
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/204024

 

 

 

Please be advised that this information was generated on 2019-07-08 and may be subject to

change.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Radboud Repository

https://core.ac.uk/display/211019169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/204024


ar
X

iv
:1

80
7.

05
89

3v
1 

 [
m

at
h.

C
O

] 
 1

6 
Ju

l 2
01

8

Maximum Wiener Indices of Unicyclic Graphs of
Given Matching Number

Stijn Cambie ∗

Department of Mathematics, Radboud University Nijmegen, Postbus
9010, 6500 GL Nijmegen, The Netherlands; S.Cambie@math.ru.nl.

Abstract

In this article, we determine the maximum Wiener indices of unicyclic graphs
with given number of vertices and matching number. We also characterize the
extremal graphs. This solves an open problem of Du and Zhou [2].

1 Introduction

Let G be a simple connected graph. We denote its vertex set by V (G) and its edge set by
E(G). For two graphs G and H , G+H denotes the graph obtained by adding all possible
edges between the vertices of G and H . For an integer p, pG is the disjoint union of p
copies of G. The matching number of a graph G is the size of a maximum independent
edge subset of G, we will denote it by m(G) or m. We will denote by T(n,m) and U(n,m)
the set of all trees and unicyclic graphs respectively with n vertices and matching number
m. Let d(u, v) denote the distance between vertices u and v in a graph G. The Wiener
index of a graph G equals the sum of distances between all unordered pairs of vertices,
i.e.

W (G) =
∑

{u,v}⊂V (G)

d(u, v).

The Wiener index, introduced in 1947 by Harry Wiener, is the oldest and one of the
most important topological indices in chemical graph theory. This index can predict
some chemical properties of molecules, e.g. the boiling point of alkanes, the density, the
critical point and surface tension. It was used by chemists decades before it attracted the
attention of mathematicians. An overview of the mathematical results, conjectures and
problems with respect to the Wiener index can be found in [3]. In chemical graph theory,
an important goal is to bound some important graph invariant like the Wiener index
using some structural parameters. In this paper we consider the case of the matching
number and we solve the remaining open case, Problem 11.4 of [3].

∗This work has been supported by a Vidi Grant of the Netherlands Organization for Scientific Research
(NWO), grant number 639.032.614
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The minimum and maximum value for the Wiener index of a connected graph of order
n with matching number m was determined by Dankelmann [1].

Theorem 1.1 (Dankelmann [1]) Let G be a connected graph of order n and matching
number m.

• If m = ⌊n
2
⌋, then W (G) ≥

(

n
2

)

. Equality holds iff G is the complete graph Kn.

• If 1 ≤ m < ⌊n
2
⌋, then W (G) ≥ 2

(

n
2

)

−mn+
(

m
2

)

. Equality holds iff G is isomorphic
to the graph obtained by Km + (n−m)K1.

• If n is even, then W (G) ≤
(

2m
3

)

+
(

2m
2

)

(n−2m+1)+2mn−2m+2
2

n−2m
2

+ 1
2
(n−2m)2.

Equality holds iff the graph is An,m, a path with 2m − 1 vertices, with one leaf of
the path connected to n−2m+2

2
vertices and the other leaf with n−2m

2
vertices.

• If n is odd, then W (G) ≤
(

2m
3

)

+
(

2m
2

)

(n − 2m + 1) + 2m(n−2m+1
2

)2 + 4
(n−2m+1

2

2

)

.
Equality holds iff the graph is An,m, a path with 2m − 1 vertices, with both leafs
of the path connected to n−2m+1

2
different vertices, equivalently a path with 2m − 3

vertices with its ends concatenated to the centers of two stars of order n−2m+3
2

.

2m− 3 ⌊n−(2m−1)
2

⌋⌈n−(2m−1)
2

⌉

Figure 1. Extremal graph An,m

The graphs that attain the maximal Wiener indices are trees, while the graphs that attain
the minimal Wiener indices contain many cycles. Hence two natural questions arise. What
are the minimal Wiener indices for trees? What are the maximal Wiener indices for the
graphs that are not trees? In the latter case, the graphs will be unicyclic. For graphs that
contain multiple cycles, we can take a maximal matching, and then deleting an edge not
contained in the matching such that the graph is still connected will increase the Wiener
index.
Du and Zhou [2] solved the first question and also determined the minimal matching
number for unicyclic graphs. Their results are stated in the following two theorems.

Theorem 1.2 (Du and Zhou [2]) Let G ∈ T(n,m), where 2 ≤ m ≤ ⌊n
2
⌋. ThenW (G) ≥

n2+(m−3)n−3m+4. Equality holds iff G is a star of order n−m+1 with an additional
vertex connected to each of m− 1 leaves.

Theorem 1.3 (Du and Zhou [2]) Let G ∈ U(n,m), where 2 ≤ m ≤ ⌊n
2
⌋. If (n,m) =

(6, 3), then W (G) ≥ 26, with equality iff G is C5 with a pendent vertex attached to it. In
the other cases W (G) ≥ n2+(m−4)n−3m+6. Equality holds for a star of order n−m
with a triangle attached to its center and an additional vertex connected to each of m− 2
leaves, as well as for C4, C5, the graph C5 with two pendent vertices attached to it, and
C5 with three pendent vertices attached to three consecutive vertices of the cycle.
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In this paper, we will prove the remaining question, which was left as an open problem
in [2]. The result is summarized in the following theorem.

Theorem 1.4 Let G ∈ U(n,m), where 2 ≤ m ≤ ⌊n
2
⌋.

• If n ≤ 2m+ 2, then W (G) ≤ 2− 8
3
m3 + 2m2 + 5

3
m+ 2m2n− 3mn− 2n+ n2.

• If n ≥ 2m + 3 and n is odd, then W (G) ≤ 9
2
− n − 2

3
m3 + 1

2
n2 − 2nm + 2m2 +

1
2
mn2 − 11

6
m.

• If n ≥ 2m + 4 and n is even, then W (G) ≤ 6 − n − 2
3
m3 + 1

2
n2 − 2nm + 2m2 +

1
2
mn2 − 7

3
m.

Moreover, these bounds are sharp.

The extremal graphs are members of two families of graphs, which are shown in Figure 2.
We describe them explicitly in Theorem 7.1.

A0

B0

C0

A1 Aj
a

A0

B0

C0

D0

A1 Aj
ac

Figure 2. The graphs G3
a,j and G4

a,c,j

So in this paper, we determine the maximum Wiener indices of graphs in U(n,m), where
m ≥ 2 and n ≥ 2m and characterize the extremal graphs. Note that the only nonempty
remaining case is (n,m) = (3, 1), but then C3 is the only unicyclic graph with these
parameters. We will use the notation W (U(n,m)) = max{W (G) | G ∈ U(n,m)}.
Our proof for the characterization of W (U(n,m)) will actually first determine the charac-
teristics of the extremal graphs and only after that, we calculate the sharp upper bound.
It contains five main parts, which can be summarized as follows.

1. We prove that for fixed n, W (U(n,m)) increases when m increases, as long as
m ≤ ⌊n

2
⌋. Intuitively, this is because a larger matching number implies that it is

possible there are longer paths in the graph. A path is the graph with the largest
Wiener index for a fixed order. The proof for this property is given in Section 2.

2. Second, we prove that the cycle in the extremal graph in U(n,m) for any n and m
must be small. More precisely this cycle must be a triangle C3 or quadrangle C4.
The possible constructions for this are given in Section 3. We need two possible
constructions to ensure that we do not increase the matching number.

3



3. A unicyclic graph is a cycle and some attached trees. In Section 4 we prove that
extremal graphs have attached trees which are of a certain form: they are the
concatenation of a path and a star. Intuitively, this type of tree will have their
vertices as far as possible from the remaining cycle and other attached trees. In this
way the distances to the vertices outside the tree are as large as possible.

4. Using the two previous steps, we know that any extremal graph can be represented
with only a few parameters. In Section 5 and Section 6 we determine some conditions
on these parameters, which are the length and the number of leaves of the subtrees.

5. Finally, in Section 7 we calculate the Wiener index for the possible extremal graphs
in U(n,m) and compare them to find the maximal value W (U(n,m)).

In the first three main parts, we are proving some heuristic arguments. To prove some
of these arguments, we use tree rearrangements. In particular, we are using some kind of
subtree pruning and regrafting (SPR), which we define here.

Definition 1.5 (SPR) Let G be a graph. Given a rooted subtree S of G, such that the
root d = S ∩H. Pruning S from G is removing the whole structure S excluding the root
d. Regrafting S at a vertex v, means that we are taking a copy S ′ of S which we insert
at v, letting its root d′ coincide with v. No additional edges are drawn in this process.

S

dv dv

S ′

dv

Figure 3. the graph G, S being pruned from G and S being regrafted at v

2 Monotonicity in the matching number

In this section, we will prove the following proposition.

Proposition 2.1 For fixed n, when m1 < m2 and the sets U(n,m1) and U(n,m2) are
both nonempty, then W (U(n,m1)) < W (U(n,m2))

Assume this proposition is not true. In that case there exist some n and m such that
U(n,m) and U(n,m + 1) are both nonempty and W (U(n,m)) ≥ W (U(n,m + 1)). For
some fixed n, we take the least integer m for which this holds and take an extremal graph
G ∈ U(n,m) with W (G) = W (U(n,m)). Note that G cannot be a cycle itself, since then
U(n,m+ 1) would be empty. Hence G contains some cycle Ck where at each vertex ri of
the cycle there are attached some trees Ti (possibly consisting only of the vertex ri).
Assume at least one of those trees attached is not a path. Then we can look to a vertex
w on such a tree with degree at least 3 such that d(w,Ck) is maximal. There are at least
two leaves such that the shortest paths from these leaves to Ck contain w, by the choice
of w. We call two of them l1 and l2.
Let S be the path from w to l1. We prune S and regraft it at l2.

4



The new graph will have matching number m or m + 1 and a Wiener index which is
strictly larger than that of G. This is a contradiction with W (G) = W (U(n,m)) ≥
W (U(n,m+ 1)).
Hence all trees Ti are paths. Let Pi = Ti\{ri}. If there is only one Pi which is nonempty,
then G has a maximum matching, which cannot be the case since U(n,m+1) is nonempty.
Let I be the set of indices i such that Pi is nonempty. Take i1, i2 ∈ I and wlog

∑

t∈I\{i1,i2}

d(ri1 , rt)|Pt| ≥
∑

t∈I\{i1,i2}

d(ri2 , rt)|Pt| (1)

Let li1 be the leaf of Pi1. Note that W (G) equals

W (G) =
∑

1≤t≤2

∑

u,v∈Pit

dG(u, v) +
∑

u∈Pi1

∑

v∈Pi2

dG(u, v) +
∑

u,v∈G\{Pi1
,Pi2

}

dG(u, v)

+
∑

u∈{Pi1
,Pi2

}

∑

v∈Ck

dG(u, v) +
∑

u∈{Pi1
,Pi2

}

∑

t∈I\{i1,i2}

∑

v∈Pit

dG(u, v)
(2)

Prune Pi2 and regraft it at li1 , to get a graph G′. This increases the matching number at
most by 1. Using (2), we get that

W (G′)−W (G) =0− (d(ri1, ri2) + 1) |Pi1||Pi2|+ 0 + |G\{Pi1, Pi2}||Pi1||Pi2|+
∑

t∈I\{i1,i2}

(d(ri1 , rt)− d(ri2, rt)) |Pt||Pi2|

≥ (k − d(ri1, ri2)− 1) |Pi1 ||Pi2|

> 0

since d(ri1, ri2) ≤ k−2, |G\{Pi1, Pi2}| ≥ |Ck| = k and by (1). Hence G′ satisfies W (G′) >
W (G), while the matching number of G′ is at most m+1. Since the assumption was that
G had the largest Wiener index among all graphs on n vertices with matching number no
larger than m + 1, we get a contradiction. Hence the assumption was false and no such
graph G did exist, which proves Proposition 2.1.

3 Reducing the cycle length

In this section, we prove that the extremal graphs cannot contain a cycle of length at
least 5, as stated in the following proposition.

Proposition 3.1 Given a graph in U(n,m) with Wiener index W (U(n,m)), the cycle of
G will be C3 or C4.

Assume some extremal graph G ∈ U(n,m) contains a cycle Ck of length k ≥ 5. Then
there is some tree Ti attached to every vertex ri of Ck. We will call these rooted trees
T1 up to Tk and their roots which lie on the k-gon Ck will be called r1 up to rk in cycle
order. Note that it is possible that such a tree equals a single vertex, the root. With |Ti|
we will denote the number of vertices of the tree Ti and we assume

|T3| = max{|T1|, |T2|, . . . , |Tk|} (3)
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Tk−1

T3

T2

T1 Tk

rk−1

r3

r2

r1 rk

Figure 4. graph G containing Ck

Tk−1

T3

T2

T1 Tk

Tk−1

T3

T2

T1 Tk

Figure 5. Modifications G1 and G2 for graph G

In Figure 4 we see the graph G consisting of a k-cycle with the trees Ti attached to the
vertices of the k-cycle. In Figure 5 there are drawn two possible modifications G1, G2 for
this graph.
In words, G1 (resp. G2) is obtained from G by deleting the edge r2r3 and adding r2rk
(resp. r2rk−1). Clearly, G1 and G2 gave the same number of edges as G does.
We will prove that at least one of G1, G2 has a higher Wiener index and a matching
number which is at most the matching number of G, implying that G was not an extremal
graph.
First we derive that both modifications have a higher Wiener index. Note that

W (G) =
∑

1≤i≤k

∑

u,v∈Ti

dG(u, v) +
∑

1≤i<j≤k

∑

u∈Ti

∑

v∈Tj

dG(u, v)

which implies that

W (G2)−W (G) =
∑

1≤i<j≤k

|Ti||Tj| (dG2
(ri, rj)− dG(ri, rj)) (4)

and
W (G1)−W (G2) =

∑

1≤i<j≤k

|Ti||Tj| (dG1
(ri, rj)− dG2

(ri, rj)) . (5)
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We will prove that W (G) < W (G2) < W (G1).
Note that dG2

(ri, rj) ≤ dG1
(ri, rj) for all 1 ≤ i < j ≤ k except for i = 2, j = k. By (5),

we get that W (G1) −W (G2) ≥ |T2||Tk−1| + |T2||T3| − |T2||Tk| ≥ 1 since |Ti| ≥ 1 for all
1 ≤ i ≤ k and due to (3).
Note that dG2

(ri, rj) ≥ dG(ri, rj) when i and j are both different from 2, since there exists
a shortest path in G2 from ri to rj which is a subpath of the path r1rkrk−1 . . . r3 which
also exists in G.
Note that

dG2
(ri, r3) = dG(ri, r3) + (k − 4) for i ∈ {1, 2}. (6)

Next, we have to do a small case distinction between k even and k odd.
When k is odd, then dG2

(r2, rj) = dG(r2, rj) − 2 for k+5
2

≤ j ≤ k − 1 and dG2
(r2, rj) =

dG(r2, rj)− 1 for j = k+3
2
. For the remaining values of j, one has dG2

(r2, rj) ≥ dG(r2, rj).
Using (4) and (6), we have for k odd that

W (G2)−W (G) ≥ (k − 4) (|T1|+ |T2|))|T3| − 2
∑

k+5

2
≤j≤k−1

|T2||Tj | − |T2||T k+3

2

|

≥ (k − 4)|T1||T3| > 0

due to (3), the fact that |T1| > 0 and the fact that there are k−5
2

integral numbers in the
interval [k+5

2
, k − 1]. When k is even, dG2

(r2, rj) = dG(r2, rj) − 2 for 2 + k
2
≤ j ≤ k − 1,

and dG2
(r2, rj) ≥ dG(r2, rj) for the remaining values of j. Using (4) and (6), we have for

k even that

W (G2)−W (G) ≥ (k − 4) (|T1|+ |T2|) |T3| − 2
∑

k+4

2
≤j≤k−1

|T2||Tj| ≥ (k − 4)|T1||T3| > 0

by (3), |T1| > 0 and the fact that the sum is over k−4
2

integers.
Next, we show that the matching number of G is not smaller than the matching numbers
of both G1 and G2. Assume to the contrary that the matching number of G is strictly
smaller than the matching numbers of G1 or G2. It is clear that a maximal matching
in G can be modified to a matching such that the submatchings are optimal for every
tree Ti and do not use ri if there exists a maximal matching for Ti without using ri.
So starting from the optimal matchings in every Ti such that ri is not used when not
necessary, the remaining task is to find an optimal matching between the ri which are
not used. Since the optimal matching in G1 is strictly larger than the optimal matching
in G, we will use r2rk in that matching and so r1 has to be used in the optimal matching
of T1, since otherwise we could use r2r1 instead of r2rk in G and take the other pairs
as in the matching of G1. This implies also that r2 and rk are not used in the optimal
matchings of T2 and Tk respectively. Similarly we will use r2rk−1 in the optimal covering
of G2. But since r1 is used in the optimal covering of T1 and rk is not used in the optimal
covering of Tk, we can replace r2rk−1 by rkrk−1 and so the same matching would work for
G, contradiction.
We conclude that G1 or G2 have matching numbers not larger than that of G, but
have a Wiener index which is greater than the one of G. Together with Proposition 2.1,
this implies that it is impossible that W (G) = W (U(n,m)). So the assumption at the
beginning was wrong, implying that no extremal graph can contain a cycle of length at
least 5, proving the proposition.
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4 Optimal form of trees

In this section, we will prove that each tree Ti of an extremal graph is a concatenation
of a path and a star, see figure 8.

Proposition 4.1 For a graph G with W (G) = W (U(n,m)), G is a cycle C3 or C4 with
trees attached to it, each of which is a path attached to a star.

We know already by Proposition 3.1 that an extremal graph G is a cycle C3 or C4 with
some trees Ti attached.
For every i, we take a longest path P in Ti starting from ri and call a leaf of that longest
path li and the adjacent vertex to li on that path ci.
Assume that some tree Ti is not a path attached to a star. Then there exists a nonempty
rooted subtree S with root di (possibly equal to ri) on P which is closest to ci, as shown
in Figure 6. Here P ∩ S = di and P ∪ S contain all edges adjacent to di.

li
ri

S
ci

di

Figure 6. subtree Ti

The vertex di partitions the edge set of G into three parts: E(H1), E(H2) and E(S) where
H1 is a tree containing li and di as leaves, H2 is a unicyclic subgraph with di being a leaf.
Let V1 = V (H1)\{di} and V2 = V (H2)\{di} and VS = V (S)\{di}.
If |V1| ≤ |V2|, then pruning S from G and regrafting S at ci will strictly increase
the Wiener index. Note for this that

∑

u∈VS ,v∈V1
d(u, v) has decreased with at most

d(di, ci)|V1||VS| and
∑

u∈VS ,v∈V2
d(u, v) has increased with d(di, ci)|V2||VS|, while

∑

u∈VS
d(u, di)

strictly increases by the value |VS|d(di, ci).
Also, the matching number has not been increased. Doing this, we see the trees attached
to the cycle, with possible one exception, are each a path attached to a star.
If |V1| > |V2|, then analogously pruning S and regrafting it at cj (with j 6= i) will do the
job (assuming the subtree Tj has length at least 1).
In the case there was only one tree attached to the cycle, we cannot do this and we have
to use other replacements. If the cycle is C4, we can prune S and regraft it at rj (with rj
and ri being opposite corners of C4).
So from now on, we assume the cycle is C3.
In the case there are multiple subtrees attached to P with the root not equal to ci, if
there is any subtree S ′ such that there is some maximum matching that does not use its
root d′i ∈ P, we can prune S ′ and regraft is at some rj (j 6= i) and conclude.
we will assume S ′ is the rooted subtree with root d′i which is second closest to ci. We can
prune S and regraft it at d′i, so the Wiener index increases, while the matching number
does not and conclude again that the original graph was not extremal.
In the final case, we assume S is the only such subtree connected to P. If di = ri, we can
prune and regraft S at rj. If d(di, ri) > 2, we prune and regraft it at a vertex v which is
an even distance closer to ri, which also increases the Wiener index while the matching
number is constant. If d(di, ri) = 1, we easily can compare the configuration with an
other one using a C4 as cycle, as shown in Figure 7. Here v is the neighbour of di which is

8



closer to ci. The matching number of both configurations is the same, while the Wiener
index increases with (2|VS| − 1) |V1| − |VS| > 0, since |VS| ≥ 1 and |V1| > 3.
Since removing S has increased the Wiener index, while the matching number has not
been increased, we have a contradiction in our assumption that W (G) = W (U(n,m))
due to Proposition 2.1.

di
li

v
S

ciH1
li

di

S
civ H1

Figure 7. Constructing a better graph

5 Only one long tree

From the previous sections, we can conclude that the possible extremal graphs are as
represented in Figure 8, here a, b, c, d are the numbers of leaves in every subtree. In this
section, using some calculations we prove some extra conditions on the configuration of
an extremal graph.

Proposition 5.1 An extremal graph in U(n,m) has at most one tree with height larger
than 1 connected to the cycle. When the cycle is C3, then the extremal graph is isomorphic
to a graph G3

a,b,c,j (see Figure 9) with a ≥ b ≥ c. Furthermore, when the cycle is C4, the
extremal graph is isomorphic to a graph G4

a,c,j (see Figure 9) where a ∈ {c, c+ 1}.

A0

B0

C0

A1

B1

C1

Aj

Bk

Cl

a

b

c

A0

B0

C0

D0

A1

B1

C1

D1

Aj

Bk

Cl

Dh

a

b

c

d

Figure 8. possible configurations
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5.1 Case G contains C3

Using the fact that W (Pq) =
(

q+1
3

)

, a calculation gives that the Wiener index of the first
configuration in Figure 8 equals

W (G) =

(

k + l + 3

3

)

+

(

j + k + 3

3

)

+

(

l + j + 3

3

)

−

(

k + 2

3

)

−

(

l + 2

3

)

−

(

j + 2

3

)

+ 2

((

a

2

)

+

(

b

2

)

+

(

c

2

))

+ ac(l + j + 3) + ab(k + j + 3) + bc(k + l + 3)

+ (a + b+ c)

((

j + 2

2

)

+

(

k + 2

2

)

+

(

l + 2

2

))

+ a(k + l + 2)(j + 1) + b(k + 1)(l + j + 2) + c(l + 1)(k + j + 2)

Wlog a = max{a, b, c}. We will prove that W (G′) > W (G) when G′ is the graph deter-
mined by j′ = j + k + l and k′ = l′ = 0 and (a′, b′, c′) = (a, b, c), if at most one of j, k, l
equals zero. This is a consequence of the following calculation.

W (G′)−W (G) =jkl + jk + jl + kl + k(a− b)c+ l(a− c)b

+ akl + bjl + cjk + k(a− b) + l(a− c)

>0

since a− b, a− c ≥ 0 and at least one of jk, jl, kl is strictly positive.
We see that the matching numbers of G′ and G are the same. Note we can only use one
leaf of the star at the end. Removing max{a−1, 0} edges from the right star and similarly
for the two other stars, we have a triangle with some attached paths. Now a maximum
matching uses all vertices, or all vertices minus one when the total number is odd. The
same holds after the operation j + k + l → j′. This implies that the extremal graphs
containing C3 have two trees of height at most 1. Due to the terms k(a− b) and l(a− c),
the new configuration is strictly better if a > b and k > 0 or a > c and l > 0 originally.
Hence a = max{a, b, c} is strictly necessary when we take j > 0 in the graph G3

a,b,c,j.

5.2 Case G contains C4

We calculate theWiener index for the graph in function of the parameters a, b, c, d, h, j, k, l.
We use formulas like W (Pq) =

(

q+1
3

)

,

∑

0≤x≤j,0≤y≤k

d(Ax, By) =

(

k + j + 3

3

)

−

(

j + 2

3

)

−

(

k + 2

3

)

= (k + 1)(j + 1)
k + j + 2

2

and

∑

0≤x≤h,0≤y≤k

d(Dx, By) = (k + 1)

(

h + 1

2

)

+ (h+ 1)

(

k + 1

2

)

+ 2(k + 1)(h+ 1)

= (k + 1)(h+ 1)
k + h+ 4

2
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multiple times.

W (G) =

(

h + 2

3

)

+

(

j + 2

3

)

+

(

k + 2

3

)

+

(

l + 2

3

)

+ (k + 1)(j + 1)
k + j + 2

2
+ (k + 1)(l + 1)

k + l + 2

2
+ (k + 1)(h+ 1)

k + h + 4

2

+ (l + 1)(j + 1)
l + j + 4

2
+ (h + 1)(j + 1)

h+ j + 2

2
+ (h + 1)(l + 1)

l + h+ 2

2
+ ab(k + j + 3) + bc(k + l + 3) + cd(l + h+ 3) + ad(h+ j + 3)

+ ac(j + l + 4) + bd(k + h+ 4)

+ 2

((

a

2

)

+

(

b

2

)

+

(

c

2

)

+

(

d

2

))

+ (a+ b+ c+ d)

((

h+ 2

2

)

+

(

j + 2

2

)

+

(

k + 2

2

)

+

(

l + 2

2

))

+ a(j + 1)(k + h + 2) + b(k + 1)(l + j + 2) + c(l + 1)(k + h + 2) + d(h+ 1)(l + j + 2)

+ a(j + 2)(l + 1) + b(k + 2)(h+ 1) + c(l + 2)(j + 1) + d(h+ 2)(k + 1).

Given a graph G with parameters {a, b, c, d, h, j, k, l}, we construct the graph G′ with
parameters {a+b+c+d+ǫ

2
, 0, a+b+c+d−ǫ

2
, 0, 0, h + j + k + l, 0, 0}, where ǫ ∈ {0, 1} is chosen

such that ǫ ≡ a+b+c+d (mod 2). We will prove thatm(G′) ≤ m(G) andW (G′) ≥ W (G).
Some elementary arithmetic operations show the following (which can be checked for
instance by a standard symbolic manipulation program):

W (G′)−W (G) =hjk + hjl + hkl + jkl + 2hj + hk + 2hl + 2jk + jl + 2kl

+ ahk + ahl + akl + bhj + bhl + bjl + chj + chk + cjk + djk + djl + dkl

+ ah+ ak + bj + bl + ch+ ck + dj + dl

+
1

4

(

(d− a− b− c− 1)2 − (ǫ− 1)2)
)

h

+
1

4

(

(a− b− c− d− 1)2 − (ǫ− 1)2)
)

j

+
1

4

(

(b− a− c− d− 1)2 − (ǫ− 1)2)
)

k

+
1

4

(

(c− a− b− d− 1)2 − (ǫ− 1)2)
)

l

+
1

2

(

(a− c)2 + (b− d)2 − ǫ2
)

≥ 0

The inequality holds since every term is positive, i.e. when ǫ = 1, then max{|a− c|, |b−
d|} ≥ 1 since a + b + c + d is odd and when ǫ = 0, then |b − a − c − d − 1| ≥ 1 since
a+ b+ c+ d+ 1 is odd and similarly for the three other differences of squares. Equality
holds if and only if every term is equal to zero. This implies that at least three values in
{h, j, k, l} are zero. If h = j = k = l = 0, equality holds iff |a − c| + |b − d| ≤ 1. When
at least three values of a, b, c, d are nonzero, m(G) ≥ 3 while m(G′) = 2 and so G was
not optimal by Proposition 2.1. In the other case, we note that G ∼ G′. In the case one
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value in {h, j, k, l} is nonzero, wlog j > 0, we get b = d = 0, |a − c − 1| = |ǫ − 1| and
|a− c| = |ǫ| implying G′ ∼ G again.
We conclude that the extremal graphs containing C3 or C4 are isomorphic to a graph of
the form G3

a,b,c,j or G
4
a,c,j with a ∈ {c, c+ 1}. These graphs are shown in Figure 9.

A0

B0

C0

A1 Aj
a

b

c

A0

B0

C0

D0

A1 Aj
ac

Figure 9. The graphs G3
a,b,c,j and G4

a,c,j

6 Conditions on parameters of extremal G3
a,b,c,j and

G4
a,c,j

In this section, we prove the following proposition.

Proposition 6.1 If the graph G3
a,b,c,j is an extremal graph, then b = c = 0. If the graph

G4
a,c,j (with a ≥ c) is an extremal graph with max{a, c, j} ≥ 1, then c ≥ 1.

Take some graph G = G3
a,b,c,j.

If a ≥ b = 1 > c = 0, we choose the graph G′ = G3
a,0,0,j+1. The graph G was not an

extremal graph, since m(G′) = m(G) and W (G′)−W (G) = j+a > 0. If a ≥ b > 1 > c =
0, the graphG′ = G4

a,b−1,j satisfiesm(G′) = m(G) andW (G′)−W (G) = (b−1)(a+j+1) >
0. When a ≥ b ≥ c ≥ 1, the graph G′ = G4

a,b+c−1,j satisfies m(G′) ≤ m(G) (equality when
2 ∤ j) and W (G′)−W (G) = (a+ j+1)(c+ b− 1)− bc ≥ 1. Hence G was not an extremal
graph, due to Proposition 2.1. So a graph G3

a,b,c,j with (b, c) 6= (0, 0) can not be extremal
graph. From now onwards we will write G3

a,j instead of G3
a,0,0,j, this notation is shown in

Figure 2.
Next, we prove that for an extremal graph G4

a,c,j with more than 4 vertices, we have that
c > 0. Take an extremal graph G4

a,c,j Since an extremal graph satisfies |a − c| ≤ 1 as
shown in Subsection 5.2, we can take a = c = 0. (since G4

1,0,j = G4
0,0,j+1)

Observe that m(G4
0,0,j) = m(G3

0,j+1) and W (G4
0,0,j) < W (G3

0,j+1), from which the conclu-
sion follows.

7 Calculating W (U(n,m))

From the results of previous sections, the extremal graphs are of the form G3
a,j , G

4
a,a−1,j

with a ≥ 2 or G4
a,a,j with a ≥ 1. We will determine the extremal values W (U(n,m)) for
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m ≥ 2.
When G3

a,j is a graph with n vertices and matching number m, then n = a + j + 3 and

m = 2+⌊ j
2
⌋. So j ∈ {2m−4, 2m−3} and a = n−(j+3). Notice thatW

(

G3
n−2m+1,2m−4

)

≤

W
(

G3
n−2m,2m−3

)

with equality iff n = 2m, in which case a = 0 and so we actually look
only to the same graph.
Next, note that m(G4

a,a−1,j) = m(G4
a,a,j) = 2 + ⌊ j+1

2
⌋ and n(G4

a,a−1,j) + 1 = n(G4
a,a,j) =

j + 4 + 2a. So j ∈ {2m− 5, 2m− 4}.
According to the parity of n, we can compare the Wiener index of the corresponding
graphs G4

a,a−1,j and G4
a,a,j . We check that

W
(

G4
n/2−m,n/2−m,2m−4

)

−W
(

G4
n/2−m+1,n/2−m,2m−5

)

=
1

4
(n− 2m)(n+ 2m− 4) ≥ 0

where equality cannot occur, since m ≥ 2 and n ≥ 2m+ 2 as we need n/2−m ≥ 1.
When n is odd, we have that

W
(

G4
n/2−m+1/2,n/2−m−1/2,2m−4

)

−W
(

G4
n/2−m+1/2,n/2−m+1/2,2m−5

)

=
1

4
(n− 2m)(n + 2m− 4) +m−

13

4
≥ 0

since n ≥ 2m + 1 and m ≥ 2. Equality occurs only when n = 5 and m = 2, but then
2m− 5 < 0, implying that the graph G4

n/2−m+1/2,n/2−m+1/2,2m−5 does not exist.
To finish the search for the extremal graph, we have to compare the graphs of the form
G4 with the G3 graph. When n is odd,

W
(

G4
n/2−m+1/2,n/2−m−1/2,2m−4

)

−W
(

G3
n−2m,2m−3

)

= n+ 2m3 + nm+
1

2
mn2 −

1

2
n2 −

7

2
m− 2nm2 +

5

2
.

Taking n = 2m + k, we get that this value equals 1 + 1
2
(k − 3)(k + 1)(m − 1) which is

strictly positive for k ≥ 3 and strictly negative for k = 1. When n is even,

W
(

G4
n/2−m,n/2−m,2m−4

)

−W
(

G3
n−2m,2m−3

)

= 4+n+2m3+nm+
1

2
mn2−

1

2
n2−4m−2nm2.

Taking n = 2m+ k, this expression equals 2 + 1
2
(k2 − 2k − 4)(m− 1). This is smaller or

equal than zero for k ∈ {0, 2} with equality iff m = 2. When k ≥ 4, it is strictly positive.
We summarize all those results in the following theorem with Figure 2 showing the exact
picture of the extremal graphs.

Theorem 7.1 Let G ∈ U(n,m), where 2 ≤ m ≤ ⌊n
2
⌋.

• If n ≤ 2m+ 2, then W (G) ≤ 2− 8
3
m3 + 2m2 + 5

3
m+ 2m2n− 3mn− 2n+ n2 with

equality iff G = G4
0,0,0, G

3
0,1 for (n,m) = (4, 2), G = G4

1,1,0, G
3
2,1 for (n,m) = (6, 2)

and G = G3
n−2m,2m−3 otherwise.

• If n ≥ 2m+3 and n is odd, then W (G) ≤ 9
2
−n− 2

3
m3+ 1

2
n2−2nm+2m2+ 1

2
mn2− 11

6
m

with equality iff G = G4
n/2−m+1/2,n/2−m−1/2,2m−4.

• If n ≥ 2m+4 and n is even, then W (G) ≤ 6−n− 2
3
m3+ 1

2
n2−2nm+2m2+ 1

2
mn2− 7

3
m

with equality iff G = G4
n/2−m,n/2−m,2m−4.
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