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Abstract In this paper we provide some equivalences on dentability in normed
spaces. Among others we prove: the origin is a denting point of a pointed cone C
if and only if it is a point of continuity for such a cone and C∗ − C∗ = X∗; x is
a denting point of a convex set A if and only if x is a point of continuity and a
weakly strongly extreme point of A. We also analize how our results help us to
shed some light on several open problems in the literature.
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1 Introduction

Throughout the paper X will denote a normed space, ‖ · ‖ the norm of X, X∗ the
dual space of X, 0X the origin of X, and R+ the set of nonnegative real numbers.
We call weak the weak topology on X and weak∗ the weak star topology on its dual
X∗. A nonempty convex subset C of X is called a cone if αC ⊂ C, ∀α ∈ R+. Fixed
a cone C, we define the dual cone for C by C∗ := {f ∈ X∗ : f(c) ≥ 0 ,∀c ∈ C}
–which is a weak∗-closed subset of X∗– and the bidual cone for C by C∗∗ := {T ∈
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X∗∗ : T (f) ≥ 0, ∀f ∈ C∗} –which is a weak∗-closed subset of X∗∗–. A cone C ⊂ X
is said to be quasi-generating (resp. generating) if C − C = X (resp. if C−C = X).
It is clear that generating cones are quasi-generating, but the converse is not true
(for example, a proper dense subspace). The notions of generating and quasi-
generating cones have been widely studied and appear in many results regarding
ordered vector spaces, see for example [2,5]. Fixed a normed space X, by qG∗ we
will denote the family of cones in X that have a quasi-generating dual cone.

Let us introduce the notion of denting point. It connects with the Radon–
Nikodým property, with renorming theory, and with optimization theory. Before
introducing such a notion we need to fix some notation and terminology. A set
H is called an open half space of X if it is a weakly open set of the form H =
{x ∈ X : f(x) < λ} for some f ∈ X∗ \ {0X∗} and λ ∈ R. We denote H briefly
by {f < λ}. Let A ⊂ X, a slice of A is a nonempty intersection of A with an
open half space of X. We denote by conv(A) (resp. by conv(A)) the convex hull
of A (resp. the closed convex hull of A). Besides, we denote by Bε(x) the open
ball with centre x ∈ X and radius ε > 0 and by Bε(x) the corresponding closed
ball. In case x = 0X and ε = 1 the former set is denoted by BX and the latter by
BX . Let A be a convex subset of X, x ∈ A is said to be a denting point of A if
x 6∈ conv(A\Bε(x)), ∀ε > 0. By the Hahn–Banach theorem, x is a denting point of
A if and only if for every ε > 0 there exists a slice of A containing x with diameter
less than ε. Another notion involved in this work is that of point of continuity. Let
A be a convex subset of X, x ∈ A is said to be a point of continuity for A if the
identity map (A,weak)→ (A, ‖ · ‖) is continuous at x.

The notion of point of continuity is, in general, weaker than the notion of
denting point. However, it is still an open problem to clarify if both notions coincide
for closed cones in normed spaces. Such a problem raised in [12, Conclusions],
paper in which these properties were applied in vector optimization theory (more
applications of these properties in vector optimization can be found in [3,8,20]).
In [11,14] were given some results characterizing the notion of denting point for
a cone in a normed space in terms of the notion of point of continuity plus an
extra assumption on the cone. Let us note that such extra assumptions seem not
to be related to the closedness of the cone. However, in the context of Banach
spaces both notions (dentability and point of continuity) become equivalent for
closed cones. The former equivalence was shown in [9] as a direct consequence of
a well known characterization of denting points of a closed convex bounded set in
a Banach space, namely [18, Theorem]. In this paper we continue the research we
began in [11] about the link between dentability and point of continuity in normed
spaces (not necessarily complete) and for arbitrary cones (not necessarily closed).
In this line of research, we provide now some new results which have a wide range
of applicability –as we will see below–, and we solve –among others– Problem 2.6
we stated in [11].

In the following paragraphs we will present a brief overview of the main results
of this paper together with their connections with other results and problems
in the literature. Our first contribution is Theorem 2, in which we stablish –
among others– the equivalence between dentability and point of continuity for
cones in qG∗. Roughly speaking, the former equivalence can be interpreted as
meaning that the notions of denting point and point of continuity in a cone coincide
when the dual cone is “large enough”. This result generalizes [14, Theorem 4]
and, in addition, it provides the following: a negative answer to Gong’s question
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in [12, Conclusions] for cones in qG∗ (see Corollary 1); the equivalence between
the following results on density of Arrow, Barankin and Blackwell’s type, [12,
Theorem 3.2 (a)] and [20, Corollary 4.2], for cones in qG∗ (see Corollary 2); and a
positive answer to [14, Problem 5] for cones in qG∗ (see Corollary 3). Luckily, qG∗
is a large class of cones. It contains, for example, the normal cones introduced by
Krein in [16]. Normal cones are useful in the theory of ordered topological vector
spaces (see [2]) and in the study of extremal problems in differential and integral
equations (see [15]).

Returning to [11] –paper of which this work is a continuation–, it is worth
pointing out that [11, Proposition 2.5] is a cornerstone in the proof of the main
theorem in [11]. Such a proposition characterizes the property that the origin is a
weakly strongly extreme point of a pointed closed cone. However, it was unknown if
the above mentioned characterization remains true if we drop down to the cone the
assumption of closedness. Namely, such a question was stated in [11, Problem 2.6].
In this paper we solve the former question in the negative (see Remark 1). Let
us note that such a solution is a consequence of Theorem 3 in this paper, which
provides a characterization of the property that the origin is a locally weakly
strongly extreme point of a pointed (not necessarily closed) cone.

As has been said before, the equivalence of dentability and point of continuity
for closed cones in Banach spaces was provided by Daniilidis who made use of
the characterization [18, Theorem]. Let us point out that such a characterization
states that a point of a closed, convex, and bounded set in a Banach space is
a denting point if and only if it is a point of continuity and an extreme point
for such a set. However, the former equivalence does not work for noncomplete
normed spaces (see [19, Example]) and, to our knowledge, a version for normed
spaces is required. In this paper, by means of Theorem 4, we provide such a version
changing the notion of extreme point by that of weakly strongly extreme point
and assuming –only– the convexity of the involved set.

The paper is organized as follows. In Section 2 we state and prove Theorems 2,
3, and 4 mentioned above. In Section 3 we apply the equivalence between dentabil-
ity and point of continuity for cones in qG∗ from Theorem 2 to solve –for cones in
qG∗– some open problems in the literature we mentioned before (Gong’s question
and so on). Finally, in Section 4 we again apply the former equivalence from The-
orem 2, but this time to several noncomplete ordered normed spaces. As a result,
we obtain some geometric properties of their corresponding canonical order cones.

2 Results on dentability

The main objective in this section is to state and prove Theorems 2, 3, and 4 just
commented in the introduction. However, before stating Theorem 2, we have to
say that it is a complement to Theorem 1.1 in [11] in the sense that we provide
here more caracterizations to the property of dentability of a cone at the origin.
In fact, thanks to the use of some equivalences from [11, Theorem 1.1], we will be
able to provide a short proof of Theorem 2. Next, we state such equivalences.

Theorem 1 (From [11, Theorem 1.1]) Let X be a normed space and C ⊂ X a
pointed cone. The following are equivalent:

(i) 0X is a denting point of C.
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(ii) C has a bounded slice.
(iii) The interior of C∗ in X∗ is not empty.

Next, we provide the first of our main results. Before, we need to fix some
notation. Let us fix a convex set A and x ∈ A. We say that x is an extreme point
of A if x does not belong to any non degenerate line segment in A. On the other
hand, let us remind that a cone C is said to be pointed if C ∩ (−C) = {0X}
(equivalently, if 0X is an extreme point of C). It is clear that if 0X is a denting
point of a cone C, then C is pointed. Let C ⊂ X be a cone, the order on X given
by C is defined as x ≤ y ⇔ y − x ∈ C, ∀x, y ∈ X. In this context it is defined
the order interval [x, y] as the set {z ∈ X : x ≤ z ≤ y} and it is said that c ∈ C
is an order unit of C if X =

⋃
n≥1[−nc, nc]. Given any cone in a normed space,

we always consider the corresponding order on the normed space given by such a
cone.

Theorem 2 Let X be a normed space and C ⊂ X a pointed cone. The following
are equivalent:

(i) 0X is a denting point of C.
(ii) There exist n ∈ N, {fi}ni=1 ⊂ C∗, and {λi}ni=1 ⊂ (0,+∞) such that the set⋂n

i=1{fi < λi} ∩ C is bounded.
(iii) 0X is a point of continuity for C and C ∈ qG∗.
(iv) C∗ has an order unit.
(v) There exists {fn}n≥1 ⊂ C∗ such that X∗ =

⋃
n≥1[−nfn, nfn].

The main contributions of the former result with respect to [11, Theorem 1.1]
are, on the one hand, the use of quasi-generating dual cones as a qualification
condition for the equivalence between point of continuity and dentability which
has a wider range of applicability –as we will see later–. On the other hand, we
state explicitly the relation of quasi-generating dual cones with order units. Let us
remind that c ∈ C is said to be a quasi-interior point of X if

⋃
n≥1[−nc, nc] = X.

The set of all quasi-interior points is denoted by qiC. It is clear that qiC∗ 6= ∅
implies C ∈ qG∗. Thus, the equivalence between assertions (i) and (iii) above
generalizes [14, Theorem 4]. After the examples in Section 4 it is clear that we
can not remove the hypothesis of point of continuity from (iii). Finally, let us note
that assertions (ii), (iv), and (v) suggest that for 0X to be a denting point of C it
is only necessary to have enough positive elements in X∗, i. e., that C has a “large
enough” dual cone.

The following lemmata will be required in the proof of Theorem 2. The first
two lemmas are known, however we prove the second one for the completeness of
the text.

Lemma 1 Let X be a normed space, x ∈ X, and C ⊂ X a cone. Then [−x, x]
is a convex and symmetric set. Besides, [−x, x] 6= ∅ if and only if 0X ∈ [−x, x] if
and only if x ∈ C.

Here and subsequently, IntA stands for the interior of the set A ⊂ X.

Lemma 2 Let X be a normed space, x ∈ X, and C ⊂ X a cone. The following
are equivalent:

(i) Int[−x, x] 6= ∅.
(ii) 0X ∈ Int[−x, x].
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(iii) x ∈ IntC.

Proof. (i)⇒(ii). If z ∈ Int[−x, x], then −z ∈ Int[−x, x], so 0X ∈ Int[−x, x].
(ii)⇒(iii). If ∃ε > 0 such that εBX ⊂ [−x, x] = (−x + C) ∩ (x − C), then clearly
Bε(x) ⊂ C. (iii)⇒(ii). Assume ∃ε > 0 such that Bε(x) ⊂ C. Then εBX ⊂ −x+C.
Since BX is symmetric, εBX ⊂ x− C. Thus, 0X ∈ Int[−x, x].

Lemma 3 Let X be a Banach space and C ⊂ X a closed cone. The following
statements hold true:

(i) x is an order unit of C if and only if x ∈IntC.
(ii) There exists (cn)n ⊂ C such that

⋃
n≥1[−ncn, ncn] = X if and only if IntC is

not empty.

Proof. (i)⇒. Assume that x is an order unit. Then, by the Baire category theorem,
there exists n ∈ N such that [−nx, nx] has a nonempty interior. Now, by Lemma 2,
x ∈ IntC. Let us prove ⇐. If x ∈ IntC, then, again by Lemma 2, [−x, x] has a
nonempty interior. Since [−x, x] is a convex and symmetric subset of X, we get
that x is an order unit.

(ii)⇒. Again by the Baire category theorem, there exists n such that [−cn, cn]
has a nonempty interior. Now, Lemma 2 applies and cn ∈ IntC. To finish, ⇐ is a
consequence of (i).

Let us denote by C
weak∗

the closure of C in X∗∗ respect to weak∗ topology.

Lemma 4 Let C be a cone in a normed space X. Then C
weak∗

= C∗∗.

Proof. Since C ⊂ C∗∗ and C∗∗ is weak∗-closed, it follows that C
weak∗

⊂ C∗∗.
We will prove the other inclusion by contradiction. Assume there exists T ∈ C∗∗ \
C

weak∗

. By the Hahn-Banach theorem, there exist f ∈ X∗ and α ∈ R such that

T (f) < α ≤ inf{f(x) : x ∈ Cweak∗

} ≤ inf{f(c) : c ∈ C} ≤ 0. (1)

If inf{f(c) : c ∈ C} = 0, then f ∈ C∗ which contradicts T ∈ C∗∗ because by (1)
we have T (f) < α ≤ 0. Consequently inf{f(c) : c ∈ C} < 0. Hence, there exist
r < 0 and c ∈ C such that f(c) = r < 0. Since nc ∈ C, ∀n ≥ 1, it follows that
α ≤ inf{f(c) : c ∈ C} ≤ f(nc) = nr < 0, ∀n ≥ 1, which is impossible.

The following result connects extremity properties of the bidual cone to the
existence of small slices containing the origin in the primal cone. This is the key
to link cones with a large dual C∗, to dentability properties of C –as we will see
in the proof of Theorem 2–.

Proposition 1 Let X be a normed space and C ⊂ X a cone. If C∗∗ is pointed,
then for every R > 0 and CR := C ∩BR(0X), the family of open slices containing
0X forms a neighbourhood base for 0X relative to (CR,weak).

Proof. Fix R > 0 and CR ⊂ C as in the statement. Let us denote by ‖ · ‖∗∗ the
norm on the bidual X∗∗ and define the weak∗-compact set

C∗∗R := {T ∈ C∗∗ : ‖ T ‖∗∗≤ R} ⊂ X∗∗.
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Clearly CR = C∗∗R ∩ X and 0X is an extreme point of C∗∗R . Let W be a weak-
neigbourhood of 0X in X. It is not restrictive to assume that there exist {fi}ni=1 ⊂
X∗ and λ ∈ R such that W = ∩ni=1{x ∈ X : fi(x) < λ}. We define the weak∗

open set W ∗∗ := ∩ni=1{T ∈ X∗∗ : T (fi) < λ}. By Choquet’s lemma there exist
f ∈ X∗ and α ∈ R such that 0X ∈ {T ∈ C∗∗R : T (f) < α} ⊂ W ∗∗ ∩ C∗∗R . Clearly,
0X ∈ {x ∈ CR : f(x) < α} ⊂W ∩ CR, which finishes the proof.

Proof of Theorem 2. (i)⇒(ii). By (i)⇒(ii) in Theorem 1, C has a bounded slice S.
By [11, Lemmas 2.1 and 2.2], there exist f ∈ X∗ and λ > 0 such that S = {f <
λ} ∩ C. Finally, by [11, Proposition 2.4], f ∈ C∗.

(ii)⇒(i). Assume (ii) and fix λ := min{λi : 1 ≤ i ≤ n} > 0. Now, we define
the relatively weakly open set V :=

⋂n
i=1{fi < nλ} ∩ C in C and the functional

f := 1
n

∑n
i=1 fi. It is clear that V is bounded, f ∈ C∗, and {f < λ} ∩ C ⊂ V .

Then, C has a bounded slice. Finally, (ii)⇒(i) in Theorem 1 applies.

(i)⇔(iv). This is a consequence of (i)⇔(iii) in Theorem 1 and Lemma 3 (i).

(i)⇒(iii). Clearly 0X is a point of continuity for C. On the other hand, the for-
mer equivalence, (i)⇔(iv), implies that C∗ has an order unit. Now, by Lemma 3 (i),
we can assume that Int C∗ 6= ∅. Therefore, C∗ − C∗ is a subspace of X∗ with a
nonempty interior. Hence, C∗ − C∗ = X∗ which yields C ∈ qG∗.

(iii)⇒(i). Consider again C
weak∗

, i.e. the closure of C in X∗∗ respect to the

weak∗ topology. Assume C ∈ qG∗ and pick any x∗∗ ∈ Cweak∗

∩(−Cweak∗

) ⊂ X∗∗.
Then we have, simultaneously x∗∗(f) ≥ 0 and x∗∗(−f) ≥ 0, ∀f ∈ C∗. Hence

x∗∗ = 0, which means that the cone C
weak∗

in X∗∗ is pointed. Then, by Lemma 4,
C∗∗ is pointed. Let us fix now ε > 0. Next, we will find a slice on C containing 0X
and having diameter smaller than ε. By W we denote a weak neighbourhood of
0X . Now, since 0X is a point of continuity for C, we assume that 0X ∈W∩C ⊂ C ε

4

(making use of the notation in Proposition 1). Now, applying Proposition 1 to W
and R = ε

2 , we have f ∈ X∗ and λ > 0 such that {f < λ} ∩ C ε
2
⊂W ∩ C ε

2
⊂ C ε

4
.

Hence {f < λ} ∩ C ⊂ C ε
2
. Indeed, if c ∈ {f < λ} ∩ C and ‖ c ‖> ε

2 , then

c0 = 3ε
8

c
‖c‖ ∈ {f < λ} ∩ C ε

2
\ C ε

4
, a contradiction.

(iv)⇒(v). There is nothing to prove.

(v)⇒(i). By Lemma 3 (ii), IntC∗ 6= ∅. Now, (iii)⇒(i) in Theorem 1 applies.

Let us recall the following notion from [13], notion which was used –at least
implicitly– by Kunen and Rosenthal in [17]. Let A be a subset of a normed space X,
a point x ∈ A is called a weakly strongly extreme point of A if given two sequences
(an)n and (a′n)n in A such that limn(an+a′n) = 2x, then weak-limn an = x. Now,
we provide the local version of the former notion. We say that x ∈ A is a locally
weakly strongly extreme point of A if there exists a neighbourhood U of x such
that given two sequences (an)n and (a′n)n in A∩U such that limn(an+a′n) = 2x,
then weak-limn an = x. Such a notion will allow us to solve [11, Problem 2.6] as
we will see after the next result.

Theorem 3 Let X be a normed space, C ⊂ X a pointed cone, R > 0, and
CR := C ∩ BR(0X). Assume that the family of open slices containing 0X forms
a neighbourhood base for 0X relative to (CR,weak). Then 0X is a locally weakly
strongly extreme point of C.
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Proof. Let us consider two sequences (cn)n and (c′n)n in CR such that limn→+∞(cn+
c′n) = 0X . We will show that weak-limn→+∞ cn = 0X . We claim that for every
subsequence (cnk)k of (cn)n, we have

0X ∈ {cnk : k ≥ 1}(CR,weak)

, (2)

claim which implies weak-limn→+∞ cn = 0X . Indeed, if the former limit either
does not exist or it is not 0X , then there would exist f ∈ X∗ and λ > 0 such that
for every k ≥ 1 we could choose nk ≥ k such that the corresponding cnk does not
belong to the set {f < λ} ∩CR. Then we could construct a subsequence (cnk)k of
(cn)n verifying cnk 6∈ {f < λ} ∩ CR for every k ≥ 1, contradicting (2). Therefore
we only need to show the above claim. For that purpose it suffices to prove (2)
for the initial sequence (cn)n (the argument for any subsequence is the same). We
will show it by contradiction. Assume that (2) is not true for (cn)n. Then, there
exist f ∈ X∗ and λ > 0 such that

cn 6∈ {f < λ} ∩ CR, ∀n ≥ 1. (3)

However, by hypothesis there exists n0 ≥ 1 such that cn + c′n ∈ {f < λ} ∩ CR,
∀n ≥ n0; which by convexity yields c′n ∈ {f < λ} ∩ CR, ∀n ≥ n0. Hence weak-
limn→+∞ c′n = 0X . Indeed, if we consider any g ∈ X∗ and µ > 0 there exists n1

such that cn + c′n ∈ {g < µ} ∩ {f < λ} ∩ CR, ∀n ≥ n1. Thus

c′n ∈ {g < µ} ∩ {f < λ} ∩ CR ⊂ {g < µ} ∩ CR, ∀n ≥ n1.

Finally, weak-limn→+∞ c′n = 0X implies weak-limn→+∞ cn = 0X contradicting
(3). Contradiction which comes from assuming that (2) is not true for (cn)n.

Remark 1 Theorem 3 solves [11, Problem 2.6] in the negative because we reach the
equivalence between the corresponding statements in [11, Proposition 2.5] when
we change condition (i) in [11, Proposition 2.5] by “0X is a locally weakly strongly
extreme point of C” even though C is not closed.

Let us remind from the introduction that [18, Theorem] was used in [9] to
answer Gong’s question in the context of Banach spaces. In the last part of this
section we state and prove a new version of [18, Theorem] –labelled as Theorem 4–
in which we have dropped down the hypothesis of completeness. In particular,
we establish a characterization of dentability in terms of the notion of point of
continuity in normed spaces and for arbitrary convex sets. Let us fix a convex set
A and x ∈ A. Let us recall that x is an extreme point of A if x does not belong to
any non degenerate line segment in A. Fixed a subset A ⊂ X, we will denote by
Ã the closure of A in X∗∗ respect to the weak∗ topology. An extreme point x of
A is said to be a preserved extreme point of A if x is also an extreme point of the
set Ã (see [13]). The next result clarifies the relationship between the notion of
preserved extreme point and that of locally weakly strongly extreme point. Such
a result is a reformulation of [13, Proposition 2.2] for a convex set (instead of the
unit ball) in a normed space and it will be used in the proof of Theorem 4. From
now on, AR(x) := A ∩BR(x), ∀R > 0 and x ∈ A, being A ⊂ X a subset.

Proposition 2 Let X be a normed space, A ⊂ X a convex subset, and x ∈ A.
Consider the following properties.
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(i) x is a locally weakly strongly extreme point of A.
(ii) x is a preserved extreme point of A.
(iii) The family of open slices containing x forms a neighbourhood base for x relative

to (AR(x),weak), ∀R > 0.

Then we have (i)⇒(ii)⇒(iii). Moreover, if A is also closed, then the three
properties above are equivalent.

Proof. The proof of implication (iii)⇒(i) (resp. of (i)⇒(ii), resp. of (ii)⇒(iii))
in [13, Proposition 9.1] applied to each AR(x) proves our implication (i)⇒(ii)
(resp. our implication (ii)⇒(iii), resp. our implication (iii)⇒(i) under the extra
assumption of A being closed).

Theorem 4 Let X be a normed space, A ⊂ X a convex subset, and x ∈ A. The
following are equivalent:

(i) x is a denting point of A.
(ii) x is a point of continuity and a weakly strongly extreme point of A.
(iii) x is a point of continuity and a preserved extreme point of A.

The equivalence between (i) and (iii) above was already proved in [19] but for
bounded, closed and convex sets. Another generalization of [18, Theorem] can be
found in [4], but stated in the setting of Banach spaces.

Proof. (i)⇒(ii) is consequence of the fact that every denting point is a weakly
strongly extreme point.

(ii)⇒(iii) If x ∈ A is weakly strongly extreme point of A, then so it is of each
set AR(x) := A ∩ BR(x) and R > 0. Now, applying the former proposition, we
conclude that x is a preserved extreme point of A.

(iii)⇒(i) Fix ε > 0 and a weak open set W ⊂ X which contains x such that
diam(W ∩ A) < ε/2. By assertion (iii) of Proposition 2, there exists f ∈ X∗ and
λ ∈ R such that H := {f < λ} verifies x ∈ H ∩Aε(x) ⊂W ∩Aε(x) ⊂ Aε/2(x). We
claim that H ∩ A ⊂ Aε(x). Otherwise, we could choose y ∈ A such that f(y) < λ
and ‖ y − x ‖> ε. For every α ∈ [0, 1], we define yα := αy + (1 − α)x ∈ A.
By convexity f(yα) < λ, ∀α ∈ [0, 1]. Moreover, there exist α0, α1 ∈ (0, 1) such
that ε/2 <‖ yα − x ‖< ε, for every α ∈ (α0, α1). Fix some α∗ ∈ (α0, α1), then
yα∗ ∈ H ∩Aε(x) but yα∗ 6∈ Aε/2(x), a contradiction. Thus, diam(H ∩A) < 2ε and
the proof is over.

3 Some open problems solved for cones in qG∗

In this section we will see how several open problems in the literature regarding
cones can be answered using (i)⇔(iii) in Theorem 2 when the corresponding cones
belong to qG∗. Besides, in Section 4, we will check that qG∗ contains the canonical
order cones of some well known noncomplete normed spaces. Next, we will intro-
duce the notion of normal cone which provides a wide subfamily of cones in qG∗.
Given a cone C ⊂ X, we say that a subset A ⊂ X is full (respect to the order
given by C) if for each pair x, y ∈ A we have [x, y] ⊂ A; the cone C is said to be
normal if there exists a neighborhood base (for the topology given by the norm
on X) at 0X consisting of full sets –for more information about normal cones we
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refer the reader to [2]–. It is not difficult to prove that dentability of a cone at the
origin implies normality of such a cone. On the other hand, by [1, Theorem 4.4]
any normal cone belongs to qG∗ and by [2, Lemma 2.39] any pointed cone in a
normed vector lattice is normal.

Remark 2 The family qG∗ contains the family of normal cones and so any arbitrary
pointed cone in a normed vector lattice.

It is worth pointing out that vector lattices provide a useful unifying framework
for many problems on convex programming (see [5]).

Now, we will pay attention to Gong’s question in [12, Conclusions]. Gong asked

if for any normed space X and any closed cone C the condition 0X 6∈ C \ εBX
weak

,
∀ε ∈ (0, 1) is really weaker than the cone C has a bounded base. Let us recall that
a base for a cone C is a nonempty convex subset B ⊂ C such that 0X 6∈ B and
each c ∈ C \ {0X} has a unique representation of the form c = λb for some λ > 0
and b ∈ B. A base is called a bounded base if it is a bounded subset of X. Bounded
bases have been widely studied and provide a useful tool in many topics such as
in the theory of Pareto efficient points in [6], in reflexivity of Banach spaces in [7],
and in density theorems in [12]. It is known that a cone C has a bounded base if
and only if the origin is a denting point of C. In [11, Example 1.5] we provided
a non closed cone for which the answer to Gong’s question is positive. In this
paper, we provide a wide family of cones for which the answer to Gong’s question
is negative. Applying (iii)⇒(i) of Theorem 2, we can state.

Corollary 1 Let X be a normed space and C ⊂ X a cone which belongs to qG∗.
Then, the condition 0X 6∈ C \ εBX

weak
, ∀ε ∈ (0, 1), is equivalent to the condition

that the cone C has a bounded base.

On the other hand, [1, Example 4.6] shows that the closedness of a cone C
does not imply C ∈ qG∗ –even when X is a Banach space–. We state the following
problem for a future research.

Problem 1 Is qG∗ maximal among those families of cones for which Corollary 1
holds true?

Gong’s question is directly related to the following two results on density
of Arrow, Barankin and Blackwell’s type: [20, Corollary 4.2] –due to Petschke–
and [12, Theorem 3.2 (a)] –due to Gong–. Both results concern the approxi-
mation of the Pareto efficient points of compact convex subsets by points that
are maximizers of some strictly positive functional on this set. Given a subset
A ⊂ X, the set of maximal (or efficient) points of A (with respect to the cone
C) is defined as Max(A,C) := {x ∈ A : {x} = A ∩ (x + C)}. On the other
hand, given a cone C the set of all strictly positive functionals is defined by
C# := {f ∈ X∗ : f(c) > 0, ∀c ∈ C, c 6= 0X}, and the set of positive (or proper
efficient) points of A as Pos(A,C) := {x ∈ A : ∃f ∈ C#, f(x) = supA f}. It
is straightforward that Pos(A,C) ⊂ Max(A,C), however this inclusion is strict.
Next, we state the density results of Petschke and Gong.

Theorem 5 (Petschke) Let A be a weak compact convex subset of the normed
space X and assume that C is a closed cone with a bounded base. Then Max(A,C) ⊂
Pos(A,C)

‖·‖
.
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Theorem 6 (Gong) Let A be a weak compact convex subset of the normed space
X and assume that C is a closed cone with a base such that 0X is a point of

continuity for C. Then Max(A,C) ⊂ Pos(A,C)
‖·‖

.

Daniilidis stated in [9, Corollary 2] that Theorems 5 and 6 are equivalent when
X is a Banach space. However, the question about the equivalence of such theorems
still remains open in case the norm on X is not complete. Applying Corollary 1,
we can state.

Corollary 2 Theorems 5 and 6 are equivalent for cones in qG∗.

In [14], the authors proved the equivalence of dentability and point of continuity
at the origin of a cone C in a normed space under the extra assumption that
qiC∗ 6= ∅. They also stated there Problem 5 in which they asked: If 0X is a point
of continuity of a cone C ⊂ X then qiC∗ 6= ∅? By Theorem 2, if C ∈ qG∗ and 0X
is a point of continuity of C, then 0X is a denting point and, as a consequence,
qiC∗ 6= ∅. Therefore, we have a positive answer of Problem 5 in [14] for cones in
qG∗. Next, we state it as a corollary.

Corollary 3 Let X be a normed space and C ⊂ X a cone which belongs to qG∗.
If 0X is a point of continuity for C, then qiC∗ 6= ∅.

We finish this section showing some applications of dentability to operators
theory. A Krein space is an ordered Banach space whose order cone is closed
and has order units. Krein spaces have been widely studied in connection with
operators theory, spectral theory, and fixed point theory –we refer the reader to [1]
for a survey regarding positive operators on Krein spaces–. Given a normed space
X and C ⊂ X a quasi-generating cone, it is easy to prove that the dual cone C∗ is
pointed. In addition, if the origin is denting in C, then –by (i)⇒(iv) of Theorem 2–
the dual cone C∗ has an unity. Therefore, under the former assumptions the dual
space X∗ with the order given by C∗ is a Krein space. In the next result, statement
(i) is a consequence of [2, Theorem 2.32] and [1, Theorem 6.4]. Statement (ii) is a
consequence of [1, Corollary 7.6].

Corollary 4 Let X be a normed space ordered by a quasi-generating cone C. If
0X is a denting point of C, then the following statements hold true:

(i) Every linear and positive operator T : X∗ → X∗ is continuous. In addition, if T
is not a multiple of the identity, then it has a nontrivial hyperinvariant subspace.

(ii) If a positive contraction T : X∗ → X∗ has 1 as an eigenvalue, then there exits
a fixed point 0 < f ∈ X∗∗ for the adjoint operator of T .

4 The geometry of some canonical order cones

In this section we will consider the canonical order cones of some well known
noncomplete normed spaces. We will verify that each one belongs to qG∗ and –
applying (i)⇔(iii) in Theorem 2– we will conclude that the origin is not a point
of continuity. Next, we introduce a result in order to avoid working in dual spaces
when checking the condition C ∈ qG∗.

Proposition 3 Let X be a normed space and C ⊂ X a pointed cone. If 0X is a
locally weakly strongly extreme point of C, then C ∈ qG∗.
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Proof. The proof of the implication (i)⇒(ii) in [11, Proposition 2.5] can be easily
adapted to prove that: if 0X is a locally weakly strongly extreme of C, then

C
weak∗

(= C∗∗ by Lemma 4) is pointed in X∗∗. Thus, since C∗−C∗ is a subspace
of X∗, if x∗∗ ∈ X∗∗ satisfies x∗∗|(C∗−C∗) ≡ 0 then x∗∗|C∗ ≡ 0, so x∗∗ ∈ C∗∗ ∩
(−C∗∗) = {0X}. This proves that C∗ − C∗ is dense in X∗.

Next, we provide the three examples announced at the beginning of this section.
Let us state the first one.

Example 1 Let Γ be a nonempty set, consider the vector space c00(Γ ) of those
(xγ)γ∈Γ ∈ l∞(Γ ) such that {γ ∈ Γ : xγ 6= 0} is finite, the noncomplete normed
space (c00(Γ ), ‖ · ‖∞) where ‖ (xγ)γ∈Γ ‖∞:= sup{|xγ | : γ ∈ Γ}, and the order
cone c00(Γ )+ := {(xγ)γ∈Γ ∈ c00(Γ ) : xγ ≥ 0, ∀γ ∈ Γ}. Then c00(Γ )+ ∈ qG∗ and
the origin is not a point of continuity for c00(Γ )+.

Proof. We first prove that the dual cone (c00(Γ )+)∗ ⊂ (c00(Γ ), ‖ · ‖∞)∗ is quasi-
generating. We will make use of Proposition 3. Consider two sequences (cn)n, (dn)n
in c00(Γ )+ such that lim

n→+∞
‖ cn + dn ‖∞= 0. We claim that lim

n→+∞
‖ cn ‖∞= 0.

Indeed, for every n ∈ N, we write cn = (cnγ )γ∈Γ and dn = (dnγ )γ∈Γ . Clearly
0 ≤ cnγ ≤ cnγ + dnγ , for every n ≥ 1 and γ ∈ Γ . Thus, 0 ≤‖ cn ‖∞≤‖ cn + dn ‖∞,
∀n ≥ 1, which yields lim

n→+∞
‖ cn ‖∞= 0. Hence, weak-limn→+∞ cn = 0.

In order to prove that the origin is not a point of continuity for c00(Γ )+ we
will use the equivalence (i)⇔(iii) of Theorem 2. Hence, it is sufficient to show
that the origin is not a denting point of c00(Γ )+. For that purpose we will check
that Int(c00(Γ )+)∗ = ∅ and, applying the equivalence (i)⇔(iii) in Theorem 1,
the proof will be completed. Now, the density of c00(Γ ) in c0(Γ ) provides the
equality (c00(Γ )+)∗ = `1(Γ )+ –see [10]–, where ‖ (xγ)γ∈Γ ‖1=

∑
γ∈Γ |xγ | =

sup{
∑
γ∈F |xγ | : F ⊂ Γ is finite}. Now we claim that Int(`1(Γ )+) = ∅. Indeed, let

us fix x = (xγ)γ∈Γ ∈ `1(Γ )+, ε > 0, and γ0 ∈ Γ such that 0 ≤ xγ0 < ε/2. Define
y = (yγ)γ∈Γ ∈ `1(Γ ) as yγ := xγ for γ 6= γ0 and yγ0 := −ε/2. Then y 6∈ `1(Γ )+

and ‖ x− y ‖1< ε.

Next, we will study spaces of differentiable functions defined on some bounded
real interval. Let us recall that for every continuous real function f on a topological
space X, it is defined the support of f –written supp(f)– as the closure of the set
{x ∈ X : f(x) 6= 0}.

Example 2 Let us fix any k ≥ 1, consider the vector space Ck[a, b] of all func-
tions on [a, b] that have k continuous derivatives, the noncomplete normed space
(Ck[a, b], ‖ · ‖∞) where ‖ f ‖∞:= sup{|f(x)| : x ∈ [a, b]}, and the order cone
Ck[a, b]+ := {f ∈ Ck[a, b] : f(x) ≥ 0, ∀x ∈ [a, b]}. Then Ck[a, b]+ ∈ qG∗ and the
origin is not a point of continuity for Ck[a, b]+.

Proof. Let us prove only the case k = 1. The relation Ck[a, b]+ ∈ qG∗ can be
proved using again Proposition 3 with an argument similar to that we used in the
first paragraph of the proof in the previous example.

In order to prove the last claim in the statement we will use again the equiv-
alence (i)⇔(iii) of Theorem 2. Thus, it suffices to prove that the origin is not a
denting point of C1[a, b]+. The equivalence (i)⇔(vi) of [11, Theorem 1.1] and the
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statement (i) of [11, Corollary 1.2] implies that if the origin is a denting point of
C1[a, b]+, then every sequence in C1[a, b]+ converging to the origin in the weak
topology also converges in norm. We will show that this is not the case. For that
purpose, we consider a decreasing sequence {an}n in (a, b] that converges to a.
Define a bounded sequence {fn}n in C1[a, b] of positive functions vanishing at a,
such that supp(fn) ⊂ [an+1, an−1], and fn(an) = 1, ∀n ∈ N. Then the sequence
{fn}n converges to the origin pointwise on [a, b], and it is bounded, so it converges
to the origin in C[a, b] in the weak topology (see [21, Example 2, p. 112]). Now
the density of C1[a, b] in C[a, b] and the Hahn-Banach theorem yields that {fn}n
converges to the origin in C1[a, b] in the weak topology, although not in norm. It
follows that the origin is not a denting point of C1[a, b]+.

Next, we will examine the behaviour of the space of real functions with compact
support.

Example 3 Let us consider the vector space C00(R) of those real continuous func-
tions on R for which supp(f) is compact, the noncomplete normed space (C00(R), ‖
· ‖∞) where ‖ f ‖∞:= sup{|f(x)| : x ∈ R}, and the order cone C00(R)+ := {f ∈
C00(R) : f(x) ≥ 0, ∀x ∈ R}. Then C00(R)+ ∈ qG∗ and the origin is not a point of
continuity for C00(R)+.

Proof. Again by Proposition 3, the cone (C00(R)+)∗ is quasi-generating.
As in the proof of the previous examples, it suffices to prove that the origin

is not a denting point of C00(R)+. The set {±δx : x ∈ R} is a James boundary in
C00(R)∗, in other words, given f ∈ C00(R) we have ‖ f ‖∞= |f(x0)| = |δx0(f)|,
for some x0 ∈ R. Then the convergence of any sequence (fn)n in C00(R) in the
weak topology is given by the convergence in R of δx(fn) for every x ∈ R, or
equivalently, it is given by the pointwise convergence of (fn)n on R (see [10]).
Again, we can define a bounded sequence (fn)n in C00(R)+ that converges to the
origin pointwise but not in norm. Hence, such a sequence converges to the origin
in the weak topology and, as a consequence, the origin is not a denting point of
C00(R)+.
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In: J.C. Ferrando, M. López-Pellicer (eds.) Descriptive Topology and Functional Analysis.
Springer Proceedings in Mathematics & Statistics, vol 80, pp. 163–193. Springer, Cham
(2014)

14. Kountzakis, C., Polyrakis, I.A.: Geometry of Cones and an Application in the Theory of
Pareto Efficient Points. J. Math. Anal. Appl. 320(1), 340–351 (2006)

15. Krasnoselskii, M.A.: Positive solutions of operator equations. P. Noordhoff Ltd.: Holland
(1964)

16. Krein, M.: Propiétés fondamentales des ensembles coniques normaux dans l’espace de
Banach. Dokl. Akad. Nauk SSSR 28, 13–17 (1940)

17. Kunen, K., Rosenthal, H.: Martingale Proofs of some Geometrical Results in Banach Space
Theory. Pacific J. Math. 100(1), 153–175 (1982)

18. Lin, B.L., Lin, P.K., Troyanski, S.: Characterizations of Denting Points. Proc. Amer.
Math. Soc. 102(3), 526–528 (1988)

19. Lin, B.L., Lin, P.K., Troyanski, S.: Some Geometric and Topological Properties of the Unit
Sphere in a Normed Linear Space. Contemp. Math. 85, 339–344 (1988)

20. Petschke, M.: On a Theorem of Arrow, Barankin, and Blackwell. SIAM J. Control Optim.
28(2), 395–401 (1990)

21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis.
Methods of Modern Mathematical Physics. Academic Press (1980)




