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A B S T R A C T

The water-related exposome is a significant determinant of human health. The disease burden through water
results from water-associated communicable and non-communicable diseases and is influenced by water pol-
lution with chemicals, solid waste (mainly plastics), pathogens, insects and other disease vectors. This paper
analyses a range of water practitioner-driven health issues, including infectious diseases and chemical in-
toxication, using the conceptual framework of Drivers, Pressures, State, Impacts, and Responses (DPSIR), com-
plemented with a selective literature review. Pressures in the environment result in changes in the State of the
water body: chemical pollution, microbiological contamination and the presence of vectors. These and other
health hazards affect the State of human health. The resulting Impacts in an exposed population or affected
ecosystem, in turn incite Responses. Pathways from Drivers to Impacts are quite divergent for chemical pollution,
microbiological contamination and the spread of antimicrobial resistance, in vectors of disease and for the
combined effects of plastics. Potential Responses from the water sector, however, show remarkable similarities.
Integrated water management interventions have the potential to address Drivers, Pressures, Impacts, and State of
several health issues at the same time. Systematic and integrated planning and management of water resources,
with an eye for human health, could contribute to reducing or preventing negative health impacts and enhancing
the health benefits.

1. Introduction

The total of external pressures from the water-related exposome is a
significant determinant of human health (Wild, 2012). Water practi-
tioners are faced with unfamiliar challenges as their work not only
benefits well-being, but may affect community health negatively. The
disease burden related to water consists of communicable diseases
(waterborne, water-washed, water-based, and water-related vector-
borne diseases) and non-communicable diseases triggered by exposure
to chemically polluted water (Johnson and Paull, 2011; Landrigan
et al., 2017). Waterborne and water-related infectious diseases account
for 3.4 million annual deaths worldwide (estimated for 2004 by Prüss-
Üstün et al. (2008)). The Lancet Commission on Pollution and Health
estimates 1.8 million deaths worldwide related to ‘water’ (mainly mi-
crobiological contamination) and 0.5 million deaths related to ‘soil
pollution, heavy metals and chemicals’ (chemical pollution) (Landrigan
et al., 2017). The Lancet Commission also highlights a group called
'pollution sources not currently quantified', in which for example
plastics and pesticides are grouped. Plastic debris, particularly in the
form of small particles (microplastics), in oceans, seas, rivers and lakes,

has become an important environmental problem because of its ubi-
quitous prevalence, persistence, accumulation in aquatic food chains
and adverse effects on aquatic organisms and potentially to human
health (Hermabessiere et al., 2017; Li et al., 2016; Verma et al., 2016;
Vethaak and Leslie, 2016; Wright et al., 2013). Many of the pollution
sources in the environment include substances or materials for which
water can be the main transport or transmission route.

Myers et al. (2013) indicated that more research is needed on the
impact of ecosystem alteration or environmental interventions on the
ecology of multiple diseases. Water is fundamental to human existence,
but in a polluted or contaminated ecological state it may pose a health
hazard. Water resources have been extensively managed, or en-
vironmentally altered, used and reused, for all kinds of economic rea-
sons, such as drinking, food production, flood control, energy, industry,
nature, and recreation, with subsequent effects on water quantity and
quality. The many different water uses tend to be managed by various
(sub-)sectors in a fragmented way, with varying degrees of attention to
water quality. In addition to the obvious links between infectious dis-
eases and water management (Myers and Patz, 2009), this also includes
the role of water as a habitat for insects and other vectors and carrier
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for dispersion of pollutants. The latter comprise an increasingly im-
portant cause of non-communicable diseases in the global environ-
mental disease load (Prüss-Üstün et al., 2016).

Hydraulic infrastructure and water management practices can in-
fluence human health in many ways. Safe water supply and sanitation
help prevent faecal-orally transmitted diseases and reduce the pathogen
load in the environment. Dikes prevent floods, water storage and irri-
gation systems provide water for people, animals and crops during
droughts, and dams can generate electricity. On the negative side, such
infrastructure can promote the growth of toxic algae and create habitats
for the propagation of vectors, intermediate hosts and carriers of water-
related diseases (mosquitoes, other insects, snails and rodents)
(Erlanger et al., 2005; Keiser et al., 2005a, 2005b; Steinmann et al.,
2006). Wastewater provides nutrient-rich reliable water for food pro-
duction, but poses health risks to farmers and consumers (Drechsel
et al., 2010); poorly managed waste from industry, agriculture, live-
stock and urban areas can contaminate and pollute downstream areas
(Dufour et al., 2012; Evans et al., 2018; Landrigan et al., 2017; Mateo-
Sagasta et al., 2018); and floods can spread faecal and chemical pol-
lution in delta cities and agricultural land (Alderman et al., 2012).
There are also numerous complex interactions and indirect effects as,
for instance, deteriorated water quality reduces the availability of suf-
ficient quantities of water and reduced water availability leads to more
intensive water use and reuse. In turn, intensive farming typically in-
creases the use of agro-chemicals and subsequent emissions of nu-
trients, pesticides, veterinary drugs and other compounds (Evans et al.,
2018; Mateo-Sagasta et al., 2018). Despite these strong links between
water management and human health, water management practitioners
hardly cooperate, or integrate their research and management ap-
proaches, with the public health sector. Moreover, despite various calls
for cross-sector collaboration (e.g. Freeman et al., 2013; Ministers of
Foreign Affairs, 2007), implementation in practice is limited by in-
stitutional, political and financial barriers (see e.g. Barrett et al., 2002;
McDonald et al., 2011).

The objective of this paper is to assess, from an environmental and
water science perspective, the potential of integral water management
to improve human health. To this end we identify components of the
water-related exposome that could be managed by water practitioners,
link these to negative and positive impacts on human health and show
the nature and magnitude of water management as a Response, influ-
encing public health outcomes. We apply the Drivers, Pressures, Impact,
State and Response (DPSIR) framework and consider a wide range of
health issues related to highly managed surface (freshwater and
marine) and groundwater ecosystems together with options to address
these. We introduce the DPSIR framework used to understand how
health impacts are influenced by the State of aquatic ecosystems in
Section 2. The results of our inventory are presented by type of State in
Sections 3–6. Section 3 focuses on the State of chemically polluted
water. Section 4 discusses the microbiological State of water bodies,
resulting from domestic and agricultural pressures. Section 5 considers
the State of water bodies as suitable breeding sites for vectors of disease.
Section 6 considers potential cumulative effects of the example of
plastic debris on the chemical, microbiological and habitat State. In
Section 7 the potential contribution of the water sector to reducing
water-related health risks is summarized pointing to opportunities for
cross-sectoral collaboration.

2. Material and methods

Our analysis focuses on those water-related health issues that the
authors as practitioners encounter in the water sector, grouped ac-
cording to their effect on the water body (State). Insights from the au-
thors’ work are complemented with a brief selective literature review
(Grant and Booth, 2009) to provide more general context, give addi-
tional examples and address knowledge gaps. For this review, typical
combinations of key words from the selected health issues and the

related water body were combined, for instance cyanobacteria+
reservoirs, or plastic debris+ rivers. Subsequently only those refer-
ences were included that specifically addressed impacts on human
health.

Water-related health issues can be analysed by applying the in-
strumental framework of DPSIR (Drivers, Pressures, State, Impacts and
Response; Borja et al., 2006; WHO, 1997), adapted to environmental
and human health by Yee et al. (2012). This tool structures several
levels of cause-effect relations: Generic overall Drivers include global
level autonomous population growth and climate change, steering
economic activities in different sectors, e.g. food production, and social
drivers, e.g. inequity in access to health services (Fig. 1). These Drivers
lead to ecosystem alteration, through many interacting determinants
such as changed land use, urbanisation and agricultural intensification.
This creates environmental Pressures, e.g. emissions from agriculture or
cities that people are exposed to throughout their lives-together con-
stituting the water-related exposome. The Drivers also influence human
behaviour and the way people interact with the environment, which in
turn affects the environmental Pressures. The Pressures affect the State of
both aquatic environmental health and human health, e.g. by pollution,
contamination or breeding of mosquitoes and humans, causing e.g.
intoxication or parasitic diseases (Prüss-Üstün et al., 2016; Landrigan
et al., 2017). When the environmental State is deteriorating, ecosystem
services will be negatively Impacted; or even disservices such as trans-
mission of diseases can be delivered.

The environmental Impact, e.g. unsafe water supply, affects human
well-being, as infections and intoxications in people will create a dis-
ease burden, influence well-being and eventually reduce life span.
Whether or not an environmental State affects the human health State is
determined by the impact pathways, their virulence (for pathogens) or
their toxicity (for chemical compounds and plastic waste), exposure
levels, and people’s susceptibility or compound thresholds (Fewtrell
and Kay, 2008). Human behaviour, influenced by socio-economic cir-
cumstances and individual choices, co-determine the extent of ex-
posure, i.e. the Pressures, and whether or not the total of Pressures over
time, the exposome, ultimately results in ill health.

Finally, responses can address Drivers, Pressures, States, as well as
Impacts (Fig. 1). While the health sector recognizes the importance of
environmental determinants, most efforts are directed towards curative
services, e.g. medication as Response to the human State. Health services
and prevention efforts are typically aimed at Drivers and Pressures, re-
spectively. These could benefit from complementary environmental
Responses. A good example of this is malaria. Global control efforts are
targeted at case detection and treatment, coupled with prevention via
insecticide-treated mosquito nets (ITNs). With increasing resistance to

Fig. 1. Conceptual framework, based on Yee et al. (2012), for Drivers, Pressures,
State, Impacts, and Responses in water and health, with parallel tracks for en-
vironmental (left) and human (right) health.
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drugs and insecticides, action from other sectors is needed to achieve
long term control of malaria (UNDP and RBM, 2013). Planning and
management of the environment are typical Responses in the realm of
other sectors, such as agriculture, urban planning and water manage-
ment, which have the potential to influence Drivers, Pressures, States and
Impacts of various water-related health issues.

3. Chemical pollution

Population growth, rapid urbanization, economic growth and ef-
forts to reduce poverty lead to intensified food production, mining of
resources and industrial development (Drivers in Fig. 2). The rising
population density in urbanised areas intensifies environmental Pres-
sures from the domestic, agricultural and industrial emissions that are
influenced by agricultural and industrial practices as well as waste
disposal habits. Industrial activities that pollute the water system are
manifold, including (small-scale) mining and raw resource manu-
facturing, the leather and textile industry, electronics industry, che-
mical industry, pharmaceutical industry, energy production, and
transport. Water is used in these industries in processes, as a cooling
agent, or to remove waste loads, sometimes directly emitted to surface
waters. Mining can be highly polluting; for instance, small-scale gold
mining in low-income countries exposes 15 million people to mercury
that ends up in the aquatic environment and the local food chain (Gibb
and O’Leary, 2014).

Domestic, industrial, and agricultural emissions in water lead to a
polluted State with thousands of substances and their residues including
nutrients, heavy metals, pesticides (insecticides, herbicides, fungicides),
and pharmaceuticals (Evans et al., 2018; Oldenkamp et al., 2013).
Substances from urban areas and industry usually pollute the environ-
ment as point sources, while agricultural chemicals may create diffuse
pollution-these require very different risk management approaches. In
many countries effluent treatment is insufficient. The resulting en-
vironmental State of chemical water pollution then depends on the
development stage of the country or region, where rapidly urbanising
and industrialising lower- and middle-income countries generally have
poor water quality, reflected in high organic loads leading to high

nutrient levels and low dissolved oxygen levels that can upset ecolo-
gical systems (Fig. 2). This generates a reduction in ecosystem services,
such as safe water supply and recreational opportunities.

The health Impacts are both direct, by exposure to polluted water via
drinking, bathing, swimming or inhaling, and indirect, via the eco-
system (Corvalan, et al., 2005; Schwarzenbach et al., 2010). Sometimes
exposure is triggered by flood events (Kintziger et al., 2017). Occa-
sionally, acute intoxication occurs, but more often the effects take years
to manifest, affecting life span, causing birth defects and incurring other
long term health effects. The accumulation of confounding factors over
time hampers specific attribution. Persistent and bioaccumulative
chemicals will build up in the food chain (especially in water-related
food such as fish and shellfish) and might pose health effects through
food consumption (Schwarzenbach et al., 2010). In addition, there is
evidence that polluted water fosters more pathogens (van der Zaan
et al., 2010v; van Elsas et al., [van Elsas et al., 2012v]van Elsas et al.,
2012). The health Impact of chemical water pollution remains largely
unknown (Whitmee et al., 2015), but 0.7 million deaths worldwide are
estimated to be related to the combination of ‘soil pollution, heavy
metals and chemicals’ (Landrigan et al., 2017). In a deteriorating en-
vironment the health burden is not equally distributed, but the heaviest
burden lies with the lower incomes (Myers et al., 2013).

Environmental Responses include restoration of ecosystems,
whereby water sources are harmonized with their functions. Where
feasible, intensive water quality monitoring can support the identifi-
cation of areas for wastewater treatment, e.g. at industrial sites or
communal level. Environmental regulations and recycling initiatives
can reduce Pressures from emissions. Measures directed at the Drivers
include green growth initiatives to reduce environmental impacts,
better spatial planning and infrastructure investments to increase effi-
ciency.

4. Microbiological contamination

Only 39% of the global population currently use safe sanitation
services and worldwide 2.3 billion people still lack even basic sanitation
(WHO/UNICEF, 2017). This absence of facilities is an important Driver

Fig. 2. Drivers, Pressures, Impacts and Responses for the State of chemical water pollution, with parallel tracks for environmental (left) and human (right) health
(concept based on Yee et al. (2012); estimated annual deaths based on Landrigan et al. (2017) for ‘soil pollution, heavy metals and chemicals’).
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for faecal-orally transmitted waterborne diseases (Fig. 3). As a result of
poverty, inequalities and poor housing conditions, people may have no
alternative but to resort to open defecation - these sanitary habits may
aggravate Pressure. Nutrients and pathogens from open defecation,
dysfunctional latrines or overflows of septic tanks or sewers, bring
groundwater and surface water into a State of microbiological con-
tamination. Manure from livestock, aquaculture and other animals add
to the microbiological load (Dufour et al., 2012). People run a health
risk by getting exposed to the pathogens in drinking water, via food,
fingers and flies, through recreational activities in contaminated water
(Harder Lauridsen et al., 2013) or in relation to floods (Alderman et al.,
2012). The resulting human health State includes many faecal-orally
transmitted diseases, often leading to diarrhoea, but also skin diseases,
breathing difficulties or fever. Impact from gastrointestinal diseases
leading to stomach aches and diarrhoea globally amounts to some 57
million DALYs (Prüss-Üstün et al., 2016). Proven effective environ-
mental Responses are based on reduction of exposure by providing safe
water supply, hygiene education and household water treatment
(Fewtrell et al., 2005), and on reduction of contamination through sa-
nitation, adaptations to sewerage systems and flood protection mea-
sures, including nature-based solutions.

Sector-based Responses can become new Pressures, as in the example
of antimicrobial resistance. Antibiotic resistance is an increasing and
urgent problem (Andersson and Hughes, 2014; Nordmann and Poirel,
2014) and the environment is an important factor in its spread
(Fletcher, 2015). Antimicrobials (including antibiotics) are applied
worldwide to control infections with parasites, bacteria, and fungi in
human healthcare, in veterinary medicine, crops and aquaculture
(Fig. 3). Some bacteria react by producing extended-spectrum beta-
lactamases (ESBLs), enzymes that protect them against the anti-
microbial activity of certain antibiotics. ESBL improves the survival rate
of these bacteria in the presence of beta-lactams, which (in positive
feedback mechanisms) stimulates the relative abundance of ESBL
within the environment microbial communities. Hospitals, households,
and manure from livestock are major sources of antibiotic resistance,
especially in countries where the sale of such drugs is less regulated and
self-medication is common (Dufour et al., 2012; Laxminarayan and
Chaudhury, 2016). In urban areas, wastewater from households and
hospitals is combined in downstream water bodies or at wastewater
treatment plants. Such wastewater treatment systems, like storage

systems for manure, bring together human faeces, animal manure, and
their various antibiotic resistance compounds and nutrients in a Pres-
sure cocktail that stimulates the transfer of antibiotic resistance genes to
other microorganisms (Sabri et al., 2018; Karkman et al., 2019). To-
gether this creates a new State of widespread prevalence of antibiotic-
resistance bacteria, such as E. coli producing ESBL, and other antibiotic-
resistance genes in the environment (Pruden et al., 2012; Wellington
et al., 2013; Bengtsson-Palme et al., 2018).

As with chemical pollution, microbiological contamination can
enter the environment from point source pollution, such as sewer out-
lets, or more diffusely, such as from grazing cattle or household latrines.
Diffuse contamination requires area-specific solutions. The obvious
environmental Responses for point pollution sources, wastewater treat-
ment plants, are designed to reduce nutrient concentrations and hardly
remove microorganisms. Like manure storage systems, these treatment
plants become hotspots for the spread of microbial resistance, where
pathogens take up the antibiotic resistance genes (Rizzo et al., 2013). In
the Netherlands, 9–19% of E. coli in untreated wastewater from nursing
homes produced ESBL (Franz et al., 2015). Dilution in the sewerage
system reduced this by 2 log-factors to a level of 0.1–1% in the influent
of local wastewater treatment plants, resulting in an effluent in which
no more than 0.3– 0.8% of E. coli produce ESBL, to a level of 700–5400
kve/l. However, for the Netherlands as a whole, this means that up to
109 E. coli bacteria produce unknown quantities of EBSL per day that all
end up in the surface water (Franz et al., 2015). Elsewhere in Europe,
constructed wetlands and water catchments were identified as potential
reservoirs of antibiotic resistance as well (Czekalski et al., 2015). Un-
derstanding the role of water in the transport and spread of anti-
microbial resistance will support new Responses, such as structural
monitoring and the development of environmental mitigating measures
(Berendonk et al., 2015; Shallcross and Davies, 2014; Wellington et al.,
2013). Regulations on discharge of pharmaceuticals into the environ-
ment and food safety standards on admissible levels of antibiotic re-
sidues in meat and poultry would be a good start to address various
Pressures (Laxminarayan and Chaudhury, 2016; Fig. 3), while mon-
itoring campaigns in water bodies would help to increase under-
standing of the role of the environment.

Chemical pollution can lead to microbiological pressures; an ex-
ample is the State of cyanobacterial blooms due to the high levels of
nutrients in an increasing number of stagnant water bodies (Fig. 3).

Fig. 3. Drivers, Pressures, Impacts and Responses
for a State of microbiologically contaminated
water, with parallel tracks for environmental
(left) and human (right) health (concept based
on Yee et al. (2012); estimated annual deaths
based on Landrigan et al. (2017) for (micro-
biologically contaminated) ‘water’ and O’Neill
(2016) for antimicrobial resistance).
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These blooms are widespread around the world, in natural lakes,
human-made reservoirs (Ndlela et al., 2016), seas and oceans. They are
aggravated by global warming (Paerl and Huisman, 2008). The toxins
released by the cyanobacteria often lead to fish kills and can cause
serious liver, digestive system, neurological, and skin diseases to people
who swim or bathe in affected water bodies. During such blooms, the
excreted toxins render water unfit for drinking or bathing by people or
animals. Specific measures have to be taken as treatment is not always
possible and water and fish may remain toxic. Environmental Responses
include watershed management to regulate the inflow of nutrients into
open water, flushing of water bodies to reduce residence times, en-
hancing vertical mixing and early warning systems.

5. Habitat for vector-borne diseases

The demand for increased food production has been a main Driver
for intensification of agriculture, much of which requires water. Dams,
reservoirs, and canals for irrigation, livestock, aquaculture, drinking, or
power generation have created Pressures, in turn affecting the en-
vironmental State with suitable habitats for the propagation of (insect)
vectors, intermediate hosts, and other carriers, creating optimal con-
ditions for transmission of water-related diseases in previously un-
suitable environments (Boelee et al., 2013; Erlanger et al., 2005; Keiser
et al., 2005a, 2005b; Kibret et al., 2010, 2015; Steinmann et al., 2006).
Water-based diseases (e.g. guinea worm, schistosomiasis, and leptos-
pirosis) and water-related insect-borne diseases (e.g., malaria, dengue
fever, chikungunya, Zika, river blindness, yellow fever, and filariasis)
are transmitted through either insect vectors or intermediate hosts that
spend some or all of their lives in water (Cairncross and Feachem,
1993). Many open water storage facilities, including reservoirs, ponds,
and tanks, provide an ideal habitat for mosquitoes, flies, snails, or ro-
dents, bringing both the vectors and the diseases closer to people
(Myers et al., 2013; Patz et al., 2004). Water depth, soil, temperature,
the presence of aquatic vegetation and predators, the chemical com-
position of the water, but also human activities determine the suitable
State of water bodies as habitats for mosquitoes, snails, rodents and
other vectors, intermediate hosts, or carriers (Fig. 4). Irrigated agri-
culture often is accompanied with higher use of pesticides that can

induce insecticide-resistance in for instance malaria mosquitoes, thus
adding Pressures.

The resulting health Impact can be high, with, for instance, malaria
causing some 23 million DALYs annually worldwide (Prüss-Üstün et al.,
2016). Water-related diseases disproportionately affect the poor, people
with low access to health services or preventive measures such as ITNs.
Responses in preventive and curative health care can be complemented
with environmental measures: environmental modification through
adapted design and engineering, environmental manipulation (re-
current actions, such as alternative operation and maintenance) and
reduction of human-vector contact (Keiser et al., 2005c; WHO, 1980).
In the case of water infrastructure, these options must be combined as
changes in design necessitate adapted water management, especially
when allowing for multiple use of water (Boelee et al., 2013). An ex-
ample of this is the adapted siphon box on irrigation canals in Morocco
that eliminated the snail host of schistosomiasis, while keeping the
water cleaner and accessible for domestic uses (Laamrani et al., 2000).

6. Potential cumulative effects of plastic debris

Some types of pollution and contamination contribute to chemical,
microbiological and habitat effects, for instance plastic debris that can
act as a potential carrier for dispersing toxic chemicals, harmful algae
and pathogens (GESAMP, 2016). UN Environment has identified plastic
pollution, alongside climate change, as a growing global threat that
might affect ecosystems, biodiversity and human systems through their
potential impact on food resources and the consumption of aquatic food
items contaminated with microplastics (Barboza et al., 2018; GESAMP,
2016; UNEP, 2014). Globally, between 1.15 and 2.41 million tonnes of
mismanaged plastic waste are estimated to be carried to the ocean
every year from rivers, be it directly, or via industrial and urban waste
effluents, or from landfill leachates (Lebreton et al., 2017). River sys-
tems potentially act as major transporters for all sizes of plastic debris
(Leslie et al., 2017). The majority of this Pressure (88–95% of the global
load into the sea) flows through the 10 most contaminated rivers,
though this analysis is based on limited and incomplete data (Schmidt
et al., 2017). Two of these rivers are in Africa (the Nile and the Niger),
while the remaining eight are in Asia. The rivers with the highest

Fig. 4. Drivers, Pressures, Impacts and Responses for the State of water bodies as suitable breeding sites for vectors of disease, with parallel tracks for environmental
(left) and human (right) health (concept based on Yee et al. (2012); estimated annual deaths based on WHO (2017)).
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estimated plastic concentrations are in countries with low rates of waste
management and comprise some of the world's longest rivers. They are
often situated in tropical regions with large populations living in their
catchment. Seas and oceans (Wagner et al., 2014) as well as freshwater
environments (Blettler et al., 2017; Eerkes-Medrano et al., 2015) in-
creasingly reach a State of high burdens of plastic pollution. Moreover,
there might be large amounts of plastic waste present in river sediments
and floodplains that could contribute to ecological and potential human
health effects (Corcoran, 2015; Eerkes-Medrano et al., 2015; Vethaak
and Leslie, 2016; Wright and Kelly, 2017).

The environmental State of plastic waste in water may affect human
health, possibly in a cumulative way, through particle toxicity, che-
mical toxicity, as a substrate for microbial activity (Vethaak and Leslie,
2016) and via the creation of vector breeding habitats. The human
health State is thus affected by i) effects of ingestion of plastics or
plastic-derived chemicals; ii) effects of plastic-associated pathogens;
and iii) the contribution of plastic in the creation of habitats for disease
vectors.

i) Chemical (and particle) pollution from plastic. Upon ingestion, in-
ternalisation and potential translocation, very fine micro- or nano-sized
plastic particles may cause particle toxicity and associated oxidative
stress and inflammation (GESAMP, 2016; Wright and Kelly, 2017).
Whether these internalised plastic particles may bring associated toxic
chemicals into the human body, resulting in bioaccumulation in certain
organs with consequent chemical risks, remains to be studied. Plastics
can leach toxic additives into the water, or adsorb waterborne con-
taminants (Oberbeckmann et al., 2016), which aggravates the total
chemical water pollution. These additives include hazardous chemicals
such as bisphenol-A, brominated flame retardant, phthalates, UV sta-
bilisers, residual monomers and colourants, leached by plastics into
rivers and oceans, and taken up by aquatic organisms into the food web.
These might expose people living in these catchment areas, with po-
tential risks to both human health and the environment. Plastic-derived
chemicals include a range of toxic substances often with endocrine
disrupting, immunotoxic, or another toxic potency that could be ha-
zardous to wildlife and humans (Gauquie et al., 2015; Lithner et al.,
2011; Rochman et al., 2013). For example, experimental animal models
and wildlife studies have provided evidence that several of the common
plastic additives leaching from solid was, such as bisphenol A, phtha-
lates and brominated flame retardants can cause immunosuppression
and endocrine disruption and may contribute to both infectious and
non-infectious diseases (Thompson et al., 2009; Teuten et al., 2009;
Rogers et al., 2013; Schwarzenbach et al., 2006; Vos et al., 1989).

ii) Microbiological contamination via plastic. While drifting, plastic
can act as a potential carrier for dispersing non-indigenous species,
harmful algal bloom species, and pathogens (De Tender et al., 2015;
Gauquie et al., 2015; Kirstein et al., 2016; Rochman et al., 2013), thus
for example increasing infection rate and risk for infectious diseases
(GESAMP, 2016; Keswani et al., 2016; McCormick et al., 2014). People
are exposed to plastics as vehicles or vectors for pathogens via dermal
contact or ingestion of microbial contaminated plastic particles. The
implication of plastic waste as a carrier of disease on a global scale was
recently suggested by Lamb et al. (2018). The authors provided corre-
lative evidence between plastic trapped in coral reefs around the world
and coral health, indicating that the plastic debris might result into a
greater prevalence of coral disease, for example, by active transport of
pathogens into coral reefs (Lamb et al., 2018). Identification of mi-
crobial pollutants on environmental plastic waste will help to in-
vestigate the potential risks better.

iii) Plastic as (habitat for) vectors of disease. Discarded plastic items,
such as car tyres and Styrofoam fast food boxes, that can hold water
near rivers, or after flooding or rainfall, may create excellent habitats
with opportunities for mosquitos and other disease-bearing in-
vertebrates (Epstein, 2015; Vethaak and Leslie, 2016). Similarly,
floating plastic can create pockets where mosquito larvae or snails find
shelter from predators.

Waterborne plastic waste may affect the human health State in
various and cumulative ways, especially in tropical river regions. In
many of these regions, large numbers of people have no access to safe
water and still use rivers for drinking water, bathing, and washing and
food resources. Responses include legislation and agreements to reduce
waste and include recycling.

7. Discussion: Responses from the water sector

7.1. Water-related exposome: integrated research

The impact pathways are different for the various types of biological
and chemical water pollution, which all have their own health effects.
Interactions between chemical water quality, microbiology, and vectors
further complicate the total Impact, as the example of plastic debris has
shown. Various tools are available to disentangle and quantify these
Impacts. Qualitative environmental and health impact assessments
could be complemented with Quantitative Microbial Risk Assessment
(QMRA) (e.g. Fuhrimann et al., 2016; WHO, 2016), and other methods
to calculate the water-related disease burden (e.g. Devleesschauwer
et al., 2014; Prüss-Üstün et al., 2016). New tools are being developed to
assess the whole pathway of sources of chemical compounds to their
health impacts, which will guide the selection of optimal abatement
options (Brack et al., 2015). A comprehensive analysis could thus link
the total water-related exposome, rather than separate States, to water
management interventions. This has the potential to support decision
making and facilitate the implementation of environment-based Re-
sponses, but does require different tools.

The need for integrated tools was confirmed at the Impact of
Environmental Changes on Infectious Diseases (IECID) conference in
Trieste, May 2017. When asked how they would spend a voucher for
water research, almost half of the audience (49%, n=53 out of 108
votes from 55 respondents) voted modelling to predict the impact of
environmental factors, water flows and water quality, but also joint
modelling. This can be as simple as layers in a GIS that show water
infrastructure but could include modelling of environmental factors
that determine the suitability of habitat for mosquitoes and other vec-
tors of disease (Kistemann et al., 2011). Likewise, predictive models
combining water flows and water quality that are used to improve
water quality monitoring efforts could be extended to incorporate
health risks and show probable impacts (Brack et al., 2015). For in-
stance, hydrological forecasting models based on system characteristics
take into account (expected) rainfall and other weather conditions, and
combine this with upstream emissions of chemicals, nutrients, and
pathogens (Hofstra and Vermeulen, 2016; Kroeze et al., 2016). In that
way, health risks can be calculated in advance, for downstream water
users. In addition to models, field tools such as mobile DNA detection
can help to detect pathogens faster, usually within an hour and a half,
without having to go to a laboratory. DNA sequencing can be com-
plemented with the application of metagenomics to increase resolution
and identify individual pathogens, or the presence of antibiotic-re-
sistance genes.

7.2. Water management

The various Responses in the water sector, as discussed in Sections
3–6, show remarkable similarities. Many interventions have the po-
tential to address several health issues at the same time. This makes it
very attractive for health professionals to collaborate with the water
sector. Investments in safe water supply and sanitation are important
Drivers that have the potential to reduce in particular the State of mi-
crobiological contamination. For example, sanitation systems and im-
proved wastewater treatment lead to reduced contamination, sup-
porting the realisation of several sustainable development goals. In
addition to improving human health (SDG 3) and access to clean water
and sanitation (SDG 6), sanitation contributes to the alleviation of
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poverty (SDG 1), to sustainable cities and communities (SDG 11), and
protects land and water (SDG 14, SDG 15; Landrigan et al., 2017). With
reduction of plastic and other solid waste more prominently on the
agenda of water managers, the amounts of plastic debris in river sys-
tems can be reduced eventually, resulting in lower abundances of
plastic in rivers and oceans. Increased recycling efforts, extensive river
clean-ups, and cost-effective and appropriate remediation and water-
treatment technologies are environmental Responses that complement
education campaigns and measures to reduce or ban the use of plastic
packaging.

Increased availability of water for bathing and washing clothes, can
lower infestations of lice and fleas, and help reduce skin and eye in-
fections. Particularly in areas with limited domestic water supply, ac-
cess to other water bodies, such as irrigation canals and reservoirs, can
contribute to improved hygiene, thus reducing health risks (Boelee
et al., 2007), provided this water does not carry heavy contamination or
pollution from upstream areas.

Wastewater treatment, solid waste management, and adapted de-
sign of other infrastructures like dams and roads are additional
Responses that reduce pressure on the environment. Alternative design
and operation of water management infrastructure offer less obvious
but potentially highly effective Responses. For instance, open reservoirs
may be breeding sites for mosquitoes, snails and other vectors of disease
but could be designed and operated in such a way that they receive less
upstream contamination and pollution and offer less suitable habitats,
for instance by fluctuating water levels, building free-draining hy-
draulic structures or by changing the vegetation on the shores (Boelee
et al., 2013).

Measures to increase water safety and prevent flooding provide
health benefits beyond the direct effects of reducing drowning and
damage. The health impacts of floods are poorly quantified, particularly
in the longer term, though mortality may be substantial (Alderman
et al., 2012). Dikes, levees and dams offer protection from floods, thus
preventing drowning, damage and infectious diseases such as leptos-
pirosis, cholera and other gastrointestinal diseases.

7.3. Integration and collaboration

With the mounting Pressure on water resources and growing un-
derstanding of the connectivity between water systems, water is in-
creasingly managed integrally. Integrated water management considers
all water sources and uses in a water system, linking the many uses of
groundwater to surface water and upstream to downstream. Integrated
water management is implemented in various approaches, such as
Integrated Water Resources Management (IWRM), Integrated River
Basin planning and Management (IRBM) and Integrated Coastal Zone
Management (ICZM). These can be powerful planning tools to address
several, sometimes competing, societal needs. Integrated water man-
agement influences land use planning in river basins and deltas, and by
steering wastewater management, has an impact on water quality from
upstream to oceans. Integrated water management also has the ability
to reduce exposure to pathogens, for instance by tackling sewage
streams from cities, or offering safe bathing sites, thus reducing
Pressures, changing human behaviour and lowering the negative health
Impact of water resources management and actually increasing its
benefits.

As part of integrated water management approaches, multi-purpose
infrastructure can have manifold health benefits. For instance, smartly
designed, well-managed multipurpose reservoirs can provide water for
crops and livestock, thus supporting food security, and indirectly supply
drinking water, without creating habitat for mosquitoes, snails or algae
(Boelee et al., 2013; Carvalho et al., 2013). Such reservoirs can provide
areas for safe bathing and swimming, while reducing instead of en-
hancing the risk of waterborne diseases (Brookes et al., 2006). Clean
and healthy water systems can actually promote human health, when
people can relax, exercise and recreate by the water (European Marine

Board, 2013).
Water management decisions have a huge potential to incur health

benefits on communities, especially on vulnerable groups. Public health
and water resources are governed separately, so a focus is needed on
multi-sector approaches supported by evidence from multidisciplinary
research (Patz et al., 2004). Such cross-sectoral approaches have the
potential to influence investments in, for instance, (plastic) waste
management and other Drivers.

Governments and development banks invest heavily in water
management planning (often river basin-oriented) to clean-up and re-
habilitate the aquatic environment. Large-scale projects with con-
siderable levels of investment are usually preceded by formal en-
vironmental impact assessments (EIA), with or without additional or
incorporated health impact assessments (HIA; Birley, 2011; Fewtrell
and Kay, 2008; Winkler et al., 2013, 2017). As the planning processes
influence land use and have impacts on wastewater generation and
treatment, it offers new opportunities to enhance human health outside
the curative and preventive domains of the health sector.

When the health sector would get involved in IWRM or IRBM,
Responses could be incorporated that target Drivers, Pressures, State, and
Impact of both environmental and human health. More systematic
planning, with wider availability of dedicated health impact tools, and
interdisciplinary collaboration between public health and water man-
agers all help to prevent the negative health impacts of water resources
management and enhance the benefits. In addition to the management
of wastewater and water quality, these could include water manage-
ment Responses aimed at vectors and agents of disease such as mos-
quitoes, crustaceans and snails, as well as bacteria, viruses and para-
sites, and extend to improved solid waste management, in particular
plastic, and green chemistry. Water management can increase health
risks but could also prevent these or even enhance human health. When
designed with health concerns in mind, water management measures
have the potential to address a multitude of infectious diseases and
other health issues.
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