Seq6 BS6 KY883463

Seq7 BS7 KY883464

Seq8 BS8 KY883465

Seq9 BS9 KY883466

Seq10 BS10 KY883467

Seq11 BS11 KY883468

Seq12 BS12 KY883469

Seq13 BS13 KY883470

Seq14 BS14 KY883471

Seq15 BS15 KY883472

Seq16 BS16 KY883473

Seq17 BS17 KY883474

Seq18 BS18 KY883475

Seq19 BS19 KY883476

Seq20 BS20 KY883477

Seq21 BS21 KY883478

Seq22 BS22 KY883479

Seq23 BS23 KY883480

Seq24 BS24 KY883481

Seq25 BS25 KY883482

Seq26 BS26 KY883483

Seq27 BS27 KY883484

Seq28 BS28 KY883485

Seq29 BS29 KY883486

Seq30 BS30 KY883487

Seq31 BS31 KY883488

Seq32 BS32 KY883489

Seq33 BS33 KY883490

Seq34 BS34 KY883491

Seq35 ROOT1 KY883492

Seq36 ROOT2 KY883493

Seq37 ROOT3 KY883494

Seq38 ROOT4 KY883495

Seq39 ROOT5 KY883496

Seq40 ROOT6 KY883497

Seq41 ROOT7 KY883498

Seq42 ROOT8 KY883499
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Seq43 ROOT9 KY883500

Seq44 ROOT10 KY883501

Seq45 ROOT11 KY883502

Seq46 ROOT12 KY883503

Seq47 ROOT13 KY883504

Seq48 ROOT14 KY883505

Seq49 ROOT15 KY883506

Seq50 ROOT16 KY883507

Seq51 ROOT17 KY883508

Seq52 ROOT18 KY883509

Seq53 ROOT19 KY883510

Seq54 ROOT20 KY883511

Seq55 ROOT21 KY883512

Seq56 ROOT22 KY883513

Seq57 VM1 KY883514

Seq58 VM2 KY883515

Seq59 VM3 KY883516

Seq60 VM4 KY883517

Seq61 VM5 KY883518

Seq62 VM6 KY883519

Seq63 VM7 KY883520

Seq64 VM8 KY883521

Seq65 VM9 KY883522

Seq66 VM10 KY883523

Seq67 VM11 KY883524

Seq68 VM12 KY883525

Seq69 VM13 KY883526

Seq70 VM14 KY883527

Seq71 VM15 KY883528

Seq72 VM16 KY883529

Seq73 VM17 KY883530

Seq74 WW1 KY883531

Seq75 WW2 KY883532

Seq76 WW3 KY883533

Seq77 WW4 KY883534

Seq78 WW5 KY883535

Seq79 WW6 KY883536

Seq80 WW7 KY883537

Seq81 WW8 KY883538

Seq82 WW9 KY883539

Seq83 WW10 KY883540

Seq84 RV1 KY883541

Seq85 RV2 KY883542

Seq86 RV3 KY883543

Seq87 RV4 KY883544

Seq88 RV5 KY883545

Seq89 RV6 KY883546
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Seq90 RV7 KY883547

Seq91 RV8 KY883548

Seq92 RV9 KY883549

Seq93 DAMO1 KY883550

Seq94 DAMO2 KY883551

Seq95 DAMO3 KY883552

Seq96 DAMO4 KY883553

Seq97 SolV KY883554

Seq98 SolV KY883555

BS = Bulk Soil, ROOT = Rhizosphere, VM = Volcanic Mud, WW = Waste Water sludge, RV = Bioreactor 
enrichment from Vercelli, DAMO = Bioreactor enrichment from Ooijplder, SolV = Methylacidiphilum 
fumariolicum SolV bioreactor.
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CHAPTER 3
Comparison of the bacterial and methanotrophic 
diversities between an Italian paddy field and its 

neighboring meadow
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ABSTRACT

	 Methane is a potent greenhouse gas that contributes to global warming. However, under 
certain conditions, its release into the atmosphere can be mitigated by methane-oxidizing 
microorganisms. Typically, cultivated wetlands (i.e., paddy fields) are a major source of methane 
(CH

4
) while forests and meadow uplands are considered to be CH

4
 sinks. As the global need for 

rice production increases each year, more uplands are converted to inundated paddy fields. To 
investigate soils that may be converted into productive land for rice production, we investigated 
a paddy field and adjacent meadow in Northern Italy. Using a combination of 16S rRNA gene 
amplicon sequencing to analyze the bacterial community, and gas flux measurements to quantify 
CH

4
 emissions, we looked for differences between classically defined CH

4
 sinks (meadow soils) 

and CH
4
 sources (paddy fields). Analysis of the total bacterial community revealed that the family 

Fimbriimonadaceae, which belongs to the phylum Armatimonadetes, was significantly higher in 
paddy field soils driving the difference between paddy and meadow soils. Whereas, we found 
that the methylotrophic families Methyloligellaceae and Methylomirabilaceae were also present 
in higher relative abundance in the paddy field. Despite these major differences, CH

4
 fluxes were 

highly variable between the two sites with no significant differences observed. Furthermore, we 
found the Methylomonaceae family to be more abundant at the center of a neighboring paddy 
field compared to the edge of the paddy field from the current study, hinting at methanotrophic 
variation based on location. Taking these results into account, we propose a conceptual model 
to explain possible scenarios that may result in paddy and meadow fields not exhibiting classical 
source/sink properties. These findings call for caution when including paddy and meadow areas 
separately into global CH

4
 flux calculations, and urge further research to discern drivers of CH

4
 

cycling under a range of environmental conditions rather than relying on assumptions. 
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INTRODUCTION

	 One of the most abundant greenhouse gases in the Earth’s atmosphere is methane (CH
4
), 

with its concentration steadily increasing as a result of anthropogenic activities (Wahlen, 1993; 
Dean et al., 2018). Approximately 40% of the sources of atmospheric CH

4
 are represented by 

natural and cultivated wetlands. In order to meet the global need for food, additional land is 
being converted into cultivated wetlands including inundated paddy soils. This has resulted in 
an increase in their total area by approximately 1% annually (IPCC, 2013; Pearman, 1986; 
Dlugokencky et al., 1994). Heavily fertilized fields for rice production are considered to be 
among the highest sources of CH

4
 emission on the planet (Lowe, 2006). The expansion of rice 

production in combination with increasing global temperatures could exacerbate CH
4
 emissions 

from these source environments (Aselmann & Crutzen, 1989; Conrad, 2009). Understanding 
the potential factors that control CH

4
 emissions from upland and wetland environments is 

necessary to accurately predict future atmospheric concentrations of CH
4
. 

In wetlands, CH
4
 emission to the atmosphere results from a greater production of CH

4
 by 

methanogenic microorganisms than what is oxidized by methanotrophic microorganisms (Cao 
et al., 1998). Although some CH

4 
in paddy soils can be oxidized under anoxic conditions at the 

expense of nitrate by Methanoperedens archaea (Vaksmaa et al., 2016; Welte et al., 2016 ), most 
methane seems to be oxidized by aerobic methane-oxidizing bacteria (MOB) (Lüke et al.,  2010). 
Known MOB belong to the Proteobacteria, Verrucomicrobia and NC10 phyla (Hanson & Hanson, 
1996; Wu et al., 2011; Op den Camp et al., 2009). Within the Proteobacteria, methanotrophs are 
further classified into two main types known as type I and type II (Hanson & Hanson, 1996). 
Type I methanotrophs are affiliated with the Gammaproteobacteria and assimilate carbon via 
the ribulose monophosphate (RuMP) pathway, while type II belong to the Alphaproteobacteria 
and utilize the serine pathway for carbon fixation. These two types of MOB were shown to be 
the dominant methanotrophs in paddy fields, with their growth and activity influenced by soil 
conditions (i.e., organic content, pH, temperature), fertilizer application and vegetation cover 
(Hanson & Hanson, 1996; Zheng et al., 2008). 
Although previous studies have focused on the effect of various agricultural practices, climate 
change and soil features on methanotrophs, most have only included a wetland (i.e. methane 
source; for references refer to supplementary table S2) or an upland (i.e. methane sink; for 
references refer to supplementary table S2). Only few included both environments in their 
experimental design (Skov et al., 2017; Hondula & Palmer, 2017). This has left the literature 
split between what main factors are influencing methanotrophic community structure within 
these environments. Therefore, it is important to further investigate differences in the microbial 
community and CH

4
 fluxes of these two environments to better understand the contributions to 

methane emissions and global climate change. 
In this study, we investigated the bacterial community from a paddy field and an adjacent meadow 
by 16S rRNA gene amplicon sequencing. In order to identify any influence soil cultivation 
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has induced on the soil bacterial community, we compared the bacterial community, with 
special interest in the methanotrophic community, paired with CH

4
 fluxes from a neighboring 

meadow. We observed that the paddy field and the meadow had distinct bacterial communities 
being driven by the families Fimbriimonadaceae and Methyloligellaceae along with other 
methanotrophic groups, although the CH

4
 fluxes did not differ significantly between the classical 

CH
4
 source (paddy field) and sink (meadow) soils and were found to be highly variable across 

both environments. By combining the findings of this study with previous literature, we propose 
a conceptual model that provides several explanatory scenarios for these soils not exhibiting 
behaviors assumed to be universal to paddy and meadow soils. 

MATERIALS AND METHODS

Study site
	 Field experiments took place at the rice research facility Vercelli, Italy (45°19’25.6”N 
8°22’14.2”E). This field has been under rice cultivation with the rice variety Oryza sativa 
temperate japonica Onice for the last 30 years, with irrigation waters coming from the river Sesia 
during the growing season (May – September) and fields left fallow during the winter months. 
Sample acquisition took place during the maturing stage of the rice plants. The neighboring 
meadow has been left uncultivated for the last 30 years, contains sandy soil, and is covered with 
grass and small bushes. Data obtained from the study by Vaksmaa and colleagues (08°22′25.89″E; 
45°19′26.98″N) is from a neighboring paddy field that has gone through the same farming 
practices and planted with the same rice cultivar, Oryza sativa.

Soil-atmosphere gas exchange and environmental variables 
	 Soil-atmosphere CH

4
 exchange was determined using a static chamber approach (Livingston 

et al. 2005) in July 2015 from the rice paddy field and meadow at the Italian Rice Research Unit 
in Vercelli, Italy. Measurements were made by using a 10 L volume PVC cylindrical flux chamber, 
covered with a gas tight lid. Chambers were fitted with small computer fans to promote even air 
mixing (Pumpanen et al., 2004) and a small vent to prevent pressure changes inside the chamber 
as air was extracted (Hutchinson & Livingston, 2001). Temperature was measured by fitting 
a temperature probe in a small hole made at the top of the chamber. At the time of sampling, 
six chambers were placed carefully on the ground, where an airtight seal was created due to the 
permanently standing water. On the meadow site, where there was no water, a gas tight seal was 
created by fixing a rubber skirt to the bottom of the chambers. The headspace samples were 
collected from each flux chamber at five intervals over a 35-minute enclosure period using a gas 
tight syringe and 1 meter of tygon tubing, in order to prevent disturbance while sampling. Gas 
samples were stored in pre-evacuated Exetainers® (Labco Ltd., Lampeter, UK), shipped to the 
University of Aberdeen, UK and subsequently analyzed for CH

4
 concentrations using an Agilent 
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6890 series gas chromatography system, with a single flame ionization detector (FID) for CH
4
. 

Repeated analysis of standards determined that instrumental precision error was <10%.
Flux rates were determined using the HMR package (Pedersen et al., 2010) in R 3.0.2 (R 
Core Team 2012) by plotting the best-fit lines to the data for headspace concentration (ppm) 
against time (minutes) for individual flux chambers. The Ideal Gas Law was used to convert gas 
concentrations (ppm) to molar concentrations. Fluxes were then reported in mg CH

4
-C m−2 

hr−1. Soil temperature (at 10 cm) was simultaneously measured in three locations adjacent to the 
chambers using a type K thermacouple (Hanna Instruments Ltd., UK).

Sample acquisition and DNA Isolation:
	 A total of 21 soil samples were collected near the edge of the paddy field that is neighboring 
a meadow separated by a ditch located in the described study site. As seen in the sampling 
diagram (Figure S1), a total of 6 sites at the edge of the paddy field were used for samples to be 
collected using a 10 cm metallic core with a diameter of 8 cm. Samples were taken at three, six 
and nine meters from the meadow. Each row of samples was also three meters apart. To exclude 
rhizospheric soil, each sample site was chosen carefully to be equally distant from all neighboring 
rice plants, and contain no visible root material from the plants. The soil slurry from the cores 
was then mixed thoroughly and transferred to 50 mL falcon tubes. Lastly, 15 sampling sites 
within the meadow were used as described in figure S1. The samples were taken at three, six and 
nine meters away from the paddy field by using a 50mL falcon tube containing the top 7cm of 
the dry soil. Each row of samples within the meadow was also three meters apart. Soil surface was 
cleared before sampling to only include bulk soil. All paddy and meadow samples were stored at 
-20 °C for further analysis. Bulk soil cores obtained by Vaksmaa and colleagues from the center 
of a neighboring paddy field were done using an 80-cm soil augers at 5-m intervals (Vaksmaa et 
al., 2017). The cores were later divided up at each 5-cm depth, however, we only compared the 
data obtained from the top 10-cm.
DNA from all samples was extracted using the MO BIO Power soil isolation kit following the 
manufacturer’s protocol (MO BIO Laboratories, USA) with one modification. In the mechanical 
cell lysis step, the soil samples were beaten with glass beads at 30 s-1 frequency for 1 minute using 
a MO BIO 96 well plate shaker. The quality and quantity of the DNA was checked using gel 
electrophoresis and spectrophotometric analysis (NanoDrop 1000, Thermo Scientific, USA). 

16S rRNA gene amplicon sequencing:
	 A two-step PCR protocol adapted from Klindworth et al., 2012 and Berry et al., 2012 was 
used to amplify bacterial 16S rRNA gene sequences using the universal bacterial primers B341f 
and B785r. The PCR program started an initial denaturation step at 98°C for 10 minutes, followed 
by 25 cycles of denaturation at 95°C for 1 minute, annealing at 60°C for 1 minute, extension 
at 72°C for 2 minutes, followed by a final extension step at 72°C for 10 minutes. The PCR 
products were purified using QIAquick PCR product purification kit following manufacturer’s 
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protocol (Qiagen Inc., Germany). Per sample, a total of six PCR reactions were performed. All 
samples were checked for quality and quantity with gel electrophoresis and fluorescence-based 
analysis (Qubit 2.0, Thermo Fisher Scientific, USA) before being used in a second PCR step with 
barcoded B341 forward primer and reverse B785 primer containing the P1 adapter. The PCR 
conditions were as described above, but only 10 cycles were performed. Subsequently, all parallel 
reactions were pooled, purified and checked for quality again as described above. Each pooled 
sample was then further analyzed for quality and quantity in the last step using a Bioanalyzer 
(Agilent Technologies) following the manufacturer’s protocol and sequenced on the Ion Torrent 
PGM (Thermo Fischer Scientific).

Bioinformatic analysis:
	 Raw reads from the Ion Torrent run were analyzed using mothur (Schloss et al., 2009). 
The workflow consisted of eight steps: file processing, quality-based trimming, alignment 
based processing, pre-clustering, chimera removal, contamination removal, OTU clustering 
and generation of OTU files. The quality-based trimming step was done with parameters set 
as follows: PDIFF = 2, MAXHOMOP= 8, MAXAMBIG – 0, QWINDOWAVERAGE =20, 
QWINDOWSIZE = 50, MINLENGTH = 200 and MAXLENGTH = 450. In the alignment 
based processing step, the Silva database (v132) (Quast et al., 2012) was used for the DB_ALIGN 
and DB_TAX function with these parameters: OPTIMIZE = “start-end”; CRITERIA = 95. Lastly, 
pre-clustering parameter (DIFFS = 2), contamination removal parameter (CLASS_CUTOFF = 
80), distance matrix parameter (DIST_CUTOFF = 0.15), OTU clustering parameters (CLUST_
ALGO = “average’; OTU_CUTOFF = “0.03”), singletons removal (NSEQ = 1; BYGROUP = 
false), and distance between sequences (CALC = “onegap”; COUNTENDS = “F”, OUT_TYPE = 
“square”) was set as shown. This protocol was repeated with the addition of Ion Torrent raw reads 
from the study published by Vaksmaa and colleagues (2017). In order to normalize for the different 
sequencing depths between the two data sets, the samples were subjected to a random subsampling 
at a depth of 10,000 reads. All OTUs with “methylo-” present in their classification were extracted 
and further identified as the methanotrophic OTUs in the data set.

Statistical and computational analysis:
	 Subsequent analysis was performed within R version 3.4.1 (R Core Team, 2012). Count 
data was normalized to relative abundances for all analysis. Analyses were performed with the 
R package vegan (Oksanen et al., 2015). Shannon diversity was calculated using the diversity 
function and Bray-Curtis dissimilarity matrices were generated with vegdist. Chao1 estimates 
were performed using the chao1 function from the rareNMtests package (Cayuela & Gotelli, 
2014). Permutational multivariate analyses of variance (PERMANOVA) were performed using 
the adonis2 function and classic multidimensional scaling was performed using cmdscale. The 
main drivers of differences in the microbial community composition between paddy field and 
meadow samples were identified using a random forest classifier from the R package randomForest 
(Liaw & Wiener, 2002). 
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RESULTS

CH
4
 fl uxes and Bacterial community structure and composition

 The mean CH
4
 fl ux from the paddy fi eld (0.67 ± 1.76 mg C m-2 hr-2) and meadow (-0.65 ± 

1.59 mg C m-2 hr-2) did not statistically differ from one another (t = -1.23; p = 0.251; Figure 1). 

Methane Fluxes
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Figure 1: Box-and-whisker plot of methane fl uxes in the meadow (red) and the paddy fi eld (blue) fi eld (t 
= -1.23; p = 0.251). 

16S rRNA amplicon sequencing yielded a total of 958,089 reads. On average, each sample 
contained 12,898 ± 17,506 reads (Table S1). No signifi cant differences were observed between 
paddy and meadow samples for either species richness (Chao1; t = -0.59; p = 0.574; mean 
in meadow = 3673 species; mean in paddy = 4260 species) or the sampling depth (t = -0.43, 
p = 0.67; mean in meadow = 10,179 reads, mean in paddy = 15,342 reads). However, the 
composition of the total microbial community in paddy and meadow soils signifi cantly differed 
(PERMAnova; F = 2.27, p = 0.03; Figure 2A). A random forest classifi er was used to identify 
the main bacterial family driving the difference between paddy and meadow soils which was the 
Fimbriimonadaceae that belongs to the phylum Armatimonadetes (formerly OP

10
; Figure 2B). 

Fimbriimonadaceae was signifi cantly more abundant in paddy fi eld soils compared to meadow 
soils (Figure 2B; t = -4.16; p = 0.001). 
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Figure 2: Total bacterial community analysis between the paddy fi eld and the meadow. A: MDS plot 
showing the differences in total bacterial community (PERMAnova, F = 2.27, p = 0.03). Red and blue circles 
represent the meadow and paddy fi eld samples, respectively. B: Relative abundance of Fimbriimonadales. 
Red and blue box- and whisker plots represents meadow and paddy fi eld, respectively.

Furthermore, the bacterial community at the family level was found to be more diverse in the 
paddy fi eld compared to the meadow (Shannon diversity (H’); t = -3.28; p = 0.005; mean 
meadow = 3.39; mean paddy fi eld = 3.89; Figure 3).
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Figure 3: Box-and-whisker plot of total bacterial diversity between paddy fi eld (blue) and meadow (red) 
(t-test, t = -3.28, p = 0.005).
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Methylotrophic community
 A total of 599 OTUs in the dataset were classifi ed as methanotrophs originating from 
the Proteobacteria, Verrucomicrobia and NC10 phyla. The composition of methanotrophic 
community differed signifi cantly between the paddy and the meadow soils (PERMAnova; F = 
2.63, p = 0.041; Figure 4A). The most abundant methylotroph was affi liated with the family 
Methyloligellaceae and made up on average 21% of the methylotrophic community. Members of 
the families Methyloligellaceae and Methylomirabilaceae, were the top two drivers distinguishing 
the methylotrophic community between meadow and paddy fi eld soils (Figure 4B-C).
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Figure 4: Methanotrophic community analysis between the paddy fi eld and the meadow. A: MDS plot of 
each sampling site showing the difference in the methanotrophic community (PERMAnova, F = 2.63, p = 
0.041). Red circles represent the samples within meadow and blue circles represent samples within paddy 
fi eld. B and C: Box-and-whisker plot of top two families that drive the difference in the methylotrophic 
community between the paddy fi eld (blue) than the meadow (red).

In general, all methanotroph family abundances were higher in paddy fi eld soils compared to 
meadow (Figure 5; t = 2.53; p = 0.039).



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 60PDF page: 60PDF page: 60PDF page: 60

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 60PDF page: 60PDF page: 60PDF page: 60

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 60PDF page: 60PDF page: 60PDF page: 60

Chapter 3

60

Methanotroph Relative Abundance

0.
00

0
0.

00
4

0.
00

6
0.

00
8

0.
01

0
0.

00
2

Meadow Paddy field

Pr
op

or
tio

n 
of

 to
ta

l b
ac

te
ria

l c
om

m
un

ity

Figure 5: Box-and-whisker plot of difference in relative MOB abundance between the paddy fi eld (blue) 
and the meadow (red) (PERMAnova; F = 2.63, p = 0.041). 
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Figure 6: Investigation of spatial variation in methanotrophic community. A: MDS plot of each sampling 
site showing the difference in the methanotrophic community. The meadow (red) and paddy fi eld (blue) 
samples of the current study is represented by circles while the paddy fi eld samples from Vaksmaa et al. is 
represented by blue triangles. B: Box-and-whisker plot of relative abundance of Methylomonaceae family 
between the soil samples at the center of a neighbouring paddy fi eld (Vaksmaa et al., 2017) and the soil from 
the edge of the paddy fi eld (current study). C: Top six families of methanotrophs driving the differences 
between the two data sets.
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Spatial variation of Methanotrophs between paddy fi elds
 In order to examine whether any large-scale spatial variation exists in the methanotrophic 
community, we compared the data obtained from this study (edge of the paddy fi eld) to the data 
published by Vaksmaa and colleagues, which were obtained from samples taken from the center 
of a neighboring paddy fi eld (Vaksmaa et al., 2017). The methanotrophic community in the 
center of the paddy fi eld more closely resembled the community at the edge of the paddy fi eld 
than the meadow, however there were differences within the methanotrophic community (Figure 
6A; F = 3.91; p = 0.006). Members of Methylomonaceae family were signifi cantly more abundant 
at the center of the neighboring paddy fi eld (Figure 6B;t = 5.24; p = 0.0001). In addition, the 
Methylomonaceae family was found to be the main driver of the differences observed between the 
two methanotrophic community between the two locations (Figure 6C).

DISCUSSION

 The objective of this study was to survey differences in the microbial communities and 
more specifi cally the methanotrophic bacteria between a cultivated wetland and an adjacent 
upland meadow soil, conventionally recognized as strong sources and sinks of CH

4
, respectively. 

Despite the traditional classifi cation, we observed that the rice paddy fi eld and its neighboring 
meadow used here are highly variable in their CH

4
 fl uxes (Figure 1). This, however, is a single 

time point and not a representative of possible seasonal fl uxes from these fi elds. It has been 
reported that during the fl ooding period of the paddy fi eld, in which no plants are sown, CH

4
 is 

almost exclusively emitted into the atmosphere through ebullition with fl uxes as high as 27.73 
mg·g-2·h-1 (Yuan et al., 2018; Holzapfel-Pschorn & Seiler, 1986). After rice cultivation, up to 90% 
of the observed CH

4
 emissions into the atmosphere are due to diffusion through aerenchyma of 

the plants. In this study, CH
4
 fl uxes and samples were measured from the bulk soil of the paddy 

fi eld to avoid any possible affect from rice plant or roots on the microbial community or fl ux 
data. This could potentially explain the relatively low CH

4
 fl uxes observed from the paddy as 

most of the CH
4
 at the time of sampling would be emitted through the aerenchyma of the rice 

plants. Additionally, it has been reported that soil amendment by organic fertilization increases 
the availability of C substrates to methanogens and increases CH

4
 production (Yuan et al., 2018; 

Plaza-Bonilla et al., 2014; Mohanty et al., 2006). This effect, however, is not observed from the 
bulk soil in the current study. Furthermore, the paddy fi eld was found to be low in C content 
(1.4 ± 0.1 %), which would be an indication of low substrate availability for microbial activities.  
CH

4
 emissions from bulk soil during the maturing stage of rice growth, which is the stage in 

which the fl uxes were measured in this study, are reported to be below 2 mg·g-2·h-1 (Yuan et al., 
2018;  Vaskmaa et al., 2016).     
Despite CH

4
 fl uxes being similar between the two sites, we found signifi cant differences in the 

total bacterial communities’ structure. Since the paddy fi eld is plowed, fertilized and planted 
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homogenously with rice, we hypothesized for the total bacterial composition to be established in 
a more homogenous manner relative to the meadow. What we found was that the total bacterial 
community was different from its neighboring meadow with high bacterial heterogeneity 
observed in both environments (i.e., highly variable; Figure 2A). Despite the variability, we 
found that the main family driving the difference between the two soils was Fimbriimonadaceae 
within the Armatimonadetes phylum (Figure 2B). Sequences classified as Armatimonadetes have 
been obtained by culture-independent methods from various environments including aerobic 
and anaerobic wastewater treatment processes, hypersaline microbial mats and subsurface 
geothermal water streams, as well as various rhizospheres (Portillo and Gonzalez 2009; Lee 
et al., 2011; Tamaki et al., 2011). The recently isolated Fimbriimonas ginsengisoli within the 
Fimbriimonadia class was described as strictly aerobic, Gram-negative, meso- and neutrophilic 
strain with the ability to grow on peptone, casamino acids and yeast extract (Im et al., 2012). 
In another study, genera affiliated with the Fimbriimonadaceae grew better in biofilms cultured 
using a flow incubator with supplied inorganic nitrogen (N) conditions compared to deficient 
N (Li et al., 2017). Since the paddy field more similarly resembles an N condition, it could 
explain Fimbriimonadaceae’s higher abundance compared to the meadow and moreover, the 
higher diversity of microbial community observed in the paddy field (Figure 3). However, any 
role that this family of Armatimonadetes would play in paddy soil N cycling requires further 
investigation. 
Previous research on paddy fields in Vercelli have shown that MOB communities, even in very 
closely located fields with nearly identical agricultural treatments show significantly different 
patterns (Ho et al., 2011, Lüke et al., 2010). This difference in the MOB community was 
assumed to be a consequence of variance in CH

4
 fluxes (Smith et al., 2016; Yuan et al., 2014; 

Holzapfel‐Pschorn & Seiler, 1986). However, difference in CH
4
 fluxes could not account 

for the observations made in this study, particularly regarding the differences observed in 
the methylotrophic community in the current study (Figure 4A). Furthermore, the most 
abundant methylotrophs in the paddy field were classified as members of the proposed family 
“Methyloligellaceae” within the Rhizobiales order (Figure 4B) and Methylomirabilaceae family 
(Figure 4C). 
To date, two separate isolates have been cultivated from Ural saline environments classified as 
Methyloligella halotolerans gen. nov., sp. nov. and Methyloligella solikamskensis sp. nov. (Doronina 
et al., 2013). These obligate methylotrophic isolates within the Rhizobiales order are strictly 
aerobic, Gram negative, non-motile rods that utilize the serine pathway for carbon assimilation. 
Although environmental sequences belonging to the Methyloligellaceae family have been 
previously found in agricultural soil (Ceja-Navarro et al., 2010), not much is known about the 
role these alphaproteobacterial methylotrophs play in this environment. Fertilizer application has 
been shown to have an inhibitory effect on type II methanotrophs in rice fields, while stimulating 
type I MOB (Mohanty et al., 2006). In the current study, we found the Methyloligellaceae family 
were more abundant in the paddy field compared to the meadow. Without information about 
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their genetics or physiology, it is challenging to infer their possible role in carbon (C) cycling 
within the paddy field. However, being the most abundant OTU in our data set by an order of 
magnitude, it is likely that members of this group are key players in this paddy field. 
Studies that investigated the presence of methanotrophs in cultivated wetlands have reported the 
presence of both type I and type II Methylocaldum-like and Methyocystis-like pmoA genes in high 
abundance (Collet et al., 2015; Zheng et al, 2008; Asakawa et al., 2008). Therefore, we expected 
the methanotrophic community to be present in higher abundance in the paddy field compared 
to the meadow (Figure 5). However, we did not find any classical type II methanotrophs 
(Methylocystis- and Methylosinus-like) reported to be present in high abundance in cultivated 
wetlands (Lüke et al., 2010; Zheng et al., 2008; Shrestha et al., 2008). Although multiple factors 
are in play, an enriched MOB community within the paddy field could be a result of higher 
indigenous CH

4
 available as substrate when compared to the meadow. This would in turn result 

in higher rates of CH
4
 oxidation and overall, a higher relative abundance of methanotrophs. In 

future research, it would be critical to monitor the changes in the MOB community structure 
during the conversion of a meadow into a paddy field to see what fluctuations occur in the MOB 
community after a drastic change in the cultivation regiment.
Lastly, due to the highly variable CH

4
 fluxes throughout the paddy field, we wanted to 

investigate if sampling location influenced the abundance of methanotrophs. Previous studies 
on the spatial variation of methane fluxes within paddy fields have demonstrated that fluxes 
can vary significantly even within the same field, thus making extrapolation to larger areas from 
point samples challenging (Oo et al., 2015; Sass et al., 2002; Krause et al., 2009; Spokas et 
al., 2013). In order to compare the community composition of methanotrophs between two 
neighboring paddy fields, we incorporated the data published by Vaksmaa and colleagues into 
our analyses (Vaskmaa et al., 2017; Figure 6A-C). We found that while the methanotrophic 
community from the Vaskmaa et al. study resembled that of our paddy soil samples, there was a 
significant difference in relative abundance of certain methanotrophic families between the two 
sampling locations (Figure 6A-B). More specifically, members of the Methylomonaceae family 
were found in much higher relative abundance in the previous study (Figure 6B) and were 
found to be the main family, driving the differences observed between the two data sets (Figure 
6C). Unfortunately, there is no CH

4
 flux data available to compare between the two study sites 

and whether more indigenous CH
4
 availability is the reason behind this difference. Regardless, 

this finding suggests that the methanotrophic community may be heterogeneously distributed 
across neighboring paddy fields, possibly resulting in differences in CH

4
 oxidation capabilities. 

As indicated by others, designing a strong experiment which pairs soil samples for microbial 
community analysis, in situ measurements of important environmental factors (i.e., pore water 
pH, inorganic compound concentrations, etc) with CH

4
 flux data may reveal drivers of the 

heterogeneity of the paddy field methanotrophic community (Hester et al., 2018). 
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CONCLUSION

	 Typically, paddy fields are regarded as CH
4
 sources. These CH

4 
emissions stem from a 

combination of higher fertilizer inputs, which result in increased organic matter deposited by the 
rice plant into the rhizosphere, providing substrate for methanogenesis (i.e., higher methanogenic 
activity). In the current study, we find that the paddy field on average was a source (positive CH

4
 

fluxes) and the meadow a sink (negative CH
4
 fluxes), though there was no statistically significant 

difference between the two locations due to the high variability of the flux measurements. 
Based on the data collected and previous studies, we propose two possible working hypotheses 
responsible for the observations made by this study (Figure 7). 

Literature First hypothesis Second hypothesis
Net source Net sink Higher oxidation rates Higher production rates Lower production rates Lower oxidation rates

Methanotrophic microorganism Methanogenic microorganism Methane production Methane consumption Methane �ux Soil Meadow Rice plant Water

Figure 7: Hypotheses based on the data collected and previous. A: The paddy field and the meadow act as 
a CH

4
 source and a sink, respectively. B and C: Two working models based on the findings of the current 

study on the paddy field and meadow not fulfilling their role as a CH
4 
source and a sink.

The observed low levels of CH
4
 emissions in the paddy field could be due to high turnover rates 

of CH
4
. This is indicated by the high relative abundance of the MOB community comprised 

mainly of type II methanotrophs affiliated with the Methyloligellaceae family, and complies with 
previous studies (Barbosa et al., 2018; Yuan et al., 2018). Alternatively, the low flux could stem 
from a lower initial CH

4
 production within the soil due to decreased various root exudates, a 

lower redox potential, or the provision of methanogenic substrates by heterotrophic bacteria 
(Mayer & Conrad, 1990; Aulakh et al., 2001). Consequently, due to the high variability within 
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and between wetland and upland soils, caution should be exercised when making extrapolated 
predictions of CH

4
 emissions. 
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SUPPLEMENTARY TABLES AND FIGURE:

Table S1: Number of sequences obtained from each sample at pre- and post-analysis.

Sample Location Pre-analysis Post-analysis

1 Meadow 50470 22581

2 Meadow 47218 9273

3 Meadow 75573 30682

4 Meadow 27496 5328

5 Meadow 78818 33284

6 Meadow 87835 19081

7 Paddy 198593 77899

8 Paddy 7842 1372

9 Paddy 9433 1702

10 Meadow 28515 5130

11 Meadow 29000 5396

12 Meadow 2035 366

13 Paddy 37795 7099

14 Paddy 40746 6909

15 Paddy 30811 5974

16 Meadow 14987 2788

17 Meadow 48306 8884

18 Meadow 18682 3755

19 Meadow 21624 4440

20 Meadow 28676 6036

Total number of sequences 958089 281043
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Table S2: A brief metadata of studies reporting on wetlands as a CH
4
 source and uplands as a CH

4
 sink 

environment with contradicting findings. 

References Environment Source vs. Sink Applied Method

Wetlands

Feng et al., 2012 Paddy field Source PCR-DGGE and qPCR

Banger et al., 2012 Paddy field Source 33 published papers on the subject

Ma et al., 2010 Paddy field Source RFLP of 16S rRNA, pmoA

Lee et al., 2014 Paddy field Source pmoA and mcrA transcripts

Shrestha et al., 2010 Paddy field Source T-RFLP of pmoA 

Ma et al., 2010 Paddy field Source qPCR and T-RFLP

Hoffmann et al., 2002 Paddy field Source T-RFLP of pmoA and DGGE 

Conrad et al., 2007 Paddy field Source T-RFLP of 16S rRNA and mcrA

Bodelier et al., 2000 Paddy field Source Radioactive fingerprinting 

Noll et al., 2008 Paddy field Source T-RFLP

Eller & Frenzel, 2001 Paddy field Source DGGE and FISH

Uplands

Tate et al., 2007 Shrubland Sink Flux measurements

Henckel et al., 2000 Forest Sink Methane profile and DGGE

Knief & Dunfield, 2005 Upland soil Sink Molecular techniques and CH
4
 flux

Benstead & King, 2001 Forest Sink Methane flux analysis

Groffman & Pouyat., 2009 Forest & Lawns Sink Methane flux analysis

Kolb et al., 2005 Forest Sink Molecular techniques

Luo et al., 2013 Forest Sink Methane flux analysis

Fang et al., 2014 Meadow Sink Methane flux analysis

Jang et al., 2011 Forest Sink Methane flux analysis and T-RFLP

Aronson & Helliker, 2010 Upland soil Sink Meta-analysis

Blankinship et al., 2010 Grassland Sink Multifactor analysis
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Uplands
Tate	et	al.,	2007 Shrubland Sink Flux	measurements
Henckel	et	al.,	2000 Forest Sink Methane	profile	and	DGGE
Knief	&	Dunfield,	2005 Upland	soil Sink Molecular	techniques	and	CH4 flux
Benstead	&	King,	2001 Forest Sink Methane	flux	analysis
Groffman	&	Pouyat.,	2009 Forest	&	Lawns Sink Methane	flux	analysis
Kolb	et	al.,	2005 Forest Sink Molecular	techniques
Luo	et	al.,	2013 Forest Sink Methane	flux	analysis
Fang	et	al.,	2014 Meadow Sink Methane	flux	analysis
Jang	et al.,	2011 Forest Sink Methane	flux	analysis	and	T-RFLP
Aronson	&	Helliker,	2010 Upland	soil Sink Meta-analysis
Blankinship	et	al.,	2010 Grassland Sink Multifactor	analysis

7

8

Figure S1: Sampling sites within paddy field and meadow represented by white circles. The CM1 9
sampling point was discarded due to poor sequence quality.10

11
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Figure S1: Sampling sites within paddy fi eld and meadow represented by white circles. The CM1 sampling 
point was discarded due to poor sequence quality.
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CHAPTER 4
Enrichment of novel methanotrophic 

communities from paddy soils using laboratory 
scale microcosms with methane and oxygen 

counter-gradients
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ABSTRACT

	 Irrigated paddy fields are one of the major sources of CH
4
 with emission rates highly 

dependent on the balance between CH
4
 production and oxidation at the oxic-anoxic interface. In 

the present study, we used laboratory-scale microcosms to study the methanotrophic community 
in paddy field soil slurries with counter-gradients of methane and oxygen. We found that the 
soil slurries became immediately active and that all of the CH

4
 provided was oxidized. Moreover, 

O
2
 profiles of the microcosms varied significantly over the duration of the incubations and 

showed that oxygen was depleted at shallower depths as enrichment continued. With increasing 
incubation time, 16S rRNA sequences affiliated with the gamma- and deltaproteobacterial 
orders Methylococcales and Myxococcales, respectively, were found in higher relative abundances. 
After two and three months of incubation, the enriched soil slurries from the microcosms were 
used as inoculum for further enrichment cultures of novel and previously uncultured type I and 
type II methanotrophs with pmoA sequences related to Methylocystis and Methylomonas species. 
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INTRODUCTION

	 Methane is known as one of the most important greenhouse gases along with water vapor 
and carbon dioxide (Intergovernmental Panel on Climate Change, 2015). Its emission from 
natural wetlands and flooded paddy fields is mitigated by methanotrophic bacteria, which act 
as natural biofilter by oxidizing CH

4
 to CO

2
 (Reeburgh et al., 1993). Without these bacteria, 

natural wetlands and rice paddies would emit nearly 40% more CH
4
 (Reeburgh et al., 1993; 

Frenzel, 2000). Methane-oxidizing bacteria (MOB) are gram negative, aerobic microorganisms 
that form a subset of a functional group known as methylotrophs (Hanson & Hanson, 1996). 
While methylotrophic bacteria can utilize different one-carbon compounds, methanotrophs are 
restricted to the use of one-carbon compounds more reduced than formic acid as their source 
of carbon and energy (Hanson & Hanson, 1996). The oxidation of methane is catalyzed by 
the enzyme methane monooxygenase (MMO), which is a unique functional marker for MOB 
(Conrad, 1999).
In order to understand the process of methane oxidation and the adaptability and fitness of MOB 
in different habitats, researchers have focused on understanding their physiology and identifying 
and characterizing the key enzymes involved in this process. Since the oxidation of methane 
requires O

2
 as co-substrate, but in most MOB also as terminal electron acceptor, this causes 

these bacteria to often be found at oxic-anoxic interfaces where both substrates are available 
albeit in limiting quantities (Brune et al., 2000). As mentioned above, one such environment 
where methane oxidation is crucial to mitigate CH

4
 emissions are irrigated paddy fields. Case 

studies have reported that depending on the season, up to 80% of the total CH
4
 produced can 

be oxidized in paddy fields (Denier van der Gon and Neue, 1996; Kruger et al., 2002; Eller et 
al., 2005). It has been shown that agricultural practice such as fertilizer input has an impact on 
the MOB communities in these environments (Bodelier et al., 2000; Dan et al., 2001), but other 
factors involved in shaping MOB community structure and their effect on methane mitigation 
are largely unexplored. 
In flooded soil, oxygen diffuses from the atmosphere while methane is supplied to the upper 
soil layer in micromolar (µM) concentrations from deeper layers. As a result, there is a steep 
gradient of oxygen from the soil surface downwards, while the opposite is observed for methane 
concentrations. Studies have shown that methane and oxygen gradients in flooded soil overlap 
at a depth of about 2 - 3 mm below surface (Damgaard et al., 1998; Gilbert & Frenzel; 1998), 
suggesting that below this depth anoxic conditions prevail. This makes oxygen the limiting factor 
for aerobic methane oxidation in bulk soil (Conrad & Frenzel, 2002).
Previous amplicon sequencing-based studies have found more than 30 operational taxonomic 
units (OTUs) of MOB in paddy fields (Lüke et al., 2010). Therefore, there is a large diversity 
of MOB that exists in wetlands, most of which are still uncultivated and their niche preferences 
unknown. Due to the different factors that can be responsible for the composition of these 
communities, such as methane levels (Krause et al., 2012), nitrogen availability (Rudd et al., 
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1976), disturbance (Ho et al., 2011) and grazing (Murase and Frenzel, 2008), researchers have 
tried to study these systems in laboratory scale microcosms that mimic the natural habitat 
under controlled conditions. These microcosms allow for O

2
 and CH

4
 counter-gradients to be 

established similar to the situation in paddy soils. In a study published by Reim and colleagues 
(2012), such a system was used to show that within 3 mm thin soil layers different methanotrophic 
OTUs can occupy the same microenvironment. They further confirmed that highest methane 
oxidation rates occurred at the oxic-anoxic interface. 
In this study, we used laboratory-scale microcosms with counter-gradients of methane and 
oxygen in combination with metagenomic sequencing to identify and enrich methanotrophic 
consortia from paddy fields. We used soil collected from a paddy field in Vercelli (Northern 
Italy) for the initial microcosm enrichment step. Using highly sensitive oxygen microsensors, 
we were able to follow the formation of an O

2
 gradient as the soil became more enriched with 

gammaproteobacterial methanotrophs. Subsequently, the pre-enriched soil was used as inoculum 
for further enrichment cultures in agarose-containing artificial medium, also in the same 
microcosm setup.  After transfer of the colonies obtained into liquid media, this resulted in several 
methanotrophic consortia that, based on their pmoA sequences, contain previously uncultivated 
MOB. These were related to members of the Methylocystis and Methylomonas genera, indicated 
that the microcosm set-up is a suitable tool to obtain novel methanotrophs.

MATERIALS AND METHODS

Soil sampling and microcosm incubations 
	 The set-up and construction of the microcosms can be found in Murase & Frenzel 
(2007).  In this study, we applied a continuous unidirectional flow of gas through four sets of 
two microcosms, which differed from the circular set up of the previous study. To prepare the 
soil slurries, 20 g of sieved dry rice field soil from Vercelli (Italy) was saturated and submerged 
with 12 mL of demineralized water. The slurries were incubated on a 0.1 μm gas permeable 
polytetrafluoroethylene membrane (RCT Reichelt Chemietechnik GmbH + Co., Heidelberg, 
Germany), which divided the microcosms into two compartments. The upper compartment 
of the microcosms received atmospheric levels of oxygen by opening the lid on a daily basis. 
The lower chamber received a gas mixture consisting of 20% CH

4
 and 2% CO

2
 mixed in 

Argon. During the incubation period, O
2
, CO

2
 and CH

4
 concentrations were continuously 

monitored using gas chromatography (GC) and GC coupled to mass spectrometry (GC-MS). 
The microcosms were incubated in the dark for a period of 90 days. In order to determine CH

4
 

oxidation rates, a set of two microcosms were clamped off and CH
4
, O

2
 and CO

2
 levels were 

measured every 30 min for a total of seven hours. At each month, one set of two microcosms 
was discontinued and used for DNA extraction. Prior to sampling, vertical oxygen profiles were 
measured at 100 μm depth intervals over 3 mm in total using an Unisense oxygen microelectrode 
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OX50 and a Unisense microprofiling system (Aarhus, Denmark). Afterwards, liquid nitrogen 
was used to shock freeze the soil slurries. The slurries had a thickness of ~6 mm and were crudely 
divide into two subsamples of roughly 3 mm (top and bottom layer) using a sterile nylon string. 
The subsamples were stored in 15 ml Falcon tubes at -20°C for subsequent DNA extraction.

DNA extraction, sequencing and bioinformatic analyses
	 To reduce extraction biases, DNA was extracted using three separate methods: a classical 
hexadecyltrimethylammonium bromide (CTAB) protocol (Saghai-Maroof et al., 1984), and 
the PowerSoil (QIAGEN, USA) and FastDNA (MP Biomedicals, USA) DNA extraction kits, 
following the manufacturer’s protocols. The presence of methanotrophs was verified by PCR 
using two sets of primers targeting different conserved regions of the particulate MMO (pmoCAB) 
operon (Holmes et al., 1995; Ghashghavi et al., 2017), followed by cloning and sequencing 
as described elsewhere (Luesken et al., 2011). The DNA samples from the separate extraction 
protocols were pooled and sequenced on the Ion Torrent PGM using the manufacturer’s protocol 
(Thermo Fischer Scientific, Waltham, USA). Raw reads were checked for quality, trimmed and 
grouped as either top or bottom layer from first, second and third month of enrichment within 
CLC Workbench version 11 (QIAGEN, Hilden, Germany). Bacterial 16S ribosomal RNA 
together with pmoA gene sequences were extracted and analyzed in ARB (version 6.0.6; Ludwig 
et al., 2004). Relative abundance and diversity of methanotrophs were estimated by mapping 
16S rRNA sequences to the Silva database (version 132) (Quast et al., 2012; Yilmaz et al., 2013) 
in ARB while individual pmoA sequences were blasted against the NCBI database (Altschul et 
al., 1990). Metagenomic binning was performed with MyCC (Lin & Liao, 2016), using the 
different layers and time points as differential coverage information (Albertsen et al., 2013). The 
metagenome-derived genomes (MAGs) subsequently were annotated with prokka (Seemann, 
2014) and checked for completeness using checkM (Parks et al., 2015).  

Enrichment of novel methanotrophic bacteria
	 The microcosms were used for further enrichment of methanotrophs in dNMS 
(Whittenbury et al., 1970) agarose medium. The second- and third-month enrichments were 
chosen as inoculum. The slurry was thoroughly mixed in demineralized water before taking a 10 
mL sample and mixing it with 10 mL dNMS media containing 0.5% agarose. Once solidified, 
the agarose layer was submerged in additional liquid dNMS media to ensure the formation of 
O

2
 and CH

4
 counter-gradients.  After two weeks of incubation, single colonies were observed 

at various depths within the agarose. These single colonies were extracted using a sterile glass 
Pasteur pipette and transferred to 50 ml liquid dNMS media in 120 ml capped serum bottles 
containing 20% CH

4
 in air as headspace. The bottles were shaken and incubated in the dark at 

room temperature for two weeks. After several transfers and serial dilutions, DNA was extracted 
from these enrichments and stored at -20°C for subsequent analysis. 
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Identification of methanotrophs
	 PCR was used to amplify pmoA and 16S rRNA gene sequences from the different 
enrichments using pmoA (Holmes et al., 1995) and general bacterial 16S rRNA (Herlemann et 
al, 2011) gene-targeted primers, respectively. The purified PCR products (100ng) were cloned as 
described by Luesken et al. (2011) and purified with PCR purification kit (QIAGEN, Hilden, 
Germany) according to the manufacturer’s instructions. Further digestion were done with the 
restriction enzymes BamHI and EcoRI at 37°C for 180 min and samples were analyzed on 
2,5% agarose gel using gel electrophoresis. Clones giving distinct restriction fragment length 
polymorphism patterns were sequenced at BaseClear (Leiden, the Netherlands). 16S rRNA 
gene sequences were analyzed using Chromas LITE version 2.1.1and blasted against the NCBI 
16S rRNA database (Bacteria and Archaea). pmoA sequences were uploaded to ARB where 
phylogenetic analyses were performed. Lastly, the trimmed reads obtained from the one-, 
two- and three-month metagenomes were mapped to the pmoA sequences obtained from the 
enrichment cultures to check for similarity, presence and relative abundance of the enriched 
methanotrophs in the original microcosm incubations.

RESULTS

Microcosm monitoring 
	 In the absence of soil slurry on the gas permeable membrane in the microcosms, it took a 
total of 4.5 hours for CH

4
 to reach equilibrium between the two compartments. This time was 

extended to 16 hours when sterile soil slurry was added.  However, when paddy field soil slurries 
were used, CH

4 
levels in the top compartment never exceeded atmospheric concentrations, 

indicating that an active methanotrophic community was present. The average methane 
consumption rate was 1.0 mmol of CH

4
 microcosm-1 hr-1.  As incubation time progressed O

2
 and 

CO
2
 consumption and production rates were decreasing and increasing in the top compartment, 

respectively. 

Oxygen concentration profiles
	 Using microsensors, the vertical oxygen concentration profile in the soil slurry was 
determined at 100 μm depth intervals. O

2
 concentration profiles significantly changed from the 

initial time point of the experiment until the end of the third month of incubation (Figure 1). 
After a month of incubation, O

2
 concentrations were measured to be 258 μM at the surface of 

the soil slurry (0 mm depth), and were depleted (0 μM) at a depth of 3.2 mm (Figure 1A).  After 
the second and third month of enrichment, O

2
 depletion occurred at a depth of 2.5 mm (Figure 

1B) and 2.3 mm (Figure 1C), respectively. 



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 77PDF page: 77PDF page: 77PDF page: 77

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 77PDF page: 77PDF page: 77PDF page: 77

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 77PDF page: 77PDF page: 77PDF page: 77

Microcosm Enrichment of Methanotrophs

77

4

2502001501005000

500

1000

1500

2000

2500

3000

3500

4000

4500

250200150100500 250200150100500

O2 concentration (μM)
D

ep
th

 (μ
m

)

A B C

Figure 1: Oxygen profile of soil slurries from the (A) first (B) second and (C) third month of enrichment.

Changes in bacterial community during enrichment
	 We obtained metagenomes from the microcosms at different time points by IonTorrent 
sequencing. After quality checking and trimming, on average 2.2 million reads per sample time point 
(after 1st, 2nd and 3rd month) were obtained. Mapping of the extracted 16S rRNA gene sequences 
against the Silva database revealed Proteobacteria as the most abundant bacterial phylum with an 
average relative abundance of 65%, followed by Acidobacteria, which constituted 10% of all 16S 
rRNA sequences. Within the Proteobacteria, the relative abundances of the 4 most abundant classes 
varied between the time points. After the first month, the sample was dominated by Betaproteobacteria 
(29%), followed by Delta- (26%), Gamma- (24%), and Alphaproteobacteria (21%; Figure 2A). 
However, after two months of enrichment, the Gammaproteobacteria became dominant (31%), 
followed by Beta- (30%), Delta- (27%), and Alphaproteobacteria (12%; Figure 2B). After the third 
month, a similar distribution of these proteobacterial classes was observed (Figure 2C). 

At the order level, the most abundant groups within the Beta- and Alphaproteobacteria did 
not change over time. Burkholderiales, Rhodocyclales and Nitrosomonadales were the three 
most abundant orders within the Betaproteobacteria, and Rhizobiales, Rhodospirillales and 
Sphingomonadales within the Alphaproteobacteria. Here, 49% of the sequences belonged to 
the Rhizobiales. The most significant abundance shifts on the order level were observed within 
the Gamma- and Deltaproteobacteria. Within these, the gammaproteobacterial Methylococcales 
increased from 19% to 48% (Figure 3) and the deltaproteobacterial Myxococcales from 57% to 
84% (Figure 4) between the first and third month of enrichment. 
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Figure 2: Relative abundance of the most abundant phyla within Proteobacteria based on 16S rRNA gene 
sequence counts after the (A) first (B) second and (C) third month of enrichment of soil slurries. The 
different phyla are distinguished by color.
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Figure 3: Top three most relatively abundant orders within the Gammaproteobacteria based on 16S rRNA 
gene sequence counts after the (A) first (B) second and (C) third month of enrichment. The grey areas 
represent minor orders within the Gammaproteobacteria.
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Figure 4: Relative abundance of three most abundant orders within the Deltaproteobacteria based on 16S 
rRNA sequence gene counts after the (A) first (B) second and (C) third month of enrichment. The grey 
areas represent minor orders within the Deltaproteobacteria.

Based on pmoA sequences extracted from the metagenomic data, the methanotrophic community 
varied between time points as well as between the top and bottom part of the soil slurry extracted 
from the microcosms. In total, 47, 70 and 101 different pmoA gene copies were extracted from the 
first-, second- and third-month enrichment, respectively, indicative of an active methanotrophic 
community. While most of the pmoA sequences derived from the top layers were classified as type 
I methanotrophs, type II was found to be most abundant in the bottom layers. After one month 
of incubation, Methylobacter (32% of all pmoA sequences) and Methylocystis (42% of all pmoA 
sequences) were the two most abundant genera from the top and bottom soil layer, respectively 
(Figure 5). Uncultured pmoA sequences related to both Methylocystis and Methylomonas became 
dominant after two months of enrichment, with 53% and 44% of the total pmoA sequences 
in the top and bottom layer, respectively (Figure 5). This number, however, decreased after 3 
months to 18% in the top and 26% in the bottom layer.
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Figure 5: Relative abundance of methanotrophs based on extracted pmoA sequences from the metagenomic 
data after the first, second and third month of enrichment. TL= Top Layer, BL= Bottom Layer.

Genome binning and analysis
	 In the first-, second- and third-month enrichment metagenomes, roughly 2%, 3% and 7%, 
respectively, of the total 16S rRNA sequences extracted belonged to the order of Methylococcales. 
We were able to extract a methanotrophic genome bin from each time point with a completeness 
of 13%, 42% and 75%, respectively. The most complete genome bin from the third-month 
enrichment was analyzed, indicating the presence of multiple copies of the pmoCAB operon and 
the use of the ribulose monophosphate pathway for carbon fixation. Formate and formaldehyde 
oxidation pathways, along with genes for nitrogen fixation and hydroxylamine detoxification 
could also be identified. Based on pmoA (94% identity) and 16S rRNA (88% identity), the 
organism this genome belongs to is only distantly related to known methanotrophs, with 
Methylobacter tundripaldum SV96 as closest cultured relative.

Enriched methanotrophic consortia 
	 Our subsequent enrichment efforts resulted in three different consortia of novel 
methanotrophs. Interestingly, in enrichment 2, none of the obtained 16S rRNA clone sequences 
matched a known methanotroph, but pmoA sequences were obtained. In all three enrichment 
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cultures, most pmoA clone sequences obtained were highly similar to previously uncultured 
environmental pmoA sequences. Besides these novel methanotroph types, all enrichments did 
also contain Methylocystis-like pmoA sequences. We could also find back the most dominant 
pmoA clone sequences from the three enrichments in the metagenome. Here, the number of 
reads mapping to the pmoA sequences from enrichment 1 and 3 increased from the first- to 
third-month sample from the microcosm enrichments, whereas for enrichment 2, it increased 
from first- to second-, and decreased at third-month sample (Supplementary Figure 1). The 
dominant pmoA clone sequence from enrichment 3 also corresponded to the most dominant 
pmoA sequence in the metagenome found at second- and third-month sample. Phylogenetic 
analyses of the pmoA sequences obtained from the methanotrophic enrichment cultures revealed 
the presence of novel, previously uncultured type I and type II methanotrophs (Figure 6). 
Furthermore, the addition of pmoA sequence from the binned genome showed a distant similarity 
to Methylobacter tundripaldum SV96.

0.10
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Figure 6: Representing various MOB pmoA sequences including the sequences obtained in this study. The 
tree was constructed using ARB’s PHYML (amino Acids) tool within the maximum likelihood method. 
Due to size limitation, the tree is partially collapsed for an easier illustration and the outgroup is shown 
by a line. The tree was rooted using AOB sequences that are omitted from this figure. 100 bootstraps 
were performed and the ranges of values are shown with the respective colored circles at each node. Clone 
sequences are highlighted in red. Gammaproteobacteria, and Alphaproteobacteria, are distinguished in the 
figure.
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DISCUSSION

	 Microcosms are an excellent tool to study methane cycling in wetland environments 
(Murase & Frenzel, 2007). Previous studies using this tool focused on unraveling the methane-
driven microbial food web, without attempting to enrich novel methanotrophic bacteria. In this 
study, we report on a 90 day incubation of paddy field soil slurries in a microcosm setup, which 
allowed the successful pre-enrichment of novel methanotrophs. Combined with metagenomic 
sequencing, the microcosms furthermore enable the identification of the genomic potential of 
key methanotrophic players naturally occurring in soil, which can in principle be used for the 
design of optimized isolation strategies for yet uncultured methanotrophs. 
The microcosms became immediately active after inoculation and remained active throughout 
the whole three month incubation period. This was achieved without the addition of medium 
to the soil slurries. CH

4
 never accumulated in the top compartment. Therefore, the microcosms 

enabled us to maintain the complex food web existing in paddy soils for at least 90 days of 
incubation in the laboratory without loss of its high methane oxidation potential. Obtaining 
O

2
 concentration profiles was a valuable and simple tool to follow changes in CH

4
 oxidation 

activities, and thereby changes in the methanotrophic bacterial community. The oxic-anoxic 
interface shifted upwards from 3.2 mm after the first month of incubation, to 2.3 mm after three 
months (Figure 1), indicative of an increasing enrichment and activity levels of MOB. 
After one month of incubation, the most abundant phylum based on 16S rRNA gene sequences 
were the Proteobacteria and their relative abundance did not vary significantly throughout the 
study. However, we did find that the soil slurries became more enriched in Gammaproteobacteria 
over time, with a concomitant decrease of Alphaproteobacteria (Figure). Two specific orders, the 
Methylococcales and Myxococcales, became highly enriched in the soil slurries in our incubations, 
pertaining to 48% and 84% of all the sequences within the gamma- and deltaproteobacterial 
classes, respectively (Figures 3 and 4). Myxococcales are known group of bacteria predominantly 
present in soil that feed on insoluble organic substances (Thomas et al., 2008). While most 
members of the Myxococcales have been described as strict aerobes, isolates of the Anaeromyxobacter 
genus have been described to also be capable of growth under anoxic conditions by nitrate or 
iron(III) reduction (Treude, et al., 2003). 
Moreover, pmoA sequences extracted from the metagenome also demonstrated a change with 
incubation time in the methanotrophic community, in both top and bottom layers of the 
soil slurries. The resilience of methanotrophs to varying CH

4
 and O

2
 mixing ratios has been 

investigated, resulting in the enrichment of stable communities able to withstand these substrate 
fluctuations (Chidambarampadmavathy et al., 2017). However, O

2
 availability has been 

described to be a major driver for niche differentiation among methane oxidizing communities, 
with members of the Methylosarcina and Methylophilus genera being dominant at high (150 – 
225 µM) and Methylobacter and Methylotenera at low O

2
 tension (15 – 75 µM) (Hernandez et al., 

2015). In the current study, Methylobacter was found to be more dominant in the top compared 
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to the bottom soil layer (Figure 5). However, since already after two month of incubation O
2
 was 

completely consumed at depth <2.5 mm, the 3 mm thick top soil layer will contain a mixture 
of methanotrophs adapted to high and low O

2
 concentrations. In future studies, smaller-scale 

sampling and separation of the soil layers could yield more detailed results on the adaptation of 
different methanotrophic genera to various O

2
 and CH

4
 availabilities.

The metagenome also allowed us to perform genome binning of the most dominant 
methanotrophs in the system. This information was used to devise an isolation strategy to enrich 
novel methanotrophs. After three month of enrichment, 7% of all the 16S rRNA sequences 
extracted from the metagenomic dataset clustered with the Methylococcales order. This high 
abundance allowed us to bin out the corresponding genome with 75% completeness. The 
organism’s closest relative based on pmoA and 16S rRNA gene sequences was Methylobacter 
tundripaldum SV96, a gammaproteobacterial methanotroph isolated from a soil core collected 
in a natural wetland, with optimal growth at 23°C, pH of 5.5 to 7.9 and optimal growth on 
20% CH

4
 in the headspace (Wartiainen et al., 2006) (Figure 6). Similar parameters were used in 

further enrichment using diluted nitrate mineral salt (dNMS) media (Whittenbury et al., 1970). 
However, pmoA sequences related to this binned genome were not found in our consortia. Since 
single colonies were picked and transferred from agarose enrichments, this could explain why this 
organism was not found in our final enrichments.
In order to enrich for potentially novel methanotrophs, we used the second- and third-month 
pre-enriched soil slurries from the microcosms as inoculum, which contained several pmoA 
sequences of uncultured and unidentified methanotrophs. Due to sequencing errors and on 
average shorter assembled contigs, these pmoA sequences could not be added to the phylogenetic 
tree for a comparison to the clone sequences found in each of our enrichments. While classical 
isolation techniques tend to select for type II methanotrophs from paddy soil samples, our 
cultures successfully enriched previously uncultured type I and type II methanotrophs most 
closely related to Methylomonas and Methylocystis, respectively (Figure 6). In conclusion, we 
found that microcosms are a valuable tool for the pre-enrichment  of novel, previously uncultured 
methanotrophic bacteria, as they are able to mimic the conditions found in wetland and paddy 
field soils and thus minimize cultivation biases. 

CONCLUSION

	 The new microcosm set up in this study combined with molecular techniques allowed 
the long term incubation of paddy soil under near-natural conditions. Overall, our experiments 
provide support to previous findings that bacterial communities, and more specifically 
methanotrophs, play an important role in the formation of a counter-gradient between O

2
 and 

CH
4
 in flooded soils. Although type II methanotrophs have been reported to be the dominant 

group in paddy soils, we found that depending on the mixing ratios between CH
4
 and O

2
, type 
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I methanotrophs could also be a dominant member of the methanotrophic community. Further 
experiments are required to investigate in more detail MOB niche adaptation along O

2
 and CH

4
 

gradients. Lastly, the current setup has great potential to be used as a pre-enrichment step prior 
to classical isolation methods as we were able to enrich methanotrophic consortia composed of 
previously uncultivated species. 
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Figure S1: Relative abundance of the dominant pmoA clone from each of the enrichment consortia in the 
original metagenome after 1, 2 and 3 months of enrichment.
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CHAPTER 5
A novel type Ib gammaproteobacterial 
methanotroph adapted to freshwater 

environments, Methylotetracoccus oryzae  
str. C50C1
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ABSTRACT

	 Methane-oxidizing microorganisms perform an important role in reducing emissions of 
the greenhouse gas methane to the atmosphere. To date, known bacterial methanotrophs belong 
to the Proteobacteria, Verrucomicrobia, and NC10 phyla. Within the Proteobacteria phylum, they 
can be divided into type Ia, type Ib and type II methanotrophs. Type Ia and type II are well 
represented by isolates. Contrastingly, the vast majority of type Ib methanotrophs could not be 
cultivated so far. Here, we compared the distribution of type Ib lineages in different environments. 
Whereas the cultivated type Ib methanotrophs (Methylococcus and Methylocaldum) are found in 
landfill and upland soils, lineages that are not represented by isolates are mostly dominant in 
freshwater environments such as paddy fields and lake sediments. Thus, we observed a clear niche 
differentiation within type Ib methanotrophs. Our subsequent isolation attempts resulted in 
obtaining a pure culture of a novel type Ib methanotroph, tentatively named Methylotetracoccus 
oryzae C50C1. Strain C50C1 was further characterized to be an obligate methanotroph, 
containing C

16:1
ω9c as the major membrane phospholipid fatty acid, which has not been found 

in other methanotrophs. Genome analysis of strain C50C1 showed the presence of two pmoCAB 
operon copies and XoxF5-type methanol dehydrogenase in addition to MxaFI. The genome also 
contained genes involved in nitrogen and sulfur cycling, but it remains to be demonstrated if and 
how these help this type Ib methanotroph to adapt to fluctuating environmental conditions in 
freshwater ecosystems.

IMPORTANCE

	 Most of the methane produced on our planet gets naturally oxidized by a group of 
methanotrophic microorganisms before it reaches the atmosphere. These microorganisms are 
able to oxidize methane, both aerobically and anaerobically, and use it as their sole energy 
source. Although methanotrophs have been studied for more than a century, there are still many 
unknown and uncultivated groups prevalent in various ecosystems. This study focused on the 
diversity and adaptation of aerobic methane-oxidizing bacteria in different environments by 
comparing their phenotypic and genotypic properties. We used lab-scale microcosms to create 
a counter-gradient of oxygen and methane for pre-enrichment, followed by classical isolation 
techniques to obtain methane-oxidizing bacteria from a freshwater environment. This resulted in 
the discovery and isolation of a novel methanotroph with interesting physiological and genomic 
properties that could possibly make this bacterium able to cope with fluctuating environmental 
conditions.
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INTRODUCTION

	 Methanotrophs are a functional group of diverse Gram-negative bacteria that are defined by 
their ability to oxidize methane, which they utilize as source of carbon and energy (Hanson and 
Hanson, 1996; Trotsenko & Murrell, 2008; Semrau et al., 2010). Since their discovery in 1906 
by Soehngen, they are known to play a key role in the global methane cycle through the reduction 
of methane emissions to the atmosphere (Soehngen, 1906; Conrad, 2009; Chistoserdova, 
2015). Aerobic methanotrophs utilize methane via a methane monooxygenase (MMO) that 
exists as soluble (sMMO) cytoplasmic and particulate (pMMO) membrane bound form, which 
both catalyse the first step of methane oxidation to methanol (Semrau et al., 2010). Methane-
oxidizing bacteria (MOB) are ubiquitous in nature and have been found in various environments 
where oxygen and methane are readily available (Bowman, 2006; Hanson & Hanson, 1996). 
While most grow best at moderate pH and temperature ranges, psychrophilic, thermophilic, 
alkaliphilic and acidophilic methanotrophs have been isolated as well (reviewed in Semrau et al., 
2010).
To date, the best studied methanotrophs belong to the proteobacterial classes Alpha- and 
Gammaproteobacteria (Bowman et al., 1993; Semrau et al., 2010), but MOB within the phyla 
Verrucomicrobia and NC10 (Sangwan et al., 2005; Ettwig et al., 2010; Op den Camp et al., 2009) 
were recently discovered, expanding the phylogenetic diversity of MOB. Despite this diversity, 
MOB have remarkably similar methane oxidation pathways while incorporating different 
pathways for carbon fixation. Proteobacterial MOB utilize C1 compounds via the ribulose 
monophosphate (RuMP) or serine pathways (Trotsenko & Murrell, 2008; Whittenbury et al., 
1976), while verrucomicrobial MOB and NC10 bacteria use the Calvin cycle (Khadem et al., 
2011; Rasigraf et al., 2012). After the extensive isolation and characterization of methanotrophs 
that took place in the 1970s, three ‘types’ of methanotrophs were defined (Whittenbury et al., 
1970; Trotsenko, 1976). The strains that incorporated carbon into biomass using the RuMP 
pathway, contained intracytoplasmic membranes as vesicular disks, and monounsaturated 
hexadecenoic (16:1) signature fatty acids were grouped under Type I.  Type II strains differed from 
Type I by utilizing the serine pathway for carbon fixation, having intracytoplasmic membranes 
aligned along the periphery of the cell and monounsaturated octadecanoic acid (18:1) as major 
membrane lipid (Whittenbury et al., 1976; Trotsenko, 1976). 
In various studies, an additional group of methanotrophs has been described as type X 
(Whittenbury, 1981; Whittenbury & Dalton, 1981), defined originally based on genomic G+C 
content and intracytoplasmic membrane organisation. This group had characteristics that did 
not define them under one type, possessing the full RuMP pathway as well as ribulose-1,5-
bisphosphate carboxylase indicative for the Calvin cycle, and at the time were considered to be 
adapted to higher temperatures. A combination of biochemical and molecular analyses, however, 
has revealed that type X strains should be reclassified under type I methanotrophs and this clade 
is now referred to as type Ib (Bowman et al., 1993). Nonetheless, these classifications do not 
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encompass all isolates, with some having unexpected characteristics. For instance, a type II strain 
possessing signature membrane lipids that resemble type I methanotrophs (Dedysh et al., 2007), 
and Methylothermus thermalis, a gammaproteobacterium that possesses both 16:0 and 18:1  fatty 
acids typical for type I and II methanotrophs, respectively (Tsubota et al., 2005), have been 
reported. 
Within the last 20 years, the genera containing MOB within the Proteobacteria have expanded 
to 23 (Dedysh & Knief, 2018 and the references therein). With the exception of low pH peat-
adapted Methylocella (Dedysh et al., 2000) and Methyloferula (Vorobev et al., 2011) that only 
possess sMMO, all other known methanotrophs encode a pMMO (McDonald et al., 1997). The 
genes for pMMO (pmoCAB), but mainly pmoA encoding pMMO subunit A, have been used to 
survey the MOB diversity in various ecosystems (Knief, 2015; Ghashghavi et al., 2017; Sengupta 
& Dick, 2017). These studies have shown remarkable environmental diversity, even within the 
comparably well studied proteobacterial clades. Although within the Gammaproteobacteria there 
have been 12 genera for both type Ia and Ib that contain cultivars, isolates are lacking for the 
many uncultivated environmental sequence clusters (Semrau et al., 2010).
Type Ib methanotrophs are known to possess a high metabolic diversity (Wise et al., 1999; 
Madigan et al., 2017). However, this diversity is still to be fully explored due to the many clades 
of environmental sequences lacking any isolate. These sequences cover a vast variety of natural 
habitats such as peat, upland and wetland soil, hot springs, lakes, rivers, ground water, and deep 
sea, potentially representing highly diverse metabolic capabilities (Hanson & Hanson, 1996; 
Murrell, 2010; Kip et al., 2010). The presence of multiple pathways for carbon and nitrogen 
fixation and assimilation and of both soluble and particulate MMOs make it difficult to generalize 
when discussing physiological abilities of type Ib methanotrophs or any other type of MOB.
Methylococcus capsulatus is the only well-described type Ib organism, which has since become the 
model organism for the entire group (Ward et al., 2004). However, sequences from this group are 
mostly found in upland soil (Knief et al., 2003). Presently, most known type Ib organisms seem 
to occur in freshwater environments, but only few isolates have been described. These have a 
tendency to live very close to a methane source and under oxygen-limited conditions (Islam et al., 
2015; Danilova et al., 2016).  In this study, we isolated a novel type Ib methanotroph, tentatively 
named Methylotetracoccus oryzae strain C50C1, from a freshwater ecosystem and performed 
physiological and genomic characterization. Based on observations from electron microscopy 
and sequence analyses it belongs to a novel genus that is widely distributed in paddy fields 
and lake ecosystems, making it a potential model representative for this group. We furthermore 
compared different physiological aspects of this isolate (habitat distribution, optimum growth 
temperature and pH, and key enzymatic activities) to the other known isolates within the type 
Ib methanotrophs. 
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MATERIALS AND METHODS

Enrichment conditions and isolation approach
	 Enrichments of methane oxidizing bacteria were started from a paddy field soil sample 
in Cixi, Zhejiang Province, China (N 30°11.066’; E 121°21.351’). Soil characteristics and 
sampling procedure are described in detail elsewhere (Ho et al., 2011). Pre-enrichment was 
carried out for 14 days in gradient microcosms supplied with 15% methane from the bottom 
compartment and ambient air from the top (Murase & Frenzel, 2007). After pre-incubation, 
the soil was harvested, diluted in NMS medium (Whittenbury et al., 1981) and plated onto 
solid NMS medium containing 2% agarose. Plates were incubated in air-tight jars supplemented 
with ambient air and 20% methane. Selected colonies were streaked onto fresh plates to obtain 
single colonies. The latter, however, were composed not only of methanotrophic bacteria but also 
of satellite heterotrophic microorganisms. Selected colonies that contained a lowest number of 
satellite cells were picked and used to inoculate 30 ml serum vials containing 10 ml of two-fold-
dilute NMS medium. After inoculation, the vials were sealed with rubber septa and methane 
was added aseptically to attain a final mixing ratio of approximately 20% (v/v). The inoculated 
vials were then incubated at 24°C and 100 rpm. The cultures were examined by phase-contrast 
microscopy and, if morphologically uniform, the cells were transferred to fresh medium and 
grown again under the same growth conditions. This process of serial dilutions was repeated 
over 6 months until the target isolate, designated strain C50C1 was obtained in a pure culture. 
Once isolated, this methanotroph was maintained in two-fold dilute NMS medium and was 
sub-cultured in 4 week intervals.

Phase contrast and electron microscopy
	 Morphological observations and cell-size measurements were made with a Zeiss Axioplan 2 
microscope and Axiovision 4.2 software (Zeiss, Jena, Germany). Cells morphology was examined 
by using batch cultures grown to the early-exponential, late-exponential and stationary growth 
phases. For preparation of ultrathin sections, cells of the exponentially growing culture of 
strain C50C1 were collected by centrifugation and pre-fixed with 1.5% (w/v) glutaraldehyde 
in 0.05 M cacodylate buffer (pH 6.5) for 1 h at 4°C and then fixed with 1% (w/v) OsO

4
 in the 

same buffer for 4 h at 20°C. After dehydration in an ethanol series, the samples were embedded 
into Epon 812 epoxy resin. Thin sections were cut on an LKB-4800 microtome (LKB-Produkter 
AB, Stockholm, Sweden) and stained with 3% (w/v) uranyl acetate in 70% (v/v) ethanol. The 
specimen samples were examined with a JEM-100B transmission electron microscope (JEOL, 
Tokyo, Japan) at an accelerating voltage of 80 kV.

Growth experiments
	 Physiological tests were performed in liquid two-fold dilute NMS medium with methane. 
Growth of strain C50C1 was monitored by measuring OD

600
 for 2 weeks under a variety of 
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conditions, including temperatures of 2-37°C, pH 4.0-8.5 and NaCl concentrations of 0-4.0% 
(w/v). Variations in the pH were achieved by mixing 0.1  M solutions of H

3
PO

4
, KH

2
PO

4
, 

K
2
HPO

4
, and K

3
PO

4
. The utilization of potential carbon sources was examined using 0.05% 

(w/v) concentrations of the following compounds: formate, glucose, sucrose, galactose, lactose, 
fructose, citrate, succinate, pyruvate, acetate, and ethanol. The ability to grow on methanol was 
tested in NMS medium containing 0.01–5% (v/v) methanol.  

Nitrogen fixation activity was assessed by monitoring growth in nitrogen free medium. Incubations 
were performed in batch in triplicates. Bottles of 120 ml were sterilized and aseptically supplied 
with 17 ml of liquid five-fold dilute sterilized ammonium mineral salts (AMS) medium or five-
fold dilute nitrogen-free mineral salts medium (MS). The headspace contained either ambient 
or low O

2
 atmosphere (2% v/v). Low O

2
 concentrations in the headspace were achieved by 5 

rounds of applying vacuum to the bottles, followed by flushing with N
2
/CO

2
 (90/10% v/v). 

Subsequently, 2% O
2
 (v/v) was added aseptically. All bottles received 10% CH

4
 (v/v) aseptically. 

Prior to inoculation, biomass from 3 batch incubations pre-grown on five-fold diluted AMS, NMS 
and MS medium, respectively, to mid-exponential phase was pooled. Cells were washed twice to 
remove any remaining nitrogen source by pelleting the biomass in 50 ml tubes at 1000 × g for 
10 minutes (Eppendorf 5810 centrifuge, Hamburg, Germany). Subsequently, the supernatant 
was removed and replaced with nitrogen-free five-fold dilute MS. Cells were dissolved in five-
fold dilute MS medium. All bottles were inoculated with 3 ml of the washed cells at a starting 
OD

600
 of 0.05. OD

600
 was measured using a spectrophotometer (Spectronic200, Thermofisher 

Scientific, Waltham, MA, USA). The CH
4
 concentrations in the headspace were measured by 

injection of 50 µl gas samples into a HP 5890 gas chromatograph (Hewlett Packard, Palo Alto, 
USA) equipped with a Porapaq Q 100/120 mesh (Sigma Aldrich, Saint Louis, USA) and a flame 
ionization detector (FID), O

2
 concentrations using an Agilent 6890 series gas chromatograph 

coupled to a mass spectrometer (Agilent, Santa Clara, USA) equipped with a Porapak Q column 
heated at 80°C with Helium as the carrier gas as described previously (De Jong et al., 2018).

Molecular analyses
	 Extraction, analysis and identification of phospholipid-derived fatty acids (PLFA), 
including DMDS-derivatization to determine double bond positions, was performed as described 
by Dedysh et al. (2007). DNA was extracted from 2 mL liquid culture using the PowerSoil 
DNA isolation Kit (MoBio Laboratories Inc., Carlsbad, USA) according to the manufacturer’s 
protocol. The genomic DNA was sequenced on the Illumina MiSeq platform, with MiSeq 
Reagent Kit v3 (600 cycles, yielding 2x 300 bp paired end sequencing reads; Life technologies, 
Carlsbad, USA). For genomic library preparation using the Nextera XT kit (Illumina, San Diego, 
USA.), in total 5 µl gDNA normalized to 0.2 ng/µl were used. Fragmentation was performed 
enzymatically, followed by incorporation of the indexing adapters and amplification of the 
library as described by the manufacturer. Purification of the amplified library was performed 
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using AMPure XP beads and quality and size distribution of the library was checked using the 
Agilent 2100 Bioanalyzer and the High sensitivity DNA kit (Agilent Technologies, Santa Clara, 
USA). Fluorimetric quantitation of the library was performed by Qubit using the dsDNA HS 
Assay Kit (Thermo Fisher Scientific Inc., Waltham, USA). For normalization of the library, the 
concentration measured by Qubit and the average fragment size obtained with the Agilent 2100 
bioanalyzer were used. After dilution to 4 nM end concentration, the library was denatured and 
diluted using the Denature and Dilute Libraries Guide (Illumina, San Diego, USA), loaded in 
the cartridge and the sequence run was started using the Illumina Miseq platform (Illumina, San 
Diego, USA). 

Bioinformatic analysis
	 Illumina raw sequencing reads were imported into CLC Genomics Workbench (v11.0.2, 
Qiagen/CLCbio, Aarhus, Denmark) and trimmed on quality and length (≥100 bp), resulting in 
nearly 11.5 million reads which were used for subsequent analyses. Reads were assembled using 
CLC Genomics Workbench (assembly parameters: Word size=20, Bubble size=50, Minimum 
contig length=200; mapping parameters: Mismatch cost=2, Insertion cost=3, Deletion cost=3, 
Length fraction=0.5, Similarity fraction=0.8). As a slight contamination in the culture used 
for DNA extraction was observed, metagenomic binning was performed based on CG content 
and sequencing depth (Albertsen et al., 2013). The assembled genome of strain C50C1 was 
composed of 42 contigs with an N50 of 199.476 bp, an overall genome size of 4.8 Mbp and 
an average GC content of 63%. Genome completeness and contamination were estimated by 
CheckM (Parks et al., 2014) to be 99.1% and 3.3%, respectively. Binned contig sequences were 
submitted to the RAST automated annotation pipeline (Overbeek et al., 2013), which includes 
genomic object prediction (CDSs and RNA genes), sequence homology searches, prediction of 
protein localization and reconstruction of metabolic networks. Subsequently, the annotation was 
refined manually and compared to publicly available genomes of aerobic MOB.

Data availability
	 The high quality draft genome of strain C50C1 is available at NCBI under BioProject 
accession number  PRJNA361434.

RESULTS AND DISCUSSION

Isolation of a gammaproteobacterial methanotroph from paddy soil
	 Incubation of paddy field soil in a methane/oxygen counter-gradient microcosm and further 
purification of enriched bacteria on NMS medium resulted in three gammaproteobacterial 
methanotrophs that were classified as type Ib. One strain (referred to as strain C50C1) was 
further purified via several transfers in liquid NMS medium until a pure culture was obtained.
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Strain C50C1 was represented by Gram-negative and non-motile cocci or coccoids (1.1-1.4 × 
1.3-1.8 μm in size), which reproduced by binary fission and occurred singly, in pairs, in tetrads or 
formed large cell clusters in old (2 and more weeks) cultures (Figure 1A-C). Examination of thin-
sectioned cells of strain C50C1 revealed a typical Gram-negative structure of the cell wall and 
the presence of intracytoplasmic membranes, arranged as stacks of vesicular disks (Figure 1D), 
which is characteristic of type I methanotrophs. Globular structures apparently representing an 
S-layer were observed on the cell surface (Figure 1E). Although the presence of S-layers is highly 
characteristic for many type I methanotrophs including Methylococcus species (Khmelenina et al., 
2013), this type of S-layer symmetry has not been reported for any of the previously described 
methanotrophs.

Figure 1: (A, B, C) Phase-contrast micrographs demonstrating cell morphology of strain C50C1 in 4-, 
7- and 14-days old cultures. Bar, 5 µm. (D, E) Electron micrograph of an ultrathin section of a cell. ICM, 
intracytoplasmic membranes; CM, cytoplasmic membrane; OM, outer membrane; PG, peptidoglycan 
layer; S- S-layer. Bars, 0.5 µm (D) and 0.1 µm (E). 
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Strain C50C1 was able to grow only on methane and methanol. Methanol supported growth 
in the concentration range of 0.1-4% (v/v); highest growth rates (doubling time 21 h) occurred 
at 3% (v/v).  No growth was observed on multicarbon compounds. Strain C50C1 grew in the 
pH range of 4.8-8.3, with the optimum at pH 6.8-7.5. The temperature range for growth was 
4-30°C, with the optimum at 18-25°C. The doubling time on methane and methanol under 
optimal growth conditions was 16 and 21 hours, respectively. Strain C50C1 was highly sensitive 
to salt stress and growth was inhibited at NaCl concentrations above 0.3% (w/v).  

Based on 16S rRNA and pmoA gene-based phylogeny, strain C50C1 could be classified as type 
Ib methanotroph affiliated with the Rice Paddy Cluster 1 (RPC1; Figure 2). RPC1 forms a 
monophyletic lineage, containing pmoA sequences that were mostly retrieved from freshwater 
environments such as lakes, groundwater and paddy fields (Lüke et al., 2010; Lüke & Frenzel, 
2011; Knief, 2015). So far, few members of type Ib methanotrophs have been characterized, 
resulting in the description of five genera. However, most clusters contain environmental 
sequences only and lack cultured representatives (Figure 2). Closest cultivated relatives of strain 
C50C1 include Methylococcus capsulatus, Methylocaldum gracile and Methyloparacoccus murrellii 
(94% 16S rRNA gene identity to each species and 92% amino acid identity to the pmoA gene 
of M. capsulatus).

Phenotype and growth characteristics of strain C50C1
	 We made a phenotypic comparison between strain C50C1 to other type Ib isolates (Table 
1). C50C1 grows on methane and methanol as sole energy sources (Table S1), is able to fix 
N

2
 (Figure S1), and grows at temperatures between 4 and 30°C, which is a much larger range 

than other characterized type Ib methanotrophs (Table 1). Similar to other MOB, it prefers pH 
values between 6 and 8, and is sensitive to 0.3% NaCl. Major phospholipid-derived fatty acids 
(PLFAs) in strain C50C1 are C

16:1
ω9c, C

16:1
ω7c, and C

16:0
. C

16:1
ω9c is highly unusual for type Ib 

methanotrophs, but low amounts have also been detected in Methylogaea and Methyloparacoccus 
(Table 1, Table S2). High amounts of this PLFA have so far been only detected in MOB belonging 
to Alphaproteobacteria (Lüke & Frenzel, 2011), and its presence in strain C50C1 gives it a specific 
signature. The recently described Methyloterricola oryzae belonging to the RPC1 possesses mainly 
C

16:0
, C

16:1
ω6c and C

16:1
ω7c, typical of type Ib methanotrophs (Frindte et al., 2017). Based on 

the complete PLFA profile, however, C50C1 is most closely related to Methyloterricola oryzae, 
strengthening the placement in RCP1 (Figure S2). Furthermore, PmoA (Figure 2) and 16S 
rRNA gene-based phylogeny (Figure 3) both show a clear affiliation of strain C50C1 with the 
type Ib MOB.
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Methylotetracoccus
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Methyloparacoccus
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Methylocaldum
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Figure 2:  Phylogenetic inference of methane monooxygenase (PmoA) protein sequences of type Ib 
methanotrophs. The tree is constructed using ARB’s neighbour joining method. Type Ia sequences were 
used as outgroup. Clades coloured in orange are represented by isolates, clades in grey by environmental 
sequences only. All clusters that contain isolates are accompanied by a pie chart with colours representing 
the environments the majority of sequences belong to. RPC, Rice Paddy Cluster 1. The bar indicates 0.1 
substitutions per amino acid position.
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Methylocaldum gracile, U89298
Methylocaldum tepidum, U89297

Methylocaldum marinum, AB894129
Methylocaldum szegediense, U8930

Methylocaldum sp. E10a, AJ868426
Methylocaldum sp. BFH1, GQ13027

Decomposting bagasse clone BG129, HM36253
Decomposting bagasse clone BG153, HM362553

Water in dam reservoir clone 2, AB930629
Reelfoot sediment clone S3007, KX504866

Methylotetracoccus oryzae C50C1
Methyloparacoccus clone from metagenome, FPLK0100240

River sediment clone RS−B79, KC54113
Methyloparacoccus murrellii, HF558990

Sludge samples collected from biofilm clone AS−109, HQ6
Methanotrophic bacterium AK−K6, KP27213

Coal tar waste−contaminated groundwater clone JMYB36−91, FJ81
Methylomagnum ishizawai, AB669155

Methanotrophic bacterium GFS−K6, KP27213
Methylogaea oryzae JCM 16910, EU672873

Methylococcus sp. LS7−MC, KP77170
Reelfoot lake sediment clone F4017, KX50460

Methylococcus capsulatus, X72770
Methylococcus thermophilus, X7381

Methylococcus capsulatus str. Texas = ATCC 19069, AUKJ0100000
Gold mine borehole clone HS4850B_12F, JX434259

Gold mine borehole clone HS4850B_06D, JX434212
Decomposting bagasse clone BG168, HM362565

Methylococcaceae bacterium 73a, JYNS01000046
River bank clone BSB0101−02, JN39771

Candidatus Methylospira mobilis, KU21620
Methylohalobius crimeensis, AJ581837

Methylomarinovum caldicuralii, AB301718
Methylothermus subterraneus, AB536747

Methylothermus thermalis, AY82900

0.10

Bootstrap value ≥ 90%
Bootstrap value ≥ 70%

Figure 3: 16S rRNA gene-based phylogenetic analysis of a subgroup of closely related type Ib 
methanotrophs to strain C50C1 (in red), including isolates and environmental clones. Selected members 
of the Methylothermaceae were used to root the tree. Black and grey circles at the nodes indicate bootstrap 
support values ≥90% and ≥70%, respectively. The bar indicates 0.1 substitutions per amino acid position.

Diversity and ecological niches of type Ib methanotrophs
	 To gain an overview of diversity and habitat preference of cultivated and uncultivated 
type Ib methanotrophs, we performed a phylogenetic analysis of approximately 2800 publicly 
available pmoA sequences from various environments. We classified the habitat information into 
eight environmental categories and compared the pmoA diversity to the environmental origin of 
the sequences (Figure 2). Sequences could be grouped into 32 major sequence clusters. For a long 
time, only the genera Methylococcus and Methylocaldum were represented by isolates, however, 
recently several additional type Ib methanotrophs were obtained in pure culture (Figure 2, Table 
1 and the references within). Methylomagnum, Methylogaea, and strains SK-K6 and GFS-K6 all 
belong to clusters containing environmental sequences derived mainly from paddy fields. These 
isolates grow in similar pH ranges, but Methylogaea and Methylomagnum possess a slightly higher 
optimum growth temperature of 30-35°C.
Methyloparacoccus and the tentatively named Methylotetracoccus clades have most sequences 
derived from freshwater ecosystems. Since these strains have been isolated from similar 
environments, their growth parameters and genome-inferred physiological capabilities are highly 
similar. Contrastingly, both Methylococcus and Methylocaldum have been isolated from sources 
that differ from the major habitat of their respective sequence clade, based on environmental 
sequences. The former was isolated from a roman thermal bath, the latter from marine sediment 
(Bowman et al., 1993; Bodrossy et al., 1997; Takeuchi et al., 2014). Lastly, Methylospira mobilis 
appears to be an accurate representative for its clade of mainly peat-derived environmental clones, 
as it is adapted to acidic conditions (Danilova et al., 2016). Although type Ib MOB have shown 
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to be diverse with regards to their environmental adaptability, they seem to play a very minor role 
in marine ecosystems, where most sequences belong to type Ia. 

Genome sequencing of strain C50C1
	 To gain further insights into the metabolic potential of strain C50C1, we sequenced and 
analysed its genome. Assembly and binning resulted in a 4.83 Mbp draft genome consisting of 42 
contigs longer than 1 kb. Based on single copy marker gene analysis, the genome was predicted 
to be 99.1% complete, with 3.3% of contamination. The overall GC content is 63%. In total, 
the genome was predicted to contain 4302 protein coding sequences (CDSs) and one copy of 
the ribosomal RNA operon. Genome size and GC content are comparable to the four other 
sequenced type Ib methanotrophs, which range from 3.3 to 5 Mbp and 57 to 63%, respectively 
(Table 2). The rRNA operon copy numbers in bacterial genomes can vary from 1 to as many 
as 15 copies and a correlation of copy number with resource availability has been hypothesised 
(Klappenbach et al., 2000). Most other type Ib genomes also harbour only one single copy, with 
the exception of Methylococcus capsulatus Bath that contains two (Table 2). Thus, MOB appear 
not to be in need of multiple rRNA copies for rapid adaptation to substrate availability, but this 
requires further analyses once more genomes of type Ib and other types of methanotrophs are 
sequenced.

Methane oxidation
	 Based on the genomic information, the metabolic pathways for methane oxidation and 
energy conservation in strain C50C1 were reconstructed (Figure 4). The genome includes two 
copies of the pmoCAB operon encoding the membrane bound pMMO and four additional 
copies of pmoC, which are scattered throughout the genome. However, none of the two pmoCAB 
operons encodes the high affinity pMMO-2 isoenzyme described in Alphaproteobacteria, which 
has been shown to be responsible for oxidation of methane at low mixing ratios (Baani and 
Liesack, 2008). Since the concentrations of CH

4
 and O

2
 that strain C50C1 would be exposed to 

in its natural environment are not comparable to the ones experienced by atmospheric methane 
oxidizers, possessing a high-affinity pMMO would not necessarily be an advantage in a wetland. 
Neither the distinct pmoABC operon encoding the so-called pXMO (Tavormina et al., 2011), 
nor genes for the sMMO were identified in the genome, although the latter have been found 
in Methylococcus capsulatus (Bowman et al., 1993) and in several Methylomagnum strains (Islam 
et al., 2015, Khalifa et al., 2015; Table 1 and references therein). According to recent studies, 
sMMO seems not to play a role in methanotrophy in paddy fields, as it was found to be absent 
in all rice field isolates and PCR-based studies only detected mmoX genes related to Methylocystis/
Methylosinus species (Reim et al., 2012).
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Figure 4: Predicted energy metabolism of strain C50C1. SdhABCD, Succinate dehydrogenase; Rnf, 
NAD-ferredoxin reductase; Q, quinone; bc1, cytochrome bc

1
 complex; fae, Formaldehyde-activating 

enzyme; Mch, methenyl-H
4
MPT cyclohydrolase; FhcABCD, Formyltransferase/hydrolase complex; FtfL, 

Formate-tetrahydrofolate ligase; FolD, Methylene-H
4
F dehydrogenase/cyclohydrolase; HPS, 3-hexulose-6-

phosphate synthase; PHI, 6-phospho-3-hexuloisomerase; GlyA, serine hydroxylmethyl transferase. 

Methanol and Formaldehyde oxidation
	 For the subsequent oxidation of methanol to formaldehyde, the C50C1 genome encoded 
both the lanthanide-dependent XoxF5-type (Pol et al., 2014; Martinez-Gomez et al., 2016) and 
the calcium dependent MxaFI-type methanol dehydrogenase (MDH). The XoxF5-type MDH 
has been shown to have a higher affinity than MxaFI and, unlike the MxaFI-type enzyme, to 
directly convert methanol to formate in Methylacidiphilum fumariolicum SolV, which lacks a 
dedicated formaldehyde dehydrogenase (Keltjens et al., 2014). However, XoxF-type enzymes 
also were shown to efficiently oxidize formaldehyde (Wilson et al. 2008). In accordance with 
the dependency of XoxF-type MDHs on pyrroloquinoline quinone (PQQ), strain C50C1 also 
encoded genes for PQQ biosynthesis. Electrons from the oxidation of methanol are transferred 
to cytochrome c

L
, which serves as the primary electron acceptor for MDH. In the periplasm, 

cytochrome c
L
 is oxidized and the electrons end up at typical membrane-bound terminal oxidases 

by way of class I c-type cytochromes (Hanson & Hanson, 1996). 
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Most of the reducing equivalents required for the metabolism of methane are produced by 
the oxidation of formaldehyde (Hanson & Hanson, 1996; Trotsenko & Murrell, 2008). 
Formaldehyde is an important intermediate as it forms the branching point for anabolic carbon 
fixation via the serine or RuMP cycle, and catabolic substrate oxidation to CO

2
. However, this 

compound also is highly toxic and its production and consumption consequently need to be 
tightly regulated (Attwood & Quayle, 1984). 
A variety of enzymes have been shown to catalyse formaldehyde oxidation. Based on their 
electron acceptor, they can be grouped into NAD(P)+-dependent and dye (cytochrome)-linked 
formaldehyde dehydrogenases (FalDH). Based on the genomic data, strain C50C1 possesses 
a homolog (74% amino acid identity) to a membrane-associated dye-linked PQQ-dependent 
FalDH putatively catalysing formaldehyde oxidation. This enzyme has been characterized 
in Methylococcus capsulatus Bath (Zahn et al., 2001) and was shown to be a member of the 
Sulfide:quinone oxidoreductase enzyme family. Under high-copper growth conditions, this 
enzyme was found to be the major formaldehyde dehydrogenase. Additional homologs are 
present in Methylocaldum and Methylohalobius, however with much lower identity (≤ 40%) 
and potentially different functions within the Sulfide:quinone oxidoreductase family. C50C1 
is lacking homologs of S-(hydroxymethyl) glutathione dehydrogenase (EC 1.1.1.284), which 
provides an alternative route from formaldehyde to formate in all other type Ib MOB.
Similar to other type Ib species, C50C1 has tetrahydrofolate (H

4
F) and 

5,6,7,8-tetrahydromethanopterin (H
4
MPT)-linked C1 carrier pathways. H

4
MPT is the 

archaeal analogue of H
4
F and can transfer formyl-, methenyl-, methylene- and methyl-groups 

(Mashhadi et al., 2010). These two pathways were regarded as redundant. However, more 
recent observations have shown that formate might be a branching point for anabolic and 
catabolic reactions making these two pathways function in parallel (Crowther et al., 2008). The 
generation of methylene H

4
F and its subsequent entry to the serine pathway is done through 

direct condensation of formaldehyde with H
4
F. Alternatively, methylene H

4
F can be formed 

from formate in the tetrahydromethanopterin pathway from H
4
MPT. The latter seems to occur 

in a facultative methylotrophic, non-methane oxidizing Methylobacterium (Marx et al., 2003), 
thus making it likely to occur in strain C50C1 as well. In contrast to Methylobacterium, C50C1 
furthermore possesses FolD, a bifunctional methylene-H

4
F dehydrogenase and methenyl-H

4
F 

cyclohydrolase instead of the usual mtdA/fch gene pair encoding enzymes catalysing the separate 
reactions, respectively. In Methylobacterium chloromethanicum CM4, FolD has been shown to 
be specifically involved in dissimilation of the methyl-H

4
F (Studer et al., 2001). Although this 

process varies within MOB, all type Ib genomes analysed to date with the exception of strain 
C50C1 encode for the MtdA/Fch couple and lack FolD. 

Formate oxidation
	 In Methylococcus capsulatus Bath and Methylobacterium extorquens, two isoenzymes have 
been characterized to be involved in formate oxidation (Dalton, 1979; Christoserdova et al., 
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2004). The first of these formate dehydrogenases (FDH-1) has been characterized as a tungsten-
containing enzyme in M. extorquens and is arranged in a fdhABC gene cluster (Chistoserdova 
et al., 2004). While this enzyme has been identified in Methylococcus capsulatus Bath and M. 
capsulatus Texas, it is not present in other type Ib species including strain C50C1. Contrastingly, 
the second FDH-2 is a molybdenum (Mo)-depending enzyme encoded by the fdhCBAD gene 
cluster. This enzyme is found in all other type Ib including strain C50C1 making it much 
more widespread than its tungsten-containing counterpart. In general, tungsten enzymes seem 
to be mostly present in anaerobic microbes, which could be a direct result of its availability 
and its higher redox properties relative to Mo in anoxic ecosystems (Kletzin & Adams, 1996). 
Functionally speaking, the two FDHs are virtually identical when their respective cofactor is 
present (Chistoserdova et al., 2004).

Energy conservation and respiration
	 The draft genome of strain C50C1 encodes a complete electron transport chain, 
including a proton or sodium ion-translocating NAD-ferredoxin reductase (Rnf ) complex, 
NADH:ubiquinone reductases (H+ and Na+-transporting types; Complex I), succinate 
dehydrogenase (Complex II), cytochrome bc

1
 complex (Complex III), quinone-reducing 

cytochrome bd-type and putatively cytochrome c reducing heme-copper (HCO; Complex IV) 
terminal oxidases and a F

o
F

1
-type ATPase (Complex V) (Figure 4). 

The Rnf (Rhodobacter nitrogen fixation) complex is a novel ion-motive electron transport chain 
found in phylogenetically diverse prokaryotes. In Acetobacterium woodii, the Rnf complex 
catalyses oxidation of Fd

red
 with concomitant reduction of NAD+ (Biegel et al., 2011). The 

soluble B subunit (RnfB) of the complex is proposed to be the entry point for electrons from 
reduced ferredoxin. The C subunit (RnfC) mediates NADH reduction, thus serving as exit 
point of electrons. The free energy of this reaction is conserved in the electrogenic transport 
of protons or sodium ions across the membrane, thus establishing an electrochemical potential 
(Biegel et al., 2011). The genomes of Methylobacter and Methylotenera encode for this complex 
as well (Hernandez et al, 2015). Complex I transfers electrons from NADH into the quinone 
pool, coupled to the translocation of four protons across the inner membrane, which further 
contributes to the formation of a proton motive force (pmf) that can be used to synthesise ATP 
by complex V. Complex II links the tricarboxylic acid (TCA) cycle to the respiratory chain by 
transferring the electrons derived from succinate oxidation into the quinone pool.
Previous studies have indicated that pMMO also is coupled to the electron transport chain at the 
level of quinone, with inhibitor studies providing additional evidence of this link (Zahn et al., 
2001 and references therein). The oxidation of methane by the pMMO requires the additional 
activation by oxygen. As one oxygen atom of O

2
 is reduced to H

2
O and the second is incorporated 

into methane to form methanol, this results in a net consumption of two electrons per methane 
oxidized. Electrons from the subsequent oxidations of methanol and formaldehyde either end up 
in a membrane bound class I c-type oxidase or directly enter the quinone pool, respectively. The 
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reduced quinol then transfers the electrons to the cytochrome bc
1
 complex, where the reduction 

of cytochrome c is linked to formation of pmf via the so-called Q-cycle. Complex IV finally uses 
the electrons obtained from cytochrome c to reduce O

2
 to H

2
O. This reaction also is linked to 

active translocation of protons, thus contributing to pmf.
The genome of strain C50C1 contains all of the subunits of two members of the heme-copper 
oxidase (HCO) superfamily, encoding one A-family and one B-family terminal oxidase.  B-family 
enzymes have been shown to be adapted to lower concentrations of oxygen than the A-family, 
resulting in a higher affinity for O

2
 but fewer protons pumped per electron (Han et al., 2011).  

Possession of both A- and B-family HCO types may allow strain C50C1 to respire using a 
wide range of oxygen concentrations. This is further supported by the presence of a cytochrome 
bd oxidase, a respiratory quinol:O

2
 oxidoreductase with a very high O

2
 affinity (Borisov et al., 

2011). However, enzymes of the bd oxidase family conserve less energy than HCOs, as they 
derive electrons for O

2
 reduction directly from quinol and lack conserved channels for proton 

pumping, thus bypassing energy conservation at complexes III and IV (Han et al., 2011; Borisov 
et al., 2011). 

C1 fixation, denitrification and sulfur metabolism
	 Fixation of carbon and subsequent assimilation of formaldehyde occurs through the 
RuMP pathway in strain C50C1, which is typical for type Ib methanotrophs. Additionally, 
strain C50C1 also encodes the serine cycle enzymes serine hydroxymethyl transferase (GlyA), 
phosphoenolpyruvate (PEP) carboxylase (Ppc), and malate dehydrogenase (Mdh). PEP 
carboxylase, which is a key enzyme of the serine cycle, is missing in both Methylococcus and 
Methylocaldum genera. The PEP carboxylase encoded by C50C1 belongs to the “non-regulated” 
group of PEP carboxylases (Anthony, 1982) with their activity not controlled by intermediates of 
the TCA cycle or glycolysis/gluconeogenesis (Newaz & Hersh, 1975). Whether these additional 
enzymes give strain C50C1 an advantage over other type Ib remains to be investigated. 
Furthermore, all the enzymes for gluconeogenesis, the TCA cycle, and the non-oxidative pentose 
phosphate pathway are encoded in strain C50C1’s genome. In contrast to Methylocaldum 
marinum (Takeuchi et al., 2014), Methylococcus capsulatus Bath (Bowman et al., 1993) and strain 
GFS-K6 (Islam et al., 2015), ribulose-1,5-bisphosphate carboxylase/oxygenase is not encoded in 
the genome of strain C50C1 (Table 1). 
A possible side reaction of the pMMO in MOB is the oxidation of ammonia to hydroxylamine 
(NH

2
OH). Subsequently, hydroxylamine is detoxified to produce nitrite and nitrous oxide 

(N
2
O), apparently without linking this reaction to energy conservation (Campbell et al., 2011). 

Strain C50C1 possesses genes encoding for cytochrome cd
1
 nitrite reductase (NIR), a NnrS 

protein involved in response to nitric oxide (NO), NO reductase (NOR) and lastly a NnrU 
family protein required for NIR and NOR expression. However, hydroxylamine oxidoreductase 
(HAO) or hydroxylamine reductase is missing from the genome of strain C50C1. As in other 
MOB, no chemolithotrophic growth was observed on ammonium in strain C50C1 and the 
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apparent lack of hydroxylamine detoxifying enzymes might contribute to an inability to cope 
with nitrogen stress caused by nitrification intermediates. However, it has been reported that 
M. denitrificans strain FJG1 under extreme hypoxia couples CH

4
 oxidation to nitrate reduction 

(Kits et al., 2015), which can be an explanation for the presence of denitrification genes in 
strain C50C1.Similar to other methanotrophs such as Methylosarcina lacus and Methylocaldum 
szegediense, strain C50C1 possesses the full soxYZ operon for sulfur oxidation along with sulfite 
dehydrogenase SoxD and the sulfur oxidation molybdopterin protein SoxC. However, whether 
this genomic potential corresponds to an environmental relevance of strain C50C1 in the sulfur 
cycle remains to be investigated. 

Description of Methylotetracoccus gen. nov.
	 Methylotetracoccus [Me.thy.lo.tet.ra.coc’cus]. N.L. n. methylum (from French me´thyle), 
the methyl group; N.L. pref. methylo, pertaining to the methyl radical; N.L. masc. subst. from 
Gr. adj. tetra, four; N.L. masc. n. coccus (from Gr.n. kokkos), a grain or berry; N.L. masc. n. 
Methylotetracoccus, referring to a methyl-using organism with tetrad-forming coccoid cells.
Gram-stain negative, non-motile cocci or coccoids, which reproduce by binary fission and occur 
singly, in pairs, in tetrads or form large cell clusters in old cultures. Cells contain intracytoplasmic 
membranes, arranged as stacks of vesicular disks. Strictly aerobic, neutrophilic, mesophilic and 
non-thermotolerant. Members of the genus are obligate utilizers of C1 compounds, such as 
methane and methanol. Methane is oxidized by pMMO, with sMMO and pXMO being absent. 
Cells are capable of dinitrogen fixation. The major PLFAs are C

16:1
ω9c, C

16:1
ω7c, and C

16:0
. The 

most closely related genera are Methyloparacoccus, Methylocaldum, and Methylomagnum within 
the family Methylococcaceae in the class Gammaproteobacteria. Known habitats are freshwater 
ecosystems such as paddy fields and lake sediments.

Description of Methylotetracoccus oryzae sp. nov.
	 Methylotetracoccus oryzae (O’ryzae N.L. masc. adj. oryzae, pertaining to a paddy field). 
Description is as for the genus with the following amendments. Cells are 1.1-1.4 μm wide and 
1.3-1.8 μm long. Growth occurs only on methane and methanol. Methanol supports growth in 
the range of concentrations 0.1- 4% (v/v); highest growth rates with specific generation times of 
0.033 h-1 (doubling time 21 hours) are observed at 3% (v/v).  Optimal growth occurs at 18-25°C 
and pH 6.8-7.5. Highly sensitive to salt stress; growth is inhibited at NaCl concentrations above 
0.3% (w/v).  The type strain C50C1T was isolated from a paddy field in Cixi, Zhejiang province, 
China. The G+C content of the type strain is 63 mol% (genome sequence). 
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CONCLUSION

	 In this study we isolated a novel type Ib methanotroph that can serve as a representative 
organism for the type Ib freshwater lineage. We report the high-quality draft genome of strain 
C50C1, which can help designing further research to study the role of these MOB in the 
environment. Based on growth experiments along with genomic data, C50C1 seems to be an 
obligate methanotroph able to fix nitrogen. The draft genome indicates a potential for metabolic 
flexibility, with genetic modularity including multiple methanol dehydrogenases, several pathways 
for formaldehyde oxidation, all enzymes of one and several enzymes of another pathway for C1 
fixation, and several terminal oxidases. These genomic potentials could allow strain C50C1 to 
adapt to various environmental conditions, as already seen in its growth temperature range. The 
potential for sulfur oxidation within strain C50C1 and its environmental relevance needs to be 
further investigated.
 

ACKNOWLEDGEMENTS

	 The authors thank Natalia E. Suzina for electron microscopy analyses and Huub Op den 
Camp for help with methanol dehydrogenase classification. Soil sampling was possible thanks 
to Zhihong. This project was funded by the European Research Council (ERC Advanced grant 
Ecomom 339880), the Netherlands Organisation for Scientific Research (NWO VENI grant 
863.14.019) and BE-Basic (grant fp07.002.01). The initial enrichment and isolation was done 
as part of the framework ‘Biogeochemistry of paddy soil evolution’ supported by the Deutsche 
Forschungsgemeinschaft (DFG) and the European Science Foundation EUROCORES 
Programme EuroEEFG. SEB and SND acknowledge the budgetary support (research topic No 
0104-2018-0034).



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 107PDF page: 107PDF page: 107PDF page: 107

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 107PDF page: 107PDF page: 107PDF page: 107

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 107PDF page: 107PDF page: 107PDF page: 107

Isolation of a Novel type Ib Methanotroph

107

5
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Figure S1: Growth dynamics of strain C50C1 in nitrogen-sufficient  (DAMS;circles) or nitrogen-free 
(DMS;squares) medium under atmospheric (open symbols) and low (solid symbols) O

2
 levels. Optical 

density was measured at 600 nm. Arrows represent O
2 
replenishment.
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Table S1: Substrate utilization pattern of strain C50C1. This bacterium can only utilize methane and 
methanol as energy source. 

Substrate OD
600

*

Methane 1.10  ± 0.15

Methanol 0.09  ± 0.01

Acetate 0.03  ± 0.005

Pyruvate 0.04 ± 0.01

Succinate 0.03 ± 0.005

Malate 0.03 ± 0.005

Ethanol 0.04 ± 0.005

Glucose 0.03 ± 0.005

Fructose 0.03 ± 0.005

Sucrose 0.03 ± 0.005

Formate 0.03 ± 0.005

Formaldehyde 0.02 ± 0.01

control 0.03 ± 0.005

*OD
600

 = maximal optical density reached.
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Table S2: Phospholipid Fatty Acid (PLFA) profiles of MOB strain C50C1. The values are the average of 
two technical replicates.

PLFA
% of total PLFA

Average SD*

C14:0 0.34 ±0.01

C15:0 1.12 ±0.06

C16:0 17.73 ±0.77

C16:1w9t 3.91 ±0.05

C16:1w9c 33.01 ±2.66

C16:1w5t 0.19 ±0.02

C16:1w7c 18.13 ±14.82

C16:1w6c 8.67 ±0.03

C16:1w5c 5.95 ±0.27

C16:1 0.80 ±0.02

C17:0 0.15 ±0.00

C17:0 0.26 ±0.03

C17:1w8c 0.16 ±0.01

C18:1 0.11 ±0.02

C18:0 0.53 ±0.00

C18:1w7c 0.93 ±0.18
*SD = standard deviation.
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	 Methane (CH
4
), the most reduced carbon compound in the atmosphere, is considered 

to be a potent greenhouse gas along with water vapour and CO
2
 (Intergovernmental Panel on 

Climate Change 2015)
. 
It is produced in many natural and anthropogenic ecosystems that are 

vulnerable to climate change, making predictions for future shifts in CH
4
 highly uncertain. 

Wetlands are considered to be major sources of CH
4
 and are predicted to form the majority of the 

CH
4
 in our atmosphere by 2100 (McNorton et al., 2016). Increased CH

4
 emissions from these 

ecosystems would in turn have an exacerbating climate feedback, resulting in further warming of 
our planet. Multiple factors, however, such as physical, geochemical and microbial inter-linkages 
are involved in this process complicating the understanding of it (Rigby et al., 2017; Turner et al., 
2017). This thesis has focused on the involvement of aerobic methanotrophs as biofilter for the 
produced methane. The results of this thesis provide an outlook for research on the important 
role that aerobic methanotrophs play in mitigating methane emissions and thus global climate 
change.

Identification of methanotrophic diversity
	 Microorganisms are recognized as the engines behind Earth’s biogeochemical cycles 
(Falkowski et al., 2008). Specifically in the case of the global CH

4
 cycle, microbes are involved 

in both production and consumption of this greenhouse gas.  Most of the CH
4
 produced gets 

oxidized by methanotrophs before it reaches the atmosphere in many environments (Semrau et 
al., 2010; Dedysh & Knief, 2018 and references therein). Aerobic methane oxidizing bacteria 
(MOB) initiate CH

4
 oxidation via an enzyme called methane monooxygenase (MMO), utilizing 

O
2
 to activate CH

4
 to methanol (Hanson & Hanson, 1996). Due to its ubiquity in MOB and 

high degree of conservation, the pmoA gene encoding for one of the subunits of this enzyme 
has been used as a biomarker for investigation of aerobic methanotrophy in the environment. 
Although methanotrophs have been found in various environments, including extreme habitats 
(Op den Camp et al., 2009), their diversity and phylogeny have been expanding only in recent 
years. 
Considering all the novel isolates and the recently obtained genomic information from these 
pure cultures, we wanted to introduce novel primer sets that can be used in future molecular 
studies to investigate MOB communities. In Chapter 2, we used publically available full MMO 
gene operons (pmoCAB) to design novel degenerate primers. Interestingly, pmoB, which is 
proposed to encode for the active site of the MMO protein, was the least conserved of all genes 
(Lieberman & Rosenzweig, 2005).  Whether different MMO enzymes with similar affinities 
for CH

4
 have a higher conservation in their pmoB subunit is a question that needs to be further 

investigated. In our experience, pmoA was still the most conserved gene of this operon. However, 
since the intergenic regions between the three genes were found to be highly variable in the 
methanotrophic lineages, this posed the possibility to target lineage specific sequence fragments.  
For this reason, we designed degenerate primers that target conserved regions in pmoC and pmoA, 
in positions flanking the intergenic region. 
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With the introduction of the new primers, future research of the diversity of methanotrophs in 
the environment can more robustly target these organisms.  Furthermore, with the advancement 
in sequencing technology to produce longer reads, this primer set would be a great candidate 
for the generation of amplicon libraries. This would greatly aid in phylogenetic analysis of 
methanotrophs and expand our understanding of their diversity in various ecosystems.

CH
4
 sources and sinks can be highly variable

	 As the human population on earth rises, our food production needs to increase to meet the 
demands. This translates to increasing transformation of wetlands into cultivated agricultural 
land (IPCC, 2013; Pearman, 1986; Dlugokencky et al., 1994). To date, there have been many 
studies that focus on the effect of methanotrophs on CH

4
 fluxes in either wetland or upland 

environments. These studies reach contradicting conclusions on various factors in soil (such as 
temperature, pH, fertilizing, O

2
 availability, etc.) effecting the methanotrophic community with 

some showing a positive correlation and others having a negative one (see, i.e., Supplementary 
Table S1 in Chapter 3).  What is not so often considered in the experimental design is the 
inclusion of both a sink and a source environment along with CH

4
 flux data to investigate the 

methanotrophic community composition in both environments in more detail. This is what 
was done in Chapter 3 of this thesis to understand whether variations in CH

4
 fluxes affect the 

establishment of native bacterial communities in soil. 
Our findings suggest that one should exercise caution when making assumption that every 
cultivated wetland is a source and upland is a sink for CH

4
. These fluxes can be highly variable, 

which could be influenced by multiple factors (such as season, sampling site, water temperature, 
etc.). Moreover, our results with regards to the methanotrophic diversity and relative abundance 
in a cultivated wetland were in consent with literature reports, observing a higher and more 
diverse MOB community in a cultivated wetland compared to a non-cultivated meadow. 
In future research, it would be highly relevant to follow possible shifts in the total bacterial 
community in soil when the soil is changed from an upland to a wetland used for cultivation. 
‘Soil transplant’ experimental designs, which displace soil from one environment to another, 
would shed light on how and if bacterial communities change to be more consistent with the 
surrounding community. Lastly, spatial variations of methanotrophs need further investigation 
to deduce possible trends in the community based on location within a studied site.

Microcosm as a system to study methanotrophs	
	 In Chapter 4 of this thesis, we transplanted soil samples from a paddy field into lab-scale 
microcosms in order to investigate the role microbes play in the establishment of CH

4
 and O

2
 

counter-gradients. This microcosm system has been used previously to illustrate that even 
a millimeter of soil can make a huge difference with regards to the community structure of 
methanotrophs in paddy fields (Reim et al., 2012). We found that this system could be used for 
long term (3 month) incubation of soil to allow enrichment of slow growing methanotrophs. The 



530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 117PDF page: 117PDF page: 117PDF page: 117

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019Processed on: 18-4-2019 PDF page: 117PDF page: 117PDF page: 117PDF page: 117

530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi530527-L-bw-Ghashghavi
Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019Processed on: 16-4-2019 PDF page: 117PDF page: 117PDF page: 117PDF page: 117

Integration and Outlook

117

6

continuous monitoring of the enriched soil slurries together with metagenome sequencing revealed 
that the bacterial community was apparently driving the establishment of the O

2
 profile.

Generally speaking, classical methods of isolation used to obtain pure cultures from paddy field 
samples result in type II methanotrophs being isolated. This is due to faster growth rates and reported 
higher abundance of type II methanotrophs compared to type I in this type of environment (Hanson 
& Hanson, 1996; Henckel et al., 2000; Macalady et al., 2002). An advantage of using microcosm 
systems in future isolation experiments is that a pre-enrichment with slow-growing methanotrophs 
that are present in lower relative abundance can be obtained. Therefore, the microcosm set-up 
opens up new opportunities to study previously uncultured lineages of methanotrophs that are 
highly prevalent in wetland ecosystems based on environmental sequences.  

Importance and relevance of pure isolates
	 We are currently living in what can be called the “omics” era where many studies are designed 
to be culture-independent with vast amount of data recovered from oftentimes minute sample 
volumes.  These metagenome and transcriptome studies, along with proteome and metabolome 
analysis have allowed us to gain great insights into how bacteria function in a community at 
different levels of the cellular machinery, both in the environment and engineered systems. While 
many ground-breaking discoveries have been made using such methods, many hypotheses have 
also been raised with regards to the function of specific organisms observed in those microbial 
consortia. Hence, cultivation, and isolate of pure cultures is necessary for the study of these 
specific physiological traits.
In Chapter 5 of this thesis, various phenotypical and genotypical aspects of pure methanotrophic 
isolates were compared with focus on a novel type Ib isolate introduced in this chapter. The 
detailed comparisons of physiological properties described would not have been possible if the 
isolates were not obtained in pure cultures. Moreover, a closer look into the different isolates 
with regards to their physiology and genome analysis gives us more insights to the adaptability 
of different methanotrophs to the environment they are isolated from. In conclusion, this study 
illustrated that obtaining novel isolates will always be at of central importance in studying the 
role microbes play in various ecosystems.

Concluding remarks
	 More than a century of research on methanotrophs so far has undoubtedly proven them 
to be an intriguing group of microbes to study from an ecological, physiological, biochemical 
and application point of view. While these microorganisms come in a great variety of shapes and 
sizes with countless genomic potentials and physiological traits, they all share the process of CH

4
 

oxidation. This one crucial step in these microorganisms has an enormous global impact on the 
earth’s carbon cycle. Judging by trends seen in recent years of increasing global temperatures and 
climate change, this specialized group of bacteria will only become more important for the future 
of our planet. Therefore, methanotrophs will undeniably be the subject of research tackling to 
unravel their global impact on earth’s biogeochemical cycles.
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