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Abstract
The commentary by Luyck and colleagues on our paper provides many stimulating viewpoints and interpretations of our original
study on dissociable responses in the amygdala and bed nucleus of the stria terminalis in threat processing. Here, we reply to
some of the points raised and while agreeing with most of the comments also provide some alternative viewpoints. We end by
putting forward a research agenda for how to further investigate the roles of these regions in threat processing, with an emphasis
on studying their roles in defensive action.
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We thank Luyck et al. (2018) for a thoughtful commentary and
interesting discussion of the implications of our findings
(Klumpers et al., 2017). Their commentary stimulated our
thinking, and therefore below we respond to some of the points
raised. In addition, we propose further suggestions for how the
field might proceed in defining the roles of the amygdala, bed
nucleus of the stria terminalis (BNST), and other basal fore-
brain regions in threat processing.

In our original publication (Klumpers et al., 2017), we re-
ported that neural activity shifted from the BNST to the amyg-
dala when moving from a state of threat anticipation to con-
frontation with an aversive outcome. Interestingly, only partic-
ipants who experienced greater childhood maltreatment
showed amygdala activation during shock anticipation, without
change in BNST activation. Luyck and colleagues rightly cau-
tion against over-interpreting the clinical implications of our
findings. A critical next step, indeed, for verifying whether

the balance between BNST and amygdala activation during
threat anticipation contributes to psychopathology is testing a
patient population. Regardless, we believe our findings refine
the fundamental roles of the BNST and amygdala in threat
processing and can inform hypotheses and guide analyses of
such future patient studies. Direct comparison between the
amygdala and BNST responses to different levels of threat
imminence could be particularly informative. Clinical models
of stress and anxiety have generally focused on the amygdala,
yet many findings also implicate the BNST in anxious psycho-
pathology (Lebow & Chen, 2016). This raises the question
whether the amygdala and BNST have a similar contribution
to clinical symptoms or if specific aberrations in these regions
can lead to unique symptom profiles.

A second point in the commentary considers possible inter-
pretations of those outcomes that appeared discordant in our
two large neuroimaging samples. For example, as correctly
pointed out by the authors, considerably fewer regions were
significantly activated in sample 2 compared to sample 1.
Luyck and colleagues link this discrepancy to the difference
in temporal unpredictability of the aversive outcome (shocks),
which was greater in the second sample. While this is an inter-
esting suggestion, we would like to point out that interpretation
of the differences in results between our two samples lacks solid
ground without a formal statistical test demonstrating that nu-
merical differences in the mean group response are robust rel-
ative to the variance observed within each group. A direct com-
parison of amygdala and BNST responses to threat anticipation
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and confrontation with an aversive outcome between our two
samples failed to reach significance (all p-values > .09). While
Luyck and colleagues’ interpretation rests on a solid theoretical
framework linking the BNST to temporal unpredictability
(Goode & Maren, 2017) and may well be correct, we believe
such interpretations of our data may be premature, even regard-
less of statistical robustness. This is because the two samples
differed in a wide range of characteristics other than temporal
unpredictability. Most notably, the experiment for the first sam-
ple was (I) shorter and contained fewer trials, (II) was scanned
at a lower temporal resolution at an MR scanner from a differ-
ent manufacturer (Philips vs Siemens) and (III) the samples
were different that the first sample contained fewer subjects
(70 vs 108; leading to differences in statistical power) and
consisted only of males (vs. 70% females in sample 2). While
these factors were not of direct interest to our study, they all
potentially contributed to differences in results between sam-
ples. Therefore, while the converging findings across our two
independent samples were robust regardless of these different
experimental parameters and therefore more convincing, inter-
pretations regarding differences in results between our samples
rest on limited evidentiary value.

Luyck et al. also highlight that our results are not a one-to-
one match with models derived from years of rodent literature,
where the amygdala has been posited as important for partic-
ularly post-encounter phases and the BNSTmight be involved
in pre-encounter phases where threat is uncertain. We fully

agree and particularly support their suggestion for an impor-
tant distinction between human and rodent work in terms of
the level of threat. For ethical reasons, threat levels in human
studies are limited compared to rodent studies. We propose
that experimental conditions of threat anticipation in humans
may thus be shifted down on the threat imminence continuum
compared to similar studies in rodents. This might explain the
inconsistent amygdala activity in humans when threat is dis-
tant while observing clear activation of the BNST, even with
short cue durations (Klumpers et al., 2017; Fullana et al.,
2016; Mechias et al., 2010; Fox & Shackman, 2019).

We would like to add an additional explanation for the
apparent discrepancy in amygdala and BNST functioning be-
tween our findings in humans and those in the rodent litera-
ture. One proposed (core) function of emotions is to invigorate
the propensity of appropriate behavioral responses (Frijda,
1986; Barrett, 2017). When threat appears at a distance, ani-
mals may reduce foraging behaviors and try to stay clear of
danger. At the same time the inherent uncertainty about threat
can also create an urge to explore and further assess risk. The
latter requires staying in contact with the potential threat (e.g.,
visually) and sometimes even approaching it. When threat
comes near, animals may stop all motion, and passively or
actively try to avoid threat. At close confrontation with a
threat, animals may flee or fight. The exact appropriate behav-
ioral responses will thus dependent on the imminence of threat
but also on the specific species confronted with threat. Many
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Fig. 1 A neural model for the integration of threat and reward in costly
avoidance decision making. The Amygdala and NAcc each have a role in
driving both approach and avoid behavior (Gentry et al., 2016; Hamel
et al., 2017; Schlund & Cataldo, 2010). However, evidence from
(pharmacological) lesion and stimulation studies in rodents indicates a
relative importance for the BLA in driving avoid responses (Choi &
Kim, 2010; Duque-Wilckens et al., 2018; Burgos-Robles et al., 2017;

Terburg et al., 2018) and a relative importance for the NAcc (core) in
approach responses (Hamel et al., 2017; Nachev et al., 2015). One expla-
nation is that in absence of BLA input reward-related inputs from the
ventral tegmental area (VTA) continue to drive approach via the NAcc
(Cisneros-Franco& deVillers-Sidani, 2018). This model, however, is still
sorely lacking a role for the BNST, which has strong interconnections to
both the amygdala and NAcc
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species-specific responses along the threat imminence contin-
uum are reactions (e.g. running, jumping, flying, burrowing),
which may require distinct neural mechanisms to deal with the
threat. We, however, still know little about these species-
specific threat-reactions and the differences in the underlying
neurocircuitry. Most threat studies in rodents are conducted in
small test environments limiting the behaviors animals will
express. Perhaps even more problematic, human participants
in threat studies are generally instructed to refrain from any
movements while constantly looking at the screen to optimize
psychophysiological recording (e.g. startle electromyography,
galvanic skin conductance responses and fMRI). Restricting
behavioral responses in threat experiments thus provides a
limited assay of threat behaviour (Gentry et al., 2016; Hamel
et al., 2017; LeDoux et al., 2017; Beckers et al., 2013; Cain,
2019) and as a result instrumental threat-related behaviors in
rodents and humans remain relatively understudied (LeDoux
et al., 2017) notwithstanding recent progress (Aupperle et al.,
2015; Schlund et al., 2016; Boeke et al., 2017; Moscarello &
LeDoux, 2013; Ramirez et al., 2015). In our study we also did
not probe defensive reactions such as approach and avoid
tendencies. An additional explanation for differences between
our findings and those of studies in rodents may thus be the
degree to which similar and distinct neural mechanisms for
threat reactions are invigorated. Increased understanding of
species-specific threat reactions could thus help to explain
differences in observations between threat studies in rodents
and humans.

Philosophers, psychologists and behavioral neuroscientists
alike regard conflict between approach and avoidance moti-
vational tendencies as central to anxiety (Kierkegaard, 1980;
Blanchard et al., 2011; McNaughton & Corr, 2004; Corr,
2013; Kirlic et al., 2017). Understanding the neural mecha-
nisms of instrumental threat-related approach and avoidance
behaviors and their conflict is therefore critical to understand
neural circuits driving anxiety and especially pathological
anxiety because excessive avoidance is a hallmark symptom
in stress- and anxiety disorders (Craske & Stein, 2016). An
interesting perspective for future research is, therefore, to in-
vestigate potentially distinct roles of the amygdala and BNST
in threat-actions. Current neurobiological models of avoid-
ance are based largely on threat avoidance learning experi-
ments with rodents and highlight the importance of amygdala
connections to the ventral striatum, particularly the nucleus
accumbens. Human and rodent decision-making paradigms
have identified a similar pathway underlying instrumental ap-
proach reactions and the ventral striatum has long been impli-
cated in appetitive processing (Fig. 1). Distinct amygdala-
nucleus accumbens pathways thus appear involved in both
approach and avoidance reactions of rewarding and aversive
outcomes. The nucleus accumbens borders the BNST in both
rodents and primates and the regions have tight interconnec-
tions. Evidence implicates the BNST in avoidance (Duque-

Wilckens et al., 2018) consistent with its strong connections
to striatal and motor regions (Klumpers et al., 2017). Indeed
functionally defined sub-regions of the BNST have recently
been implicated in driving oppositely-valenced approach and
avoid reactions via their connections to the hypothalamus
(Giardino et al., 2018). However, to what extent the BNST’s
role may be distinct from the amygdala is unclear, potentially
because most threat-avoidance studies take place on the prox-
imal end of the threat imminence continuum (Cain, 2019). We
thus call for additional research on the role of the BNST and
amygdala in driving behavioral reactions along the entire
threat imminence continuum.

Finally, as described above, conflicting motivational tenden-
cies might be central to anxiety and therefore it will be highly
informative for a better understanding of clinically relevant
mechanisms to include conditions of conflicting motivational
tendencies in research on defensive-reactions. As opposed to
the majority of previous work on defensive reactions, daily life
rarely involves situations with unambiguously optimal behav-
ioral reactions and including these conflictingmotivational con-
ditions in threat studies would thus allowmore accurate model-
ling of pathological avoidance (Pittig et al., 2018; Krypotos
et al., 2018). Illustrating this point, threat avoidance per se is
not pathological and might even be a healthy and efficient
strategy (Boeke et al., 2017). Pathological anxiety, however,
is characterized by avoidance under ambiguous conditions that
is persistent even in the face of high costs such as social isola-
tion and functional impairment (Pittig et al., 2018). Thus, stud-
ies investigating the role of the amygdala and BNST using
paradigms that allow more active behaviors and include condi-
tions of approach/avoidance conflict are highly anticipated.
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