
J. Chem. Phys. 150, 201102 (2019); https://doi.org/10.1063/1.5097164 150, 201102

© 2019 Author(s).

Range-separated hybrid density functionals
made simple 

Cite as: J. Chem. Phys. 150, 201102 (2019); https://doi.org/10.1063/1.5097164
Submitted: 22 March 2019 . Accepted: 06 May 2019 . Published Online: 28 May 2019

Éric Brémond , Ángel José Pérez-Jiménez , Juan Carlos Sancho-García , and Carlo Adamo 

COLLECTIONS

Note: This paper is part of the JCP Emerging Investigators Special Collection.

 This paper was selected as an Editor’s Pick

ARTICLES YOU MAY BE INTERESTED IN

An alternative derivation of orbital-free density functional theory
The Journal of Chemical Physics 150, 204109 (2019); https://doi.org/10.1063/1.5096405

Perspective: Computational chemistry software and its advancement as illustrated through
three grand challenge cases for molecular science
The Journal of Chemical Physics 149, 180901 (2018); https://doi.org/10.1063/1.5052551

Performance of new density functionals of nondynamic correlation on chemical properties
The Journal of Chemical Physics 150, 204101 (2019); https://doi.org/10.1063/1.5082745

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/211018776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/2002358258/x01/AIP/Zurich_JCP_PDF_June2019/Zurich_JCP_PDF_June2019.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.5097164
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=jcp
https://doi.org/10.1063/1.5097164
https://aip.scitation.org/author/Br%C3%A9mond%2C+%C3%89ric
http://orcid.org/0000-0002-8646-9365
https://aip.scitation.org/author/P%C3%A9rez-Jim%C3%A9nez%2C+%C3%81ngel+Jos%C3%A9
http://orcid.org/0000-0002-1276-7255
https://aip.scitation.org/author/Sancho-Garc%C3%ADa%2C+Juan+Carlos
http://orcid.org/0000-0003-3867-1697
https://aip.scitation.org/author/Adamo%2C+Carlo
http://orcid.org/0000-0002-2638-2735
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=jcp
https://doi.org/10.1063/1.5097164
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5097164
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5097164&domain=aip.scitation.org&date_stamp=2019-05-28
https://aip.scitation.org/doi/10.1063/1.5096405
https://doi.org/10.1063/1.5096405
https://aip.scitation.org/doi/10.1063/1.5052551
https://aip.scitation.org/doi/10.1063/1.5052551
https://doi.org/10.1063/1.5052551
https://aip.scitation.org/doi/10.1063/1.5082745
https://doi.org/10.1063/1.5082745


The Journal
of Chemical Physics COMMUNICATION scitation.org/journal/jcp

Range-separated hybrid density functionals
made simple

Cite as: J. Chem. Phys. 150, 201102 (2019); doi: 10.1063/1.5097164
Submitted: 22 March 2019 • Accepted: 6 May 2019 •
Published Online: 28 May 2019

Éric Brémond,1,a) Ángel José Pérez-Jiménez,2 Juan Carlos Sancho-García,2 and Carlo Adamo3,4

AFFILIATIONS
1Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
2Departamento de Química Física, Universidad de Alicante, E-03080 Alicante, Spain
3Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS),
FRE 2027, F-75005 Paris, France

4Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France

Note: This paper is part of the JCP Emerging Investigators Special Collection.
a)Electronic mail: eric.bremond@univ-paris-diderot.fr.

ABSTRACT
In this communication, we present a new and simple route to derive range-separated exchange (RSX) hybrid and double hybrid density
functionals in a nonempirical fashion. In line with our previous developments [Brémond et al., J. Chem. Theory Comput. 14, 4052 (2018)],
we show that by imposing an additional physical constraint to the exchange-correlation energy, i.e., by enforcing to reproduce the total energy
of the hydrogen atom, we are able to generalize the nonempirical determination of the range-separation parameter to a family of RSX hybrid
density functionals. The success of the resulting models is illustrated by an accurate modeling of several molecular systems and properties,
like ionization potentials, particularly prone to the one- and many-electron self-interaction errors.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5097164

Within the history of Kohn-Sham density-functional the-
ory (KS-DFT),1,2 one of the major breakthroughs came in the
1990s with the development of hybrid density functionals.3,4 For-
mally justified by the “adiabatic connection” formula,5 a mix
of a fraction of nonlocal exactlike exchange (EXX) with a pure
semilocal density-functional approximation (DFA) led to a new
family of expressions. The resulting global hybrids (GHs) (par-
tially) cure spurious issues arising from the locality problem
like the one-electron self-interaction error (SIE) and its exten-
sion to many-electron systems.6,7 Within this class of approx-
imation, the exchange-correlation energy is decomposed such
as

EGH
xc = axEEXX

x + (1 − ax)EDFA
x + EDFA

c , (1)

where ax governs the fraction of EXX, and EDFA
x and EDFA

c denote
the exchange and correlation energy terms, respectively, gener-
ally expressed at the generalized gradient approximation (GGA)
level.

If GHs guarantee a systematic performance improvement with
respect to semilocal density functionals8,9 and a successful model-
ing of a large number of ground- and excited-state properties,10,11

they still suffer from a density overdelocalization in the long-range
(LR) regime. Instead of correctly behaving as −r−1

12 , r12 = |r2 − r1|
being the electron-electron distance, the asymptote of their exchange
potential behaves instead as −axr−1

12 .12 This drawback leads system-
atically to an underestimation of the energy properties of molec-
ular systems such as ionization potentials (IPs),13,14 intramolecu-
lar/intermolecular charge-transfer excitations,15 or the dissociation
of open-shell complexes.16,17

As an alternative to GHs, successive models were revealed
themselves or were specifically developed to circumvent the local-
ity problem. A nonexhaustive list of some of them counts
for the self-interaction correction (SIC),18,19 the orbital depen-
dence,20–22 the merging between density- and wavefunction-
based approaches,23,24 or the recent multiconfiguration pair-DFT
(MC-PDFT).25,26 Thanks to a concomitant wide implementation
and an excellent performance improvement, the range-separated
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exchange (RSX) scheme27,28 remains among the most popular alter-
native to GHs. It consists in a physically sound solution to impose to
the exchange potential a −r−1

12 asymptotic behavior by splitting the
Coulomb operator into a short-range and a long-range (SR and LR,
respectively) term

1
r12

=
1 − [α + β erf(µr12)]

r12
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

SR=short range

+
α + β erf(µr12)

r12
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

LR=long range

. (2)

The error function erf smoothly connects the SR to the LR part of
the operator under the governance of a range-separation param-
eter µ, which is usually determined empirically.27–29 When the
range separation transformation is applied to the exchange poten-
tial, it holds the correct asymptotic behavior. The RSX energy thus
becomes

ERSX
x,µ = αEEXX

x + βEEXX
x,µ + (1 − α)EDFA

x − βEDFA
x,µ , (3)

with α and α + β being, respectively, two combined parameters mon-
itoring the full and LR contribution of EXX. By setting the latter
combination to 1, i.e., α + β = 1, the RSX energy recovers the correct
asymptote in the LR regime. Moreover, to conserve a satisfactory
behavior of a GH in the SR regime, Eq. (1) imposes the parameter
α to be equal to ax. The resulting RSX exchange-correction hybrid
energy is written as

ERSX-H
xc,µ = EGH

xc + (1 − ax)EEXX
x,µ − (1 − ax)EDFA

x,µ . (4)

By using Eq. (4), numerous challenging applications were
tackled in an accurate way. We especially mention some concep-
tually simple systems particularly prone to SIE such as cationic
rare gas dimers in their dissociation limit30 or more com-
plex properties like bond-length alternations (BLAs) in conju-
gated chains31,32 and long through-space charge-transfer excita-
tions.33,34 Beyond the hybrid approximation, the range separation
was also combined with multideterminantal, or more generally post-
Hartree-Fock, extensions of KS-DFT to successfully model weakly
interacting molecular systems.35–38 However, the obtained results
strongly depend on the value assigned to the range-separation
parameter.

The parameter µ is homogeneous to the inverse of a distance,
and it measures how fast the range separation switches from the
SR to the LR regime. Since the first implementation of the RSX
method, several schemes were proposed to determine it. Some of
them focused on an empirical parameterization to minimize errors
on general or specific energy properties.39–43 They led to values
for µ lying typically between 0.2 and 0.5 bohr−1. Others turned
to a nonempirical, but system-dependent, way to tune µ: they are
based on an optimally tuned (OT) procedure which aims at ful-
filling Koopmans’ theorem within the KS framework by enforc-
ing the agreement between the IP and the negative value of the
HOMO energy (−εHOMO).44 Despite its large success with respect to
ground- and excited-state applications45–47 and its recent implemen-
tation in a self-consistent fashion (scOT),48 this approach remains
computationally expensive and prone to size-consistency-related
issues.49

Another way to estimate the range-separation parameter in a
nonempirical fashion consists in imposing an additional physical
constraint while deriving the density functional. With this aim, we

recently showed that by enforcing the exact treatment of the ground
state energy of the hydrogen atom, we succeeded to derive the RSX
extension of the quadratic-integrand double-hybrid (QIDH) model
and thus a density functional free from any kind of empirical param-
eterization.50 The resulting RSX-QIDH double hybrid takes up the
challenge to (i) accurately estimate IPs of molecular systems by fol-
lowing Koopmans’ theorem,18 (ii) (closely) remedy the locality issue
through the helium cluster example,6 and (iii) accurately repro-
duce previous results for SIE-prone properties not at the expense of
others.

Motivated by the excellent performance provided by the RSX-
QIDH model, our goal in this communication is to show that our
nonempirical scheme to determine µ is generalizable to the trans-
formation of any kind of GH into its corresponding RSX-H density
functional. For that, we select a panel composed by a set of the
most popular nonempirical global and double hybrids, all of them
built from the Perdew-Burke-Ernzerhof (PBE) semilocal approxi-
mation,51 and we demonstrate that by turning them into a nonem-
pirical RSX hybrid or double hybrid, we are able to accurately model
various energy properties particularly prone to SIE.

Among nonempirical density functionals, PBE,51 PBE0,52,53

PBE0-1/3,54 PBE0-DH,55 and PBE-QIDH24 are among the most
popular. All of them cast an increasing fraction of EXX spanning
between 0 and ∼69% with values of ax assigned to 0, 1/4, 1/3,
1/2, and 3−1/3, respectively. Their evolution from the global to the
RSX scheme corresponds to a transformation of their exchange-
correlation energy from Eqs. (1)–(4), their range-separation param-
eter µ being determined by enforcing the RSX density functional to
reproduce the exact energy of the hydrogen atom. More information
about the definition of these density functionals is reported in Table
SI of the supplementary material.

Figure 1 depicts the evolution of µ as a function of the whole
fraction of EXX ax for the RSX hybrids and double hybrids inves-
tigated herein. Globally, we observe a linear decrease in µ while ax
increases. Such a behavior means that the larger the whole fraction

FIG. 1. Range-separation parameter µ (bohr−1) determined to recover the energy
of the hydrogen atom, as a function of the whole fraction of exactlike exchange
ax . More information about the definition of these density functionals is reported in
Table SI of the supplementary material.
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of EXX is, the faster the switch from the SR semilocal term to the LR
EXX one has to be, which can be viewed as a proof of the importance
of the semilocal term of the density functional. In the domain ax ∈ [0,
3−1/3], the linear relationship however has to be viewed as a rule of
thumb since both double hybrids cast different fractions of semilocal
correlation. As depicted by Fig. S1 of the supplementary material, a
quasilinear trend is only observed with the RSX-H model [Eq. (4)]
when ax < 1/2. Out of this domain, the relationship between ax and
µ is strictly nonlinear.

The values of the range separation parameter derived here are
in line with the ones obtained by previous investigations based on an
empirical parameterization with respect to ground- and/or excited-
state properties. As a first example, Hirao et al. demonstrated that for
the long-range corrected PBE (LC-PBE) density functional (ax = 0),
an optimal value of µ is 0.47 bohr−1.56 This value is to be compared
with µ = 0.45 bohr−1 in what we call here the RSX-PBE density
functional. As another example, Herbert et al. showed that when
ax = 0.25, the fitting of µ with respect to a short selection of π − π⋆
charge-transfer excitations gives µ = 0.35 bohr−1.57 Our RSX-PBE0
variant, which casts the same whole fraction of EXX, exhibits a
slightly larger value of µ (µ = 0.41 bohr−1).

To get an initial idea of the performance of the newly derived
RSX hybrid and double-hybrid-based density functionals, we start
by analyzing their accuracy to model IPs within the vertical and
Koopmans’ schemes [∆IPE = E(N − 1) − E(N) or simply ∆SCF
and −εHOMO, respectively]. The second-order perturbation theory
term being computed a posteriori, the HOMO energies are eval-
uated from the self-consistent contribution to the total exchange-
correlation expression. For that purpose, we select a set of 100 small
organic molecules gathered in the GW100 database.58 This not only
has the advantage to be large enough, providing a fair statistical
survey of the method performance, but also to be composed by
references computed at the “gold standard” coupled-cluster

singles, doubles, and perturbative triples [CCSD(T)] level of the-
ory,59 avoiding inconsistencies introduced by experimental refer-
ences.

Figure 2 reports the linear correlation, ruled by the coeffi-
cient of determination R2, between the vertical and Koopmans’ esti-
mates of the IP. Independent of the density functional, the RSX
scheme improves systematically the linear agreement between both
estimates with excellent values of R2. Compared with their corre-
sponding non-RSX models, we find systematically larger R2 values,
remaining higher than 0.93 in all cases (i.e., for the PBE semilo-
cal density functional). Regarding mean absolute deviations (MAD)
with respect to the reference CCSD(T) IPs, the transformation from
the global to the RSX scheme provides a quasisystematic perfor-
mance improvement independent of the estimate approach, i.e.,
vertical IP (MADIP) or Koopmans’ picture (MADKS). The largest
MADKS decrease is found going from PBE to RSX-PBE (4.0 to
0.5 eV), while the smallest one is observed going from PBE-QIDH to
RSX-QIDH (0.6 to 0.5 eV), the density functional casting an inter-
mediate value of ax providing an error decrease in between. The per-
formance improvement with respect to MADIP is more moderate,
the largest decrease being lower than 0.1 eV in the case of the PBE to
RSX-PBE transformation. It is worth to note that MADIP is system-
atically half of MADKS for the whole family of density functionals
derived from the RSX scheme.

A pragmatic way to judge SIE is the evaluation of the asymp-
totic dissociation energy of cationic diatomics, which should van-
ish for any well-behaved density functional. Indeed, the dissoci-
ation energy of the dihydrogen cation is considered as a proof
of concept for the one-electron SIE. Table I reports these values
for the panel of considered nonempirical RSX hybrids and double
hybrids. The table also includes results fromωB97X-D (ax = 0.22 and
µ = 0.20 bohr−1),39 a parameterized RSX hybrid recognized for its
excellent performance for various energy properties and taken thus

FIG. 2. Correlation diagrams comparing the ionization potential energies (eV) of 100 small molecules gathered into the GW100 dataset computed as the energy difference
between the cationic and neutral systems, ∆IPE, and the energy of HOMO orbital εHOMO. All computations are performed with the def2-QZVP basis set.
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TABLE I. Dissociation energy (kcal mol−1) of selected diatomic radical cations X+
2 computed at an interatomic distance of

100 Å and the def2-QZVP basis set.

X+
2 RSX-PBE RSX-PBE0 RSX-PBE0-1/3 RSX-0DH RSX-QIDH ωB97X-D

H+
2 −11.3 −10.6 −10.1 −8.9 −6.9 −28.3

He+
2 −26.7 −21.2 −18.8 −14.5 −9.0 −47.5

Ne+
2 −30.6 −19.0 −14.6 −10.9 −7.7 −41.9

Ar+
2 −6.8 −4.4 −3.3 −3.1 −3.2 −21.5

here as reference. At 100 Å, the dissociation energy of H+
2 varies

smoothly between −11.3 and −6.9 kcal mol−1 (RSX-PBE and RSX-
QIDH, respectively) when the whole range of EXX increases. As a
matter of comparison, ωB97X-D is outperformed by its new com-
petitors and provides an absolute dissociation energy 4 times larger
(−28.3 kcal mol−1). The same conclusions are inferred regarding
rare gas cationic dimers such as He+

2 , Ne+
2 , and Ar+

2 (Table I). The
many-electron SIE is very low for the nonempirical RSX hybrid and
double-hybrid family of density functionals. However, the absolute
margin of improvement with respect to ωB97X-D is this time mul-
tiplied up to 7 times for RSX double hybrids on the example of
the argon cation dimer (∼−3.0 vs −21.5 kcal mol−1). As a result,
our nonempirical determination of µ provides again an excellent
compromise to reduce SIE-prone properties.

To further validate the reliability of the newly derived RSX
hybrids and double hybrids, we assess their performance on a selec-
tion of 10 subsets belonging to the very large GMTKN55 bench-
mark set.60 Our selection counts for basic and intermolecular non-
covalent molecular properties, some of them tending to be partic-
ularly prone to SIE (Fig. 3). Among basic properties, atomization
energies probed through the W4-11 subset are generally taken as
reference to judge the quality of a density functional. Adiabatic
electron affinities (G21EA), single and double ionization potentials
(G21IP and DIPCS10, respectively), and proton affinities (PA26) are

difficult test cases for density functionals suffering from SIE. Finally,
SIE4×4 surveys the reliability of a method in modeling the correct
dissociation of cationic systems. Here, we remark again the impor-
tance of the EXX contribution in the SR region. Except for proton
affinities, going from RSX-PBE (ax = 0) to any other RSX hybrids
(ax > 0) systematically improves the performance. This improve-
ment is especially emphasized through atomization energies for
which the error decreases by ∼7.0 kcal mol−1 going from RSX-PBE to
RSX-PBE0. Apart from that, RSX-PBE0 and RSX-PBE0-1/3 (ax = 1/4
and ax = 1/3, respectively) behave similarly on these subsets, while
reaching the double-hybrid class of density functionals with RSX-
0DH and RSX-QIDH improves systematically the performance. In
comparison, results obtained with the ωB97X-D3 (ax = 0.20 and
µ = 0.25 bohr−1) method61 are not so predictable. The parameter-
ized approach performs particularly well on subsets belonging to its
training sets (i.e., W4-11, G21EA, and G21IP); however, it provides
very large deviations for the other subsets, with a special emphasis
for SIE4×4.

Regarding intermolecular noncovalent interactions bench-
marked on the HAL59, AHB21, CHB6, and IL16 subsets, we notice
that double hybrids and ωB97X-D3 (which is empirically corrected
for dispersion interactions) are in average the best approaches
(Fig. 3). These density functionals decrease by a factor of 2 with
respect to other RSX hybrids the binding error in halogenated

FIG. 3. Mean absolute deviations (kcal mol−1) computed over a selection of datasets probing for basic properties and intermolecular noncovalent interactions. All computations
are performed at the def2-QZVP level of theory. ωB97X-D3 related data are taken from Ref. 60.
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dimers (HAL59), the MAD for RSX-PBE being 1.0 kcal mol−1, but
moderately improve intermolecular interactions involving anion-
neutral, cation-neutral, and anion-cation dimers (i.e., AHB21,
CHB6, and IL16). On the latter subsets, the whole fraction of EXX
has a small impact on the performance. MADs lie around 2.0 kcal
mol−1 for the ion-neutral interactions (AHB21 and CHB6) and
0.5 kcal mol−1 for the anion-cation ones (IL16). Contrary to ωB97X-
D3, nonempirical RSX schemes provide an excellent estimate of
anion-cation interactions (0.5 vs 1.1 kcal mol−1) but overbind ion-
neutral ones, a conclusion already pointed out in Ref. 16.

Overall, a global performance overview of each RSX approach
is provided under the label TOTAL by averaging the MADs over
the 10 subsets (Fig. 3). We find that upon increasing the whole
fraction of EXX, more accurate results are observed. Indeed, going
from ax = 0 to ax = 1/3 (RSX-PBE to RSX-PBE0-1/3, respectively),
the error is decreased by 1.0 kcal mol−1 and provides a deviation
in line with ωB97X-D3 (ax = 0.20 and MAD = 3.2 kcal mol−1).
RSX double hybrids, such as RSX-0DH and RSX-QIDH, bring
larger performance improvements with deviations reaching 2.8 and
2.3 kcal mol−1, respectively. As a result, we demonstrate here that
by increasing the whole fraction of EXX, the performance of the
RSX hybrid density functional improves. We validate also our pre-
vious assumption in the scope of the RSX scheme,8 which states
that an increase of the hybridization scheme (i.e., switching from
a global to double hybrid) improves the performance of the density
functional.

As a summary, it is shown in this communication that by
imposing an additional physical constraint, a reliable and fully
nonempirical family of range-separated exchange hybrid density
functionals is derived, casting various fractions of the whole exact-
like exchange. By enforcing to reproduce the total energy of the
hydrogen atom tuning the range-separation parameter, we rule in a
nonempirical fashion the switch between the short- and long-range
terms of the Coulomb operator. This transformation allows the
recovery of the correct asymptotic behavior of the exchange poten-
tial and assures de facto a beneficial effect for some difficult cases
for DFT like those contaminated by the spurious self-interaction
error.

The derived RSX hybrids and double hybrids are benchmarked
for various ground-state energy properties like ionization potentials
and systems governed by covalent or noncovalent interactions espe-
cially prone to self-interaction error. We demonstrate that the result-
ing density functionals are very close to fulfill Koopmans’ theorem
by accurately estimating ionization potentials using (i) the negative
value of the HOMO energy and (ii) the vertical ∆SCF approach,
both approaches providing a quasiperfect linear correlation with
only marginal deviations. Moreover, we find that the increase of the
whole fraction of exactlike exchange in RSX hybrids often improves
the performance of the density functional, especially when consid-
ering the dissociation limits of cationic molecular dimers (e.g., rare
gas cations, SIE4×4). Overall, we show that going from RSX hybrids
to RSX double hybrids drastically improves the performance of the
density functional.

Computational details: All the computations are performed
with release B.01 of the Gaussian’16 program.62 For each energy
single point, a tight SCF convergence criterion and an ultrafine
integration grid are taken as a standard. The computations are
done with the very large def2-QZVP Ahlrichs’ quadruple-ζ basis

set63 which assures a nearly complete basis set convergence and
minimizes the basis set superposition error. More details about the
density functionals derived in this work are reported in Table SI of
the supplementary material. Following the GMTKN55 benchmark
recommendations,60 electron affinities (G21EA) and anion-neutral
and anion-cation interactions (AHB21 and IL16, respectively) are
computed by adding diffuse s and p functions from aug-cc-pVQZ64

to def2-QZVP, thus giving the aug-def2-QZVP basis set. The range-
separation parameter µ of each nonempirical RSX models is cho-
sen in order to reproduce the total energy of the hydrogen atom
using the universal Gaussian basis set UGBS2P65 and Hartree-Fock
densities.

See supplementary material for details about the definition of
the density functionals used herein and a detailed description of
their performance.
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