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Modeling Sequential and Basket-Oriented Associations

for Top-K Recommendation

by

LE Duc Trong

Abstract

This dissertation addresses a task in recommendation systems, named top-K rec-

ommendation. Dealing with this problem, we concentrate on modeling item-item

association types including sequential and basket-oriented associations. The first

type implies the sequential dependencies between the preceding adoptions and the

following adoptions while the second type indicates the correlative dependencies

among items concurrently adopted at the same time. The modeling of those associ-

ations independently or jointly triggers several new top-K recommendation formu-

lations, which are discussed in the four main chapters of the dissertation.

In Chapter 3, we deal with the sequential recommendation problem by model-

ing sequential associations between consecutive items in single-item sequences. A

generative model is built upon Hidden Markov Model (HMM). We modify the tra-

ditional HMM by incorporating two latent factor types including: dynamic context

and user-biased factors. This modification is motivated by two hypotheses. The

first hypothesis is that the transition from one state to the next state is leveraged by

dynamic context factors. The second one is based on the intuition that similar users

may have analogous preferences on particular items. It expresses that the emission

probability might be affected by latent user groups.

In Chapter 4, basket-oriented associations are exploited to solve the basket-

completion problem. Suppose that a user is currently holding a basket of items,

the task is to recommend him what item should be added into the current basket.

We apply Factorization Machines to propose the BFM model, which factorizes the

four associations including: user & target item, target item & basket items, among



basket items and user & basket items. Relying on the hypothesis that similar bas-

kets have similar intent, we introduce a constrained variant CBFM considering the

similarity as a regularization.

In Chapter 5, sequential- and basket-oriented associations in contemporaneous

basket sequences, are concurrently taken into account for sequential recommenda-

tions. A “contemporaneous basket sequence” instance is a pair of “target” (e.g.,

purchase) and “support” (e.g., click) sequences. To investigate the similarities as

well as the differences that users behave in these sequences, we present three twin

network architectures. CBS-SN hypothesizes that the user behaviors are exactly

the same. In contrast, CBS-CFN takes into account the dissimilarities in model-

ing long-term sequential dependencies on the two sequences. CBS-DFN consid-

ers two different types of sequential dependencies, e.g., short-term on “target” and

long-term “support”.

In Chapter 6, we introduce and tackle a novel research problem, referred to

as correlation-sensitive next-basket recommendation, where the objective is to rec-

ommend the next basket of correlated items. Assuming baskets share a consistent

knowledge on correlative dependencies among items in the form of a correlation

matrix, we propose Basket-Sequence Correlation Networks (Beacon) that leverages

these correlations to enhance the representation of baskets, and subsequently cap-

ture sequential associations more accurately. The sequential signal triggered by the

last basket is later aggregated with the correlation matrix to generate scores for can-

didates in the next-basket recommendation.



Contents

1 Introduction 1

1.1 Top-K Recommender Systems . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problems and Challenges . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Sequential Recommendation using Dynamic Factors . . . . 6

1.3.2 Basket-Sensitive Recommendation . . . . . . . . . . . . . . 7

1.3.3 Sequential Recommendation using Contemporaneous Bas-

ket Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.4 Correlation-Sensitive Next-Basket Recommendation . . . . 11

1.4 Organization and Contributions . . . . . . . . . . . . . . . . . . . . 12

2 Literature Review 15

2.1 Modeling Similarity-Based Associations . . . . . . . . . . . . . . . 16

2.2 Modeling Sequential Associations . . . . . . . . . . . . . . . . . . 18

2.3 Modeling Basket-Oriented Associations . . . . . . . . . . . . . . . 24

2.4 Modeling Jointly Sequential- and Basket-Oriented Associations . . 28

3 Sequential Recommendation using Dynamic Factors 30

3.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Modeling Dynamic User-Biased Emissions (SEQ-E) . . . . 32

3.1.2 Modeling Dynamic Context-Biased Transitions (SEQ-T) . . 33

3.1.3 Joint Model (SEQ*) . . . . . . . . . . . . . . . . . . . . . 34

3.2 Learning and Prediction . . . . . . . . . . . . . . . . . . . . . . . . 35

i



3.2.1 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Item Prediction . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . 39

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Real-Life Datasets . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Basket-Sensitive Recommendation 49

4.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Basket-Sensitive Factorization Machine (BFM) . . . . . . . 50

4.1.2 Constrained BFM or CBFM . . . . . . . . . . . . . . . . . 53

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Sequential Recommendation using Contemporaneous Basket Sequences 63

5.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 CBS with Siamese Networks (CBS-SN) . . . . . . . . . . 65

5.1.2 CBS with Concordant Fraternal Networks (CBS-CFN) . . 67

5.1.3 CBS with Discordant Fraternal Networks (CBS-DFN) . . . 68

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Correlation-Sensitive Next-Basket Recommendation 77

6.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.1 Basket-Sequence Correlation Networks (Beacon) . . . . . . 78

ii



6.1.2 Learning Strategy. . . . . . . . . . . . . . . . . . . . . . . 81

6.1.3 Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Conclusions & Future Work 90

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 93

iii



List of Figures

1.1 An Example of Explicit Feedback: Netflix ratings . . . . . . . . . . 2

1.2 An Example of Content-based Recommender Systems: Three rec-

ommendations for 1TB Hard-drive from Amazon. . . . . . . . . . 4

1.3 An Example of the Sequential Association: Baby stuffs are bought

sequentially . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 An Example of the Basket-oriented Association: Cake ingredients . 5

1.5 Motivating example for correlation-sensitive next-basket recommen-

dation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 The Taxonomy of Modeling Item-Item Associations for Top-K Rec-

ommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The Taxonomy of Modeling Sequential Associations with Our Cor-

responding Research . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The Taxonomy of Modeling Basket-Oriented Associations with Our

Corresponding Research . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 A standard HMM for sequential preferences . . . . . . . . . . . . . 31

3.2 Sequential models with dynamic user-biased emissions . . . . . . . 32

3.3 Sequential models with dynamic context-biased transitions . . . . . 34

3.4 Sequential models with both dynamic user-biased emissions and

context-biased transitions . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Performance of comparative methods on Synthetic Data for Re-

call@1 and MRR . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Effects of features, context factors & groups on Yes.com . . . . . . 45

iv



4.1 Performance Comparison for BFM and CBFM for Various α on

TaFeng, BeiRen and Foursquare . . . . . . . . . . . . . . . . . . . 59

4.2 Half-life Utility and Response Times . . . . . . . . . . . . . . . . 61

5.1 Example representations of target and support sequences . . . . . . 64

5.2 Modeling Contemporaneous Basket Sequences with Siamese Net-

works (CBS-SN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Modeling Contemporaneous Basket Sequences with Concordant Fra-

ternal Networks (CBS-CFN) . . . . . . . . . . . . . . . . . . . . 68

5.4 Modeling Contemporaneous Basket Sequences with Discordant Fra-

ternal Networks (CBS-DFN) . . . . . . . . . . . . . . . . . . . . 69

5.5 Performance Comparison of Next-Item Recommendations using Markov

Chain vs. RNN on Alibaba, MovieLens . . . . . . . . . . . . . . . 72

5.6 Performance Comparison of the BSEQ and CBS models on Alibaba,MovieLens.

74

6.1 The architecture of Beacon model . . . . . . . . . . . . . . . . . . 79

6.2 A 3-step construction of the correlation matrix Â, built on three
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Chapter 1

Introduction

1.1 Top-K Recommender Systems

Recommender systems (RS) are embedded in web sites to support the decision-

making process of users. Specifically, the primary objective is to help users dis-

cover relevant items from enormous collections. ”Item” is a general term, which

refers to the object to be recommended. It could be a product in the e-commerce

domain, a video in the online streaming context, a location in the check-in site, etc.

Additionally, RS also has a role in orienting users to adopt digital content. They

are used in marketing campaigns to increase the profit of providers. Currently, RS

have been playing more important roles in human daily life via diverse applications.

For examples, YouTube recommendations are really useful for over billion of users

to find and watch what they need from the chaos of online videos [21]. In the e-

commerce domain, Amazon has been integrating with a recommendation engine

to increase the satisfaction of customers as well as their profit for almost twenty

years [126]. The ever-growing size of social networks (e.g., Twitter, Digg or Face-

book) is remarkably contributed by social recommendation algorithms [34, 83, 33].

Foursquare and Yelp apply RS to suggest users point-of-interests where they might

want to go [159, 164]. Likewise, there are many other real-life examples [1] sum-

marized in Table 1.1.

1



CHAPTER 1. INTRODUCTION

System Item
Amazon.com Books and other Products
Netflix DVDs, Streaming Video
Jester Jokes
GroupLens News
MovieLens Movies
last.fm Songs/Playlists
Google News News
Google Search Advertisements, Products
Youtube Online Video
Facebook Friends, Advertisements
Pandora Songs/Playlists
Spotify Songs/Playlists
Tripadvisor Travel products
IMDb Movies
Foursquare Point-of-interest
Yelp Point-of-interest

Table 1.1: Real-life Examples of Recommender systems

Figure 1.1: An Example of Explicit Feedback: Netflix ratings

When users interact with RS, they trigger the notion of ”feedback”. Commonly,

there are two types of feedback namely explicit- and implicit feedback [94]. The for-

mer type is often observed in the form of ratings. The various rating values illustrate

the different appreciation of the user on an item. For example, Netflix utilizes a 5-

star ratings system (refer to Figure 1.1), in which 1-star shows an extreme dislike

and 5-star indicates a strong interest. Likewise, the implicit feedback is often shown

in the binary form, of which the value 1 represents the adoption, 0 otherwise. For

example, a user generates ”1” feedback when he clicks or purchases an item. The

”0” feedback is hypothesized for what items he has not adopted. Relying on the

two types of feedback, the recommendation task can be tackled either as a rating

prediction or a ranking problem [1].

2
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Top-K Recommender Systems represent a typical collection of RS [55, 118],

where the recommendation is considered as a ranking problem. Initially, recom-

mender models evaluates the goodness of each item candidate by a real score. A

ranking of candidates is constructed by sorting their respective scores. The determi-

nation of the top-K highest ranked items is known as top-K recommendation [1].

1.2 Objectives

We begin with the question how to build a good top-K recommender system. Gener-

ally, the fundamental task of RS is to generate effective suggestions for users. The

suggestion usually relies on the understanding of the historical feedback of users,

e.g., clicking, rating, purchasing, etc. The better the understanding is, the more

reasonable the recommendation is. Typically, the understanding could be system-

atically built by investigating all dependent factors that associated with the item

adoption phenomena. This investigation is performed not only on a specific user

or item but also across users and items, referred to as collaborative filtering (CF).

Previously, numerous works focus on the user-item associations, which emphasize

the user-specific factor or personalization [61, 89, 115]. Given a user, the personal-

ization captures his personal preference in adopting items.

In this dissertation, we seek to exploit an orthogonal direction that takes into

account item-item associations. This association type reflects the dependency be-

tween items, i.e., the adoption of an item might trigger the adoption of other items.

In traditional RS, the modeling of item-item associations is primarily based on sim-

ilarity. Given a user, the recommendation task is to find similar items to those he

adopted previously. This strategy is firstly used in content-based RS [99]. Items

are classified into categories using their descriptive attributes. Items within the

same category are similar hence they could be interchangeable options for the rec-

ommendation. Another family of similarity-based recommendation algorithms is

referred to as item-based collaborative filtering. These methods identify pairs of

3



CHAPTER 1. INTRODUCTION

Figure 1.2: An Example of Content-based Recommender Systems: Three recom-
mendations for 1TB Hard-drive from Amazon.

Crib
Crib 

Protector
Mosquito 

net
Crib 
Bell

Infant 
Formula

Feeding 
Bottle

Nipple
Nipple 

Cleaner

a) One-to-One b) One-to-Many

Figure 1.3: An Example of the Sequential Association: Baby stuffs are bought
sequentially

items that tend to be rated similarly by users [9, 117]. Based on this knowledge,

a user is recommended items that are similar to what he has highly rated. In Fig-

ure 1.2, three content-based recommendations of Amazon.com are shown for 1TB

hard-drive. They have not only the same type (e.g., hard-drive) but also the simi-

lar technical specifications including 7200RPM 6GB/s, 64MB Cache, etc. If a user

does not want to buy a Seagate hard-drive, he might have two other options of the

Western Digital company.

Besides the similarity, there are other dependency types captured in the item-

item association such as sequential- and correlative dependencies. The former type

is inferred from sequential associations within sequences, where the adoptions of

users are sorted by the time-aware manner [1]. It indicates the influence of the

preceding adoptions on the consecutive adoptions. For example, Figure 1.3 shows

interesting examples of sequential dependencies in buying baby stuffs [155]. In

4
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Figure 1.4: An Example of the Basket-oriented Association: Cake ingredients

Figure 1.3(a), it is the “one-to-one” sequential association, in which the current item

only triggers the next adoption. Differently, Figure 1.3(b) shows “one-to-many”

associations, where the adoption of the first item results in the following items.

Regularly, the order of items within a sequence is indicated via time steps. A

time step might flexibly represent a particular timestamp, an hour, a day or a brows-

ing session. Hence, the adoption at a given time-step could be either a single item

or a set of items, referring to the notion of basket. Associations among items within

the same basket, named basket-oriented associations, usually imply their comple-

mentary relations [85, 137]. Figure 1.4 illustrates necessary ingredients to make a

cake from scratch 1. Several simpler associations of these ingredients, e.g., flour &

baking powder or flour & vanilla, can be easily found in real-life shopping baskets.

As the main focus, we investigate the modeling of sequential- and basket-oriented

associations to improve the performance of top-K recommendations. In the next

section, we will present several novel problem formulations as well as the primary

ideas to solve these problems.

1.3 Problems and Challenges

Here, we introduce some potential recommendation problems via modeling sequential-

or basket-oriented associations independently and jointly. If we only take into ac-

count the sequential association, we may deal with the sequential recommendation

1http://jessicqamaine.blogspot.com/2016/03/cake-ingredients-from-scratch-from.html

5
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problem, which predicts the next item given a sequence of adopted items. Like-

wise, the independent consideration of basket-oriented associations suggests us a

potential task named basket-completion (a.k.a. “basket-sensitive”) recommenda-

tion, where the goal is to predict an item to add into a given basket of items. In

the case of jointly capturing both association types in a give sequence of baskets, a

possibility is to recommend the next basket. We will present the overview of these

problems in the next four sub-sections.

1.3.1 Sequential Recommendation using Dynamic Factors

Typically, sequential associations between items are often found with the notion

of sequences. We are interested in modeling this association type to capture the

sequential dependency between successive items in a sequence. The dependency is

expressed in terms of which other items may be preferred after consuming an item.

For instance, a user’s stream of tweets may reveal which topics tend to follow a

topic, e.g., commenting on politics upon reading morning news followed by more

professional postings during working hours. The sequence of songs one listens to

may express a preference for which genre follows another, e.g., more upbeat tempo

during a workout followed by slower music while cooling down.

The problem is how to quantify the sequential effect? Given a set of item se-

quences, we seek a probabilistic model, capturing sequential associations, so as to

estimate the likelihood of future items in any particular sequence. Each sequence

(e.g., a playlist, a stream of tweets) is assumed to have been generated by a single

user. To achieve this goal, we turn to probabilistic models for general sequences.

Regardless of having such models studied in the literature, we build on the foun-

dation of the well-accepted Hidden Markov Model (HMM) [105], which has been

shown to be effective in various applications, including speech- and handwriting-

recognition, etc. HMM utilizes a number of hidden states. To generate each se-

quence, we move from one state to another based on transition probability. Each

item is sampled from the corresponding state’s emission probability.
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While HMM is fundamentally sound as a basic model for sequences, we identify

two significant factors, yet unexploited, which would contribute towards greater

effectiveness for modeling sequential preferences. First, the generation of an item

from a state’s emission in HMM is only dependent on the state. However, as we are

concerned with user-generated sequences, the selection of items may be affected

by the personalized association. However, due to the sparsity of information on

individual users, we stop short of modeling individual emissions. Rather, we model

latent groups, whereby users in the same group share similar preferences over items,

i.e., emissions. Second, the transition to the next state in HMM is only dependent on

the previous state. We posit that context in which a transition is about to take place

also plays a role. For example, in the scenario of musical playlists, let us suppose

that a particular state represents the genre of soft rock. There are different songs in

this genre. If a user likes the artist of the current song, she may wish to listen to

more songs by the same artist. Otherwise, she may wish to change to a different

genre altogether. In this case, the artist is an observed feature of the context that

may influence the transition dynamically.

1.3.2 Basket-Sensitive Recommendation

In many scenarios, a user adopts more than one item within a session, referred to

as a basket of items. The associations among basket-items, also known as basket-

oriented associations, possibly signify their correlative dependencies. Intuitively, a

user buys an item to address a specific need, which frequently could only be fulfilled

by multiple related items. When shopping for clothes, a user may be looking for

matching top, bottom, and accessories. To make a cake, a user needs flour, milk,

eggs, and sugar, among other ingredients. Someone on an errand may wish to visit

several places in one trip: dropping mail, collecting laundry, having lunch, and buy-

ing groceries. In these cases, the items (e.g., products, places, songs) sought by

users are not independent. Given a user who is holding a basket of items, we seek

to deal with the basket-completion problem, recommending another item to add to

7
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the basket. This observation is relevant to both online and offline scenarios. For

instance, an online shopper at Amazon.com, or an offline shopper at an upcoming

Amazon Go2 physical store, may be recommended relevant products based on her

current cart. In brick-and-mortar supermarkets, RFID-tagged items and smart shop-

ping carts [158] allow real-time recommendation of items based on a user’s smart

cart. A basket may also refer to items adopted by a user within a specific period of

time, e.g., points of interest visited in a trip. While seeking the latent need repre-

sented by a basket of items, recommendation shall still be personalized, as a user

may have preferences as to the exact items involved (e.g., brand, size, color).

Considering the basket-completion problem as the next-item recommendation

task, we advocate an approach that factorizes basket-level associations. We propose

a model that we call BASKET-SENSITIVE FACTORIZATION MACHINE or BFM,

which models the recommendation as a function of four types of associations. The

first is association between the user and the target item to be recommended (where

most matrix factorization approaches stop). In addition, we model association be-

tween the target item and each item currently in the basket, association among bas-

ket items, and association between the user and each basket item.

While BFM captures the notion of relationship among items within a basket,

we further observe relationship among baskets with similar intent. Continuing an

earlier example, suppose that a user shops for cake ingredients. At one occasion,

the user may already have {milk, flour, sugar} in her basket, and we may recom-

mend eggs. At another occasion, the user may already have {milk, flour, eggs} in

her basket, and we thus recommend sugar. While we may be recommending dif-

ferent items (eggs in one case, and sugar in the other), the suggested instances are

addressing similar needs. Motivating from the intuitive example, we propose a set

of constraints to BFM to make the likelihood of recommendations that eventually

belong to the same basket similar. We refer to this second model as CONSTRAINED

BFM or CBFM.
2https://www.amazon.com/b?node=16008589011
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1.3.3 Sequential Recommendation using Contemporaneous Bas-

ket Sequences

Recently, Recurrent Neural Networks (RNN) produce state-of-the-art results in learn-

ing long-term sequential dependencies [74]. However, direct application of RNN to

sequential recommendation suffers from two major limitations in modeling choices.

First, it models a sequence of one type of actions (e.g., only purchases). Second, it

assumes that at each time step, there is only one action (e.g., one item purchased).

However, these assumptions may not bear out in some scenarios. For one, there

are multiple types of actions resulting from user interaction with a system. In an

online marketplace, a user may click on various items under consideration, abandon

most, add some to a shopping cart, and put others on a wish list, before an eventual

purchase takes place. In a video streaming service, a user may watch some trailers,

follow through to watch some shows fully, and later on may rate or review some

movies, of which a few might be rated highly. In each case, we are dealing with

multiple sequence types (e.g., sequence of clicks and sequence of purchases). Im-

portantly, these sequence types are contemporaneous, occurring within a common

period of time, and may well be capturing some related underlying behaviors. For

instance, to predict what one would purchase, it may be instructive to pay attention

to not only what a user has purchased previously, but also what she has clicked

in the past. Therefore, we postulate the need for modeling jointly the association

between adoptions on these contemporaneous sequences. As each set of contempo-

raneous sequences is commonly associated with only one user, the essence of this

paradigm is learning sequentiality among items across users’ sequences, rather than

personalization per se.

Additionally, we are not always dealing with a strict ordering of individual

items. More frequently, we deal with groups or sessions, whereby there may be

sequentiality from one session to another, but the ordering within a session may not

be informative. For example, when planning travel, one day we may be search-

ing for airfare, while on another day we may be booking accommodations. When
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grocery shopping, we may buy for different meal plans on different days. Though

not necessarily sequentially ordered, items within a session are probably correlated

to some degree, e.g., items of the same meal plan. We refer to such a group or

session as “basket”, hence the need to model the correlative dependencies among

basket-items is also raised.

To capture both sequential- and correlative dependencies, we propose to model

contemporaneous basket sequences or CBS for short. We just focus on a pair3

of sequence types: target and support. The target sequence refers to high-quality,

high-value, and possibly sparser interactions (e.g., purchases) for which we wish to

predict the next interaction (e.g., next purchase). The support sequence refers to

more frequent and informative interactions (e.g., clicks) that would be relevant for

predicting the next target item. For example, if purchasing is the target, and clicking

is the support, then we are predicting the next purchase by modeling sequence of

purchases and sequence of clicks.

We explore dual-RNN structure to represent the two sequence types. Having

been generated contemporaneously from the same ecosystem of interactions, the

sequence types likely model related phenomena. Instead of two completely differ-

ent RNN’s, we base our CBS framework on the concept of twin networks. Analo-

gously to biological twins, they share some commonalities, but to different degrees

in different cases. We develop three CBS architectures along the spectrum of com-

monalities. In all, the two sequence types share a basket encoder to capture in-basket

associations among items. They vary in how much sharing occurs at the recurrent

units. For CBS-SN (Siamese Networks), the sequence types share a recurrent en-

coder. For CBS-CFN (Concordant Fraternal Networks), they each have a different

recurrent encoder with the same recurrent units. For CBS-DFN (Discordant Fra-

ternal Networks), one sequence type has a recurrent encoder and the other does not,

to model different scopes of sequential effects.

3While the fundamentals of the proposed modeling would allow further extensions beyond two
sequence types, we discourse on only two sequence types for clarity of exposition.
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Salmon, Wasabi,

Japanese Rice

Crab, Pepper,

Melted Butter, Garlic

Fresh Oyster,

Fresh Milk, Wasabi

Fresh Oyster,

Lemon, Mint Leaf

T=1 T=2 T=3

?

Figure 1.5: Motivating example for correlation-sensitive next-basket recommenda-
tion.

1.3.4 Correlation-Sensitive Next-Basket Recommendation

Given a user and his basket-level adoption sequence, his preference is expressed

not only via correlative associations among basket items but also sequential associ-

ation across baskets. Figure 1.5 presents a basket sequence example in the grocery

shopping scenario. Each time step respects to a shopping session, where the user

purchases a basket of items. He seems to have a firm preference in seafood. In

the first session (T = 1), the co-occurrence of {Salmon, Wasabi, Japanese rice}

somehow implies his latent intention of making Sushi. Likewise, the second ses-

sion (T = 2) is about another seafood named Pepper Crab with the combination on

{Crab, Pepper, Melted butter, Garlic}. The question is how to derive insight from

his adopted basket sequence and generate the next-basket recommendation?

There are a number of research works dealing with the next-basket recommen-

dation problem [110, 147, 161, 141]. Generally, these works have a common limi-

tation that items within recommended basket are usually independent. The recom-

mendation is remarkably influenced by items’ popularity while the correlative asso-

ciations among basket items are not as emphasized. In Figure 1.5, it might trigger

the ordinary recommendation as an uncommon combination of {Fresh Oyster, Fresh

Milk, Wasabi}. Motivating from this scenario, our objective is upgraded to recom-

mend next basket in one stroke with correlated items, referred to as correlation-

sensitive next-basket recommendation. A basket of {Fresh Oyster, Lemon, Mint

11



CHAPTER 1. INTRODUCTION

Leaf} in Figure 1.5 is a typical example of correlation-sensitive recommendations

because items are necessary ingredients of a popular recipe with fresh oyster.

Towards this goal, we have to model concurrently basket-oriented and sequen-

tial associations in basket sequences before recommending a basket of correlated

items. Assume that “predicted” baskets follow the same correlation dependencies

built from “observed” baskets. We propose Beacon, a hierarchical network architec-

ture of three main layers. The first layer is Correlation-Sensitive Basket Encoder. It

enhances the determination of a given basket by exploiting not only item biases but

also correlative dependencies among items. This is then utilized to infer the basket

latent representation. Next, encoded basket vectors of the basket sequence are se-

quentially fed into the Sequence Encoder to capture sequential associations across

baskets. The last hidden output of this layer signifies the information about items

might be adopted next. In the third layer Correlation-Sensitive Score Predictor,

we aggregate this with items’ biases and correlations to generate the correlation-

sensitive next-basket recommendation.

1.4 Organization and Contributions

In the scope of this dissertation, we give efforts on modeling sequential- and basket-

oriented associations independently and jointly. We briefly summarize main chap-

ters aligned with our respective contributions as follows:

• In Chapter 3: We exploit the sequential associations between items of se-

quences to predict the next item adoption (a.k.a. sequential recommendation).

Concisely, we systematically build a probabilistic model, whereby transitions

from one state to another state may be dynamically influenced by the context

features, and emissions are influenced by latent groups of users. We also de-

scribe how to learn the model parameters as well as how to generate next-item

predictions. To validate the approach, we evaluate these models comprehen-

sively on both synthetic and real-life datasets. This work was published in

12
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Proceedings of the European Conference on Machine Learning and Princi-

ples and Practice of Knowledge Discovery in Databases (ECML PKDD) 2016

[62].

• In Chapter 4: We tackle the basket completion task, recommending a user

what item should be added into his current basket of adopted items, based on

the basket-oriented associations. The first model called BASKET-SENSITIVE

FACTORIZATION MACHINE or BFM, models the recommendation as a func-

tion of four types of associations namely: the association between the user and

the target item to be recommended, the association between the target item

and each item currently in the basket, the association among basket items, and

the association between the user and each basket item. We investigate empir-

ically which associations are most useful. Upgrading from BFM, we propose

a set of constraints to make the likelihood of recommendations that eventu-

ally belong to the same basket similar. We call this model as CONSTRAINED

BFM or CBFM. The two proposed models are investigated empirically over

three real-life datasets. This work was published in Proceedings of the 26th

International Joint Conference on Artificial Intelligence (IJCAI) 2017 [63].

• In Chapter 5: The notion of contemporaneous basket sequences motivates us

to jointly model both basket-oriented and sequential associations. We hy-

pothesize that modeling contemporaneous basket sequences could be bene-

ficial for next-item recommendation due to synergies between the target and

support sequences. To the best of our knowledge, we are the first to model

contemporaneous basket sequences. Dealing with this task, we develop three

neural network architectures: CBS-SN, CBS-CFNand CBS-DFN, describe

their design and note some learning details clearly. Subsequently, we inves-

tigate research questions on the effectiveness of modeling contemporaneous

basket sequences on public datasets in different domains. This work has been

published in Proceedings of the 27th International Joint Conference on Arti-

ficial Intelligence (IJCAI) 2018 [64].
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• In Chapter 6: We further improve the modeling of basket sequences for

a novel sequential recommendation task named correlation-sensitive next-

basket recommendation, which proposes to a user the next basket with cor-

related items. With the assumption that “observed” and “predicted” baskets

share a common correlative dependency graph among items, we incorporate

this information to improve the representation of baskets as well as the corre-

lation between items in the recommended basket. These ideas are sequentially

modeled in a hierarchical network architecture named Beacon. We validate

the efficiency of Beacon via four research questions on three real-life datasets.
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Chapter 2

Literature Review

Our primary problem is top-K recommendation. Traditional approaches usually rely

on modeling user-item associations, generated from the feedback of users on items

(e.g., rating, click, etc.). The recommendation is often considered as either a rat-

ing prediction task or a ranking problem. The most common prediction framework

is matrix factorization [61, 89], where the observed user-by-item rating matrix is

factorized into D latent factors. Each user (or item) is represented by a latent vec-

tor vu ∈ RD (or vi ∈ RD). The rating that u gives on i could be computed by

Rui = vu.vi. Improving upon this idea, [140, 47] introduce feature-based matrix

factorization models that exploit item’s prices to improve the recommendation per-

formance. Another prediction framework is restricted Boltzmann machines [115]

based on neural networks. It measures the likelihood u rates i with a particular

rating r. [32] introduces a tied variant integrating content information to deal with

the cold-start recommendation problem. In 2009, Truyen et al. [134] proposes

another variant exploiting the similarity and co-occurrence information. Equally

important, latent semantic analysis [45, 46] is another direction, which models the

association among users, items, and ratings via multinomial probabilities. There

are several works based on topic modeling [101, 84, 25], which jointly model rat-

ings and textual information (e.g., reviews, tags). Recently, [40] proposes a neural

network-based collaborative filtering framework to model noisy implicit feedback.
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Figure 2.1: The Taxonomy of Modeling Item-Item Associations for Top-K Recom-
mendation

Tackling as the ranking task, [109, 108] present personalized pairwise ranking ap-

proaches. Instead of using the actual rating-based ranking, they approximate the

probability how likely an item is preferred to another item by a sigmoid estimator.

[124] solves this ranking task via optimizing the mean reciprocal rank directly.

In the dissertation, we aim to model the item-item associations for the top-K

recommendation problem. Modeling these associations helps us to leverage depen-

dent factors affecting the item adoption. Figure 2.1 illustrates our categorization

on related approaches. Generally, there are three main association types, namely

similarity-based, sequential associations and basket-oriented. In this chapter, we

will review the literature on related works of those branches. Especially we con-

centrate on methods modeling the sequential- and basket-oriented associations for

top-K recommendation, which are particularly relevant to this dissertation.

2.1 Modeling Similarity-Based Associations

The objective of this algorithm family is to compute the similarity of items. This

similarity could be generated either from intrinsic information (e.g., item attributes)

or extrinsic manners (e.g., user ratings). The usage of descriptive information is

firstly applied in content-based RS [99], where items with similar attributes are

grouped into a category. It is commonly used for the substitutable recommendation.

In another way, the likeness of an item pair is considered in terms of being rated

similarly by users [9]. A user is recommended highly-rated items, which are similar

to what he adopted. This approach is often referred to as item-based collaborative
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filtering [117]. Based on the similarity knowledge, users are suggested candidates

that are similar to what they adopted formerly.

Content-based. In this algorithm group, each item can be represented by a

vector [99]. This vector could be a structured representation, where each column

corresponds to an attribute type (e.g., brand, size) and the respective value is the

item’s attribute. In another way, it is possible to contain tf-idf values of words in the

item’s description. Let us denote~i,~j to the vector representations of two items i, j

respectively. The similarity between i, j is often measured by the cosine similarity

[73]:

sim(i, j) = cos(~i,~j) =
~i.~j

‖~i‖2 ∗ ‖~j‖2

Another direction making use of these vectors is to cluster items into groups

of similarity [68]. YouTube researchers cluster videos to make recommendations

using the descriptions [23]. [4] mines query logs to generate new query recommen-

dations. The invention of topic modeling [10] triggers several research works on

modeling the categorical association. [142] explores relational concepts in the sci-

entific article data to support the finding of relevant works. [29] infers topics from

reader histories and content to recommend personalized articles of interest. Gen-

erally, these methods have a tendency to exploit the similarity between items for

“substitutable” recommendations.

Item-based Collaborative Filtering. Unlike the content-based approach, the

presence of user plays a substantially role in this algorithm family [117]. Here,

the explicit feedback (a.k.a. ratings) of users are utilized to compute the similarity

between items. Let us denote U as the user set, Rui as the rating of a user u on the

i−item and R̄i as the average rating of the i-item. The similarity between two items

i, j can be computed by the Pearson-r correlation as follows:

sim(i, j) =

∑
u∈U(Rui − R̄i)(Ruj − R̄j)√∑

u∈U(Rui − R̄i)2

√∑
u∈U(Ruj − R̄j)2

Clearly, different users may have different rating ranges. It is captured in the
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adjusted Cosine similarity, which takes into account the user-bias by the average

rating R̄u:

sim(i, j) =

∑
u∈U(Rui − R̄u)(Ruj − R̄u)√∑

u∈U(Rui − R̄u)2

√∑
u∈U(Ruj − R̄u)2

There is another approach [24], named Conditional Probability-based Similar-

ity, relies on the item frequencies as follows:

sim(i, j) =
Freq(i, j)

Freq(i)× (Freq(j))α

where α ∈ [0, 1] is a hyper-parameter. If α = 0, it becomes identical to P (j|i).

Inspired by these traditional similarity-based methods, [145] proposes a proba-

bilistic fusion framework, where ratings by similar users towards similar items are

utilized to smooth the rating predictions. [52] improves recommendations for cold-

start users by combining an item-based model and a trust network as the additional

knowledge. Likewise, [28] couples the tagging graph with item-based collaborative

filtering for the tag recommendation task.

2.2 Modeling Sequential Associations

Here, we narrow down to review related approaches on modeling sequential associ-

ations. This association type implies the sequential dependency of an adoption on

its preceding adoptions. In our context, user can adopt either one item or a basket

of items at a time step. Hence, single-item and basket sequences are typical input

data forms. [103] classifies these approaches as “sequence-aware” RS. Figure 2.2

shows the taxonomy of reviewed techniques and our corresponding research works.

In Table 2.1, related works are listed down and grouped into the five main cat-

egories namely pattern mining, metric embedding, factorization, Markov models

and neural networks. These algorithm groups will be thoroughly discussed in next

paragraphs.
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Pattern Mining
Argawal et al. [2]
Mobasher et al. [90]
Parameswaran et al. [96]

Rudin et al. [113]
Sarwar et al. [116]
Yap et al. [157]

Metric Embedding
Baeza et al. [5]
Chen et al. [17, 18]
Feng et al. [27]

Grbovic et al. [31]
Tagami et al. [130]
Vasile et al. [136]

Factorization

Cheng et al. [20]
He et al. [37, 39, 38]
Liu et al. [82]
Lian et al. [71]

Pasricha et al. [97]
Wan et al. [139]
Zhao et al. [166]

M
ar

ko
v

M
od

el
s Markov Decision

Process
Brafman et al. [12]
Sahoo et al. [114]

Shani et al. [121]
Tavakol et al. [132]

Hidden Markov
Model

Hu et al. [48]
Juang et al. [54]

Rabiner et al. [105]

N
eu

ra
lN

et
w

or
ks Recurrent

Neural Networks

Hidasi et al. [42, 43, 41]
Lipton et al. [74]
Li et al. [66]
Li et al. [70]
Liu et al. [77, 79]
Neil et al. [92]
Ren et al. [106]

Song et al. [127]
Villatel et al. [138]
Wu et al. [151]
Wu et al. [152]
Wang et al. [144]
Zhang et al. [165]
Zhu et al. [168]

Convolutional
Neural Networks

Chen et al. [155]
Liu et al. [80]
Tang et al. [131]

Tuan et al. [135]
Yuan et al. [163]

Table 2.1: Related works on modeling Sequential Associations
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Pattern Mining. As a straightforward solution, association rules [2] are ex-

ploited to find sequential patterns for recommendations. [90] proposes a scal-

able framework for the user navigation on Web, mining both sequential and non-

sequential pattern from clickstream data. This framework provides effective data

structures to store sequential patterns as well as effective real-time recommenda-

tions. [96] deals with the precedence mining task to suggest students what sub-

jects they might consider next. The novelty compared to the traditional solution,

is the proposal of probabilistic approaches. As another variant of mining asso-

ciation rules, [113] improves the next item recommendation task by regulating a

trade-off between accuracy on the training set and generalization ability. Mean-

while, [157] presents a personalized sequential pattern mining-based approach us-

ing a novel Competence Score measure. In general, this algorithm family is simple

and easy to implement but it is limited by “known” patterns appearing in training

transactions.

Metric Embedding. The main idea of this algorithm group is to learn the item

embedding to preserve the sequential dependency, which is presented in terms of

transition probabilities. Early, [17] proposes Latent Markov Embedding that each

song can be projected in the embedding space. The distance between two songs

space is proportional to their transition probability estimated from the playlist data.

Subsequently, Chen et al. [18] upgrades this embedding method by constraining not

only on sequential orders but also co-occurrences of songs. With the similar idea,

[5, 153] generate personalized recommendations for what next-song and mobile

applications that user are going to select. Inspired by word2vec [88], [31] intro-

duces a neural language-based algorithm to learn user and product embeddings for

user-to-product and product-to-product predictions. [136] incorporates products’

metadata in learning embeddings. Likewise, [130] infers the latent representations

of users from their activities on the Web for the contextual advertisement task. In

another domain, there are several works dealing with point-of-interest (POI) data.

[27] presents the personalized ranking metric embedding approach for recommend-
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ing next new point-of-interest. Instead of conserving transition probability values,

this approach preserves the relative comparison between these probabilities.

Factorization. This family is an analogous direction to the metric embedding

approach. Instead of using embedding to approximate the transition probability, it

directly factorizes these probabilities into a number of latent factors. [110] conducts

joint factorization of the user-by-item rating and item-by-item transition matrices. It

is a base to build a more abstractive model, named “Factorization machines” [107].

Relying on the idea in [110], [20] proposes a POI recommendation method using

geographical constraints while [37] incorporates latent behavior patterns. Likewise,

[82] predicts users’ preference transitions over categories of POI and suggests them

with locations in the corresponding categories. [71] tackles the next check-in rec-

ommendation task by modeling both short- and long-term preferences. Applied to

the e-commerce domain, [166] improves the factorization-based sequential model

using purchased intervals of items. [139] factorizes monotonic behavior chains

(e.g., click, purchase, review) for item recommendation. In the similar way, [39]

incorporates item similarities as the additional information in modeling sequential

associations. Inspired by translation-based techniques, [38, 97] model personalized

item sequences for next-item recommendations.

Markov Models. This family is a collection of generative models, of which

Hidden Markov Model (HMM) [105] is a representative. It has been shown to

be effective in various applications, including speech- and handwriting-recognition

[54, 48]. At each time step t of HMM, the user preference is presented by a hidden

state variable Xt. Xt is associated emission E and transition probabilities T . The

former measures how likelihood items (V = {v}) are adopted (P (v|Xt) while the

latter refers to the switching probability (e.g., P (Xt+1 = s′|Xt = s)) from a hidden

state (Xt = s) to another hidden state (Xt+1 = s′). In Chapter 3, we seek to model

dynamic context-biased transition and user-biased emission. To make the effects

of these dynamic factors clear, we build on the foundation of HMM, and focus our

comparisons against this base platform. Aside from HMM, there could potentially
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be different ways to tackle this problem such as probabilistic automata [26] and

recurrent neural networks [87]. [114] introduces a variant of HMM, which assumes

that users may change their ordinal preferences over time rather than considering

dynamic context-bias transition. As a member of the Markovian family, Markov

decision processes (MDP) have a similar structure to ours, but their behaviors are

different. Given a hidden state Xt = s at time step t, the decision maker can choose

any action a (aka policy) from a predefined set. The process responds at the next

time step by randomly switching into a new state Xt+1 = s′ with the probability

P (s′|s, a), informing the decision maker a corresponding reward Ra(s, s
′). These

probabilities are estimated by seeking “optimal policies” to maximize the responded

reward. Considering recommendations as a stochastic sequential decision problem,

[12] proposes an MDP-based recommendation system, where items are “actions”

and the adoptions of users are “rewards”. This approach is somehow closer to the

real behavior of users on the Web. However, the computational and representational

overhead are its significant problems. [121] is an upgraded version of MDP-based

RS, of which the initial states are based on an n-gram predictive model. Another

variant [132], named factored MDP, predicts the user’s goal (aka topic) within a

shopping session. This model is an ensemble of a number of MDP, respecting to

the number of items’ attribute categories. In each MDP, actions are referred to the

options of the item attribute.

Neural Networks. Some variants of neural networks are proposed and ap-

plied to model sequences such as Recurrent Neural Networks (RNN), Convolutional

Neural Networks (CNN), etc. Using RNN, [74] shows significant improvements

in learning long-term sequential dependencies from sequences. [165] proposes a

RNN-based framework solve the click prediction problem in sponsored search sys-

tems. To generate recommendations during a browsing session, [42, 41] modify

the basic Gated Recurrent Unit, a variant of RNN, to better fit the training data

by using session-parallel mini-batches. [66] upgrade this approach with the atten-

tion mechanism while [138] adds layer normalization and tied embedding matrix
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techniques.[70] aggregates the short-term behaviors within a session with users’

long-term stable preferences for next-item recommendations. [152, 127] exploit

the graph information within the current session while [106] takes into account

the repeat consumption behavior. In order to build context-aware RNN-based RS,

[43, 77, 79] take into account contextual information such as time, location, weather.

[151] introduces the recurrent recommender networks with dual RNNs via fitting

concurrently items’ and users’ rating sequences. Likewise, [144] considers local

coherence of nearby feedback to model the dynamics of users and items for the

rating prediction problem. [92, 168] upgrades LSTM with a time gate, which ex-

plicitly models intervals between time steps. In a different direction, Convolutional

Neural Networks (CNN), a powerful model for the image classification task, are

also exploited in the recommendation scenarios. Using CNN, [80] solves a click

prediction on advertisements. [135] presents another CNN-based model incorpo-

rating content features as additional information to enhance the performance of the

session-based recommendation task. [131] proposes the Convolutional Sequence

Embedding model to tackle the personalized sequential recommendation task. It

takes advantage of CNN to learn sequential associations and Latent Factor Model

(LFM) to learn personalization. [163] improves this approach by residual learn-

ing, the combination of masked filters and 1D dilated convolutions. Dealing with

the same task, [155] is the most recent research making use of memory-augmented

neural networks, which provide a flexible way to maintain and update user prefer-

ences for sequential recommendations.

Hybrid Models. In addition to the above mentioned works, there exist several

hybrid methods dealing with the sequential recommendation problem. [16] mod-

els the scenario where users “lose interest” over time. [53] takes into account the

life stage of a consumer, e.g., products for babies of different ages, while [156]

intends to model the evolution that advance ”forward” in event sequences without

going “backward”. [143] seeks to predict not what, but rather when to recommend

an item. In a different goal, [75] tackles the repeat buying behavior prediction us-
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ing users’ and items’ features. [19] considers how changes in social relationships

over time may affect a user’s receptiveness or interest to change. [149] incorporates

spatial, temporal and payment information to generate category-level recommenda-

tion. [93] proposes RecWalk, which performs random walks on inter-item transition

probability matrix to infer meaningful relationships for next-item recommendation.

[162] presents a multi-order attentive ranking model to capture the union-level item

interaction on item sequences, which an item adoption is triggered by a set of pre-

vious items. Overall, these models are not considered as our baselines because they

capture neither context-aware factors, nor basket sequences.

2.3 Modeling Basket-Oriented Associations

The basket-oriented association signifies the correlation among basket-items. In

Chapter 4, we aim to model this association type for the basket-completion recom-

mendation task. It is to recommend a user, currently holding a basket of items, what

could be adopted next. Our solution mainly relies on factorizing basket-oriented

associations. Figure 2.3 shows the taxonomy of modeling this association type cor-

responding to our research direction. Specifically, Table 2.2 lists related works, with

respect to the four main algorithm groups including association rule, graph-based,

factorization and neural networks. Next, we will give the literature review on these

families.

Association Rule. [2] introduces fast algorithms for mining association rules

on transactional data. An association rule X =⇒ Y indicates the sequential de-

pendency between two disjoint itemsets X, Y (i.e., X ∩ Y = Ø). These association

rules are filtered out to find meaningful patterns using minimal support and minimal

confidence thresholds. Let us denote f(X) to the number of transactions containing

X and N is the total number of transactions. The support s and confidence c of an
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association rule X =⇒ Y are computed by:

s(X =⇒ Y ) =
f(X ∪ Y )

N

c(X =⇒ Y ) =
f(X ∪ Y )

f(X)

Clearly, the rule is strongly dependent on the union of X and Y , referred to as

the associations of items in X, Y . The original aim of association rule mining is

to find these insightful associations rather than making recommendations. In the

beginning stage, the research focus was mainly on computational efficiency, with

pruning strategies such as Apriori [2] or FP-tree [36]. The rules are general rules,

and are not personalized. Some works describe ways to use association rules for per-

sonalized item recommendation [157]. For experimental comparison in Chapter 4,

we follow the approach in [116] as a baseline. Other works inspired by association

rules are not directly comparable. [56] utilizes information on product categories

for multi-level rules. Taking into account the features of the products in shopping

baskets, [35] finds associations rules that match these features directly. [146] con-

siders association rules across baskets, instead of within a basket. [100] exploits

bigram rules, with an item each in antecedent and consequent.

Graph-Based. These methods consider the recommendation as a link predic-

tion problem task on graphs. If there exists an edge between two items, it implies the

relevance, which is used to generate recommendations. As one of the pioneers, [67]

proposes basket-sensitive recommendation using random walks on the user-item bi-

partite graph. However, it is not designed for personalization or exploiting actual

correlations among basket-items. [154] exploits a session-based graph to capture the

effects of recent items as well as items across sessions. [30] constructs a concept

graph from a scientific article corpus to suggest students relevant technical material.

[85, 86] learn simultaneously multiple types of relationships such as “complement”,

“substitute” in the product graph. In comparison, these works are not considers as

our baselines because they are neither basket-sensitive nor personalized.
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Figure 2.3: The Taxonomy of Modeling Basket-Oriented Associations with Our
Corresponding Research

Association Rule Graph-based Factorization Neural Networks
Argawal et al. [2]
Han et al. [36]
Han et al. [35]
Kim et al. [56]
Sarwar et al. [116]
Pradel et al. [100]
Wang et al. [146]
Yap et al. [157]

Li et al. [67]
McAuley et al. [85]
McAuley et al. [86]
Gordon et al. [30]
Xiang et al. [154]

Cao et al. [15]
Liu et al. [76]
Liu et at. [78]
Liang et al. [72]
Nguyen et al. [133]
Rendle et al. [111]

Shen et al. [122]
Hidasi et al. [42, 43]
Hu et al. [49]
Liu et al. [81]
Quadrana et al. [104]
Wang et al. [148]

Table 2.2: Related works on modeling Basket-Oriented Associations

Factorization. This group takes the advantage of latent representations, where

each item is associated with a latent vector. [72] utilizes item co-occurrences as

a form of regularization for matrix factorization. Likewise, [15] relies on the rich

signal about item co-occurrences within lists (e.g., playlists, booklists) as a promis-

ing factor for jointly recommending items and user generated lists. [133] tackles a

similar problem to us, which uses previous clicked items of a user as the context to

determine future items what he will click on. Another work using the context-aware

factor, [76] claims that conditioning on all context items is not optimal so that they

propose a contextual selection strategy for embedding models. Although the afore-

mentioned works exploit the correlation among items, they neither take into account

the notion of basket nor the association among context items.

Neural Networks. The development of neural network-based models triggers
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state-of-the-art results in numerous applications, which the modeling of basket-

oriented associations is not an exception. [122] proposes a structured deep neural

network using back-propagation to learn co-occurrence data (e.g., products in trans-

actional data, friends in social networks). Taking into account the order of items

within a session (i.e., basket), [42] deals with un-personalized session-based recom-

mendations using recurrent neural networks. Inspired by this work, [104] proposes

a personalized variant, which learns from a cross-session sequence. Thoroughly,

these works are not comparative to our work in Chapter 4, where the sequential in-

formation is unavailable and the personalization is required. Dealing with the same

problem to ours, [49] recommends items based on the basket context, which are

combined from context items’ embeddings. [148, 81] recently applies the attention

mechanism to infer the contextual embedding.

Additionally, there are some other efforts in modeling co-occurrences. Incorpo-

rating co-occurrence information and category labels, [137] introduces a Siamese

CNNs structure to learn compatibility across item categories. Word2Vec [88] is

invented to capture the correlation of words in sentences. Product2Vec [31] is pro-

posed with the similar idea to learn products’ embeddings in e-commerce sites to

build RS. Incorporating side-information to Product2Vec, [136] presents the Meta-

Product2Vec method to capture the similarities between items.

Hybrid Models. An orthogonal direction is to recommend a user’s next basket.

The key association is sequence based on time. One approach is based on integrating

matrix factorization and Markov chains [110]. In contrast, our intent in Chapter 4 is

to predict which item to be added into the current basket, and the key is correlation

among items within the basket. Another problem is bundle recommendation [167]

to recommend a bundle of items. This is akin to next-basket recommendation, a

different scenario from ours. Another is taxonomy-induced associations [120, 59].

There is also similarity- or co-occurrence-induced associations [78, 72]. They rec-

ommend items independently, whereas we factor in the items in the user’s basket to

arrive at the personalized recommendation.
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Metric Embedding Factorization Recurrent Neural Networks
Wang et al. [147] Rendle et al. [110]

Pathak et al. [98]
Wan et al. [141]

Bai et al. [7]
Ying et al. [160]
Yu et al. [161]

Table 2.3: Related works on modeling jointly Basket-Oriented and Sequential As-
sociations

2.4 Modeling Jointly Sequential- and Basket-Oriented

Associations

Table 2.3 summarizes related works of typical approaches on modeling sequences

and basket-level associations concurrently for sequential recommendations. With

the objective of combining the “long-term” (items a user generally likes) and “short-

term” preferences (items frequently consumed within a session), [154] models the

problem as random walks in a session-based temporal graph. [160] proposes a

hierarchical attention network that combines the long-term preference of adopted

session (a.k.a., basket) sequences and the short-term preference of the currently

holding basket. Each user (or item) is represented by an embedding vector. In or-

der to generate basket-level recommendations, [147] also introduces a hierarchical

aggregation architecture between users and the most recent adopted basket. The

representation of a basket is inferred by aggregating the representations of its items.

Using the similar idea, [161] presents another RNN-based approach dealing with

the next-basket recommendation problem. Recently, [141] proposes a personalized

model which infers the representation of a given basket via its pairwise relation-

ships (e.g., item-item, user-item). [7] improves this approach by incorporating item

attribute information in a hierarchical attentive structure.

In Chapter 5, we focus on modeling a pair of contemporaneous basket se-

quences. Each sequence is built across sessions (each session is a basket). Most

of the mentioned works are preoccupied with only one sequence type, and that se-

quence consists of individual items (not baskets). They are not comparable to our

work, as they model neither baskets, nor contemporaneous sequences. In the ex-
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periment section of Chapter 5, we will compare to some of these baselines having

one sequence type to investigate the effects of modeling a pair of sequence types.

In a different direction, there are instances where “twin” networks are applied for

other purposes than next-item recommendation. These applications include ques-

tion answering [22], text similarity [91], and image matching [58]. In such cases,

the two distinct inputs are assumed to have largely similar meanings. In our case,

the relationship may be asymmetric, with one being the target sequence (to predict

its next item), and the other the support sequence (to assist in predicting the target

sequence). For another instance, in neural machine translation [6, 129], the objec-

tive is to transform a sequence in one language to another language. In our case,

the objective is not transformation, but rather predicting the next item in the target

sequence.

Generally, the mentioned works deal with the same task, known as next-basket

recomendation, where items are independently recommended. This limitation mo-

tivates us to consider a novel formulation, referred to as correlation-sensitive next-

basket recommendation in Chapter 6. Modeling users’ preferences from basket se-

quences, we aim to recommend the next basket with correlated item. Our research

is somehow related to the bundle recommendation problem [112]. [167] introduces

a construction algorithm, where items are sequentially added with the constraint on

selected ones. [98] starts from a ranking problem on existing bundles of games to

infer the embeddings of items and users. These embeddings are later exploited to

generate a bundle recommendation. As a different formulation, [102, 119] present

their research on recommending packages to groups of users. Comparing to ours,

these works neglect either correlative associations in recommended baskets or se-

quential associations. In some sense, our work in Chapter 6 relates to the list-wise

recommendation problem [51, 125]. However, their focus is items’ ranking rather

than modeling correlative dependencies per se.
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Sequential Recommendation using

Dynamic Factors

Users express their preferences via the adoptions of items such as clicking, rating or

liking, etc. The notion of sequence is generated when considering time-sensitive on

the user-item adoptions. Given a sequence, associations between items somehow

imply “sequential dependency” (a.k.a. “sequential preference”), manifests itself in

scenarios such as song or video playlists, topics one reads or writes about in social

media, etc. Modeling these associations is helpful to predict the next item expected

to appear beyond this sequence (e.g., what video to watch next, what song to lis-

ten next, etc). This task is known as the sequential recommendation. Moreover,

the common approach (before Deep Learning becomes popular) to model sequen-

tial preferences relies primarily on the first-order sequential dependency, i.e., which

item follows another item. However, there are other important factors, due to either

the user or the context, which may dynamically affect the way a sequence unfolds.

Therefore, it raises the need to develop generative modeling of sequences, incor-

porating dynamic user-biased emission and context-biased transition for sequential

preference.
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……

Figure 3.1: A standard HMM for sequential preferences

Preliminaries. Towards capturing sequential preferences, our model builds

upon HMM. The standard HMM assumes a series of discrete time steps t = 1, 2, . . .,

where an item Yt can be observed at step t. To model the sequential effect in this

series of observed items, HMM employs a Markov chain over a latent finite state

space across the time steps. As illustrated in Figure 3.1, at each time step t a latent

state Xt is transitioned from the previous state Xt−1 in a Markovian manner, i.e.,

P (Xt|Xt−1, Xt−2, . . . , X1) ≡ P (Xt|Xt−1), known as the transition probability.

Formally, consider an HMM with a set of observable items Y and a set of latent

states X . It can be fully specified by a triplet of parameters θ = (π,A,B), such that

∀x, u ∈ X , y ∈ Y , t ∈ {1, 2, . . .},

• π is the initial state distribution with πx , P (X1 = x);

• A is the transition matrix with Axu = P (Xt = u|Xt−1 = x);

• B is the emission matrix with Bxy = P (Yt = y|Xt = x).

Given a sequence of items Y1, . . . , Yt, the optimal parameters θ∗ can be learned by

maximizing likelihood (Eq (3.1)). Note that we can easily extend the likelihood

function to accommodate multiple sequences, but for simplicity we only demon-

strate with a single sequence throughout the technical discussion. Moreover, given

θ∗ and a sequence of items Y1, . . . , Yt, the next item y∗ can be predicted by maxi-

mum a posteriori probability (Eq (3.2)). Both learning and prediction can be effi-

ciently solved using the forward-backward algorithm [105].

θ∗ = arg maxθ P (Y1, ..., Yt; θ) (3.1)

y∗ = arg maxy P (Yt+1 = y|Y1, . . . , Yt; θ
∗) (3.2)
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……

Figure 3.2: Sequential models with dynamic user-biased emissions

3.1 Models

In a standard HMM, item emission probabilities are invariant across users, and

state transition probabilities are independent of contexts at different times. How-

ever, these assumptions often deviate from real-world scenarios, in which different

users and contexts may have important bearing on emissions and transitions. In this

section, we model dynamic emissions and transitions respectively, and ultimately

jointly, to better capture sequential preferences.

3.1.1 Modeling Dynamic User-Biased Emissions (SEQ-E)

It is often attractive to consider personalized preferences [110], where different user

sequences may exhibit different emissions even though they share a similar transi-

tion. For instance, while two users both transit from soft rock to hard rock in their

respective playlist, they might still choose songs of different artists in each genre.

As another example, two users both transit from spring to summer in their apparel

purchases, but still prefer different brands in each season. However, a fully person-

alized model catered to every individual user is often impractical due to inadequate

training data for each user. We hypothesize that there exist different groups such

that users across groups manifest different emission probabilities, whereas users in

the same group share the same emission probabilities.
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In Figure 3.2, we introduce a variable Gu to represent the group assignment of

each user u. For simplicity, our technical formulation presents a single sequence

and hence only one user. Thus, we omit the user notation u when no ambiguity

arises. Assuming a set of groups G, the new model can be formally specified by the

parameters (π, σ, A,B), such that ∀x ∈ X , y ∈ Y , g ∈ G, t ∈ {1, 2, . . .},

• π and A are the same as in a standard HMM;

• σ is the group distribution with σg = P (G = g);

• B is the new emission tensor with Bgxy = P (Yt = y|Xt = x,G = g).

3.1.2 Modeling Dynamic Context-Biased Transitions (SEQ-T)

In standard HMM, the transition matrix is invariant over time. In real-world applica-

tions, this assumption may not hold. The transition probability may change depend-

ing on contexts that vary with time. Consider modeling a playlist of songs, where

the transitions between genres are captured. The transition probabilities could be

influenced by characteristics of the current song (e.g., artist, lyrics and sentiment).

A fan of the current artist may break her usual pattern of genre transition and stick

to genres by the same artist for the next few songs. As another example, a user pur-

chasing apparels throughout the year may follow seasonal transitions. If satisfied

with certain qualities (e.g., material and style) of past purchases, she may buy more

such apparels out of season to secure discounts, breaking the usual seasonal pattern.

We call such characteristics context features.

It is infeasible to differentiate transition probabilities by individual context fea-

tures directly, which would blow up the parameter space and thus pose serious com-

putational and data sparsity obstacles. Instead, we propose to model a single context

factor that directly influences the next transition. The context factor, being latent,

manifests itself through the observable context features.

As illustrated in Figure 3.3, consider a set of context features F = {F 1, F 2, . . .}.

As feature values vary over time, let Ft = (F 1
t , F

2
t , . . .) denote the feature vector at
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Figure 3.3: Sequential models with dynamic context-biased transitions

time t. Each feature F i takes a set of values F i, i.e., F i
t ∈ F i,∀i ∈ {1, ..., |F |}, t ∈

{1, 2, . . .}. Similarly, let Rt denote the latent context factor at time t, and R de-

note the set of context factor levels, i.e., Rt ∈ R,∀t ∈ {1, 2, . . .}. Finally, the

model can be specified by the parameters (π, ρ, A,B,C), such that ∀x, u ∈ X , i ∈

{1, . . . , |F |}, f ∈ Fi, t ∈ {1, 2, . . .},

• π and B are the same as in a standard HMM;

• ρ is the distribution of the latent context factor with ρr = P (Rt = r);

• C is the feature probability matrix with Crif = P (F i
t = f |Rt = r);

• A is the new transition tensor with Arxu = P (Xt = u|Xt−1 = x,Rt−1 = r).

3.1.3 Joint Model (SEQ*)

As discussed, user groups and context features can dynamically bias the emission

and transition probabilities, respectively. Here, we consider both users and contexts

in a joint model, as shown in Figure 3.4. Accounting for all the parameters de-

fined earlier, the joint model is specified by a six-tuple θ = (π, σ, ρ, A,B,C). The

algorithm for learning and inference will be discussed in the next section.
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Figure 3.4: Sequential models with both dynamic user-biased emissions and
context-biased transitions

3.2 Learning and Prediction

We now present efficient learning and prediction algorithms for the joint model.

Note that the user and context-biased models are only degenerate cases of the joint

model— the former assumes one context factor level (i.e., |R| = 1) and no features

(i.e., F = ∅), whereas the latter assumes one user group (i.e., |G| = 1).

3.2.1 Parameter Learning

The goal of learning is to optimize the parameters θ = (π, σ, ρ, A,B,C) through

maximum likelihood, given the observed items and features. Consider a sequence of

T > 1 time steps. Let Y , (Y1, . . . , YT ) as a shorthand; and similarly for F ,X,R.

Subsequently, the optimal parameters can be obtained as follows.

θ∗ = arg maxθ logP (Y , F ; θ) (3.3)

We demonstrate with one sequence for simpler notations. The algorithm can be

trivially extended to enable multiple sequences as briefly described later.

Expectation Maximization (EM). We apply the EM algorithm to solve the

above optimization problem. Each iteration consists of two steps below.
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• E-step. Given parameters θ′ from the last iteration (or random ones in the first

iteration), calculate the expectation of the log likelihood function:

Q(θ|θ′) =
∑

X,G,R P (X,G,R|Y , F ; θ′) logP (Y , F ,X,G,R; θ′) (3.4)

• M-step. Update the parametes θ = arg maxθQ(θ|θ′).

Given the graphical model in Figure 3.4, the joint probability P (Y , F ,X,G,R)

can be factorized as

P (G)P (X1) ·
T∏
t=1

P (Yt|G,Xt)P (Rt)

|F |∏
i=1

P (F i
t |Rt)

 · T−1∏
t=1

P (Xt+1|Xt, Rt).

(3.5)

Maximizing the expectation Q(θ|θ′) is equivalent to maximize the following, as-

suming that Yt = yt and F i
t = f it are observed, ∀t ∈ {1, . . . , T}, i ∈ {1, . . . , |F |}.

∑
x∈X P (X1 = x|Y , F ; θ′) log πx +

∑
g∈G P (G = g|Y , F ; θ′) log σg

+
∑T

t=1

∑
r∈R P (Rt = r|Y , F ; θ′) log ρr

+
∑T−1

t=1

∑
x∈X

∑
u∈X

∑
r∈R P (Rt = r,Xt = x,Xt+1 = u|Y , F ; θ′) logArxu

+
∑T

t=1

∑
x∈X

∑
g∈G P (Xt = x,G = g|Y , F ; θ′) logBgxyt

+
∑T

t=1

∑|F |
i=1

∑
r∈R P (Rt = r|Y , F ; θ′) logCrif it (3.6)

The optimization problem is further constrained by laws of probability, such that∑
x∈X πx = 1,

∑
g∈G σg = 1,

∑
r∈R ρr = 1,

∑
u∈X Arxu = 1,

∑
y∈Y Bgxy = 1

and
∑

f∈Fi Crif = 1. Applying Lagrange multipliers, we can derive the following
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updating rules.

πx =
P (X1 = x|Y , F ; θ′)

1
=

∑
g∈G
∑

r∈R γgxr(1)

1
, (3.7)

σg =
P (G = g|Y , F ; θ′)

1
=

∑
x∈X

∑
r∈R γgxr(1)

1
,

ρr =

∑T
t=1 P (Rt = r|Y , F ; θ′)∑T

t=1

∑
k∈R P (Rt = k|Y , F ; θ′)

=

∑
g∈G
∑

x∈X
∑T

t=1 γgxr(t)

T
,

Arxu =

∑T−1
t=1 P (Rt = r,Xt = x,Xt+1 = u|Y , F ; θ′)∑T−1

t=1 P (Rt = r,Xt = x|Y , F ; θ′)
=

∑T−1
t=1

∑
g∈G ξgxur(t)∑T−1

t=1

∑
g∈G γgxr(t)

,

Bgxy =

∑T
t=1 P (Xt = x,G = g|Y , F ; θ′)I(yt = y)∑T

t=1 P (Xt = x,G = g|Y , F ; θ′)
=

∑T
t=1

∑
r∈R γgxr(t)I(yt = y)∑T

t=1

∑
r∈R γgxr(t)

,

Crif =

∑T
t=1 P (Rt = r|Y , F ; θ′)I(f it = f)∑T

t=1 P (Rt = r|Y , F ; θ′)
=

∑T
t=1

∑
g∈G
∑

x∈X γgxr(t)I(f it = f)∑T
t=1

∑
g∈G
∑

x∈X γgxr(t)
,

where I(·) is an indicator function and

γgxr(t) , P (G = g,Xt = x,Rt = r|Y , F ; θ′), (3.8)

ξgxur(t) , P (G = g,Xt = x,Xt+1 = u,Rt = r|Y , F ; θ′). (3.9)

Note that, to account for multiple sequences, in each updating rule we need to re-

spectively sum up the denominator and numerator over all the sequences.

Inference. To efficiently apply the updating rules, we must solve the inference

problems for γgxr(t) and ξgxur(t) in Eq (3.8) and (3.9). Towards these two goals,

similar to the forward-backward algorithm [105] for the standard HMM, we first

need to support the efficient computation of the below probabilities.

αgxr(t) = P (Y1, . . . , Yt, F1, ..., Ft, Xt = x,G = g,Rt = r; θ′) (3.10)

βgxr(t) = P (Yt+1, ..., YT , Ft+1, ..., FT |Xt = x,G = g,Rt = r; θ′) (3.11)

Let θ′ = (π′, σ′, ρ′, A′, B′, C ′) and C ′(r, t) =
∏|F |

i=1C
′
rif it

, both probabilities can
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be computed recursively, as follows.

αgxr(t) =


π′xσ

′
gρ
′
rC
′(r, 1)B′gxy1 , t = 1

ρ′rC
′(r, t)B′gxyt

∑
u∈X

∑
k∈R αguk(t− 1)A′kux, else

(3.12)

βgxr(t) =


B′gxyTC

′(r, T ), t = T − 1∑
k∈R ρ

′
kC
′(k, t+ 1)

∑
u∈X B

′
guyt+1

A′rxuβguk(t+ 1), else

(3.13)

Subsequently, γgxr(t) and ξgxur(t) can be further computed.

ξgxur(t) =
αgxr(t)A

′
xurB

′
guyt+1

∑
k∈R βguk(t+ 1)ρ′kC

′(k, t+ 1)∑
h∈G
∑

v∈X
∑

k∈R αhvk(T )
(3.14)

γgxr(t) =


∑

x∈X ξgxur(t) t = T∑
u∈X ξgxur(t) else

(3.15)

3.2.2 Item Prediction

Once the parameters are learnt, we can predict the next item of a user given her

existing sequence of items {Y1, Y2, ..., Yt} and context features {F1, F2, ..., Ft}. In

particular, her next item y∗ can be chosen by maximum a posteriori estimation:

y∗ = arg maxy P (Yt+1 = y|Y1, . . . , Yt, F1, ..., Ft)

= arg maxy P (Y1, . . . , Yt, Yt+1 = y, F1, ..., Ft)

= arg maxy P (Y1, . . . , Yt, Yt+1 = y, F1, ..., Ft, Ft+1)/P (Ft+1)

= arg maxy
∑

g∈G
∑

x∈X
∑

r∈R αgxr(t+ 1). (3.16)

While we do not observe features at time t + 1, in the above we can adopt any

value for Ft+1 which does not affect the prediction. Instead of picking the best

candidate item, we can rank all the candidates and suggest the top-K items.
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3.2.3 Complexity Analysis

We conduct a complexity analysis for learning the joint model SEQ*. Consider

one sequence of length T with |X | states, |Y| items, |G| user groups, |R| context

factor levels, |F | features and |F| values for each feature. For this one sequence,

the complexity of one iteration of the EM is contributed by three main steps:

• Step 1: Calculate α, β: O (T |G||X ||R|2(|X |+ |F |)). Because ρ′r, C
′(r, t) in

Eq (3.12) are independent of g, x, u, k while ρ′k, C
′(k, t + 1) in Eq (3.13) are

independent of g, x, u, r, we further simplify this to: O (T |R|(|G||X |2|R|+ |F |))

• Step 2: Calculate ξ, γ using α, β: O (T |G||X |2|R|2|F |). As ρ′kC
′(k, t + 1) in

Eq (3.14) is independent of g, x, u, r, we have: O (T |R|(|G||X |2|R|+ |F |)).

• Step 3: Update θ using γ, ξ: O (T |G||X ||R|(|X |+ |F |)). As y in Bgxy of

Eq (3.7) is independent of g, x, r, we first compute the denominator, and

update a normalized score to y in the Bgxy while computing the numerator.

Likewise, i, f in Crif are independent of g, x, r. Thus, we can transform it to:

O (T |R|(|G||X |2 + |F |)).

The overall complexity of SEQ* is O (T |R|(|G||X |2|R|+ |F |)) for one sequence,

one iteration. The complexities of other variants are (by substitution):

• HMM with |G| = |R| = 1, |F | = |F| = 0: O (T |X |2)

• SEQ-E with |R| = 1, |F | = |F| = 0: O (T |G||X |2)

• SEQ-T with |G| = 1: O (T |R|(|X |2|R|+ |F |))

The result implies that the running times of our proposed models are quadratic in

the number of states and context factor levels, while linear in all the other variables.

HMM is also quadratic in the number of states. Comparing to HMM with the same

number of states, our joint model incurs a quadratic increase in complexity only in

the number of context factor levels (which is typically small), and merely a linear

increase in the number of groups and context features.
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3.3 Experiments

The objective of experiments is to evaluate effectiveness. We first look into a syn-

thetic dataset to investigate whether context-biased transition and user-biased emis-

sion could have been simulated by increasing the number of HMM’s states. Next,

we experiment with two real-life, publicly available datasets, to investigate whether

the models result in significant improvements over the baseline.

3.3.1 Setup

We elaborate on the general setup here, and describe the specifics of each dataset

later in the appropriate sections. Each dataset has a set of sequences. We create

random splits of 80:20 ratio of training versus testing. In this sequential preference

setting, a sequence (a user) is in either training or testing, but not necessarily in both.

This is different from a fully personalized ordinal preference setting (a different

framework altogether), where a user would be represented in both sets.

Task. For each sequence in the testing set, given the sequence excepts the last

item, we seek to predict the last item. Each method generates a top-K recommen-

dation, which is evaluated against the held-out ground-truth last item.

Comparative Methods. Since we build our dynamic context and user factors

upon HMM, it is the most appropriate baseline. To investigate the contribution

of user-biased emission and context-based transition separately, we compare the

two models SEQ-E and SEQ-T respectively against the baseline. To see their

contributions jointly, we further compare SEQ* against the baseline. In addition,

we include the result of the frequency-based method POP as a reference, which

simply choose the most popular item in the training data.

Metrics. We rely on two conventional metrics for top-K recommendation. In-

spired by a similar evaluation task in [142], the first metric we use is Recall@K.

Recall@K =
number of sequences with the ground truth item in the top K

total number of sequences in the testing set
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If we assume the ground truth item to be the only true answer, average precision

can be measured similarly (dividing byK) and would show the same trend as recall.

In the experiments, we primarily study top 1% recommendation, i.e., Recall@1%,

but will present results for several other K’s as well. Actually, it is not clear that

the other items in the top-K would really be rejected by a user [142]. Instead of

precision, we rely on another metric.

The second metric is Mean Reciprocal Rank or MRR, defined as follows.

MRR =
1

|Stest|
×
∑
s∈Stest

1

rank of target item for sequence s

We prefer a method that places the ground-truth item higher in the top-K rec-

ommendation list. Because the contribution of a very low rank is vanishingly small,

we cut the list off at 200, i.e., ranks ≥ 200 contribute zero to MRR. Realistically, a

recommendation list longer than 200 is unlikely in realistic scenarios.

For each dataset, we create five random training/testing splits. For each “fold”,

we run the models ten times with different random initializations (but with common

seeds across comparative methods for parity). For each method, we average the

Recall@K and MRR across the fifty readings. All comparisons are verified by one-

sided paired-sample Student’s t-test at 0.05 significance level.

3.3.2 Synthetic Dataset

We begin with experiments on a synthetic dataset, for two reasons. First, one advan-

tage of a synthetic dataset is the knowledge of the actual parameters (e.g., transition

and emission probabilities), which allows us to verify our model’s ability to recover

these parameters. Second, we seek to verify whether the effects of context-biased

transition and user-biased emission could have been simulated by increasing the

number of hidden states of traditional sequence model HMM.

Dataset. We define a synthetic dataset with the following configuration: 2

groups (|G| = 2), 2 states (|X | = 2), 2 context factor levels (|R| = 2), 4 items
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a) Recall@1 
for various number of states 

b) MRR 
for various number of states 
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Figure 3.5: Performance of comparative methods on Synthetic Data for Recall@1
and MRR

(|Y| = 4), 4 features (|F | = 4) each with 2 feature values (present or absent).

Here, we discuss the key ideas. A six-tuple θ = (π, σ, ρ, A,B,C) is specified as

follows: π = [0.8, 0.2], σ = [0.9, 0.1], ρ = [0.3, 0.7]. The transition tensorA is such

that we induce self-transition to the same state for the first context factor level, and

switching to the other state for the second context factor level. The emission tensor

B is such that the four (state, group) combinations each tend to generate one of the

four items. The feature matrix C is such that each context factor level is mainly

associated with two of the four features.

We then generate 10 thousand sequences, each of length 10 (T = 10). For each

sequence, we first draw a group according to σ. At time t = 1, we draw the first

hidden stateX1 from π, followed by drawing the first item Y1 fromB. We also draw

a context factor level from ρ and generate features via C. For time t = 2, . . . , 10,

we follow the same process, but each hidden state is now drawn from A according

to the previous state and context factor level at time t− 1.

Results. We run the four comparative methods on this synthetic dataset, fixing

the context factor levels and groups to 2 for the relevant methods, while varying

the number of states. Figure 3.5(a) shows the results in terms of Recall@1, i.e.,

the ability of each method in recommending the ground truth item as the top pre-

diction. There are several crucial observations. First, the proposed model SEQ*

outperforms the rest, attaining recall close to 85%, while the baseline HMM hovers
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around 65%. SEQ* also outperforms SEQ-T and SEQ-E.

Second, as we increase the number of states, most models initially increase

in performance and then converge. Evidently, increasing the number of states

alone does not lift the baseline HMM to the same level of performance as SEQ*

or SEQ-T, indicating the effect of context-biased transition. Meanwhile, though

SEQ-E and HMM are similar (due to inability to model context factor), SEQ*

is slightly better than SEQ-T, indicating the contribution of user-biased emission.

Figure 3.5(b) shows the results for MRR, showing similar trends and observations.

Supplementary. Here, we first describe the original parameters for the synthetic

data generation, and then show the parameters learned by each method.

Original Parameter Values. To generate a synthetic dataset, we construct a sim-

ple model with 2 latent groups (|G| = 2), 2 latent states (|X | = 2), 2 levels of

context factor (|R| = 2), 4 items (|Y| = 4), 4 features (|F | = 4) each with 2 binary

feature values.

The six-tuple parameter θ = (π, σ, ρ, A,B,C) is specified such that:

• Each (group, state) combination predominately generates 1 of the 4 items.

• Each context factor level is characterized by a pair of context features. One

context factor level predominately supports self-transition to the same state.

The other level predominately supports switching to the other state.

The original parameter values used during synthetic data generation are shown

in the Original Values column of Table 3.1.

Learned Parameter Values. We run each comparative model on the generated

synthetic dataset with 10 thousand sequences, each of length 10. Table 3.1 also

shows the parameter values learned by each model.

HMM: It seems to take the advantage of the grouping probability to create hidden

states and aggregate the emission probabilities of the two groups. Its transi-

tion probability also favors that of the majority context factor level.
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Parameter
Original Learned Values
Values HMM SEQ-E SEQ-T SEQ*

π = [π0, π1] [0.80, 0.20] [0.90, 0.10] [0.75, 0.25] [0.80, 0.20] [0.80, 0.20]
σ = [σ0, σ1] [0.90, 0.10] N.A. [0.90, 0.10] N.A. [0.90, 0.10]
ρ = [ρ0, ρ1] [0.30, 0.70] N.A. N.A. [0.30, 0.70] [0.30, 0.70]

A = [A0, A1]
Ai =[
Ai00 Ai01

Ai10 Ai11

]
A0 =[
0.010 0.990
0.700 0.300

]
A1 =[
0.990 0.010
0.300 0.700

]
A0 =[
0.999 0.001
0.001 0.999

] A0 =[
0.670 0.330
0.280 0.720

]
A0 =[
0.008 0.992
0.703 0.297

]
A1 =[
0.994 0.006
0.292 0.708

]
A0 =[
0.004 0.996
0.696 0.304

]
A1 =[
0.993 0.007
0.293 0.707

]

B = [B0, B1]
Bi =
Bi00 Bi01

Bi02 Bi03

Bi10 Bi11

Bi12 Bi13



B0 =
0.991 0.003
0.003 0.003
0.003 0.991
0.003 0.003


B1 =
0.003 0.003
0.991 0.003
0.003 0.003
0.003 0.991



B0 =
0.605 0.389
0.003 0.003
0.002 0.003
0.605 0.390



B0 =
0.989 0.006
0.003 0.002
0.202 0.790
0.005 0.003


B1 =
0.002 0.002
0.980 0.018
0.003 0.005
0.028 0.784



B0 =
0.891 0.004
0.101 0.004
0.008 0.890
0.003 0.099



B0 =
0.991 0.002
0.003 0.004
0.010 0.984
0.003 0.003


B1 =
0.002 0.003
0.990 0.005
0.002 0.004
0.014 0.980



C = [C0, C1]
Ci =
Ci00 Ci01

Ci10 Ci11

Ci20 Ci21

Ci30 Ci31



C0 =
0.10 0.90
0.20 0.80
0.90 0.10
0.90 0.10


C1 =
0.90 0.10
0.90 0.10
0.10 0.90
0.30 0.70


N.A. N.A.

C0 =
0.09 0.91
0.19 0.81
0.90 0.10
0.90 0.10


C1 =
0.90 0.10
0.90 0.10
0.08 0.92
0.28 0.72



C0 =
0.09 0.91
0.19 0.81
0.90 0.10
0.90 0.10


C1 =
0.90 0.10
0.90 0.10
0.08 0.92
0.28 0.72


Table 3.1: Synthetic Parameters: Original Values vs. Learned Values by Various
Models

SEQ-E: It learns the group distribution σ well, but the initial distribution of hidden

states π is a bit off. This affects the emission probability. The transition

probability amounts to an aggregation of the two context factor levels.

SEQ-T: It can recover most of the parameters, except the emission probability due

to its not taking into account the user bias.

SEQ*: Importantly, SEQ* is the only model that can virtually recover all of the

original parameter values with very light noises.
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a) Vary the number of features 
for the SEQ-T model

b) Vary the number of context 
factor levels for the SEQ-T model

c) Vary the number of groups 
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Figure 3.6: Effects of features, context factors & groups on Yes.com

3.3.3 Real-Life Datasets

We now investigate the performance of the comparative methods on real-life, pub-

licly available datasets covering two different domains: song playlists from online

radio station Yes.com, and hashtag sequences from users’ Twitter streams.

Playlists from Yes.com. We utilize the yes small dataset1 collected by [17]. The

dataset includes about 430 thousand playlists, involving 3168 songs. Noticeably, the

majority of playlits has length which is shorter than 30. To keep the playlist lengths

relatively balanced, we filter out playlists with fewer than two songs and retain up

to the first thirty songs in each playlist. Finally, we have 250 thousand playlists

(sequences) consisting of 3168 unique songs (items).

Features. We study the effect of features on the context-biased transition model

SEQ-T. Each song may have tags. There are 250 unique tags. We group tags with

similar meanings (e.g.,“male vocals” and “male vocalist”). As the first feature, we

use a binary feature of whether the current song and the previous song shares at

least one tag. For additional features, we use the most popular tags. Note that we

never assume knowledge of the tags of the song to be predicted. Figure 3.6(a) shows

the performance of SEQ-T, with two context factor levels, for various number of

features. Figure 3.6(a) has dual vertical axes for Recall@1% (left) and MRR (right)

respectively. The trends for both metrics are similar: performance initially goes up

and then stabilizes. In subsequent experiments, we use eleven features (similarity

feature and ten most popular tags).

1http://www.cs.cornell.edu/˜shuochen/lme/data_page.html
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POP HMM SEQ-T SEQ-E SEQ* Imp.

5 States
Recall@1% 6.8 13.8 18.4† 22.0§ 24.1†§ +10.3
Recall@50 9.6 19.2 25.1† 29.5§ 32.1†§ +13.0
Recall@100 16.2 29.3 37.0† 42.6§ 46.1†§ +16.8

10 States
Recall@1% 6.8 22.3 23.2† 27.8§ 28.6†§ +6.3
Recall@50 9.6 30.0 31.1† 36.9§ 38.1†§ +8.1
Recall@100 16.2 43.4 44.9† 52.1§ 53.5†§ +10.2

15 States
Recall@1% 6.8 26.1 26.5† 30.1§ 30.6†§ +4.5
Recall@50 9.6 34.7 35.5† 39.4§ 40.2†§ +5.5
Recall@100 16.2 49.3 50.8† 55.1§ 56.3†§ +7.0

Table 3.2: Performance of comparative methods on Yes.com for Recall@K

POP HMM SEQ-T SEQ-E SEQ* Imp.
5 States 0.014 0.028 0.037† 0.044§ 0.049†§ +0.021

10 States 0.014 0.045 0.047† 0.057§ 0.059†§ +0.014
15 States 0.014 0.053 0.054† 0.062§ 0.063§ +0.009

Table 3.3: Performance of comparative methods on Yes.com for MRR

Context Factor. We then vary the number of context factor levels of SEQ-T

(with eleven features). Figure 3.6(b) shows that for this dataset, there is not much

gain from increasing the number of context factor levels beyond two. Therefore, for

greater efficiency, subsequently we experiment with two context factor levels.

Latent Groups. We turn to the effect of latent groups on the user-biased emis-

sion model SEQ-E. Figure 3.6(c) shows the effect of increasing latent groups. More

groups lead to better performance. Because of the diversity among sequences, hav-

ing more groups increases the flexibility in modeling emissions while still sharing

transitions. For the subsequent comparison to the baseline, we will experiment with

two latent groups, as the earlier comparison has shown that the results with higher

number of groups would be even higher.

Comparison to Baseline. We now compare the proposed models SEQ-T, SEQ-E,

and SEQ* to the baseline HMM. Table 3.2 shows a comparison in terms of Re-

call@K for 5, 10, and 15 states. In addition to Recall@1% (corresponding to top

31), we also show results for Recall@50 and Recall@100. The symbol † denotes

statistical significance due to the effect of context-biased transition. In other words,
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POP HMM SEQ-T SEQ-E SEQ* Imp.

5 States
Recall@1% 8.4 16.9 17.1† 20.6§ 21.0†§ +4.1
Recall@50 16.1 28.3 28.6† 33.2§ 33.7†§ +5.4
Recall@100 25.5 40.6 40.9† 46.0§ 46.5†§ +5.9

10 States
Recall@1% 8.4 21.8 22.0† 26.5§ 26.9†§ +5.1
Recall@50 16.1 34.2 34.4† 39.4§ 39.8†§ +5.7
Recall@100 25.5 47.2 47.4† 52.0§ 52.4§ +5.2

15 States
Recall@1% 8.4 25.2 25.3† 29.9§ 30.0†§ +4.8
Recall@50 16.1 38.1 38.2† 43.1§ 43.3†§ +5.1
Recall@100 25.5 51.2 51.3† 55.2§ 55.3†§ +4.1

Table 3.4: Performance of comparative methods on Twitter.com for Recall@K

the outperformance of SEQ-T over HMM, and that of SEQ* over SEQ-E, are

significant. The symbol § denotes statistical significance due to the effect of user-

biased emission, i.e., the outperformance of SEQ-E over HMM, and that of SEQ*

over SEQ-T, are significant. Finally, our overall model SEQ* is significantly better

than the baseline HMM in all cases. The absolute improvement of the former over

the latter in additional percentage terms is shown in the Imp. column. For all mod-

els, more states generally translate to better performance, and the improvements are

somewhat smaller but still significant. Table 3.3 shows a comparison in terms of

MRR, where similar observations hold.

Hashtag Sequences from Twitter.com. We conduct similar experiments on

the Twitter dataset2 [69]. There are 130 thousand users. In our scenario, each

sequence corresponds to the hashtags of a user. The average length of our dataset

is 19. If a tweet has multiple hashtags, we retain the most popular one, so as to

maintain the sequence among tweets. Similarly to the treatment of stop words and

infrequent words in document modeling, we filter out hashtags that are too popular

(frequency≥ 25000) or relatively infrequent (frequency≤ 1000). Finally, we obtain

114 thousand sequences involving 2121 unique hashtags. Similarly to Yes.com, we

run the models for two levels of context factor and two latent groups, but with seven

features extracted from the tweet of the current hashtag (not the one to be predicted):

2https://wiki.cites.illinois.edu/wiki/display/forward/
Dataset-UDI-TwitterCrawl-Aug2012
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POP HMM SEQ-T SEQ-E SEQ* Imp.
5 States 0.019 0.045 0.046† 0.062§ 0.063†§ +0.0183

10 States 0.019 0.063 0.064 0.084§ 0.086†§ +0.0227
15 States 0.019 0.076 0.078† 0.100§ 0.101†§ +0.0246

Table 3.5: Performance of comparative methods on Twitter.com for MRR

number of retweets, number of hashtags, time intervals to the previous one and two

tweets, time interval to the next tweet, and edit distances with the previous one and

two observations.

The task is essentially predicting the next hashtag in a sequence. In brief, Ta-

bles 3.4 and 3.5 support that the improvements due to context-biased transition (†)

and user-biased emission (§) are mostly significant. Importantly, the overall im-

provements by SEQ* over the baseline HMM (Imp. column) are consistent and

hold up across 5, 10, and 15 states for both Recall@K and MRR.

Computational efficiency is not the main focus of experiments. We comment

briefly on the running times. For the Twitter dataset, the average learning time per

iteration on Intel Xeon CPU X5460 3.16GHz with 32GB RAM for our models with

15 states, 2 groups, 2 context factor levels are 2, 3, and 6 minutes for SEQ-E,

SEQ-T and SEQ* respectively. HMM requires less than a minute.

3.4 Summary

In this chapter, we develop a generative model for sequences, which models two

types of dynamic factors. First, transition from one state to the next may be affected

by context factor. This results in SEQ-T model, with context-biased transition. Sec-

ond, we seek to incorporate how different latent user groups may have preferences

for certain items. This results in SEQ-E model, with user-biased emission. Finally,

we unify these two factors into a joint model SEQ*. Experiments on both synthetic

and real-life datasets support the case that these dynamic factors contribute towards

better performance than the baseline HMM (statistically significant) in terms of

top-K recommendation for sequences.
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Chapter 4

Basket-Sensitive Recommendation

We address the basket-completion problem where the user is currently holding a

basket of items, and the task is to recommend an item to be added to the basket.

Given a basket, the correlation (i.e., basket-oriented associations) between current

items may imply an underlying latent need, e.g., ingredients to prepare some dishes,

spare parts of some devices. Thus, it is important that a recommended item is

relevant not only to the user, but also to the existing items in the basket. Towards

this goal, the need for basket-sensitive personalized item recommendations becomes

remarkably pronounced.

4.1 Models

Consider N users U = {u1, u2, ..., uN} and M items V = {v1, v2, ..., vM}. Given

a user ui ∈ U , a basket Bi ⊂ V is defined as a subset of items that ui is cur-

rently “holding”. We refer to them as basket items. For instance, these could

be items in the user’s shopping cart or places already visited by the user on that

day. Our objective is to recommend a target item vj ∈ V \ Bi (or a ranked list of

items) to ui. We seek to learn a real-valued function F (ui, Bi, vj; Θ), such that if

F (ui, Bi, vj; Θ) > F (ui, Bi, vj′ ; Θ), then the target item vj is preferable to vj′ , and

would be more likely to be recommended to ui. Θ denotes the parameters of the

function.
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4.1.1 Basket-Sensitive Factorization Machine (BFM)

We develop our proposed BFM model by incorporating various types of useful

associations.

User and Target Item. For personalized item recommendation, the basic type

of association is between the user and the target item. This is a fundamental building

block in most matrix factorization techniques [61]. Building upon this foundation,

we include in Θ, a latent vector xi ∈ RK in K dimensions for each user ui ∈ U ,

as well as a latent vector yj ∈ RK for each target item vj ∈ V . F (ui, Bi, vj; Θ) is

assumed to be proportional to xiTyj .

F (ui, Bi, vj; Θ) ∝ xi
Tyj (4.1)

Matrix factorization essentially assumes that the basket items are irrelevant, imply-

ing that a user chooses items independently of one another. In practice, we expect

that items in a basket may be associated with one another.

Basket Item and Target Item. It is important to model the associations between

items in the basket and the target item. For instance, a supermarket shopper who

is picking up ingredients for curry would be recommended items differently from

when she is picking up ingredients for cake. To model the influence of a basket item

on the choice of the target item, we further include in Θ a latent vector zj ∈ RK for

every item vj ∈ V . As opposed to yj that models vj’s behavior as a target item, zj

models vj’s behavior as a basket item. Without prior knowledge, we assume that all

items in the basket would have an influence on the choice of the target item.

F (ui, Bi, vj; Θ) ∝
∑
vk∈Bi

yj
T zk (4.2)

Among Basket Items. A basket of items may not always share a strong associ-

ation among themselves. Possibly, a shopper may buy a complete set of ingredients

for some dish. On another occasion, the shopper may pick up loose ends, resulting
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in a basket of less related items. The strength of association among current basket-

items may influence the choice of the target item. We model this association as

well.

F (ui, Bi, vj; Θ) ∝
∑

(vk 6=vk′ )∈Bi

zk
T zk′ (4.3)

User and Basket Item. For completeness, we also model the association be-

tween the user and each basket item.

F (ui, Bi, vj; Θ) ∝
∑
vk∈Bi

xi
T zk (4.4)

This association is potentially redundant if the associations between the user and the

target item, as well as between the target item and basket items are already modeled.

Overall Function. We now encapsulate the above association types into one

overall function as follows.

F (ui, Bi, vj; Θ) ∝ γ1 · xiTyj + γ2 ·
∑
vk∈Bi

yj
T zk (4.5)

+ γ3 ·
∑

(vk 6=vk′ )∈Bi

zk
T zk′ + γ4 ·

∑
vk∈Bi

xi
T zk

For flexibility in whether to incorporate an association type, we indicate each asso-

ciation type with a binary variable γ1, γ2, γ3, γ4 ∈ {0, 1} to be specified according

to each application scenario. We will experiment with different combinations of

association types to see which are most useful.

Prediction. Once the parameters Θ are learned, given a user ui and a basket

Bi, we construct a recommendation list of target items in the order of decreasing

F (ui, Bi, vj; Θ).

Parameter Learning. Given a set of tuples T , where each t = 〈ui, Bi, vj, δ〉 ∈

T connotes a user ui holding a basket Bi. If δ = 1, the user ends up adopting a

target item vj . If δ = −1, the user does not adopt vj . A user may have multiple

tuples in T . The goal is to learn the parameters in Θ, i.e., {xi}ui∈U , and {yj, zj}vj∈V

to maximize the likelihood of observing T .
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We make the interesting observation that the model parameters can be mapped

into a factorization machine or FM [107]. Let h be a vector of length p, with binary

elements, i.e., hi ∈ {0, 1}. A second-order FM is as follows.

F(h) = µ0 +

p∑
i=1

µihi +

p∑
i=1

p∑
j=i+1

hihj(φi
Tφj) (4.6)

The parameters include the global bias µ0 and a bias coefficient µi for each com-

ponent. Each φi ∈ RK is a K-dimensional latent vector associated with the ith

component.

We transform our model into the appropriate factorization machine. For t =

〈ui, Bi, vj, δ〉 ∈ T , we construct a binary vector ht of length p, where p = N +2M .

The first N terms in ht are for the presence of a user. We have hti = 1. The next

M terms in ht are for the target item. We have htN+j = 1. The last M terms are for

the basket items. For each basket item vk ∈ Bi, we have htN+M+k = 1. All other

elements of ht are zeros. The latent vectors of this factorization machine stand for

those of BFM. φi stands for a user latent vector x when i ≤ N , for a target item

latent vector y when N < i ≤ N + M , and for a basket item latent vector z when

N +M < i.

For BFM, the function F (ui, Bi, vj; Θ) in Eq (4.5) is effectively transformed

into Eq (4.7). Θ denotes the φi’s that also stand for x, y, z’s. The addition of biases

µ0 and µi’s is appropriate, and it is a common practice in matrix factorization-based

recommendation [61].

F(h; Θ) =µ0 +

p∑
i=1

µihi + γ1

N∑
i=1

N+M∑
j=N+1

hihj(φi
Tφj) + γ2

N+M∑
i=N+1

p∑
j=N+M+1

hihj(φi
Tφj)

+ γ3

p∑
i=N+M+1

p∑
j=i+1

hihj(φi
Tφj) + γ4

N∑
i=1

p∑
j=N+M+1

hihj(φi
Tφj) (4.7)

To learn from training data T , we would like F(ht; Θ) to be high when t.δ = 1,

and to be low when t.δ = −1. To penalize errors during training, we adopt the
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following optimization criterion incorporating a logistic loss function.

OPT BFM(T ) = argminΘ

[∑
t∈T

− ln(σ(F(ht; Θ)× t.δ)) +
∑
θ∈Θ

λθθ
2

]
(4.8)

where σ(a) = 1/(1+e−a) is the sigmoid function, and λθ ∈ R+ is the regularization

coefficient for θ.

The parameters could be estimated via several methods, e.g., stochastic gradient

descent (SGD), alternating least-squares and Markov Chain Monte Carlo [107].

4.1.2 Constrained BFM or CBFM

We describe CONSTRAINED BFM or CBFM that incorporates constraints relating

baskets of similar intent. Intuitively, if a user shops for a number of items to ful-

fil a need, conceivably on different occasions the user may put items in different

sequences and construct different intermediate baskets that make up the same col-

lection of items. For example, if the intent is served by four items v1, v2, v3, v4, on

one occasion when a user’s basket contains {v1, v2, v3}, we would recommend v4,

while on a different occasion when the user’s basket contains {v1, v3, v4}, we would

recommend v2. Because the recommendations go on to serve the same intent for

the user, we postulate that their likelihoods should be similar.

Definition 1. TUPLES OF THE SAME INTENT We say that two tuples t1 and t2 in

the training data T have the same intent if the following conditions hold:

• t1 and t2 concern the same user,

• the union of the basket items and the target item is identical between t1 & t2,

• both are positive examples, i.e., t1.δ = 1 and t2.δ = 1.

Given two tuples t1 and t2 of the same intent, we seek to minimize the difference

between their function values.

(
F(ht1 ; Θ)−F(ht2 ; Θ)

)2 (4.9)
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Different pairs of tuples with the same intent may have different degrees of

correlation, which we model by the Point-wise Mutual Information (PMI) [11] of

their target items. Suppose for two same-intent tuples t1 and t2, their target items

are v1 and v2. The PMI is the joint probability of v1 and v2, estimated through their

joint co-occurrence across transactions, divided by the marginal probabilities of v1

and v2 respectively, as shown in Eq (4.10). The higher the PMI the more likely two

items appear in the same basket.

PMI(t1, t2) = ln
P (v1, v2)

P (v1)(v2)
(4.10)

In practice, there may be more than two tuples sharing the same intent. For

a collection of such tuples from positive examples, the objective is to learn high

scores. Imposing similarity across all pairs of such tuples may have the unintended

effect of making them equally low, instead of equally high. Therefore, we would

only add the constraint between a tuple t and its same-intent tuple tm that has the

maximum score.

We now define the optimization criterion for the CONSTRAINED BFM or CBFM,

as shown in Eq (4.11) below.

OPT CBFM(T ) = argminΘ

[∑
θ∈Θ

λθθ
2 +

∑
t∈T

{
− ln(σ(F(ht; Θ)× t.δ)) (4.11)

+
α

2
× PMI(t, tm)×

(
F(ht; Θ)−F(ht

m

; Θ)
)2
}]

The objective function of CBFM subsumes that of BFM. It still has the logistic

loss function of BFM. It also features the constraints. α is a coefficient controlling

the strength of the constraint vis-á-vis the logistic loss, to be tuned empirically. As

we are most concerned with strongly-correlated tuples, we apply the constraint only

for positive tuples having positive PMI; otherwise it is zero with no effect.

The inference for CBFM’s logistic loss is similar to that of BFM. The key

difference is the constraint component. The overall gradient of parameters consists
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of the gradient due to the logistic loss, as well as the gradient due to the derivative

the constraint component. The latter is as follows.

∂

∂θ
F(ht; Θ)−F(ht

m

; Θ))2 (4.12)

= 2(F(ht
m

; Θ)−F(ht; Θ))
∂

∂θ
(F(ht

m

; Θ)−F(ht; Θ))

Subsequently, we perform the following update iteratively in the SGD algo-

rithm, where η is the learning rate.

θ ←θ − η
[
t.δ × (σ(F(ht; Θ)× t.δ)− 1)

∂

∂θ
F(ht; Θ) + 2λθθ (4.13)

+ α× PMI(t, tm)× (F(ht
m

; Θ)−F(ht; Θ)) × ∂

∂θ
(F(ht

m

; Θ)−F(ht; Θ))

]

The complexity of CBFM learning is similar to BFM, O(K · |T | · s̄), where K

is the vector dimensionality, |T | is the size of the training data, and s̄ is the average

basket size in T . Compared to BFM, CBFM takes additional comparisons to find

the maximum instance tm. The extra calculation is linearly proportional to the size

of the respective basket.

4.2 Experiments

The objective of experiments is to investigate the effectiveness of the BFM and

CBFM.

4.2.1 Setup

Datasets. We experiment with three public real-life datasets from different domains

bearing basket-like associations. The dataset sizes are summarized in Table 4.1.

TaFeng1: This is a retail market dataset. There are a series of transactions, where

each transaction involves a user and multiple grocery items. The hypothesis is that

1http://recsyswiki.com/wiki/Grocery shopping datasets
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Dataset #Users #Items #Transactions
Average #Items
per Transaction

TaFeng 11711 11035 71447 7.3
BeiRen 9245 5581 87224 6.1
Foursquare 1548 3619 31377 2.7

Table 4.1: Statistics for TaFeng, BeiRen & Foursquare.

items in a basket may be related as they go towards household needs.

BeiRen2: This comes from a large retailer in China, capturing the period from

2012 to 2013. Similar to TaFeng, each transaction contains a set of items bought by

a given user.

Foursquare3: This consists of users’ check-ins at various points of interest in

Singapore [164]. We treat the check-ins within the same day as a transaction.

The hypothesis is that these check-ins involve related purposes. Previous works on

point-of-interest [164] rely on modeling temporal or sequential associations. That

is not the scope of our work, which is modeling in-basket associations.

Similar pre-processing is applied on all datasets. For sufficient statistics, we

filter out items bought by too few users, i.e., 10 users for TaFeng & BeiRen and 5

users for Foursquare corresponding to their data sizes. As our focus is on modeling

associations, we remove items that behave like “stop words” with presence in a

large fraction of transactions (more than 5%). There are merely 2 or 3 such items

in TaFeng and BeiRen respectively and none in Foursquare. As transactions with

single items do not contain item-item association, we retain only transactions with

more than 2 items. We also filter out users with fewer than 3 transactions, which is

the minimum needed to have a training/validation/testing split.

Training, Validation & Testing. We further split the transactions as follows.

For each user, we sort her transactions chronologically. The last transaction will be

part of the testing set. The second-last transaction will be part of the validation set.

The rest will be part of the training set.

For each transaction, we induce positive tuples in the form of t = 〈ui, Bi, vj, 1〉.
2http://www.brjt.cn
3http://www.ntu.edu.sg/home/gaocong/datacode.htm

56



CHAPTER 4. BASKET-SENSITIVE RECOMMENDATION

For each item vj in the transaction of user ui, we hide vj as the item to be predicted.

The remaining items observed in that transaction will form the basket Bi. Hence,

a transaction containing n items will result in n positive tuples. In addition, as we

discuss previously in Section 4.1.2, these n tuples are said to have the same intent.

As the datasets only have positive examples, following [95], we create negative

examples by sampling. From each positive tuple t = 〈ui, Bi, vj, 1〉, we can create

a negative tuple t¬ = 〈ui, B¬i , v¬j ,−1〉. As v¬j , we randomly pick an item never

selected by the user. B¬i contains items that never co-occur with either the user,

v¬j or other items in B¬i . For parity, we have |Bi| = |B¬i |. As we expect there are

more items that a user does not prefer than those that a user does, we have twice as

many negative tuples. Training set has both positive and negative tuples for learning,

while validation and testing sets consist of only positive tuples.

Evaluation Task & Metrics. The evaluation task is top-n recommendations.

For each tuple t = 〈ui, Bi, vj, 1〉 in the testing set, we hide the observed item vj , and

require each model to produce a ranked list of items for ui based on Bi. A list that

ranks the observed vj higher is better. For the proposed models, the performance

numbers are averaged across 25 runs with different random initializations.

We rely on two evaluation metrics frequently used for top-n recommendation

[110]. The first metric is Half-Life Utility or HLU [13]. It measures how likely

a user will adopt an item at a ranking position k. [13] proposed this probability as

2
1−k
β−1 with β as the half-life parameter. In our context, HLU is defined:

HLU =
1

|Ttest|
× C ×

∑
t∈Ttest

2
1−rt
β−1

where Ttest is the testing set, and rt is the rank of the item vj in tuple t in the list. C

is the scaling parameter. Following [110], we set β = 5 and C = 100.

The second metric is recall (R@n), defined as the percentage of testing instances

with the ground truth item in top-n. The higher the percentage, the better the model

is. In experiments, we primarily investigate top-10 recommendations, i.e., R@10,
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Association TaFeng BeiRen Foursquare

γ1 γ2 γ3 γ4 HLU
R@10

(%) HLU
R@10

(%) HLU
R@10

(%)
1 0 0 0 0.06 0.10 1.94 3.16 5.45 8.29
1 1 0 0 1.47† 2.27† 3.35† 5.11† 8.11† 11.98†

1 1 1 0 2.14†§ 3.41†§ 3.75†§ 5.77† 8.51†§ 12.48†§

1 1 0 1 1.64† 2.59† 3.59† 5.54† 7.08† 10.50†

1 1 1 1 2.08† 3.31† 3.74† 5.78† 8.02† 11.84†

Table 4.2: Performance Comparison for BFM with Various Association Types on
TaFeng, BeiRen and Foursquare.The four association types include γ1: User & Tar-
get, γ2: Target & Basket, γ3: Basket & Basket, γ4: User & Basket. The first row is
akin to the traditional FM model without using basket-sensitive information.

but will show performances for several other top-n as well. Precision may not be

suitable, as the unobserved items may not necessarily be negative examples, but

rather simply unlabeled positive examples [142].

4.2.2 Results

BFM with Various Association Types. First, we investigate several combinations

of association types to determine what constitutes a good configuration for BFM.

We implement BFM in Java based on libFM 4. For these experiments, we use latent

factor dimension K = 8 and regularization parameter λθ = 0.01, which are also

the defaults of libFM. The various numbers of latent factor dimensions K are em-

pirically investigated in the last experiment. The initial learning rate η is 0.0001 for

TaFeng, BeiRen and 0.001 Foursquare respectively to reflect their relative sparsity.

We further apply the Bold-Driver adaptive learning rate [8].

Table 4.2 shows BFM of different configurations. The first configuration [γ1, γ2,

γ3, γ4] = [1, 0, 0, 0] has only associations between each user and the target item.

This is a factorization machine (FM) akin to matrix factorization, which does not

feature any basket effects. The second configuration [1, 1, 0, 0] adds associations

between each basket item to the target item, with a higher performance than FM in

terms of HLU and R@10, implying that basket items indeed have an influence on

4http://www.libfm.org
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Figure 4.1: Performance Comparison for BFM and CBFM for Various α on
TaFeng, BeiRen and Foursquare

the target item. We further experiment with several more configurations. It emerges

that the best configuration is [1, 1, 1, 0], which includes associations among basket

items, but excludes those between users and basket items.

Table 4.2 shows that models with basket associations (∃j ∈ [2, 4] and γj = 1)

are better than FM. The symbol † indicates that paired samples t-test shows statis-

tical significance (at 0.05 level) in the improvements over FM. That the best con-

figuration [1, 1, 1, 0] shows statistically significant improvements over the second-

best configuration [1, 1, 1, 1] is indicated by the symbol §. Therefore, we will use

[1, 1, 1, 0] as the default for BFM.

Effect of Constraint. We take the best configuration of BFM, and add the

basket-level constraint to form CBFM. Figure 4.1(a) illustrates the CBFM’s HLU

and R@10 on TaFeng when we vary α. BFM is equivalent to CBFM when α = 0.
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Dataset Model HLU
R@n (%)

10 20 50

TaFeng
CBFM 2.29‡ 3.61‡ 6.00‡ 11.11‡

BFM 2.14 3.41 5.77 10.79
ASR 1.97 2.72 3.56 4.83

BeiRen
CBFM 3.89‡ 6.12‡ 10.42‡ 19.04‡

BFM 3.75 5.78 9.91 18.79
ASR 3.74 5.31 7.60 11.56

Foursquare
CBFM 10.92‡ 16.06‡ 21.83‡ 30.81‡

BFM 8.51 12.48 17.86 26.41
ASR 6.54 10.36 12.56 15.64

Table 4.3: Performance Comparison to Association Rules (ASR) on TaFeng,
BeiRen and Foursquare.

The performance generally rises and then falls. The best on TaFeng is α = 0.5.

Figure 4.1(b) is for BeiRen, where the best configuration is α = 0.05. Finally,

Figure 4.1(c) shows the corresponding results on Foursquare, with best performance

at α = 1. Subsequently, we will use these α.

Comparison to Association Rules. We include a comparison to a baseline

based on association rules [116]. First, we learn association rules from the training

data, with minimum support of 10 on TaFeng, BeiRen and 5 on Foursquare (the

same filters as for our training data). For a user and a basket, a rule is applicable if

the antecedent items are contained in the basket, and have been adopted by the user

previously. For each target item, if there are multiple applicable rules, we use the

rule with maximum confidence. We then construct a ranked list in decreasing order

of confidence.

Table 4.3 shows a comparison to the association rule-based baseline ASR. In

addition to HLU and R@10, we also show R@20 and R@50. CBFM and BFM

both outperform ASR across all measures. We hypothesize this is due to their use

of factorization that allows them to discover other latent associations among items.

The symbol ‡ indicates the statistically significant (at 0.05 level) improvement of

CBFM over BFM.

Model Complexity and Response Time. The goal of recommender systems is

to provide users with relevant results in a timely and responsive manner [60]. To
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Figure 4.2: Half-life Utility and Response Times

retrieve the top-n recommendation at run time, we need to evaluate the prediction

score for all possible items in the inventory [3]. One setting that has a direct effect

on retrieval speed is the number of latent factors. We define response time as the

time required to do the prediction computation for all items (required for top-n).

Timing is based on a PC with Intel Core i5 3.2GHz with 8GB RAM.

Figure 4.2 demonstrates how HLU and response time are affected by different

number of latent factors K. For CBFM, we tune the α based on the validation set

for each K. We see a trend that increasing K leads to higher HLU but also higher

response times. For TaFeng and BeiRen, Figures 4.2(a) and 4.2(b) show that CBFM

has a slight gap over BFM throughout (statistically significant at 0.05 level). FM

has relatively low performance, probably due to significant basket effects and data

sparsity. FM does better in Foursquare, as shown in Figure 4.2(c). For very high

number of latent factors (which also result in higher response times), eventually

the models achieve similar performance. It might be triggered by the strong effect

of personalized preferences. Importantly, CBFM shows a good trade-off behavior.
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Dataset K
Response Time (ms) HLU R@10 (%)
CBFM BFM FM CBFM BFM FM CBFM BFM FM

TaFeng

4 12.4 12.5 7.9 1.90 1.69 0.07 3.00 2.70 0.12
8 18.0 18.3 8.9 2.29 2.14 0.06 3.61 3.43 0.10

16 29.2 29.3 11.9 2.65 2.55 0.06 4.16 4.03 0.10
32 56.9 56.9 16.2 2.86 2.78 0.06 4.49 4.40 0.10

BeiRen

4 5.44 5.54 4.06 3.54 3.48 2.20 5.53 5.30 3.71
8 7.49 7.58 4.66 3.89 3.75 1.94 6.11 5.75 3.06

16 12.13 12.3 5.82 4.08 3.95 1.59 6.39 6.10 2.49
32 20.76 20.49 8.19 4.21 4.08 1.21 6.61 6.31 1.69

Foursquare

4 2.84 2.91 2.57 8.51 6.02 5.22 12.43 9.10 7.76
8 3.59 3.77 2.95 10.92 8.51 5.45 15.96 12.10 8.41

16 4.93 5.07 3.71 12.47 9.96 7.00 18.27 15.02 10.53
32 7.91 7.94 5.23 13.56 12.73 8.17 20.04 18.69 12.62

Table 4.4: Response Times, Half-life Utility (HLU) and Recall@10 for various K
on TaFeng, BeiRen, and Foursquare.

For most response times, especially for the fast response times, it has significantly

better HLU .

Considering the alignment on K, Table 4.4 shows that FM is a bit faster than

CBFM, BFM in term of response times. The increase of K triggers the increase of

response times. However, CBFM and BFM significantly outperform FM in terms

of HLU and R@10. These observations are consistent to what are observed on the

three datasets in Figure 4.2.

4.3 Summary

In this chapter, we investigate recommendation models that take into account of a

user’s current basket in making personalized recommendations. We propose two

models: BFM that incorporates various association types, and CBFM that further

integrates constraints for baskets with similar intent. Experiments show some im-

provements over factorization machine that does not model basket associations, and

association rules that do not benefit from latent associations discovered by factor-

ization.
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Chapter 5

Sequential Recommendation using

Contemporaneous Basket Sequences

The user interaction with online websites frequently leaves a heterogeneous and

contemporaneous trail of actions (e.g., clicks, bookmarks, purchases). Given a se-

quence of a particular type (e.g., purchases)– referred to as the target sequence,

modeling sequential dependencies is still a substantial solution to the next-item rec-

ommendation task. With the development of Deep Learning techniques, deep neural

networks (e.g., Recurrent Neural Networks) are useful to capture the long-term se-

quential preference. However, the problem becomes more difficult if there are mul-

tiple items (a basket) adopted at each time step. Items within a basket potentially

indicate latent associations, referred to as basket-oriented association. Addition-

ally, the next item prediction on the target sequence may be helped by also learning

from another contemporaneous sequence (e.g., clicks), referred as the supporting

sequence. In this chapter, we introduce three twin network structures modeling as-

sociations between contemporaneous sequences to solve the next-item recommen-

dation task.
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Figure 5.1: Example representations of target and support sequences

5.1 Models

Here, we describe the framework for contemporaneous basket sequences. We be-

gin with the notations and problem formulation, before elaborating the proposed

architectures.

Let V = {v0, v1, ..., vN−1} denote the set of items under consideration. Bt ⊂ V

denotes a basket of items “adopted” at time step t. Adoption could mean pur-

chasing, clicking, reviewing, or any other binary indication of preference. An-

other equivalent representation of Bt is a binary vector of length N , i.e., Xt =<

x0, x1, ..., xN−1 > ∈ {0, 1}N , whereby xi = 1 when vi ∈ Bt, and 0 otherwise.

The data is a set of sequence pairs D = {〈Tj, Sj〉}M−1
j=0 . For the jth instance,

Tj is its target sequence, while Sj is its support sequence. Both Tj and Sj are

represented as sequences of baskets/binary vectors {Xt}. For example, D may

concern M users, whereby Tj comprises the sequence of baskets purchased by user

j, and Sj comprises her sequence of clicks. For ease of illustration, and without loss

of generality, subsequently we may use “purchase” or “target” interchangeably, as

well as “click” or “support”. Generally, the objective is to learn a model that uses

information from both target and support sequences to predict the next item in the

target sequence. The two sequence types are contemporaneous, i.e., occurring over

a common time period. More precisely, the time period covered by Tj overlaps with

Sj , but the last basket of Sj does not occur later than the next-item to be predicted

for Tj , to avoid using future information to predict a past event. Figure 5.1 illustrates
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one instance of a pair of sequence types for four items A to D. In the first time step,

the user “clicks” on A, C, D (represented as [1, 0, 1, 1]), eventually “purchasing” D

(represented as [0, 0, 0, 1]). The subsequent time steps involve baskets of different

items.

Since we are dealing with sequences, we build on the foundation of RNNs,

known for its capacity for generating sequential data. However, since we need to

model two sequence types simultaneously, we investigate dual-RNN architectures

or twin networks. We develop three such architectures, which differ in the degree

of parameter sharing between the two sequence types. Their etymologies are in-

spired by biological terms describing twins [44]. CBS-SN is named after “Siamese

twins”or identical twins with 100% gene sharing, to signify how the two sequence

types will be modeled by identical RNNs. CBS-CFN and CBS-DFN are named

after “fraternal twins” that on average share 50% of their genes, to signify both

similarities and differences between the sequence types.

5.1.1 CBS with Siamese Networks (CBS-SN)

Our first model CBS-SN is based on the idea of Siamese networks. This structure

contains twin networks that receive two distinct inputs, have their parameters tied so

as to constrain the two inputs to the same feature space, and are conjoined together

(concatenated) at the top layer [14]. The specific realization depends on the problem

scenario.

Figure 5.2 illustrates the architecture of CBS-SN. We describe it layer by layer.

The bottom layer is the basket encoder. In each time step, we have a basket/binary

vector Xt. We hypothesize that there are correlated items that may co-occur within

baskets. To capture the correlative information, we utilize a dense (fully connected)

layer to map a basket’s binary vector Xt into its hidden representation bt as follows:

bt = f(ΘbXt + Ωb) (5.1)

65



CHAPTER 5. SEQUENTIAL RECOMMENDATION USING CONTEMPORANEOUS BASKET SEQUENCES

1 0 1 1 0

1 0 1 0 0

Session  t

…
…

…
…

Dense Layer

LSTM Layer

Aggregation 
Layer

Item scores

… …

Figure 5.2: Modeling Contemporaneous Basket Sequences with Siamese Networks
(CBS-SN)

where f is an activation function, L is the number of latent dimensions in the dense

layer; and Θb ∈ RL×N ,Ωb ∈ RL; are parameters to be learned.

The middle layer is the recurrent encoder based on LSTM. It seeks to capture

the sequential effect by feeding the basket representation bt into a recurrent layer.

The hidden recurrent representation ht at the time step t is computed as follows:

ht = g(Φbbt + Φhht−1 + Ωh) (5.2)

where g is an activation function, H is the number of hidden recurrent units; and

Φb ∈ RH×L,Φh ∈ RH×H ,Ωh ∈ RH ; are parameters to be learned.

The final layer is the aggregation layer. The assumption of CBS-SN is that the

target sequence and the support sequence are distinct manifestations of the same

underlying phenomenon. Therefore, the two sequence types share the same basket

encoder and LSTM recurrent encoder. Let ĥT be the last hidden recurrent represen-

tation for the target sequence, and correspondingly ĥS for the support sequence. In
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this Siamese networks-inspired structure, the aggregated layer is as follows:

ĥ = concat(ĥT , ĥS)

ragg = Wĥ+ Ωc (5.3)

whereW ∈ RN×2H ,Ωc ∈ RN are parameters to be learned. The scores of next-item

candidates are computed as a function of this aggregated representation:

Y = σ(ragg) (5.4)

where Y ∈ R1×N , the softmax function σ(z)i = ezi∑N
j=1 e

zj
.

The output is the vector Y of length N , where each element is the likelihood of

each item to be the next adoption.

5.1.2 CBS with Concordant Fraternal Networks (CBS-CFN)

The earlier assumption that the sequence types reflect the same underlying phe-

nomenon may be too strong. For instance, purchases and clicks are related, in that

some clicks lead to purchases. However, clicking or browsing actions are low-cost

and easy to undo, as opposed to purchases that require a larger commitment of re-

sources. Therefore, they may reflect different sequential behaviors.

As illustrated in Figure 5.3, our second model CBS-CFN leverages on two dis-

tinct recurrent encoders: LSTM Layer 1 for the support sequence and LSTM Layer

2 for the target sequence. They still share the same basket encoder, as in-basket

associations are likely to still be similar in both cases. From partial sharing of pa-

rameters, different recurrent encoders but same basket encoder, arises the notion of

fraternal networks. The term concordant signifies the same size of LSTMs, captur-

ing longer-term sequentiality in both sequence types.

Because CBS-CFN assumes the target sequence and support sequence are dis-

tinct, we would like to aggregate them in a way that allows their contributions to
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Figure 5.3: Modeling Contemporaneous Basket Sequences with Concordant Frater-
nal Networks (CBS-CFN)

be weighted accordingly. The last hidden recurrent representations ĥT and ĥS are

aggregated as follows:

ragg = W1ĥS +W2ĥT + Ωc (5.5)

where W1,W2 ∈ RN×H ,Ωc ∈ RN are parameters to be learned. The output Y is

computed as in Eq (5.4).

5.1.3 CBS with Discordant Fraternal Networks (CBS-DFN)

The previous model seeks to capture distinct sequence types of the same sequen-

tial dependencies. In some scenarios, it may be appropriate to capture different

scopes of sequential dependency. For instance, browsing and clicking may have

longer-term dependency than purchases. The Figure 5.4 illustrates our third model

CBS-DFN, where the support sequence has a recurrent encoder to learn longer-

term recurrence relations, but the target sequence relies on shorter-term relations
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Figure 5.4: Modeling Contemporaneous Basket Sequences with Discordant Frater-
nal Networks (CBS-DFN)

and directly makes use of the output of the bottom layer (basket encoder). The term

discordant refers to this varying treatment. The aggregated operation is as follows:

ragg = W1ĥS +W2b̂T + Ωc (5.6)

where b̂T is the hidden representation of the last basket, W1 ∈ RN×H ,W2 ∈

RN×L,Ωc ∈ RN are parameters. The output Y is computed as in Eq (5.4).

5.2 Experiments

We delve into several research questions on the utility of modeling longer sequences,

as opposed to short-term dependencies; and the utility of modeling two contempo-

raneous sequence types, as opposed to relying on one sequence type.
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Dataset #Sequence #Item
#Average
Length

#Average
Basket Size

Alibaba
Support

23740 13498
11.2 5.5

Target 5.3 1.8

MovieLens
Support

189858 8202
34.5 2.5

Target 16.6 1.8

Table 5.1: Statistics for Alibaba, MovieLens

5.2.1 Setup

Datasets. We experiment with two public real-life datasets of different domains.

The statistic is summarized in the Table 5.1.

Alibaba1: Alibaba provided mobile shopping data for the period from 18/11/2014

to 18/12/2014. For each user, we construct her session sequence, where each session

contains the items she adopted within a day. From session sequences, we generate

contemporaneous basket sequences of the two adoption types: click as support and

purchase as target.

MovieLens2: We filter out ratings in the last three years from 01/2006 to 01/2009.

We build a session sequence for each user, where each session represents what

movies she adopted in a specific day. Here, the two adoption types are selecting

a movie to rate as support (akin to clicking), and assigning a movie a high rating as

target (akin to purchasing). High rating is at least 4.5 out of 5.

Preprocessing. We filter out infrequent items, i.e., fewer than 50 clicks for

Alibaba or 20 ratings for MovieLens. Since the aim is to model sequences, we filter

out sequences with less than 2 baskets. Sequences are separated chronologically by

three non-overlapping periods, denoted as (Ptrain, Pvalidate, Ptest). They are (29, 1, 1)

day(s) for Alibaba and (31, 3, 3) months the for MovieLens. Following [110], we

seek to recommend new items, and so ignore item candidates that have occurred in

the most recent basket.

Evaluation Task & Metrics. The task is evaluated via top-K recommendations.

For each testing sequence pair 〈S, T 〉, we hide the last target basket B to create |B|
1https://tianchi.aliyun.com/dataset/dataDetail?dataId=46
2https://grouplens.org/datasets/movielens/10m
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testing instances with the ground-truth. We utilize two conventional metrics for

top-K recommendations. The first metric is recall (Recall@K), defined as the per-

centage of testing instances with the ground truth item in top−K. In experiments,

we mainly rely on the top-10 recommendations, i.e., Recall@10, but will later show

other top−K performances as well. To evaluate the overall ranking performance,

the second metric is Mean Reciprocal Rank (MRR), computed as follows:

MRR =

∑
B

∑
v∈B

1
rank of v for (S,T\B)

#total testing instances
(5.7)

We cut the recommendation list off at 200 because the rest contribute almost zero to

MRR. The performances are averaged across 30 runs with different random initial-

izations. Comparisons are supported by one-tailed paired-sample Student’s t-test at

0.05 significance level.

Learning Details. To learn parameters, we seek to minimize the cross-entropy

loss based the output of the Eq (5.4). All neural networks are trained in 20 epochs of

batch-size 32 by the Adam optimizer with the learning rate 0.001. The dense layer

use the ReLU activation function to only keep positive weights. In the recurrent

layer, LSTM unit is applied with a 0.3 dropout probability. Additionally, we also

measure the Recall@10 for both training and validating sets. The performance on

validation is used to decide whether to save learned models. After each epoch, its

model is kept if the validation’s accuracy is better than the previous epoch. Finally,

the best model is used to generate top-K prediction on the testing set.

5.2.2 Research Questions

RQ1. Is modeling sequential data useful for next-item recommendation? To

focus on the effect of sequence itself, rather than the effect of joining contemporane-

ous sequences, we first create a single-sequence variant of CBS, which we call Bas-

ket Sequences or BSEQ. We compare it to another approach that models only short-

term transitions based on the Markov chain (MC) property. The first baseline MC
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Figure 5.5: Performance Comparison of Next-Item Recommendations using
Markov Chain vs. RNN on Alibaba, MovieLens

generates conditional probabilities of the next-item given the previous item. The

probability of the next-item given the previous basket is the average over the transi-

tion probabilities from each basket item to the next item. The second baseline FMC

factorizes the MC conditional probabilities to reduce the sparsity [110]. We use the

LibFM3 library to learn this model. The third baseline MC-NET is a simple neural

network that feeds the last basket representation from the basket encoder to predict

3http://www.libfm.org
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the next item. For each sequence type, we train MC, FMC,MC-NET,BSEQ with

various latent dimensions L ∈ {8, 16, 32, 64, 96}. BSEQ is investigated with three

settings of the hidden state size H ∈ {8, 16, 32}, resulting in BSEQ 8, BSEQ 16,

and BSEQ 32.

On Alibaba, Figure 5.5(a) shows the performance of the models when using only

the support sequence, while Figure 5.5(b) shows the same for the target sequence

only. The three Markov-based models are not influenced much by various latent

dimensions L, except MC-NET on the target sequence. Because we are predicting

for the target sequence, it is reasonable that the Markov-based models perform better

when learnt on the target sequence than the support sequence. Importantly, not

only are the three variants of BSEQ more sensitive to different latent dimensions,

but they also show better results given sufficient L. BSEQ 32 is the best variant

with a consistent improvement trend, which verifies the presence of longer-term

dependencies in Alibaba sequences.

Figures 5.5(c) and (d) demonstrate the performances on MovieLens. We can

draw similar conclusions as before on the strength of the BSEQ variants over the

Markov baselines. Interestingly, the gap between the two families is larger on the

support than on the target. This indicates a stronger longer-term dependency on

the support sequences, while the robustness of the Markov baselines on the target

sequences implies greater effect of short-term transitions on MovieLens’s target

sequence. Overall, BSEQ 32 still shows the best performance, and will be used

subsequently for future comparisons.

RQ2. Is modeling contemporaneous sequences useful? We consider two

model families: the single-sequence BSEQ and the dual-sequence CBS. Both run

under the same setting of the hidden state size (H = 32) and latent dimensions L ∈

{8, 16, 32, 64, 96}. In Figure 5.6(a), CBS-SN and CBS-CFN improve significantly

upon the BSEQ models on Alibaba. Modeling contemporaneous basket sequences

gives more information and supportive evidence by taking advantage of the long-

term dependencies from both sequences types. The CBS-DFN model does not
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Figure 5.6: Performance Comparison of the BSEQ and CBS models on
Alibaba,MovieLens.

work as well, which could be explained by the loss of information from confining

the target sequence only to the most recent basket. This short-term dependency

is different to the actual sequential dependency reflecting on the target sequence.

Therefore, it triggers in the disagreement in the aggregation layer.

Figure 5.6(b) illustrates the performance of the two model families on MovieLens

dataset. The observations of the two BSEQ models are consistent with what we

found in the previous experiments. The longer-term dependency is stronger on the

support sequence and weaker in the target sequence. This is the appropriate sce-

nario for CBS-DFN, which shows the biggest improvements over BSEQ support.

Generally, the fraternal networks (CBS-CFN and CBS-DFN) tend to perform

better than the Siamese networks (CBS-SN) because the former could more flex-

ibly fit the two sequence types. Between CBS-CFN and CBS-DFN, CBS-CFN

has an advantage when there is more long-term dependency in the target sequence

whilst CBS-DFN has an advantage when there is more short-term dependency in

the target sequence.
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Dataset Model L MRR
Recall@K (%)

10 20 50

Alibaba

POP - 0.004 0.51 0.68 1.19
DRMsupport 64 0.011 2.14 2.91 4.02
DRMtarget 32 0.004 0.72 1.19 1.98
BSEQsupport 96 0.011 1.94 2.54 3.92
BSEQtarget 96 0.013 2.39 3.14 4.56
CBS-SN 96 0.014 3.34 4.13 5.43
CBS-CFN 96 0.015‡§ 3.41‡§ 4.36‡§ 5.60‡§

CBS-DFN 96 0.008 1.45 1.90 3.02

MovieLens

POP - 0.006 1.79 2.89 6.58
DRMsupport 96 0.002 0.37 0.71 1.53
DRMtarget 16 0.001 0.20 0.36 0.77
BSEQsupport 8 0.075 13.87 18.65 28.50
BSEQtarget 64 0.050 10.65 15.55 25.95
CBS-SN 8 0.070 13.11 17.66 27.67
CBS-CFN 32 0.072 13.73 18.80 29.65‡§

CBS-DFN 8 0.078‡§ 14.38‡§ 19.39‡§ 29.33

Table 5.2: Best Performance Comparison on Alibaba, MovieLens. The symbols ‡, §
denote the statistically significant improvements of our best model over the BSEQ
and DRM models respectively

RQ3. How does the proposed CBS models perform against other base-

lines? We summarize the best performance of our proposed models as compared to

baselines in Table 5.2. POP recommends items based on popularity. DRM is the

recently proposed dynamic recurrent model [161], which is a state-of-the-art base-

line capable of modeling basket sequences of a single type. By design, it is limited

to fixing the same number of latent dimensions and hidden state size (H = L). We

consider the same setting H = 32 for BSEQ and CBS. For BSEQ, CBS, and

DRM, we tune L ∈ {8, 16, 32, 64, 96} for their respective best performance and

indicate the chosen L in Table 5.2. For Alibaba, CBS-CFN significantly outper-

forms the baselines, i.e., BSEQ (+15%/ +43%), DRM (+36%/ +59%) in terms of

HLU/Recall@10 as relative improvements over their best variant. This implies

the effectiveness on modeling contemporaneous sequences. With sustainable gaps

(+7%/+2%) in comparing to CBS-SN, CBS-CFN shows the benefits of giving the

sequence types some flexibility in the recurrent layers. For MovieLens, CBS-DFN

is the best-performing model with significantly relative improvements over BSEQ

(+4%/ +4%) and CBS-SN (+11%/ +10%). It is 38 times better than DRM, which
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might be converged at a local optima. Yet, these improvements again confirm the

usefulness of contemporaneous sequences.

5.3 Summary

In this chapter, we address the next-item recommendation by modeling contempora-

neous basket sequences. We introduce three architectures based on twin networks,

which vary in the degree of similarity or parameter sharing across the two sequence

types. Experiments show that there is utility to modeling sequential data, with two

sequence types better than one. The two sequence types may benefit from some

flexibility in their parameters and size, as supported by the good performance of the

fraternal variants over the Siamese variant.
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Chapter 6

Correlation-Sensitive Next-Basket

Recommendation

The notion of basket-level adoptions is observed in various real-life scenarios. For

examples, people purchase a set of items within an online shopping session, or book

a package of Point-of-Interests (POIs) for a trip, or assign a set of tags to a bookmark

url, etc. Taking into account the time-sensitive manner, a user creates a basket-level

adoption sequence from his active sessions. There might exist basket-oriented as-

sociations among basket items and sequential associations across sequence baskets.

Being different from the previous chapter, we seek to model basket sequences for

the next-basket recommendation task, which has got a lot of attraction recently.

However, basket items are often suggested independently and without their correla-

tions. This limitation motivates us to deal with a novel research problem, referred

to as correlation-sensitive next-basket recommendation, i.e., next basket with corre-

lated items. Towards this goal, we develop a hierarchical network named Beacon to

jointly model the two associations on basket sequences for next-basket recommen-

dations.
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6.1 Model

6.1.1 Basket-Sequence Correlation Networks (Beacon)

In this section, we introduce the problem formulation on modeling basket sequences

for correlation-sensitive next-basket recommendation. Figure 6.1 demonstrates our

proposed framework named Basket-Sequence Correlation Networks (Beacon), which

consists of three main components.

First, let us denote V = {v0, v1, ..., vN−1} as the set of N items. Each basket

B ⊂ V is transformed into an equivalent binary vector X =< x0, x1, ..., xN−1 > ∈

{0, 1}N , whereby xi = 1 if the item vi appears in B and 0 otherwise.

Correlation-Sensitive Basket Encoder. Apparently, there are two primary fac-

tors that trigger the presence of an item in the basket Bt at a given time t, including

its bias and correlative dependencies with other basket items. Taking into account

those information may help enhance the representation ofBt. Let us denote zt ∈ RN

as the intermediate representation of Bt, we have:

zt = X � ΩV +XÂ (6.1)

where � is the element-wise product; ΩV ∈ RN are item bias parameters to be

learned; Â is a correlation matrix built from “observed” basket. Each cell in Â rep-

resents how strong two items are correlated. The construction of Âwill be presented

in Section 6.1.3.

Generally, not all correlative associations are useful. Weak associations might

become noises which affect the representation of Bt. Therefore, we introduce

ηA ∈ R , a single-value parameter to cancel out these noises automatically. The

intermediate representation zt could be transformed as:

zt = X � ΩV +ReLU(XÂ− ηA1) (6.2)

where 1 is a vector of ones. Subsequently, zt is fed into a fully-connected layer to
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Figure 6.1: The architecture of Beacon model

infer the D−dimensional latent representation as follows:

bt = ReLU(Φzzt + Ωz) (6.3)

where Φz ∈ RD×N ,Ωz ∈ RD are parameters to be learned.

Sequence Encoder. Given a basket sequence length T : S = {B0, ..., BT}, the

recurrent hidden output ht at time t is computed by:

ht = tanh(Φbbt + Φhht−1 + Ωh) (6.4)

where Φb ∈ RH×D,Φh ∈ RH×H ,Ωh ∈ RH are parameters to be learned.

Correlation-Sensitive Score Predictor. Suppose that hT is the last hidden out-

put of S via the sequence encoder, the sequential signal for next-item adoption is
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estimated by:

pV = σ(ΦShT ) (6.5)

where σ is sigmoid function, ΦS ∈ RN×H is a parameter to be learned. In order

to recommend a basket with correlated items, pV is then aggregated with item bi-

ases and correlative dependencies like Eq (6.1). Here, we assume that “predicted”

baskets consistently follow correlative dependencies in Â as “observed” ones. The

threshold parameter ηA is not applied to cover all possible combinations in the rec-

ommendation phase. The aggregated vector yS ∈ RN is as follows:

yS = pV � ΩV + pV Â (6.6)

Empirically, we found that yS is more about basket-sensitive associations rather than

sequence-sensitive associations. The sequential information pV might be absorbed

by ΩV , Â so that different sequences have the same recommendation. We flexibly

control basket-oriented and sequential factors using a hyper-parameter α ∈ [0, 1]:

oS = α.yS + (1− α).pV (6.7)

where oS ∈ RN , each oSi indicates the score of item vi.

Correlation-Sensitive Next-basket recommendation. Once all parameters are

learned, for each basket sequence S of length T , we can produce oS to measure how

likely items could be selected for the next-basket recommendation. Given BT+1 as

the “predicted” basket, we expect its items would have higher scores than others

in oS . Let us denote r̂S as the predicted ranking of item vi based on oSi (r̂Si ∈

{1, 2, ..., |V |}). Ideally, items in BT+1 should have ranks in the range [1, |BT+1|],

which are the top positions.

In practice, the size of BT+1 is unknown so that we approximate the prediction
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for BT+1 as a basket of size K:

BT+1|K = {vi|r̂Si ≤ K} (6.8)

6.1.2 Learning Strategy.

Let us denote S ′ = S \ BT , V ′ = V \ {vi ∈ BT} and r̂S′ is the respective item

ranking for the next basket recommendation. Inspired by [123], we approximate

the ranking r̂S′i ≈ 1/σ(oS
′
i ) with σ is the sigmoid function. The log loss LS of the

next-basket recommendation task on S is estimated by:

LS = −
∑
vi∈BT

[lnσ(oS
′

i ) +
∑
vj∈V ′

ln(1− σ(oS
′

j − oS
′

i ))]

= −
∑
vi∈BT

lnσ(oS
′

i )−
∑
vi∈BT

∑
vj∈V ′

ln(1− σ(oS
′

j − oS
′

i )) (6.9)

The main idea of Eq (6.9) is to favor the rankings of adopted basket items (i.e.,

the first summation) as well as penalizing others ranked higher than them (i.e., the

second summation). However, |V ′| � 1 triggers the unbalance between the two

summations to the loss. LS is transformed as follows:

LS = −
∑
vi∈BT

lnσ(oS
′

i )− |BT |
|V ′|

∑
vj∈V ′

ln(1− σ(oS
′

j − oS
′

m)) (6.10)

where oS′m = min{oS′i |vi ∈ BT};

Inference. Given the training basket sequence set S, we seek to minimize the

total log loss to infer parameters:

θ∗ = argminθ∈Θ

∑
S∈S

LS (6.11)
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Figure 6.2: A 3-step construction of the correlation matrix Â, built on three baskets
{Milk, Eggs}, {Jam, Bread}, {Milk, Eggs, Bread}.

6.1.3 Correlation Matrix

As mentioned earlier, correlative matrix is constructed from “observed” baskets. It

is utilized to leverage quantitatively correlative dependencies between item pairs.

Hence, it is required to satisfy the following two properties:

• Item pair with frequent co-occurrence should have a higher correlative score

than less frequent pairs.

• Item pair with an exclusive connection should have a higher correlative score

than non-exclusive pairs.

The first requirement leads us to consider symmetric co-occurrence matrix, de-

noted as A ∈ RN×N , a simple way to represents co-occurrences. Considering a

set of three baskets including {Milk, Eggs}, {Jam, Bread}, {Milk, Eggs, Bread},

Figure 6.2(b) illustrates how A preserves the co-occurrence information. Milk and

Eggs co-occur in two baskets hence the respective cells have value of 2. Likewise,

{Jam, Bread}, {Milk, Bread} and {Eggs, Bread} have score of 1. Other pairs that

have never correlated are set 0. However, the exclusive pair {Jam, Bread} has the

same score as the non-exclusive ones namely {Milk, Bread}, {Eggs, Bread}. This

violates the second condition.
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Inspired by [57], the violation could be removed by normalizing A using the the

Laplacian technique as follows:

Â = D̃−
1
2AD̃−

1
2 (6.12)

where D̃ is the degree matrix, D̃ii =
∑

j Aij . Continuing the previous example,

we have got the normalized correlation matrix Â as shown in Figure 6.2(c). It is

clear that Â satisfies both conditions. Yet, {Milk, Eggs} has the highest score 0.67

while {Jam, Bread} shows a higher score (i.e., 0.58) than the two other pairs {Milk,

Bread}, {Eggs, Bread} with the score of 0.33.

Furthermore, in some cases, the correlation matrix could be too sparse to provide

useful associations. We may consider higher-order correlations up to theN -th order,

i.e., Â +
∑N

n=2 µ
n−1Norm(Ân), where µ ∈ (0, 1) is a discount factor for higher

orders, and Norm(·) sets the diagonal to zero and applies the same normalization in

Eq (6.12).

6.2 Experiments

Here, we study four research questions to investigate the efficiency of Beacon for

the correlation-sensitive next-basket recommendation task.

6.2.1 Setup

Dataset. We conduct experiments on three public real-life datasets of three different

domains as follows:

TaFeng1: It is a grocery shopping dataset containing users’ purchased transac-

tions from November 2000 to February 2001. Each transaction is considered as a

basket of purchased items. Given a user, the basket sequence is built by sorting his

basket-level adoptions chronologically.

1http://www.bigdatalab.ac.cn/benchmark/bm/dd?data=Ta-Feng
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Dataset #Sequence #Item
Average
Length

Average
Basket Size

TaFeng 77209 9964 7.0 5.9
Delicious 61908 6520 21.4 3.8

Foursquare 100980 5527 22.2 1.8

Table 6.1: Statistics for TaFeng, Delicious, Foursquare datasets

Delicious2: This data is shared in Recsys 2011. It contains social networking,

bookmarking and tagging information from Delicious social bookmarking system.

Here, each bookmark is associated with a basket of tag assingments. A bookmark

list of a given user will generate a basket sequence of tags.

Foursquare3: This is Singaporean check-ins data from Foursquare, collected

from August 2010 to July 2011 [164]. We define a basket as the set of check-ins

within the same day. The basket sequence of a given user is constructed via active

days of the period.

Pre-processing. For sufficient recommendations, we filter out all users and

items, which do not satisfy the k-core property, i.e., each user adopts at least k items

and each item is adopted by at least k users. The values of k are 10, 5, 5 for TaFeng,

Delicious and Foursquare respectively. Additionally, we also filter out basket se-

quences with fewer than 2 baskets. In order to create train/validation/test sets, se-

quences are cut chronologically into three non-overlapping periods (ttrain, tval, ttest),

i.e., (3, 0.5, 0.5) months for TaFeng, (80, 2, 2) months for Delicious and (10, 0.5,

0.5) months for Foursquare. For the train and validation sets, we generate all sub-

sequences of the basket sequences having more than 3 baskets. Sub-sequences with

more than 30 baskets are shorten with the prefix cut off. For the testing set, all items

appeared in the most recent basket are ignored to facilitate new-item recommenda-

tions [111]. The statistics after preprocessing are described in Table 6.1.

Correlation Matrix. We construct the input correlation matrix according to

Section 6.1.3. Based on the validation set, we choose the first-order correlation for

Delicious and Foursquare whilst adopting the higher-order correlation for TaFeng

2https://grouplens.org/datasets/hetrec-2011
3http://www.ntu.edu.sg/home/gaocong/datacode.htm
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with N = 5 and µ = 0.85.

Evaluation metrics. Given a testing sequence S, we take out the last basket B

as the ground-truth. All models are required to generate the next-basket recommen-

dation relied on the preceding basket sequence S ′ = S\{B}. This recommendation

is then compared to the ground-truth basket B to investigate the top-K recommen-

dation performance. We consider the two conventional metrics. The first metric is

F-measure (F1@K), computed via recall (R@K), precision (P@K) as:

Top@K = {vi|r̂Si ≤ K}

R@K =
|Top@K ∩B|

|B|

P@K =
|Top@K ∩B|

K

F1@K =
2× P@K× R@K
(P@K + R@K)

To evaluate the overall ranking performance, we consider the second metric,

Half-life utility (HLU ) a.k.a. ’Breese score’ [13]:

HLU = C ×
∑

vi∈B 2
1−r̂Si
β−1∑|B|

r=1 2
1−r
β−1

where the scaling hyper-parameter C, the half-life hyper-parameter β are set to 100,

5 respectively. We also use another ranking metric, known as Mean reciprocal rank-

ing (MRR):

MRR =
1

|B|
×
∑
vi∈B

1

r̂Si

The measurements are averaged across all test baskets using 10 runs with differ-

ent random initialization. Comparisons are supported by two-tailed paired-sample

Students t-test at 0.05 significance level.

Learning details. With the objective of minimizing the log loss in Eq (6.11), all

models are trained in 15 epochs of batch-size 32. We use the RMSProp optimizer
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Dataset Model D H
F1@K (%)

HLU MRR
5 10

TaFeng

POP - - 4.66 4.02 6.64 0.040
MC - - 4.11 3.61 5.78 0.033

MCN 32 - 4.56 4.02 6.34 0.031
DRM 8 - 5.85 4.90 6.96 0.030
BSEQ 32 16 4.48 4.04 6.34 0.031
Beacon 8 64 6.36†‡§ 5.26†‡§ 7.87†‡§ 0.041†‡§

Delicious

POP - - 3.88 4.04 6.05 0.035
MC - - 4.27 4.59 6.52 0.035

MCN 32 - 4.20 4.59 6.50 0.035
DRM 32 - 3.13 3.47 4.93 0.028
BSEQ 64 32 3.86 3.97 5.95 0.034
Beacon 64 64 4.93†‡§ 5.47†‡§ 7.76†‡§ 0.042†‡§

Foursquare

POP - - 2.73 2.90 4.84 0.030
MC - - 3.58 3.43 5.53 0.030

MCN 64 - 3.09 2.89 5.08 0.030
DRM 64 - 2.84 3.00 4.98 0.030
BSEQ 64 32 2.80 2.89 4.82 0.029
Beacon 64 64 3.61†‡§ 3.59†‡§ 6.32†‡§ 0.040†‡§

Table 6.2: Best Performance Comparison between Beacon versus baselines on
TaFeng, Delicious and Foursquare. †, ‡, § represent statistically significant improve-
ments of Beacon over MCN,DRM,BSEQ respectively.

with the learning rate 0.001 to update gradients. The LSTM layer is applied with

a 0.3 dropout probability. A grid search is performed on various latent dimension

D ∈ {8, 16, 32, 64} and hidden state size H ∈ {16, 32, 64}. Additionally, the log

loss on the validation set is used to decide whether to save learned models. The best

model is selected to evaluate the testing set.

6.2.2 Research Questions

RQ1. Does Beacon outperform baselines? In Table 6.2, we report the best per-

formance of Beacon as compared to several baselines. POP is the popularity-

based recommendation approach while MC recommends items relied on 1st-order

Markov-chain dependencies. As recent works in modeling basket sequences for

the next basket recommendation task, [161]) proposes DRM, a dynamic recurrent

model, where a basket representation is aggregated by its items’ embedding via a

pooling layer; [65] introduces BSEQ to capture long-term sequential dependencies,
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each basket is encoded directly from a binary vector using a dense layer. MCN is a

simple variant of BSEQ, which only model 1st-order Markov-chain dependencies.

All models are tuned using the same set of latent dimension D ∈ {8, 16, 32, 64}

and recurrent hidden unit H = {16, 32, 64}. We use α = 0.5 as the default setting

for Beacon. The best setting in terms of F1@5 on the testing set is indicated in

Table 6.2. In addition to the main metric, F1@10, HLU and MRR are also given.

For TaFeng, the item popularity seems to be an important factor since POP re-

sults in better metrics than MC, MCN and BSEQ. Beyond the popularity, DRM

and Beacon show advantages in capturing associations between basket items. Yet,

Beacon is the best-performing model with significant relative improvements in terms

of F1@5 over the three state-of-the-art baselines BSEQ(+42%), DRM(+9%) and

MCN(+39%). Considering ranking metrics, there are similar observations on both

HLU , MRR in comparing Beacon to BSEQ(+24%,+32%), DRM(+13%,+37%)

and MCN(+24%,+32%).

For Delicious and Foursquare, Markov-based models (MC & MCN) do better

than other baselines. It might imply that items in a testing basket are strongly de-

pendent on the most recent basket. Overall, Beacon significantly outperforms all

baselines across the three measurements. In terms of F1@5, the relative improve-

ments of Beacon over BSEQ, DRM and MCN on Delicious are +17%, +58%,

+28% respectively. Likewise, these values are +17%, +27%, +29% on Foursquare.

We observe the consistent enhancement of Beacon over the baselines on the two

remaining metrics HLU , MRR.

RQ2. Is the learning of item bias ΩV helpful? With the objective of investigat-

ing the effectiveness of ΩV in modeling baskets, we consider two Beacon variants

without using the correlative information (Â, ηA). One variant fixes the item bias

ΩV a vector of ones whilst the other learns the item bias ΩV . Their best perfor-

mances on TaFeng, Delicious & Foursquare are shown in Table 6.3. It is clear that

the learning of item bias ΩV generates significant improvements over the fixed one.
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Dataset
Item Bias

ΩV

F1@K (%)
HLU MRR

5 10

TaFeng
Fixed 3.87 3.44 5.13 0.025

Learned 5.78‡ 4.86‡ 7.18‡ 0.033‡

Delicious
Fixed 4.02 4.43 6.38 0.029

Learned 4.67‡ 5.10‡ 7.15‡ 0.034‡

Foursquare
Fixed 2.98 3.29 5.39 0.033

Learned 3.58‡ 3.52‡ 6.16‡ 0.038‡

Table 6.3: Performance Comparison of Beacon with fixed & learned ΩV on TaFeng,
Delicious and Foursquare. ‡ denotes a statistically significant improvement.

Dataset
Model

Correlations?
F1@K (%)

HLU MRR
5 10

TaFeng
No 5.78 4.86 7.18 0.033
Yes 6.36§ 5.26§ 7.87§ 0.041§

Delicious
No 4.67 5.10 7.15 0.034
Yes 4.94§ 5.47§ 7.76§ 0.042§

Foursquare
No 3.58 3.52 6.16 0.038
Yes 3.61 3.59§ 6.32§ 0.040§

Table 6.4: Performance Comparison of Beacon with & without modeling Corre-
lations on TaFeng, Delicious and Foursquare. § denotes a statistically significant
improvement.

RQ3. Is the modeling of the correlation matrix useful? We compare Beacon

to its variant that does not incorporate the correlation matrix and only learns the

item bias ΩV . Table 6.4 summarizes their best performance on TaFeng, Delicious

& Foursquare in terms of F1@5. Other metrics namely F1@10, HLU and MRR

are also provided for references. There is a similar observation across all datasets,

which Beacon triggers sustainable improvements over the compared variant. In

other words, the modeling of correlations benefits to next-basket recommendations.

RQ4. How does the hyper-parameter α affect the performance? According

to Eq (6.7), α is to balance between basket-level and sequential associations. The

higher α somehow emphasizes more on endogenous attributes within baskets while

the smaller value favors exogenous effects across baskets. We vary α and report the

best performance of Beacon for each α value in terms of F1@5 on validation sets.

The performances on HLU,MRR are also provided for references. To maintain

the similar relative significance in comparison, we plot the performance of Beacon
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Figure 6.3: Best Performance Comparison of Beacon for various α on TaFeng,
Delicious and Foursquare.

on TaFeng, Delicious and Foursquare in the same graph as shown in Figure 6.3.

For TaFeng, there are no remarkable differences on F1@5 for various α values.

The comparable performance at α = 0.5 and α = 0.8 are relatively better than oth-

ers. However, α = 0.8 results in a significant improvement in terms ofHLU,MRR.

It signifies that items in testing baskets are ranked higher within top−5. This rank-

ing is triggered by the stronger emphasis on important factors including item bias

and correlations. For Delicious, we witness the rise and fall trend. There are similar

results for α ∈ [0.2, 0.6]. The lower performance for α = 0.0 or α ≥ 0.8 reck-

ons that both basket-oriented and sequential associations are useful. Likewise, we

witness the similar observation for Foursquare.

6.3 Summary

In this chapter, we address the correlation-sensitive next-basket recommendation

problem, which recommends the next basket with correlated items. Assuming bas-

kets share a consistent knowledge on correlative dependencies among items, we

propose Beacon that utilizes the correlation information to enhance the representa-

tion of baskets as well as the next-basket prediction. Experimental results on three

public real-life datasets show the helpfulness of exploiting correlative dependencies

in making next-basket recommendations.
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Chapter 7

Conclusions & Future Work

7.1 Conclusions

In this dissertation, we present our research on modeling sequential and basket-

oriented associations for top-K recommendation. We formulate and propose ef-

fective solutions for various recommendation problems, where the two association

types are exploited separately and jointly.

In Chapter 3, we deal with the sequential recommendation task based on dy-

namic context factors. A generative model that takes into account sequential asso-

ciations between consecutive items is built upon Hidden Markov Model (HMM).

First, we incorporate dynamic context factors with the hypothesis that they might

help to leverage the transition from one state to the next state. Additionally, we

modify the emission probability with the presence of latent user groups. The reason

is that cohorts of similar users may have analogous preferences on particular items.

Evaluation on both artifact and real-life datasets shows statistically significant im-

provement of the proposed model over HMM for top-K recommendations.

In Chapter 4, our focus is to model the basket-oriented associations for the

basket-completion problem. Given a user holding several items in his current bas-

ket, the task is to recommend the user what item should be added next. As the

first solution, we propose BFM based on Factorization Machines, that simply con-
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solidate various user-item and item-item association types. Extending this model,

we introduce the constrained variant CBFM that regularizes similar intent bas-

kets. Experiments on three real-life datasets reveal the effectiveness of our approach

over closely related baselines including association rules and factorization machine

(without modeling basket-oriented associations).

In Chapter 5, both association types are concurrently modeled for the next-item

recommendation task with the notion of contemporaneous basket sequences. In our

context, being contemporaneousness is considered as a pair of basket sequences

of two different actions (e.g., click & purchase), which are created by a same user

within the same time period. We present three twin network architectures that lever-

age the similarities and dissimilarities of user behaviors on the two sequences. Ex-

periments on two real-life datasets show that the modeling of sequential and basket-

oriented associations in contemporaneous basket sequences help to improve the top-

K recommendation performance.

In Chapter 6, it is a further exploration in jointly modeling the two associations

but for a novel task named correlation-sensitive next-basket recommendation, which

aims to recommend next basket with correlated items. We hypothesize that items

in both “observed” and “predicted” baskets follow a consistent correlative depen-

dency matrix. The correlation is informative not only for the representation of bas-

kets but also for making next-basket predictions. We propose Beacon, a hierarchical

network architecture, which incorporates the matrix via two components including

Correlation-Sensitive Basket Encoder and Correlation-Sensitive Score Predictor.

Finally, we conduct extensive experiments on three real-life datasets of different

domains. The results show Beacon can benefit from the correlation to create signif-

icant improvements over baselines for the next-basket recommendation problem.
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7.2 Future Work

With the objective of improving further the research on modeling sequential- and

basket-oriented associations for Top-K recommendation, we propose a few poten-

tial research directions as our future work.

Contemporaneous Actions. Within a period of time, users express their at-

tention via various type of actions, e.g., click, like/favorite, add-to-cart, purchase

items, etc. The co-occurrence might imply some latent causalities among these ac-

tions [139]. In Chapter 5, we present a research on modeling concurrently a pair of

basket sequences of only two different action types (i.e., click and purchase). As a

possible direction, we may upgrade the proposed models to be able to take into ac-

count the remaining action types (e.g., like or add-to-cart), which are useful to better

model the preference of users. Additionally, different action types have different im-

portance, hence there is another need to leverage their respective contemporaneous

basket sequences in the aggregation layer before making recommendations. With

these motivations, it is necessary to propose a better generic framework to not only

capturing all contemporaneous actions but also aggregating them efficiently for the

next-item recommendation task.

Multi-Intention Baskets with Memory Networks. Chapter 6 shows our ex-

ploration on modeling basket sequences for next-basket recommendations, which

the basket-oriented associations are leveraged using the item-item correlation ma-

trix constructed from observed baskets. Through the correlation-sensitive basket

encoder, each basket is represented by an latent representation, which implies an

underlying intention. However, there might have multiple intentions triggered in

a single basket. Items belonged to an intention are remarkably correlated while

items of different intentions are somehow independent. For examples, a user buys

a basket of {beef, black pepper, fresh milk, bread}. The association of {beef, black

pepper} signifies his intention on making beef steak for dinner while {fresh milk,

bread} may be for his breakfast. Other associations seems to be uncommon in real-

life scenarios. In order to model multiple intentions, it also raises a need to upgrade
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the RNN-based sequence encoder, due to the limitation in performing memoriza-

tion [150, 128]. Recently, there are several works that applied memory networks

[155, 50] in generating sequential recommendations. They not only improve the

recommendation performance but also increase the interpretability of suggestions.

Inspired by these interesting works, we aim to exploit memory networks on model-

ing multi-intention basket sequences for the next-basket recommendation task.
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