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Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract

infections and hospitalization in infants under 1 year of age and there is currently no

market-approved vaccine available. For protection against infection, young children

mainly depend on their innate immune system and maternal antibodies. Traditionally,

antibody-mediated protection against viral infections is thought to be mediated by

direct binding of antibodies to viral particles, resulting in virus neutralization. However,

in the case of RSV, virus neutralization titers do not provide an adequate correlate of

protection. The current lack of understanding of the mechanisms by which antibodies

can protect against RSV infection and disease or, alternatively, contribute to disease

severity, hampers the design of safe and effective vaccines against this virus. Importantly,

neutralization is only one of many mechanisms by which antibodies can interfere with

viral infection. Antibodies consist of two structural regions: a variable fragment (Fab)

that mediates antigen binding and a constant fragment (Fc) that mediates downstream

effector functions via its interaction with Fc-receptors on (innate) immune cells or

with C1q, the recognition molecule of the complement system. The interaction with

Fc-receptors can lead to killing of virus-infected cells through a variety of immune

effector mechanisms, including antibody-dependent cell-mediated cytotoxicity (ADCC)

and antibody-dependent cellular phagocytosis (ADCP). Antibody-mediated complement

activation may lead to complement-dependent cytotoxicity (CDC). In addition, both

Fc-receptor interactions and complement activation can exert a broad range of

immunomodulatory functions. Recent studies have emphasized the importance of

Fc-mediated antibody effector functions in both protection and pathogenesis for various

infectious agents. In this review article, we aim to provide a comprehensive overview of

the current knowledge on Fc-mediated antibody effector functions in the context of RSV

infection, discuss their potential role in establishing the balance between protection and

pathogenesis, and point out important gaps in our understanding of these processes.

Furthermore, we elaborate on the regulation of these effector functions on both the

cellular and humoral side. Finally, we discuss the implications of Fc-mediated antibody

effector functions for the rational design of safe and effective vaccines and monoclonal

antibody therapies against RSV.

Keywords: RSV, antibody, Fc gamma receptor, Fc-mediated effector functions, antibody functionality, ADCC,

ADCP, vaccine

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.00548
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.00548&domain=pdf&date_stamp=2019-03-22
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:puck.van.kasteren@rivm.nl
https://doi.org/10.3389/fimmu.2019.00548
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00548/full
http://loop.frontiersin.org/people/568344/overview
http://loop.frontiersin.org/people/632634/overview


van Erp et al. RSV-Specific Antibody Effector Functions

INTRODUCTION

Respiratory syncytial virus (RSV) infection is a major cause of
severe respiratory illness requiring hospitalization in young
infants (1). Hospitalization for severe RSV-mediated disease
peaks between 6 weeks and 6 months of life (2, 3), when
infants mainly depend on their innate immune system and
maternal antibodies for protection against infectious diseases.
However, the exact role of RSV-specific maternal antibodies is
unclear. Some studies show that high titers of maternal antibodies
are associated with protection against RSV infection (4–6);
whereas others indicate that high maternal antibody titers do
not have a beneficial effect or even associate with an increased
risk of recurrent wheezing (7–11). It is important to note
that the antibody titers in these studies are determined by in
vitro binding or neutralization assays, while additional antibody
effector functions are not taken into account.

For nearly all licensed vaccines, antibodies are the presumed
correlate of protection, but the underlying mechanisms of
protection often remain unknown (12). Recent research suggests
that, in addition to binding and neutralization, antibody effector
functions are important contributors to protective immunity
against several viruses, including influenza virus (13–15), HIV
(16, 17), and Ebola virus (18, 19).

In contrast to their beneficial role in providing protection
against infection and disease, antibodies have also been
implicated in disease enhancement. For example, non-
neutralizing dengue-specific antibodies have been shown to
mediate antibody-dependent enhancement (ADE) of disease
(20, 21). Interestingly, the 1960’s formalin-inactivated (FI) RSV
vaccine induced poorly-neutralizing antibodies which have
been suggested to be involved in vaccine-enhanced disease
upon natural infection (22–24). These examples illustrate
the possibility that virus-specific antibodies contribute to
pathogenesis when failing to protect.

Currently, the RSV field lacks a comprehensive overview
of antibody effector functions in the context of RSV infection
and disease. Here, we review what is known about various
antibody effector functions during RSV infection, discuss their
potential role in establishing the balance between protection and
pathogenesis, and point out important gaps in our understanding
of these processes. Moreover, we elaborate on the regulation of
these effector functions on both the cellular and humoral side.
Finally, we discuss the implications of antibody-mediated effector
functions for the rational design of safe and effective vaccines
and monoclonal antibody therapies against RSV. A thorough
understanding of the role of antibodies in protection or disease
during RSV infection is crucial for the development of new and
improved vaccination strategies and may provide much-needed
new insights into the precise mechanisms of antibody-mediated
protective immunity.

FC-MEDIATED ANTIBODY
EFFECTOR FUNCTIONS

Antibody effector functions are an important part of the humoral
immune response and form an essential link between innate and

adaptive immunity. Most of these effector functions are induced
via the constant (Fc) region of the antibody, which can interact
with complement proteins and specialized Fc-receptors. The
latter can induce activating or inhibitory pathways, depending on
the type of receptor, and are found on B cells and most innate
immune cells in various combinations. The most well-known
Fc-mediated antibody effector functions are antibody-dependent
cell-mediated cytotoxicity (ADCC), antibody-dependent cellular
phagocytosis (ADCP), and complement-dependent cytotoxicity
(CDC). In addition, antibodies have been found to mediate
inflammation and immunomodulation through the induction of
cellular differentiation and activation. Each of these functions is
described in detail below and a schematic overview is depicted
in Figure 1.

ANTIBODY-DEPENDENT CELL-MEDIATED
CYTOTOXICITY (ADCC)

ADCC is induced when Fc gamma receptors (FcγRs) on innate
effector cells are engaged by the Fc domain of antibodies that are
bound to viral proteins on the surface of virus-infected cells. This
interaction induces the release of cytotoxic granules (containing
perforins and granzymes) resulting in killing of infected cells
(25). Multiple innate effector cells, including natural killer (NK)
cells, neutrophils, monocytes, and macrophages, are capable of
ADCC in vitro. However, the most important contributors to
ADCC in vivo are thought to be NK cells, which express only
FcγRIIIA. Figure 2 shows a schematic representation of ADCC.

In the field of tumor immunology, ADCC has been recognized
as an important mechanism of action for therapeutic monoclonal
antibodies (mAbs) that target tumor cells [as reviewed by
(26)]. For infectious diseases, ADCC only recently started to
gain attention. ADCC has been shown to form a critical
component of effective immunity against HIV and influenza
virus. ADCC-inducing HIV-specific antibodies were identified
as a key correlate of protection in the RV144 HIV vaccine
trial (27–29). Moreover, HIV-infected individuals who control
the virus without antiretroviral therapy demonstrated a broader
polyfunctional humoral immune response including ADCC
activity compared to viremic individuals (30–33). There has been
much debate about the role of ADCC during influenza-induced
disease. Some studies point to the protective capacity of ADCC-
inducing antibodies (34, 35), whereas others do not show any
role for NK cells in antibody-mediated protection (36), or even
suggest involvement of ADCC in exaggeration of the immune
response (37–39). For multiple other clinically important viral
infections, including dengue virus and Ebola virus, research into
the effect of ADCC is ongoing (40–42). Taken together, ADCC
seems to be involved in the immune response against multiple
viruses and is therefore potentially of interest in the context of
RSV infection.

ADCC in RSV Infection
NK cells are the most important contributors to ADCC in
vivo and important effector cells during RSV infection. In
mice, increased numbers of NK cells are present in the lungs
early after RSV infection (43–45). In RSV-infected infants, the
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FIGURE 1 | Fc-mediated antibody effector functions. Antibodies elicit a wide range of effector functions during viral infections. These include but are not necessarily

limited to the functions depicted in this figure. DC, dendritic cell; FcγR, Fc gamma receptor; MAC, membrane attack complex; NK cell, natural killer cell.

proportion of NK cells has been reported both to be decreased
(46–49) or increased (50, 51) in comparison with healthy
controls or infants with mild symptoms. Since maternally-
derived antibodies are virtually always present during primary
RSV infection and antibody-coated virus-infected cells are a
trigger for ADCC, it can be assumed that ADCC occurs during
primary RSV infection.

Although NK cells are thought to be the most important
mediators of ADCC against virus-infected cells, this has
never been shown for RSV. All studies mentioned below are
performed with peripheral blood mononuclear cells (PBMCs),
without distinction between different cell types. RSV-specific
immunoglobulin G (IgG) has been shown to induce ADCC
toward RSV-infected epithelial cells in vitro (52, 53). The
major surface antigens of RSV are the fusion (F) and the
attachment (G) protein which are both required for infectivity
in vivo. The RSV F protein has two conformational states: post-
fusion (post-F) and pre-fusion (pre-F), of which the latter is
a potent target for neutralization (54). Multiple studies show
that anti-RSV G antibodies are efficient inducers of ADCC in
vitro (55, 56), and the involvement of this process in virus
clearance in vivo has been proposed (57, 58). In contrast,
anti-RSV F antibodies do not efficiently induce ADCC in

vitro (55), although it must be noted that no distinction
between pre- and post-F antibodies was made and the ADCC
potential could differ between the two functional states of the
F protein.

Antibodies from breast milk, cord blood, and nasopharyngeal
secretions and serum from RSV-infected infants show ADCC
activity in vitro (52, 53, 59). This shows that the antibodies
that are present in vivo are capable of eliciting ADCC activity
in vitro. Two studies showed that the level of ADCC activity
measured in vitro was independent of clinical symptoms and
age, suggesting that ADCC is not a determining factor in
the varying clinical manifestations of primary RSV infection
(53, 59). Interestingly, the ADCC capacity of serum antibodies
from RSV-infected infants rapidly declines over time, whereas
the neutralization capacity remains more stable. If ADCC
is important in protection against infection, this decline
could partly explain the susceptibility to repeated infections
throughout life.

Limited evidence is present on the occurrence of ADCC
during RSV infection in vivo. The most convincing data is
provided by mouse studies performed with anti-RSV G protein-
specific Fab- or F(ab′)2 fragments lacking the complete Fc
domain, or aglycosylated antibodies lacking the glycosylation site
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FIGURE 2 | Antibody-dependent cell-mediated cytotoxicity (ADCC). Fc

gamma receptors present on for example natural killer (NK) cells engage

antibody-bound infected cells and induce target cell death through the release

of cytotoxic granules. FcγRIIIA, Fc gamma receptor IIIA; NK cell, natural killer

cell; RSV, respiratory syncytial virus.

that is required for efficient FcγR and complement interactions
(58, 60, 61). It was shown that Fab fragments of the 1812A2B
anti-RSV G antibody and F(ab’)2 fragments of the 131-2G
anti-RSV G antibody do not reduce viral load, whereas the
corresponding intact antibodies do confer protection (58, 60).
The authors propose that virus clearance by the 131-2G antibody
is mediated through ADCC, however, the involvement of other
Fc-mediated effector functions in this study cannot be ruled
out. In an attempt to ascertain the role of ADCC by NK
cells in the protective mechanisms of the anti-RSV G antibody
18A2B2, SCID beige mice (which are deficient in NK cell
activity) were passively immunized with the full antibody (60).
In this study, the absence of NK cells had no effect on the
protective capacity of 18A2B2, pointing to the involvement
of other Fc effector functions. Further research is needed to
study the exact role of ADCC for other mAbs and RSV-
immune serum. Passive immunization with aglycosylated 1C2
anti-RSV G antibodies reduced virus titers significantly but
were not as effective as wildtype antibodies, indicating that
protection by the 1C2 antibody is mediated by both Fc-
dependent and Fc-independent mechanisms (61). Although
these studies highlight the importance of Fc-mediated antibody
effector functions in protection against RSV infection in the
case of these specific anti-RSV G mAbs, the role of ADCC in
protection or pathogenesis during natural RSV infection remains
to be determined.

FIGURE 3 | Antibody-dependent cellular phagocytosis (ADCP). Phagocytes

can clear virus-infected cells and immune complexes that are engaged by Fc

gamma receptors through phagocytosis. Uptake of viral particles or proteins

leads to antigen presentation, which induces the adaptive immune system.

FcγR, Fc gamma receptor; MHC, major histocompatibility complex; RSV,

respiratory syncytial virus.

ANTIBODY-DEPENDENT CELLULAR
PHAGOCYTOSIS (ADCP)

ADCP or opsonophagocytosis is the uptake of virus-antibody
complexes or antibody-coated virus-infected cells by phagocytic
cells (for a schematic representation of this process see
Figure 3). Phagocytic cells, including monocytes, macrophages,
neutrophils, eosinophils and dendritic cells (DCs), express FcγRI,
FcγRII, and FcαRI, which can all mediate immune complex
uptake. The exact phagocytic capacity of effector leukocytes
is dependent upon the cell type, differentiation stage, and
level of FcγR expression. ADCP results in the clearance of
immune complexes from the infected host, by trafficking of the
complexes to lysosomes for degradation and antigen processing
for presentation on Major Histocompatibility Complex (MHC)-
molecules on the cell surface. Interestingly, some viruses have
exploited this mechanism to infect phagocytes by escaping from
lysosomal degradation (described below in “Antibody-dependent
enhancement of infection”).

ADCP has been extensively described for its role in protection
against bacteria, but its importance during viral infections
is unclear. Some studies have been performed for influenza
virus, showing that phagocytosis by (alveolar) macrophages may
contribute to protection from infection in mice (36, 62) and
potentially plays a role in the recovery from severe infections in
humans (15, 63). Also for cytomegalovirus (CMV), it was shown
that vaccine-induced antibodies play an important role in vaccine
efficacy, independent of neutralization or ADCC capacity (64). In
accordance with these results, a study by Nelson et al. showed no
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role for neutralization or ADCC, while robust ADCP induction
was observed (65). Antibody-mediated clearance by phagocytes
in vivo has also been suggested for HIV (66, 67), adenovirus
(68), West Nile Virus (WNV) (69), and foot-and-mouth disease
virus (70, 71).

ADCP in RSV Infection
Phagocytosis of RSV-antibody complexes or RSV-infected cells
has to our knowledge never been directly explored as a protective
immune mechanism for RSV. In vitro studies show phagocytosis
of RSV immune complexes by neutrophils (56, 72, 73) and
eosinophils (74). Varying levels of phagocytic activity have
been observed for different RSV-specific monoclonal antibodies,
suggesting that ADCP activity depends on epitope and/or affinity
(56, 73). An in vivo mouse study has shown that macrophages
are essential in conferring antibody-mediated restriction of RSV
replication, whereas neutrophil depletion did not significantly
affect pulmonary viral replication (75). This suggests that Fc-
mediated effector functions executed bymacrophages rather than
neutrophils are important in protection against RSV infection in
a mouse model.

Besides the uptake of viral particles, phagocytosis initiates
the activation of cells. This can result in the release of a broad
range of effector molecules (72–74), which will be described in
detail in “Antibody-dependent immunomodulation during RSV
infection.” Although there is limited evidence on the role of
ADCP during RSV infection, the importance of macrophages
in antibody-mediated protection in mice provides a basis for
further investigation.

ANTIBODY-MEDIATED
COMPLEMENT ACTIVATION

Besides ADCC and ADCP, antibodies can also induce
complement activation. The complement cascade contributes to
pathogen elimination either directly, by means of complement-
dependent cytotoxicity (CDC), or indirectly, through phagocytic
clearance of complement-coated targets and the induction of an
inflammatory response. Activation of the classical complement
pathway results from binding of the recognition molecule
C1q to the Fc domain of antibodies bound to virus-infected
cells (76, 77), as depicted in Figure 4. Upon binding of C1q,
the proteases of the classical pathway are activated, leading to
cleavage of C2 and C4. Together, the resulting cleavage products
form the C3 convertase (C4bC2a) that cleaves C3 into C3a
and C3b. One of the mechanisms by which the complement
cascade is regulated, is cleavage of active C4b, which serves as a
marker for complement activation. The release of anaphylatoxins
C3a and C5a stimulates a pro-inflammatory environment by
inducing the recruitment of immune effector cells and the
activation of leukocytes, endothelial cells, epithelial cells, and
platelets (78, 79). The highly reactive C3b binds to pathogens
and infected cells, leading to immune complex clearance and
phagocytosis through complement receptors found on immune
cells. The terminal complement components will assemble into
the membrane attack complex (MAC), resulting in lysis of the

infected cell. Besides direct antiviral activity, the complement
system can also regulate B cell responses. The binding of
complement-coated immune complexes to complement receptor
2 on B cells is reported to lower the B cell activation threshold,
thereby promoting long-lived adaptive immunity and higher
antibody levels (80, 81).

Complement can have both a protective and pathogenic
role during viral infections. The protective capacity of poorly
neutralizing antibodies duringWNV infection is mediated by the
complement system, as was shown using knockout mice (69).
The presence of complement even enhances the neutralization
capacity of WNV-specific antibodies (82). In addition, an
important role for complement has been shown in the protective
capacity of (monoclonal) antibodies against influenza virus
(38, 83), vaccinia virus (84), CMV (85), and HIV (66, 67).
In contrast, complement activation has also been suggested to
contribute to disease severity in dengue virus (86, 87) and HIV
infection (88, 89).

Antibody-Mediated Complement
Activation in RSV Infection
The complement system consists of multiple components and
elicits its effector functions through different pathways. Early
studies have shown antibody and complement deposition
on nasopharyngeal cells of RSV-infected infants (90).
Whether this contributed to viral clearance or disease was
not determined. Studies in complement-deficient mice have
shown that complement is important in antibody-mediated
protection against RSV infection (60, 75). A number of different
mechanisms have been suggested for this complement-enhanced
protection. Firstly, direct enhancement of the neutralization
capacity of antibodies by fixation of complement components
to virus-antibody complexes may increase the steric hindrance
of bound antibodies (91). Another mechanism that could be at
play is complement-dependent opsonization of virus-infected
cells, which leads to subsequent uptake by phagocytes. Finally,
complement has also been shown to increase the CD4(+) T cell
response in the presence of RSV immune serum in an in vivo
mouse model (92).

Besides its potential role in the clearance and/or pathogenesis
of natural RSV infection, complement activation has been
suggested to contribute to disease enhancement induced by
natural infection following FI-RSV vaccination. C3a receptor
(C3aR)-deficientmice had decreased airway hyperresponsiveness
(AHR) and less mucus production in an FI-RSV vaccination-
challenge model (93). In this study, C3aR expression was
enhanced in C5-knockout mice, showing that the balance in
activation of different complement factors (C3a vs. C5a) is
important in determining disease outcome. Moreover, Polack
et al. demonstrated the co-localization of IgG and C3 in the
lungs of mice with enhanced RSV disease, but not in control
mice (22). In addition, both C3- and B cell-knockout mice
showed a decrease in bronchoconstriction compared toWTmice
vaccinated with FI-RSV. Therefore, in a mouse model of vaccine-
enhanced disease, the presence of C5 seems protective, whereas
C3a promotes enhanced disease. This is also supported by the
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FIGURE 4 | Antibody-mediated complement activation. Binding of C1q to antibody-bound virus-infected cells leads to activation of the classical complement pathway.

C3 convertase (C4bC2a) is formed and cleaves C3 into C3a and C3b. Active C4b can be cleaved into the enzymatically inactive form C4d, which serves as a marker

for complement activation. Further downstream in the classical complement pathway, C5 is cleaved into C5a and C5b. C3a and C5a are anaphylatoxins that stimulate

a pro-inflammatory environment, although they act in different ways: C3a induces C3aR signaling, whereas C5a inhibits C3aR expression. C3b binds to pathogens

and infected cells, leading to phagocytosis through complement receptors found on immune cells. The terminal complement components will assemble into the

membrane attack complex (MAC), resulting in direct lysis of the infected cell. C3aR, C3a Receptor; MAC, membrane attack complex; RSV, respiratory syncytial virus.

limited data available on complement activation during vaccine-
enhanced disease in infants. Lung sections of the two children
who died of vaccine-enhanced disease had extensive deposition
of complement cleavage product C4d, which serves as a stable
marker for complement activation (22). The presence of C4d
provides evidence for complement activation during vaccine-
enhanced disease in infants, but it remains to be determined
whether there is a causal relation between complement activation
and vaccine-enhanced disease. Finally, mouse studies point to the
involvement of complement components in the development of
AHR and asthma upon RSV infection (94, 95). Taken together,
the complement system seems to be important in antibody-
dependent protection in vivo, but it also potentially contributes
to (vaccine-enhanced) disease and asthma, suggesting a dual role
in RSV infection that requires further investigation.

ANTIBODY-MEDIATED
IMMUNOMODULATION

Besides the well-defined classical Fc-mediated effector functions
(ADCC, ADCP, CDC), immune complexes can also promote
immune cell maturation and activation, leading to a wide range
of effector activities and production of pro-inflammatory and
immunomodulatory mediators (a limited overview is depicted in
Figure 5). Some of these pro-inflammatory cytokine responses
correlate with protection as has been shown for influenza (62)

and HIV (96). The importance of FcγRs in this process has been
shown by the use of FcγR-deficient mice [as extensively reviewed
in (97)]. In contrast to the pro-inflammatory responses caused by
immune complexes, injection with intravenous immunoglobulin
(IVIg) can induce an anti-inflammatory state. It is proposed that
this anti-inflammatory effect is partly due to the presence of
sialylated antibodies in IVIg, which induce expression of FcγRIIB
(the only inhibitory FcγR) and thereby dampen the inflammatory
response (98).

Immune complexes can also regulate cellular maturation and
activation. The balance between inhibitory and activating FcγR
interactions is crucial in regulating B cell IgG responses (99–101),
and skewing APC maturation and antigen presentation (102–
105), which can modulate T cell activation. Immune complexes
have also been shown to bias the macrophage immune response
toward a Th2-like phenotype (106).

Antibody-Mediated Immunomodulation in
RSV Infection
RSV-antibody complexes can lead to activation of phagocytes
either directly or after phagocytosis, resulting in the production
of reactive oxygen species (ROS), thromboxane, (pro-
inflammatory) cytokines, and chemokines (72, 73, 107),
which may contribute to viral clearance. However, these
mediators can also have immunopathological effects, including
tissue damage, platelet aggregation, and bronchoconstriction.
Given that neutrophils are the predominant airway leukocytes
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FIGURE 5 | Antibody-mediated immunomodulation. Immune complexes can skew immune cell maturation and activation of granulocytes, dendritic cells, T cells, B

cells, and phagocytes. This immunomodulation can lead to (A) degranulation, (B) skewing of T cell responses, (C) regulation of B cell antibody responses, and

(D) phagocytosis-induced secretion of immunomodulatory mediators. ROS, reactive oxygen species.

present in RSV-infected infants, their activation is suggested
to be involved in the induction of severe RSV disease (108).
Interestingly, in contrast to RSV immune complexes, it
has been reported that RSV alone does not lead to ROS
production by granulocytes (107) and can even inhibit
this process (73, 109). It has been suggested that anti-RSV
G mAbs are less potent inducers of ROS and cytokine
production than anti-RSV F mAbs (73), but this was based
on experiments with only two RSV-specific antibodies. Notably,
differences in the capacity to induce a response may not be
due to antigen-specificity per se but rather due to epitope
localization, as described in the paragraph “Important epitopes
in RSV infection.”

Excessive eosinophilic activation has been suggested to play a
role in the immunopathology of FI-RSV-induced disease in mice
(22). Whether the non-neutralizing antibodies induced by the
FI-RSV vaccine play a role in this activation remains unknown.
In vitro studies have shown that eosinophils can phagocytose
RSV-antibody complexes, leading to degranulation (74). The
use of heat-inactivated serum abolished this effect, indicating
complement involvement.

Besides an immunomodulatory effect on granulocytes, RSV-
antibody complexes can also affect T cell responses. Kruijsen
et al. show in an in vivo mouse model that IFN-γ secretion by
CD4(+) T cells is increased in the presence of RSV immune
serum (92). This increase is dependent on both FcγRs and the
complement system. Additional in vitro experiments indicate
that both anti-RSV G, as well as anti-RSV F antibodies can
induce this enhanced CD4(+) T cell response, whereas CD8(+)
T cells are only activated by the presence of anti-RSV G
antibodies. Another in vitro study found that DCs primed
with complexes composed of RSV and F-specific antibodies

displayed an impaired capacity to activate CD8(+) and CD4(+)
T cells (110).

RSV-antibody complexes also contribute to antibody-
mediated immunomodulation through the induction or
inhibition of cytokine and chemokine production in PBMCs.
In an in vitro study, RSV-antibody complexes inhibited
IFN-α production in PBMCs, whereas these complexes
enhanced IFN-α production of PBMCs in the absence
of CD14(+) cells (111). Another in vitro study showed
that, compared to RSV alone, RSV immune complexes
induce increased IFN-α, IFN-γ, CXCL10, and CXCL11
production in monocytes (112). In infant PBMCs, only CXCL10
production was significantly enhanced. CXCL10 can mediate
a neutrophil-dependent excessive pulmonary inflammation
(113), which could contribute to RSV pathogenesis. This
indicates that immune complexes can potentially also activate
neutrophils indirectly, through the induction of chemokines
and cytokines in PBMCs. Altogether, these studies show
that immune complexes are able to skew the RSV-specific
immune response in multiple ways, but more research
is needed to clarify the exact contribution of antibody-
mediated immunomodulation to protection and disease during
RSV infection.

ANTIBODY-DEPENDENT ENHANCEMENT
(ADE) OF INFECTION

ADE refers to a phenomenon in which virus-specific
antibodies promote, rather than inhibit, infection and/or
disease. In ADE of infection, also known as extrinsic ADE
(114), the number of virus-infected cells is increased in the
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presence of (natural or monoclonal) antibodies that are non-
neutralizing or present in sub-neutralizing concentrations.
ADE of infection requires the presence of FcγRs on target
cells and is an efficient in vitro tool to assess Fc-FcγR
interactions. However, while ADE of infection has been
observed for many viruses in vitro [as extensively reviewed
in (115)], its significance in vivo remains uncertain. A
schematic representation of ADE of infection is depicted
in Figure 6.

ADE of RSV Infection
ADE of RSV infection has been demonstrated in vitro
for both mAbs and RSV-immune serum in monocytic cell
lines, PBMCs, neonatal, and adult NK cells, and primary
mouse and cotton rat immune cells (110, 116–120). However,
whether the ADE of infection observed in vitro is related
to in vivo disease outcome is doubtful. No correlation has
been found between disease severity in infants and the
capacity of serum antibodies to induce ADE of RSV infection
in vitro (119). Furthermore, ADE of infection has never
been demonstrated in vivo. However, it must be noted
that this has never been assessed during FI-RSV vaccine-
enhanced disease.

ANTIBODY-DEPENDENT ENHANCEMENT
(ADE) OF DISEASE

ADE of disease, or instrinsic ADE (114), refers to a process in
which the presence of pathogen-specific antibodies contributes
to disease severity. For example, immune complexes might
bind to FcγR-expressing immune cells, modulating the
immune response, and subsequently leading to enhanced
inflammation. ADE of disease has been a presumed cause

of severe disease following various viral infections and
vaccinations (37, 114, 121–123). However, the underlying
mechanisms are largely unknown and in vivo data supporting
these claims are often lacking. However, for dengue virus
infection some first clues to unravel the mechanism underlying
ADE of disease have recently been published. Wang et al.
have been able to show a correlation between FcγRIIIA
binding capacity of dengue virus antibodies and disease
severity in vivo (21). The dengue-specific antibodies are
thought to cross-react with platelet antigens and induce
thrombocytopenia. Suggested underlying mechanisms are
FcγR-mediated platelet activation, phagocytosis, or ADCC, but
further investigation is needed to confirm these hypotheses.
In addition, Katzelnick et al. have shown that high dengue-
specific antibody titers correlate with protection, whereas
intermediate antibody titers correlate with severe dengue disease
(124). Although low or no antibody titers are not protective,
they do not enhance disease. It is possible that RSV-specific
antibodies show a similar pattern, as illustrated schematically
in Figure 7.

ADE of RSV Disease
Although in vitro ADE of infection does not seem to be
a determinant for severe RSV disease (119), other antibody-
mediated mechanisms could be involved, as has recently been
shown for dengue virus infection (21). Many animal studies
on RSV infection highlight the role of an excessive immune
response in FI-RSV vaccine-enhanced disease. It is likely that
poorly-neutralizing vaccine-induced antibodies play a role in
the development of FI-RSV vaccine-enhanced disease (22–
24), although it remains uncertain which Fc-mediated effector
functions are involved.

FIGURE 6 | Antibody-dependent enhancement (ADE) of infection. ADE of infection has been shown in vitro for multiple viruses, including RSV. High antibody titers

neutralize the virus completely. Sub-neutralizing antibody titers form immune complexes that can interact with both the virus receptor and Fc gamma receptors,

leading to enhanced infection levels compared to infection in the absence of antibodies.
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FIGURE 7 | Antibody-dependent enhancement (ADE) of disease. ADE of disease refers to a process in which the presence of pathogen-specific antibodies

contributes to disease severity. Highly neutralizing antibodies result in sterile immunity, preventing infection and disease (left panel). The presence of low levels of

protective antibodies allows for viral replication and leads to an Fc-mediated immune response that can either contribute to protection (second panel) or potentially

lead to more severe disease (third panel) compared to infection in the absence of antibodies (right panel). It is currently unknown whether Fc-mediated effector

functions can lead to severe disease and which immunological mechanisms determine the difference between protective or enhancing Fc-mediated responses.

Little is known on the involvement of (maternal) antibodies
in the development of severe disease after natural RSV
infection. Severe RSV infections are most frequently seen
in the first 6 months of life when infants have circulating
maternal RSV-specific antibodies (2). This suggests that
RSV-specific antibodies may contribute to the induction
of severe RSV disease. Results from animal studies with
Fab fragments and FcγR-knockout mice indeed show the
involvement of antibody-mediated effector functions both in
protection against viral replication (58, 60, 61) and in promoting
inflammation (92).

Some studies have reported enhanced RSV disease to
occur in the presence of waning immunity. Murphy et al.
reported enhanced pulmonary pathology 3 months after
immunization with a RSV F glycoprotein vaccine (125),
which was not seen 1 week after immunization (126). In
a follow-up study, enhanced lung pathology was observed
upon immunization with low doses of recombinant F protein,
mimicking waning immunity (127). Interestingly, the enhanced
disease was independent of the presence of a Th1- or
Th2-biasing adjuvant.

Taken together, there are clear indications suggesting that
Fc-mediated antibody effector functions may contribute to
severe RSV disease. Complement activation has been linked to
vaccine-enhanced disease and asthma, and may therefore also
be involved in severe RSV disease upon natural infection. In
addition, the immunomodulatory effects of immune complexes
can lead to a pro-inflammatory environment, which is thought
to be the underlying cause of RSV-mediated pathology.
However, more research on the involvement of individual Fc-
mediated effector functions in disease outcome following RSV
infection is needed.

REGULATION OF FC-MEDIATED
EFFECTOR FUNCTIONS

Fc-mediated antibody effector functions play an important role
in shaping the immune response and their active regulation
is crucial to prevent excessive immune activation. A number
of determinants have been found to influence Fc-mediated
effector functions on both the cellular and antibody side
of the Fc-Fc receptor (FcR) interaction. Important antibody
characteristics are the isotype, subclass, glycosylation pattern,
and antigen specificity, while important cellular determinants are
the epitope position relative to the target cell membrane and
FcR expression and polymorphisms on the effector cell, which
together determine the capacity of the antibody to interact with
specific FcRs.Most antibodies are not specifically eliciting a single
effector function, and therefore the combination of all these
characteristics determines the outcome of the various Fc-FcR
interactions and the interaction with the complement system.

ANTIBODY ISOTYPE AND SUBCLASS

Antibodies consist of two functional domains: the variable
antigen-binding fragment (Fab) and the constant fragment (Fc)
that interacts with FcRs and C1q. The isotype of the Fc domain
(IgA, IgD, IgE, IgG, and IgM) represents the major determinant
of Fc-mediated effector functions. Of these isotypes, IgG is
the most important when it comes to Fc-mediated effector
functions, as this is the only isotype known to interact with the
widely expressed FcγRs. Whereas, the majority of antibodies in
serum are of the IgG subtype, IgA is the major isotype present
in mucosal secretions. This isotype interacts with its specific
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receptor FcαRI, which is present on neutrophils, eosinophils,
monocytes, and macrophages [extensively reviewed in (128)].
Activation of FcαRI by IgA-opsonized pathogens can induce
ADCC, phagocytosis, degranulation, and cytokine release. Other
important isotypes to briefly mention are IgM, which is a potent
complement activator (76), and IgE, which has been linked to
various allergic diseases.

In humans, four different IgG subclasses (IgG1-IgG4) are
known. These subclasses differ in amino acid sequence, which
influences their capacity to interact with certain classes of
FcγRs and complement components as depicted in Table 1.
Production of different isotypes and subclasses is tightly
regulated and dependent on differentiation of the B cell, which
can be influenced by cytokines and interactions with pattern-
recognition receptors. The response to protein antigens usually
involves T cell help and induces class switching to IgG1 or
IgG3, whereas polysaccharide antigens induce class switching
to IgG2 in the absence of T cell help (132). Viral infections,
including RSV infections, mostly induce IgG1 and IgG3 antibody
responses (133–135).

IgG1 and IgG3 have the highest affinity for FcγRs and are
potent activators of complement, ADCC and phagocytosis (129,
136, 137). IgG3 is the subclass with the highest potential to
activate both FcγRs and complement, but due to its short half-life
the preferred subclass for therapeutic cytotoxic activity is IgG1
(138). In contrast, receptor-blocking antibodies are often of the
IgG2 or IgG4 subclass to avoid Fc-mediated cytotoxic side effects
(139). Induction of specific subclasses can have major effects on
the outcome of vaccine trials as has been shown for the HIV
RV144 and VAX003 vaccines. RV144 recipients produced highly
functional IgG3 antibodies that provided 31.2% efficacy, whereas
VAX003 recipients elicited a monofunctional IgG4 antibody
response that was not protective at all (140).

Antibody Isotype and Subclass in
RSV Infection
Severe RSV-mediated disease is most prevalent in infants below
6 months of age. These children mainly rely on maternally-
derived IgG for protection against infectious diseases, but the
correlation between serum IgG levels and protection against
RSV disease is poor (7, 9–11). A recent study by Habibi
et al. found that mucosal IgA titers are a better predictor of
susceptibility to RSV infection than serum IgG levels in an adult
challenge model (141). In addition, they showed a hampered

IgA memory B cell response to RSV, which may explain the life-
long susceptibility to repeated RSV infections. In accordance with
these results, lower levels of nasal IgA were found in naturally
RSV-infected adults compared to healthy controls (142). These
findings highlight the importance of mucosal IgA in protection
against RSV infection. However, it is questionable whether IgA
plays a role in protection or disease during primary infection. IgA
antibodies to RSV are only found in secretions after 4 months
of age, confirming they are synthesized as a result of (primary)
infection (143). RSV-specific IgA has been shown to induce
antibody-mediated effector functions. Although palivizumab-
IgA demonstrated slightly higher lysis of RSV-infected HEp2
cells by neutrophils (but not monocytes) in vitro, there was a
somewhat decreased efficacy in vivo compared to palivizumab-
IgG (144). Additional experiments with FcαRI transgenic mice
suggest that IgA-mediated protection is Fc receptor-independent.
No further research with RSV-IgA immune complexes has been
published to date and therefore their role in protection or disease
remains to be investigated.

Another interesting isotype is IgE, as the results from
multiple studies suggest the involvement of this isotype in the
development of RSV-mediated bronchiolitis and wheezing (145–
148). In a mouse model, RSV-specific IgE has been shown
to enhance airway hyperresponsiveness (149). Since all infants
produce IgE in response to RSV infection (150), it is thought that
the height and duration of the IgE response are important for
the induction of subsequent immunopathology (148, 151, 152).
Mast cells abundantly express the IgE-specific Fc receptor (FcεRI)
and were shown to play an important role in IgE-induced airway
hyperresponsiveness in an RSV reinfection mouse model (149).

In addition to studies on isotypes, extensive studies have
been performed on the presence of IgG subclasses during RSV
infection. Wagner et al. have performed some early studies into
the antibody subclass response to the RSV F and G glycoproteins
in both infants and adults (133, 153, 154). Primary RSV infections
predominantly gave rise to IgG1 and IgG3 antibodies, whereas
subsequent infection only led to an increase in IgG1 and IgG2
titers (133). RSV infection led to a poor IgG4 antibody response
in all subjects. RSV F protein was the most immunogenic,
leading to higher antibody titers compared to the RSV G protein
(154). The IgG1/IgG2 ratio of antibody titers to the RSV F
protein was fourfold higher than to the RSV G protein after
the first three RSV infections in infants. This difference was
thought to be due to the extensive glycosylation of the G

TABLE 1 | Binding capacity and functionality of IgG subclasses.

Subclass Serum abundance (%) FcγRI FcγRIIa FcγRIIb FcγRIIIa FcγRIIIb C1q Effector functions

IgG1 60 +++ +++ + ++ +++ ++ ADCC, ADCP, CDC

IgG2 32 – ++ – – – +

IgG3 4 ++++ ++++ ++ ++++ ++++ +++ ADCC, ADCP, CDC

IgG4 4 ++ ++ + – – –

(129–131). ADCC, antibody-dependent cell-mediated cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; CDC, complement-dependent cytotoxicity; FcγR, Fc gamma

receptor; IgG, immunoglobulin G.
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protein, resulting in IgG2 antibodies. IgG1 and IgG3 are the most
potent FcγR-binding subclasses. This suggests that the majority
of anti-RSV F antibodies are effective inducers of Fc-mediated
effector functions, in contrast to the IgG2 subset of anti-RSV G
antibodies. Experimental RSV infection in adults showed similar
subclass responses to RSV F and G protein (153). A recent study
confirms the findings of Wagner et al. showing a strong IgG3
response in infants younger than 4 months, despite the presence
of high levels of maternal antibodies (155). A rise in RSV-specific
IgG1 and IgG2 was only observed in infants older than 7 months.

Besides human studies, several mouse studies have been
performed to investigate the subclass antibody response.
Although some homology between mouse and human IgG
subclasses has been found, it is unclear whether they induce
the same downstream immune responses. In mice, neonatal
IgG responses to RSV infection are significantly skewed
toward mIgG1 (homologous to human IgG4), indicating a
Th2 bias (156), whereas primary infection in adult mice
leads to a balanced mIgG2a/mIgG1 response (homologous
to human IgG1/IgG4) (157). Compared to wild-type RSV
infection, immunization with inactivated or non-replicative
RSV led to a low mIgG2a/mIgG1 ratio (24, 158). The largest
proportion of antibodies directed at the RSV-F protein was
mIgG2 (homologous to human IgG1), whereas the G protein
response had a significantly lower proportion of mIgG2 (158).
These results indicate that both the age of the host and
the antigens determine the subclass response. However, it is
remarkable that RSV infection leads to a poor IgG4 antibody
response in humans, but to a high mIgG1 (homolog of
human IgG4) response in (neonatal) mice. Thus, caution
is warranted in the translation between human and mouse
antibody studies.

Although extensive studies have been performed on the
presence of specific subclasses, evidence on the role of these
different subclasses during RSV infection is limited. One study
describes a direct comparison between the functionality of
palivizumab-IgG1 and -IgG2 (159). The neutralizing potential
of both subclasses was comparable. However, the IgG2 antibody
showed negligible binding to murine FcγRs and human C1q,
resulting in less efficacy in vivo as measured by increased
viral lung titers in challenged cotton rats (159). This finding
underscores the protective potential of IgG1-mediated effector
functions during RSV infection.

ANTIBODY GLYCOSYLATION

Glycosylation of the antibody Fc domain is another important
regulator of Fc-mediated effector functions. Each IgG molecule
contains a highly conserved asparagine at position 297 (N297)
that functions as a glycosylation site that can harbor a variety
of glycans, consisting of varying combinations of mannose,
(bisecting) N-acetylglycosamine (GlcNAc), fucose, galactose, and
sialic acid (Figure 8). The complete absence of this glycan leads
to a conformational state that is non-permissive for FcγR or
complement binding, thereby impairing Fc-mediated antibody
effector functions.

FIGURE 8 | Antibody glycosylation. Each IgG molecule contains a

glycosylation site that can harbor a variety of glycans, consisting of varying

combinations of mannose, (bisecting) N-acetylglycosamine, fucose, galactose,

and sialic acid. Antibody effector activity is substantially impaired in absence of

this glycan. Fab, antigen-binding fragment; Fc, crystallizable fragment;

GlcNAc, N-acetylglycosamine.

Afucosylation has the most straightforward influence on
antibody effector functions. The absence of the core fucose on
the Fc-glycan directly boosts ADCC activity by enhancing the
interaction with FcγRIIIA (Figure 2) (160–162). Interestingly,
afucosylated mAbs have shown to be more protective against
various infectious agents (163, 164) and more efficacious
in cancer therapy (165, 166). However, increased levels of
afucosylation are also associated with severe disease during
secondary dengue infection (21).

Another biologically important modification to the Fc glycan
is sialylation. The presence of sialic acid inhibits FcγR binding
and is reported to be partly responsible for the anti-inflammatory
activity of IVIg (98, 167). Besides having anti-inflammatory
properties, sialylated Fc glycans have also been shown to induce
the production of high-affinity broadly neutralizing antibodies
against influenza virus (101).

Besides its effect on Fc receptor interactions, Fc glycosylation
also affects complement C1q binding to immune complexes.
A recent study shows that elevated galactosylation and
sialylation increase C1q-binding, downstream complement
deposition, and complement dependent cytotoxicity (168).
In contrast, agalactosylated IgG has also been suggested to
elicit enhanced complement activation, considering its role
in several autoimmune diseases (169). These findings suggest
that activation of complement potentially contributes to
pathogen clearance, but can also contribute to inflammation in
autoimmune disease, highlighting the dual role of complement.

Fc glycosylation is subject to active regulatory mechanisms
that control the composition of the glycan structure. Major
changes in glycosylation occur during pregnancy (170, 171),
upon vaccination (101, 172), and during certain viral infections
(101). Therefore, insight in the glycosylation pattern during RSV
infection and disease may provide valuable clues on the cause of
severe RSV disease.
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Antibody Glycosylation in RSV Infection
To our knowledge, only one group has investigated the
effect of glycosylation in the response toward RSV infection.
Hiatt et al. compared the original Palivizumab mAb with an
afucosylated and agalactosylated plant-produced glycovariant
(G0) in different in vitro and in vivo assays (159). The G0
glycovariant showed enhanced binding to murine FcγRs but less
binding to human C1q compared to the parental Palivizumab,
whereas neutralization capacity was comparable. The in vivo
protective capacity of the G0 glycovariant was improved
compared to the original, as evidenced by decreased pulmonary
viral titers. In conclusion, this study suggests that the influence
of Fc-glycosylation may be important in the protective capacity
of RSV-specific antibodies but this needs to be studied in more
detail for other mAbs and virus- and vaccine-induced antibodies.

EPITOPE POSITION

Next to antibody structure and glycosylation, the location of
the antibody-bound epitope with respect to the membrane of
the infected cell has been shown to be pivotal in determining
Fc-mediated effector functions. Since the use of mAbs, it has
been noticed that different mAbs binding the same target
protein can elicit different effector mechanisms (173). Antibodies
binding to epitopes closer to themembrane (membrane proximal
epitopes) mediate ADCC and CDC activity more efficiently,
whereas antibodies that target membrane distal epitopes are often
highly neutralizing and efficient ADCP-inducers (13, 174–176).
More specifically, recent research suggests that ADCP is most
efficiently triggered when antibodies bind within 10 nm from the
cell surface (177), indicating that the optimal ADCP-inducing
epitope is located neither too close, nor too far away from the
cell membrane. These studies suggest that besides the common
need for particular Fc-FcγR interactions, there are fundamental
differences in the activation requirements of specific Fc-mediated
effector functions. For CDC activity, stabilization of complement
components on the cell surface is essential. This would require a
short distance from epitope to cell membrane. During ADCC, the
formation of an immune synapse is essential. This small synapse
can only be formed when the NK cells engage antibodies bound
in close proximity to the cell membrane, explaining the need for
membrane proximal epitopes (175).

Important Epitopes in RSV Infection
Neutralization of RSV is mainly established by antibodies against
the RSV F and RSV G protein (178). Antibodies against the
SH and N protein have also been described (179, 180) and
although these antibodies are not involved in neutralization,
they may have other important (Fc-mediated) functions (181).
Capella et al. recently showed that antibodies against the pre-F
protein were the most prevalent RSV-specific serum antibodies
in infants below 2 years of age (182). Both serum IgG levels
against anti-RSV pre-F and G correlated with disease severity in
this study.

Various antigenic sites (named Ø and I-VIII) have been
described for the two conformational states of the RSV F protein
(183, 184). Pre-F-specific antibodies are better neutralizers than

post-F-specific antibodies (185). However, not all pre-fusion F
antibodies have similar neutralizing activity (183). The most
potent neutralizing antibodies bind to distal epitopes, suggesting
that the neutralizing potential of anti-RSV F antibodies not only
relies on the conformation of F on which the epitope is present
(e.g., pre- vs. post-F), but may also depend on the location of the
epitope relative to the viral or cellular membrane. As described
above, the proximity to the membrane determines the efficiency
of Fc-mediated effector functions (13, 174, 175). This suggests
that potently-neutralizing antibodies, binding to distal epitopes,
may also be efficient inducers of ADCP. Antibodies binding to
proximal epitopes are generally less neutralizing, but may be
more potent in inducing ADCC and CDC.

The most important antigenic site for the RSV G protein
is the central conserved domain (CCD). Despite the high
variability of RSV G, antibodies against the CCD are broadly
neutralizing against both RSV A and B strains (186). The
G protein CCD binds to the CX3CR1 receptor, leading to
attachment of RSV to its target cells (187). Antibodies against this
receptor-binding domain efficiently neutralize RSV infection and
decrease pathogenesis by binding soluble G protein, an immune
evasion protein secreted by RSV-infected cells (56, 57, 188).
Soluble G protein has been found to inhibit Fc-mediated antiviral
effects of macrophages and complement (75), and to modulate
trafficking of CX3CR1(+) cells (189). Next to the important roles
mentioned above, antibodies against the CCD domain are also
able to induce Fc-mediated effector functions like ADCP and
ADCC (56).

Taken together, not only the antigen but also the epitope
determines the efficacy of antibodies. Interestingly, evidence
suggests that targeted epitopes may differ between infants and
adults (190), but the effect of these changes on the efficacy of the
antibody response is unknown. Further researchmay uncover the
relation between antigenic site and effector functions against RSV
infection, and thereby reveal preferred antibody-binding sites for
protection against RSV disease.

FCγR EXPRESSION
AND POLYMORPHISMS

Another regulator of Fc-mediated effector functions is the
expression pattern and polymorphisms of FcγRs. The majority
of leukocytes express more than one FcγR type with varying
downstream signaling activities. The level and variety of FcγR
expression is tightly regulated during leukocyte development
and can be modulated by certain mediators present during
infection, inflammation, or even vaccination (103, 191). As
stated before, the balance between inhibitory and activating FcγR
interactions is crucial in regulating B cell IgG responses (99–101)
and skewing APC maturation and antigen presentation (102–
105). Additionally, co-engagement and signaling through other
receptors such as TLRs may influence the activation threshold
(192). Altogether, this points out the importance of receptor
expression patterns on effector cells.

Besides variation in FcγR expression patterns, single
nucleotide polymorphisms (SNPs) in FcγRs occur. Although
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many SNPs have been identified, only few have been shown to
impact receptor function (193). One of the functional SNPs has
been identified in FcγRIIa. Only the R131H allelic variant of this
receptor is capable of interacting with IgG2, enabling efficient
phagocytosis (194, 195). Another SNP affecting binding affinity
has been characterized for FcγRIII, which has two co-dominantly
expressed allotypes: V158 and F158. The presence of a valine
residue at position 158 increases the affinity for IgG1 and IgG3,
augmenting for example NK cell activity (196, 197).

FcγR Expression and Polymorphisms in
RSV Infection
Different FcγRs can have opposing effects on the immune
response, as has also been shown for RSV. In FcγR−/−

mouse models, Gomez et al. demonstrate that murine FcγRIII
(homolog of human FcγRIIA) contributes to viral replication
and airway inflammation, whereas murine FcγRIIb (homolog
of human FcγRIIb) has a protective effect as was shown by a
decrease in viral titers (110). In vitro, RSV infection has been
found to increase mFcγRII and mFcγRIII expression in murine
macrophage cultures which subsequently showed enhanced
phagocytosis (198).

Although the clinical relevance of FcγR SNPs has been studied
intensively for auto-immune diseases (199), cancer treatment
(200) and various viral infections (201–204), there is no data on
the role of these polymorphisms in RSV infection or disease.
In a genetic association study, performed to identify genes
that are involved in RSV susceptibility, a SNP in FCER1A
was found (205). This polymorphism had previously been
found to be associated with altered FcεRI expression levels and
allergic disease, supporting the involvement of IgE in RSV-
mediated disease.

IMPLICATIONS FOR VACCINE AND
mAb DEVELOPMENT

Currently there are no market-approved vaccines or antivirals
available against RSV. The only available treatment is the
administration of a prophylactic F protein-specific mAb
(Palivizumab) to reduce hospitalization in high-risk infants
(206). However, the use of Palivizumab is restricted and its
cost-effectiveness is often discussed (207). Improved mAbs with
higher efficacy rates are thus highly needed and many research
efforts are ongoing to develop these mAbs. A recent clinical trial
with a pre-F-specific mAb (Suptavamab) failed to demonstrate
efficacy in pre-term infants although the mAb was superior to
Palivizumab in neutralization tests in vitro and in reducing viral
load in the cotton rat model (208) (press release Regeneron,
August 14, 2017). The failure of this highly neutralizing mAb
indicates that protection against RSV-mediated disease, which is
known to be immunopathological in nature, depends on more
than just neutralization of the virus.

In addition to efforts made to develop improved therapeutic
mAbs, there is an extensive pipeline of vaccines that are currently
being tested in different phases of clinical development (https://
www.path.org/resources/rsv-vaccine-and-mab-snapshot/). The
development of vaccines is of great importance, especially for
developing countries where RSV-related mortality is high and
mAb therapy is inaccessible due to high costs. The majority of
vaccine candidates currently in clinical trials are designed to
induce systemic IgG, mostly against the RSV F protein. The
results of the pre-F-specific Suptuvamab and the recent failures
of two F-specific vaccine candidates tested in elderly, imply
that a broader and more polyfunctional immune response may
be needed to confer protection against RSV-mediated disease
(209, 210) (press release Novavax, September 15, 2016).

FIGURE 9 | The balance between Fc-mediated protection and enhanced disease. Antibody effector functions, regulated by differences in antibody characteristics, are

suspected to play a role in disease outcome upon RSV infection. Immune activation by Fc-mediated effector functions is likely needed for efficient viral clearance.

However, excessive activation may lead to inflammation and tissue damage. A balanced and contained immune response is most likely the key to protection upon

infection. Ab, antibody; ADCC, antibody-dependent cell-mediated cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; ADE, antibody-dependent

enhancement.
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To this date, no accurate correlate of protection has been
defined for RSV infection as virus-specific antibody levels
or neutralization titers do not seem of use in this respect.
The lack of a well-defined correlate of protection complicates
the development of new vaccines, as efficacy now has to be
demonstrated in expensive large-scale clinical trials. Mounting
evidence suggests that antibody effector functions beyond
neutralization can contribute to both protection and disease (110,
159, 181, 211). A balanced activation of different Fc-mediated
effector functions is key to prevent excessive inflammation and
tissue damage (Figure 9). It will be of importance to implement
assays that identify Fc-mediated effector functions of mAbs
and vaccine-induced antibodies. Studies in FcγR-knockout mice
have indicated the importance of Fc-FcγR interactions for
protection against RSV infection (110, 181), but the testing
of mAbs and vaccines demands high-throughput approaches.
Systems serology captures a wide array of antibody characteristics
and effector functions. It has proven effective in identifying
antibody features that contribute to protection for various
(viral) pathogens (19, 212, 213). Such an approach will provide
detailed information on the characteristics that are required for a
protective RSV antibody response.

The ability to generate an antibody profile that selectively
binds particular epitopes and FcγRs is important to enable the
induction of only the desired antibody effector functions. Recent
developments now allow targeted modifications to mAbs that
can lead to enhancement or inhibition of specific Fc-mediated
antibody effector functions through glyco-engineering or the
induction of specific antibody subclasses or isotypes (159). In the
future, this might also be possible for vaccines.

One can conclude from the studies presented above that
Fc-FcR interactions are an integral component of the immune
response against RSV and should be considered in the rational
design of next generation RSV-specific mAbs and vaccines.
Only limited data is available on the effect of specific Fc-
mediated antibody effector functions during RSV infection, but
it is clear that these can be both beneficial and detrimental
for protection against RSV infection and disease outcome. In
the future, Fc-mediated effector functions might be harnessed
to optimize the efficacy of RSV-specific mAbs and vaccine-
induced antibodies. However, our current knowledge on the
precise role of individual effector functions in RSV disease is
too limited to rationally design such antibodies and vaccines.
Therefore, until the individual contributions of Fc-mediated
effector functions to protection and disease are unraveled,
aiming to induce highly neutralizing antibodies seems the safest
approach. These antibodies will need to halt the infection at the
site of entry and thereby prevent excessive (antibody-mediated)
immune activation. It remains to be seen whether complete
neutralization can be achieved via the induction of serum IgG
alone, or whether the induction of mucosal IgA is necessary for
reliable neutralization activity. The many clinical trials that are

currently ongoing withmaternal and neonatal vaccine candidates
will show whether these approaches indeed result in protection
during the first, most vulnerable, months of life.

CONCLUDING REMARKS

Neutralizing antibody titers do not adequately correlate with
protection against RSV disease. Interestingly, antibodies have
additional Fc-mediated effector functions besides neutralization,
but this area of research is currently underappreciated in the
RSV field. With this review, we aim to encourage a paradigm
shift from neutralization-based studies toward functional studies
examining the precise role of Fc-mediated antibody effector
functions in vaccine efficacy and RSV disease. We have
evaluated the current literature on the effect of RSV-specific
antibodies on NK cells, phagocytes, the complement system,
cytokine production, and B- and T-cell skewing. Multiple
in vivo studies using FcγR-knockout mice or modified RSV-
specific antibodies indicate the importance of Fc-mediated
effector functions in protection from RSV infection and
disease (110, 159, 181, 211). In addition, Fc-mediated effector
functions might have a role in ADE of RSV disease (22,
23). However, most studies into vaccine and mAb efficacy
still only report antibody (neutralization) titers and disregard
any Fc-mediated effector functions. The importance of these
antibody effector functions has already been shown for multiple
clinically important viral pathogens and is only starting to be
explored for RSV. In our view, a better understanding of the
broad range of effector mechanisms that are induced by RSV-
specific antibodies will greatly contribute to the much-needed
development and testing of next generation mAbs and vaccines
against this virus.
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