
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2019

Automatic, highly accurate app permission
recommendation
Zhongxin LIU

Xin XIA

David LO
Singapore Management University, davidlo@smu.edu.sg

John GRUNDY

DOI: https://doi.org/10.1007/s10515-019-00254-6

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons, and the Systems Architecture Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIU, Zhongxin; XIA, Xin; LO, David; and GRUNDY, John. Automatic, highly accurate app permission recommendation. (2019).
Automated Software Engineering. 1-34. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4366

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/211018641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4366&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s10515-019-00254-6
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4366&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Automated Software Engineering
https://doi.org/10.1007/s10515-019-00254-6

Automatic, highly accurate app permission
recommendation

Zhongxin Liu1 · Xin Xia2 · David Lo3 · John Grundy2

Received: 7 March 2018 / Accepted: 8 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
To ensure security and privacy, Android employs a permission mechanism which
requires developers to explicitly declare the permissions needed by their applications
(apps). Users must grant those permissions before they install apps or during runtime.
This mechanism protects users’ private data, but also imposes additional requirements
on developers. For permission declaration, developers need knowledge about what
permissions are necessary to implement various features of their apps, which is dif-
ficult to acquire due to the incompleteness of Android documentation. To address
this problem, we present a novel permission recommendation system named PerRec
for Android apps. PerRec leverages mining-based techniques and data fusion meth-
ods to recommend permissions for given apps according to their used APIs and API
descriptions. The recommendation scores of potential permissions are calculated by
a composition of two techniques which are implemented as two components of Per-
Rec: a collaborative filtering component which measures similarities between apps
based on semantic similarities between APIs; and a content-based recommendation
component which automatically constructs profiles for potential permissions from
existing apps. The two components are combined in PerRec for better performance.
We have evaluated PerRec on 730 apps collected from Google Play and F-Droid, a
repository of free and open source Android apps. Experimental results show that our
approach significantly improves the state-of-the-art approaches APRecCFcorrelation ,
APRecT EXT and Axplorer.

Keywords Android security model · Permission recommendation · Collaborative
filtering · Content-based recommendation

B Xin Xia
xin.xia@monash.edu

Extended author information available on the last page of the article

123

Published in Automated Software Engineering,
March 2019, Pages 1-34
DOI 10.1007/s10515-019-00254-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-019-00254-6&domain=pdf
http://orcid.org/0000-0002-6302-3256

Automated Software Engineering

1 Introduction

Android is a popular mobile platform which enjoyed the largest market share (85.0%)
in the first quarter of 2017 (IDC 2017). In order to prevent apps from accessing device
resources and user’s sensitive data in an unwanted way, Android employs a unique
permission mechanism. This explicit permission mechanism requires a developer to
declare permissions that are needed by an app in a specific file AndroidManifest.xml.
Users must explicitly grant the permissions requested in the manifest file before instal-
lation or at runtime. In this way, users canmitigate andmanage potential security risks.

Unfortunately, the permission mechanism introduces new requirements to develop-
ers. While developing an Android app, a developer has to learn not only the APIs used
to implement the features but also the corresponding permissions. Moreover, Android
official documentation (Android 2017b) advises developers to minimize the number
of declared permissions in order to reduce security risks and improve user experience.
This is compounded the fact that there are now more than 150 permissions in Android
7.1 (Android 2017c) and that the correct use of these permissions requires much expert
knowledge. Developers usually learn the knowledge from the official Android docu-
mentation for API classes and permissions. Nevertheless, the documentation has been
found to be incomplete (Felt et al. 2011; Au et al. 2012). Explicit links between APIs
and permissions are not always well documented. These facts make it difficult for
developers to find suitable permissions. So, a permission recommendation system is
needed to help developers declare permissions correctly.

Some program-analysis-based tools can be utilized to meet the above-mentioned
need, such as Stowaway (Felt et al. 2011), PScout (Au et al. 2012), Androguard
(Desnos and Gueguen 2011) and Axplorer (Backes et al. 2016). Each of them builds
an Android permission map that identifies the permissions required for each API call.
Permissions for an app can be recommended according to its used APIs and these
permission maps. Most of these approaches usually require some manual work. For
example, there are four permissions that are checked in native C/C++ code in Android
4.0, butPScout can not handle them automatically. These require manual inspection of
the source code where these permission strings are used to extract a complete permis-
sionmap (Au et al. 2012). Many of the permissionmaps extracted by these approaches
are also related to specific Android versions, which means we must update these maps
with the evolution of Android.Moreover, there is an empirical evidence that highlights
the need for analysis beyond Android APIs for accurate permission recommendations
(Karim et al. 2016). For example, there is an Android app namedMp3 Voice Recorder
(GitHub 2017) in F-Droid (F-Droid 2017). It uses 18 APIs, including an API directly
related to voice recording (i.e., android.media.AudioRecord) and only requires one
permission: RECORD_AUDIO. In the permission map extracted by Axplorer, we
can not find any mapping which contains API android.media.AudioRecord or permis-
sion RECORD_AUDIO. This meansAxplorer is not able to recommend permissions
correctly for such app.

In this paper, we describe a new automatic and more accurate approach to perform
app permission recommendations.We propose PerRec, a novelmining-based permis-
sion recommendation system that performs better than existing approaches. PerRec
has two main components, namely Sem and Cbr. Both of them are leveraged to cal-

123

Automated Software Engineering

culate recommendation scores for permissions. Sem uses a nearest-neighbor-based
collaborative filtering technique. It utilizes similarities between apps, which are cap-
tured throughboth apps’ commonly usedAPIs and semantic similarities betweenAPIs,
to select nearest neighbors. Inspired by content-based recommendation (Gunawardana
and Shani 2009), Cbr first constructs the profile of an app using its used APIs. Then,
it proposes a way to build permission profiles, which share the same vector space with
the app profiles, from existing apps. Given a permission,Cbr computes its recommen-
dation score according to the similarity between its profile and the target app’s profile.
PerRec combines Sem and Cbr using data fusion techniques (Wu 2012; Lucia et al.
2014) to achieve better performance.

We evaluate PerRec on 730 apps collected from Google Play and F-Droid. We
use the Mean Average Precision (MAP) and two evaluation metrics which we refer to
as Necessary Recall (NR) and Total-Recall Ratio (TRR) to measure the performance
and effectiveness of PerRec. We learn from the experiment results that PerRec
outperforms the state-of-the-art approaches.

The two main contributions of this work are:

1. We propose a new, automatic and accurate Android permission recommendation
system, PerRec, which blends similarities between apps and content-based rec-
ommendation through data fusionmethods to recommend permissions forAndroid
apps.

2. We demonstrate by experiments on 730 apps the effectiveness of PerRec. The
experiment results show that PerRec outperforms state-of-the-art baselines by
substantial margins.

The remainder of this paper is organized as follows. In Sect. 2, we describe our
motivation. In Sect. 3, we present the overall framework of PerRec. The three com-
ponents of PerRec, i.e., Sem, Cbr and the data fusion component, are elaborated in
Sects. 4–6, respectively. Section 7 illustrates the implementation details of PerRec.
Our experimental results are provided in Sect. 8. In Sect. 9, we discuss the impacts
of the amount of training data and the number of nearest neighbors in Sem, the cus-
tomization of PerRec, the false positive results of PerRec and the cases where our
approach performs badly. After brief discussions about threats to validity (Sect. 10)
and related work (Sect. 11), we conclude this work in Section 12.

2 Motivation

2.1 Background

Android applications run inside a sandbox that restricts the system-level operations
the app can make use of. An app has to request permission to make use of resources
residing outside of this sandbox via a permission. These permissions are specified
explicitly and declaratively inside a manifest file shipped with the app. For example,
to allow an app to send an SMS message and access the internet:

123

Automated Software Engineering

<manifest xmlns:android="http:// schemas.android.com/apk/
res/android"

package="com.example.XYZ">
<uses -permission android:name="android.permission

.SEND_SMS"/>
<uses -permission android:name="android.permission

.INTERNET"/>

<application ...>
...

</application >
</manifest >

The developer checks for permission inside the app code when needed e.g.:

if (ContextCompat.checkSelfPermission (thisActivity ,
Manifest.permission.SEND_SMS)

== PackageManager .PERMISSION_GRANTED) {
...
SmsManager smsManager = SmsManager.getDefault ();
smsManager.sendTextMessage(phoneNo , null , msg , null ,

null);
...

}

These permission manifests can become large and complicated. A further challenging
problem is for developers to correctly and accurately identify and specify the set of
required permissions in the app and maintain these over time.

To understand developers’ experience on Android permissions, we conduct a sur-
vey by sending emails to 556 developers/organizations who have at least one app
distributed in F-Droid. We received 87 responses. Over 72% of the respondents
acknowledge that they once felt confused about what permissions their apps should
declare when developing their Android apps. 56% of the respondents think a tool,
which can automatically recommend permissions for their apps according to the used
APIs, will be useful or very useful, and 30% of the respondents think this tool may
be useful. Moreover, we asked the respondents if they would try such a tool. 78%
of them state that they are willing to try it. Detailed responses are publicly available
at https://goo.gl/neXPjZ. The results of our survey highlights the need for a permis-
sion recommendation tool. To address this need, we propose a novel mining-based
permission recommendation system named PerRec in this work. Our approach rec-
ommends permissions for Android apps by learning from high-quality Android apps
and experienced developers, hence could be very useful for new Android developers.

2.2 Usage scenario

The usage scenarios of PerRec are as follows:

Without tool Bob is developing an Android app. To determine the necessary set of
Android permissions for his app, he needs to read the documentation of theAPIswhich

123

https://goo.gl/neXPjZ

Automated Software Engineering

may require permissions or test his app on a device and learn from the error messages,
both of which affect the efficiency of Bob’s development. During the development,
Bob removes a feature, and some declared permissions become unnecessary. But Bob
forgets to remove such permissions from the manifest file, which increases the risks
for Bob’s app to be compromised (Bartel et al. 2012). In addition, after Bob releases
his app, users complain that Bob’s app requires some unnecessary permissions, hence
Bob’s app gets less popular reviews than it deserves (Felt et al. 2012; Android 2017b).

With tool Bob makes use of PerRec during and after his development. To determine
the necessary permissions for his app, Bob first reviews the permissions recommended
by our tool. Then, Bob adds/ignores the permissions which he can make sure is neces-
sary/unnecessary quickly. For other permissions, Bob can check their documentation
or wait for test results to make decisions. In this way, Bob avoids reading unneces-
sary documents and reduces the times of tests, hence improves his efficiency. Before
releasing, Bob uses our tool to detect extraneous permissions. By checking the recom-
mended permissions, Bob finds and removes unnecessary permissions, which reduces
the attack surface (Manadhata and Wing 2010) of Bob’s app. After re-releasing, users
do not complain about the permissions problems.

In our survey mentioned in Sect. 2.1, some respondents want our approach to be
implemented as an IDE plug-in, but some other respondents think our tool should be
online. Based on these suggestions, we think that PerRec can be deployed as a cloud
service, and provides both a web app and an IDE plug-in as the front-end. To use the
cloud service, developers can upload their APKs (i.e., Android application packages)
through the web tool, and the recommended permissions will be displayed on the web
page. Alternatively, they can leverage the IDE plug-in to automatically handle the
whole procedure on the client side, i.e., extracting and uploading API lists as well as
receiving and displaying recommended Android permissions. Developers only need
to review the displayed permissions to make decisions.

2.3 Mining-based permission recommendation

Recently, a few mining-based approaches have been proposed to recommend per-
missions for Android apps. Karim et al. (2016) presented ApMiner to map given
Android APIs to permissions by combining static analysis and association rule min-
ing. Experimental results show that ApMiner outperforms PScout and Androguard. In
a latter work, Bao et al. (2016, 2017) proposed APRecCFcorrelation and APRecT EXT

to improve the performance of ApMiner further. In the remainder of this paper, for
simplicity sake, we refer to APRecCFcorrelation and APRecT EXT as Cor and Text,
respectively.

Given a target app, Cor leverages nearest-neighbor-based collaborative filtering to
recommend permissions for it based on its neighbors, i.e., the apps that call some APIs
which are also used by the target app. Text builds a text mining model to analyze the
readme files of apps in an attempt to make permission recommendations. Bao et al.
(2017) compared Cor and Text with ApMiner, and the experimental results showed
that Cor and Text both perform better than ApMiner, and the performance difference
betweenCor andText is small. In practice,Cor ignores the fact thatAPIswith similar

123

Automated Software Engineering

Fig. 1 Overall framework of PerRec

usage may require the same permissions. For example, API java.net.URLConnection
and API java.net.HTTPURLConnection can be used in similar contexts. Given two
apps APP1 and APP2, if APP1 only uses java.net.URLConnection and APP2 only
uses java.net.HTTPURLConnection, Cor will not treat them as neighbors. However,
since the two APIs both allow an app to access the Internet, both of them require
permission INTERNET, and the two apps should be regarded as neighbors for collab-
orative filtering. Moreover, Text recommends permissions for an app according to its
readme file, but not every app has a readme file.

3 PerRec

To address the issues of existing permission recommendation tools, we develop a
new composite approach and framework, PerRec, shown in Fig. 1. PerRec contains
two phases: a model construction phase and a recommendation phase. In the model
construction phase, we aim to build a recommendation model from existing apps with
known permissions and API descriptions. In the recommendation phase, given a new
app APPt , the model is used to recommend permissions required by APPt according
to APPt ’s used APIs.

Our framework first extracts API Lists and Permission Lists from existing apps
(Step 1). Given an app, its API List is the list of its used APIs, and its Permission List
is the list of permissions required by this app. Then, to build a recommendation model,
API Lists, their corresponding Permission Lists and API descriptions are input into
Sem (Step 2 and 3), while Cbr does not need API descriptions (Step 4). The specific
building processes of the two components are described in Sects. 4 and 5 below. Next,
we construct a composite recommendation model Per RecFuser by blending Sem
and Cbr (Step 5).

After Per RecFuser is built, it can be used to recommend permissions in the
recommendation phase. Given a new app, we first extract its API List (Step 6). Then,
this API List is input into Per RecFuser (Step 7), which will output an ordered list of
permissions that may be required by the new app (Step 8). These can then be reviewed
and used by the developer.

123

Automated Software Engineering

Fig. 2 Overall framework of Sem

4 Semantic-based similarities (SEM)

In order to overcome the shortcomings of Cor and Text, we propose a new approach
named Sem in PerRec to calculate recommendation scores for permissions. Sem
also uses the collaborative filtering algorithm, but inspired by the intuition that APIs
with similar usage may require the same permissions, Sem calculate the similarities
between apps based on not only their commonly used APIs but also the similarities
between APIs used by them.

Figure 2 presents the overall structure of our Sem framework. Sem uses the API
Lists and Permission Lists of the training apps as well as API descriptions as its input.
In the model construction phase, Sem first calculates the similarities between APIs
(Step 1), and then outputs these API-API similarities into theNearestNeighborProces-
sor component for the following calculation (Step 2). In the recommendation phase,
given a new app APPt , we first input the API Lists of APPt and all training apps
as well as the API-API similarities into the the NearestNeighborProcessor (Step 2, 3
and 4). The NearestNeighborProcessor will calculate the similarities between APPt
and all training apps to find the nearest neighbors for APPt (Step 5). Finally, based
on APPt ’s nearest neighbors and their Permission Lists, the PermissionRanker com-
ponent calculates a recommendation score for each permission (Step 5, 6 and 7).

In the following paragraphs we first present the calculation of API-API similarities,
and then elaborate the two key components of Sem: NearestNeighborProcessor and
PermissionRanker:

4.1 API–API similarities

By investigating theAPI descriptions inAndroidAPI documentation (Android 2017a),
we find that the descriptions of APIs with similar usage are semantically similar. So in
Semwemeasure how similar two APIs are using the semantic similarity between their
descriptions in API documentation. Given two APIs A1 and A2 and corresponding
API descriptions d1 and d2, we calculate the semantic similarity between A1 and A2
according to Mihalcea et al. (2006) and Ye et al. (2016), as follows:

sim(A1, A2) = sim(d1, d2) =

∑

w∈d1
(maxSim(w, d2) × id f (w))

∑

w∈d1
id f (w)

(1)

123

Automated Software Engineering

where id f (w) is w’s inverse document frequency (idf), and maxSim(w, di) can be
regarded as the similarity between word w and the API description di . id f (w) is
defined as:

id f (w) = log

(
nd

1 + d fw

)

(2)

where nd refers to the total number of API descriptions in the corpus, and d fw is the
document frequency of word w, i.e., the number of API descriptions which contain
w. maxSim(w, di) is defined as:

maxSim(w, di) = max
w′∈di

sim(w,w′)

where sim(w,w′) refers to the semantic similarity between two words w and w′.
To compute the semantic similarities between words, we first map each word into

a real-value vector using the word embeddings pre-tained through GloVe (Pennington
et al. 2014). Then we define two words’ semantic similarity as the cosine similarity
between their word vectors, i.e.:

sim(w1, w2) = simcos(w1,w2) = w1
Tw2

||w1|| ||w2|| (3)

wherewi represents theword embedding ofwordwi . According to the stepsmentioned
above, we can prepare the API-API similarities for Sem.

4.2 NearestNeighborProcessor

We leverage the NearestNeighborProcessor to find the k nearest neighbors of APPt
in the recommendation phase. The NearestNeighborProcessor first needs to calculate
the similarity between APPt and each training app. Given a training app APPi , the
similarity between APPt and APPi is calculated as follows: First, we construct the
feature vectors of APPt and APPi respectively. For APPi , we use the API vector as
its feature vector, which is defined as:

v(APPi) = (ind(A1, ALi), ind(A2, ALi), . . . , ind(An, ALi)) (4)

where n is the total number of used APIs, Ai is the ith API in the whole API set, ALi

is the API List of APPi , and ind(Ai , ALi) indicates whether Ai belongs to ALi , i.e.,
whether Ai is used by APPi . For APPt , we construct its feature vector based on its
and APPi ’s used APIs and the API-API similarities. The feature vector of APPt with
respect to APPi is defined as follows:

f vi (APPt) =(api Sim(A1, ALt , ALi), api Sim(A2, ALt , ALi), . . . ,

api Sim(An, ALt , ALi))
(5)

123

Automated Software Engineering

where ALt is the API List of APPt . api Sim(A j , ALt , ALi) is a special function
used to measure the similarities between the APIs used by APPt and APPi , which is
defined as:

api Sim(A j , ALt , ALi) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if A j /∈ (ALt ∪ ALi);
1, if A j ∈ ALt ;
max

Ak∈ALt
sim(A j , Ak), otherwise

(6)

In the above equation, sim(A j , Ak) is the similarity between API A j and API Ak ,
which is defined in Eq. 1. The idea behind the api Sim function is that for the APIs
which are not used by both APPt and APPi , it is useless for calculating the app-
app similarity; for the APIs used by APPt , we set the values of their corresponding
features as 1, just like the API vector; for the APIs which are used by APPi but not
APPt , we set their corresponding feature values according to the API-API similarities
described in Sect. 4.1 to help find nearest neighbors.

Then, we regard the cosine similarity between the feature vectors of APPt and
APPi as their app-app similarity, which is calculated as follows:

sim(APPt , APPi) = simcos(f vi (APPt), v(APPi))

where simcos is defined in Eq. 3.
Finally, after we calculate the similarities between APPt and all the training apps,

the training apps can be ranked according to their similarity scores. The top-k apps
with highest similarity scores are picked as the k nearest neighbors (kN Ns) of APPt .
By default, we set k as 10.

4.3 PermissionRanker

With the Permission Lists of APPt ’s kN Ns as input, the PermissionRanker can
compute a recommendation score for each permission. Given a permission Pi , its
recommendation score (RS) is the sum of the similarity scores of apps which are in
the kN Ns and require Pi :

RSSEM (Pi) =
∑

APPi∈kN Ns, Pi∈PLi

sim(APPt , APPi) (7)

where PLi is thePermission List of APPi . The higher a permission’s recommendation
score is, the more likely this permission is to be required by APPt .

5 Content-based recommendation (CBR)

Given an app APPt , Sem recommends permissions based on its nearest neighbors. If
there are some permissions which are required by APPt but not needed by its nearest
neighbors, Sem will perform badly. To mitigate this shortcoming, we propose another

123

Automated Software Engineering

Fig. 3 Overall framework of Cbr

component named Cbr, which recommends permissions through permission profiles
learned from all training apps instead of only nearest neighbors, to complement Sem.

Cbrwas inspired by content-based recommendation (Gunawardana and Shani 2009),
which builds a user’s profile based on the profiles of those items which have been
rated by this user. In this way, users and items are presented in the same vector space,
hence the similarities between them can be easily calculated. For app permission
recommendation, we can treat each app as a user and each permission as an item. The
action that an app declares a permission is similar to the action that a user rates an
item. Therefore, given a permission Pi ,Cbr constructs its profile based on the profiles
of those apps requiring Pi .

The structure of our Cbr framework is shown in Fig. 3. In the model construction
phase, the API Lists and Permission Lists of training apps are input into the Permis-
sionProfileConstructor component to construct permission profiles (Step 1, 2 and 3).
In the recommendation phase, APPt ’s profile is extracted by theFeatureVectorExtrac-
tor based on its API List (Step 4 and 5). After that, the SimilarityProcessor calculates
the similarities between APPt ’s profile and each permission’s profile. The resultant
similarity scores are considered as the recommendation scores of the permissions
(Step 6).

Cbr contains three components: FeatureVectorExtractor, PermissionProfileConstruc-
tor and SimilarityProcessor, which we describe in the following paragraphs.

5.1 FeatureVectorExtractor

This component is responsible for constructing APPt ’s profile based on its API List.
In this approach, we use APPt ’s API vector, which is defined in Eq. 4, as its profile.

5.2 PermissionProfileConstructor

This component leverages a tf-idf-like method to build profiles for permissions. Tf-
idf, short for term frequency–inverse document frequency, can reflect how important
a term is to a document in a corpus. Tf-idf scores are often used as the weights of
terms in the field of information retrieval. For a given term t and a document d, the tf
of term t in document d is defined as:

123

Automated Software Engineering

Table 1 A tiny dataset to
illustrate how
PermissionProfileConstructor
Works

App API list Permission list

APP1 A1, A2 P1, P3
APP2 A2, A3 P2, P3
APP3 A1, A3 P1, P2

t f (t, d) = ft,d
nd

In the above equation, ft,d is the times that t occurs in d, and nd refers to the total
number of terms in d.

Idf, defined in Eq. 2, is incorporated in tf-idf to diminish the weight of terms that
occur very frequently in the document set, e.g., “the”, and increase the weight of terms
that occur rarely. The tfidf of term t in document d is computed as:

t f id f (t, d) = t f (t, d) × id f (t)

For each permission Pi , we create its permission document PDi . PDi is built by
concatenating the API Lists of those apps which require Pi . For example, with the data
in Table 1, the permission document of P1 is “A1, A2, A1, A3”.

We first build permission documents for all permissions from the training apps.
A corpus is created from these permission documents and API names are regarded
as terms. Then, given an API Ai and a permission Pi , we can get t f id f (Ai , PDi)

according to the corpus and the tf-idf equations mentioned above. Finally, the Permis-
sionProfileConstructor can build Pi ’s profile prof ile(Pi) as follows:

prof ile(Pi) = norm(v′(Pi)) (8)

v′(Pi) = (t f id f (A1, PDi), t f id f (A2, PDi), . . . ,

t f id f (An, PDi)) (9)

In the above equation, norm is the normalization function, and v′(Pi) is Pi ’s tf-idf
vector, which is similar in structure to an API vector. It is obvious that a permission
profile and an app profile (i.e., API vector) share the same vector space.

5.3 SimilarityProcessor

This component is used to calculate recommendation scores for all permissions. Its
input is all the permission profiles and APPt ’s API vector. Given a permission Pi , we
use the cosine similarity between APPt ’s API vector and Pi ’s permission profile as
Pi ’s recommendation score (RS):

RSCBR(Pi) = simcos(v(APPt), prof ile(Pi)) (10)

123

Automated Software Engineering

Table 2 An example to illustrate
how data fusion methods work

Permission RSSEM RSCBR

1 0.55 0

2 0.83 0.92

3 0 0.39

In the above equation, simcos is used to calculated cosine similarity, which is defined
in Eq. 3.

6 PerRecFuser

In the model construction phase, we build the models of Sem and Cbr from training
apps. Then, with APPt ’s API List as input, both Sem and Cbr can calculate recom-
mendation scores for all permissions in the recommendation phase. The PerRecFuser
component is then used to compose the two sets of recommendation scores together
to make the final permission recommendation.

First, PerRecFuser leverages l1 norm to normalize the two sets of scores outputted
by Sem and Cbr separately. Then, by adapting an unsupervised data fusion method
proposed in the information retrieval field, we combine the normalized scores from
Sem and Cbr to produce a new recommendation score for every permission. Based
on the new scores, the PerRecFuser can provide an ordered list of permissions as the
recommendation made by PerRec.

In this work, we investigate six well-known unsupervised data fusion methods:
Max, Min, CombSUM (Fox et al. 1993; Fox and Shaw 1994), CombANZ (Fox et al.
1993; Fox and Shaw 1994), CombMNZ (Fox et al. 1993; Fox and Shaw 1994) and
Borda Count (Aslam and Montague 2001). Based on the data fusion method used
by PerRecFuser, there are six variants of PerRec, and we call them PerRecMax ,
PerRecMin , PerRecSUM , PerRecAN Z , PerRecMNZ and PerRecBC respectively.
The following paragraphs elaborate how the six data fusion methods work using the
example shown in Table 2.

6.1 Max

For each permission, this method selects the maximum score as its new recommen-
dation score.

Example Based on Table 2, the set of new recommendation scores for Permission 1
to 3 would be {0.55, 0.92, 0.39}.

6.2 Min

Contrary to Max, this method selects the minimum score for each permission as its
new recommendation score.

123

Automated Software Engineering

Example Based on Table 2, the set of new recommendation scores for Permission 1
to 3 would be {0, 0.83, 0}.

6.3 CombSUM

This method assumes that each approach is equally important. For each permission,
this method simply sums up its recommendation scores from Sem and Cbr as the new
score.

Example Based on Table 2, the set of new recommendation scores for Permission 1
to 3 would be {0.55, 1.75, 0.39}

6.4 CombANZ

This method combines the recommendation scores from different approaches by com-
puting the average of the non-zero scores. Suppose there are ni approaches that assign
non-zero scores to permission Pi , the new score of Pi is computed as follows:

Score(Pi) = 1/ni × (RSSEM (Pi) + RSCBR(Pi)) (11)

Example Based on Table 2, the set of new recommendation scores for Permission 1
to 3 would be {0.551 , 1.75

2 , 0.39
1 }={0.55, 0.88, 0.39}

6.5 CombMNZ

Given a permission Pi , CombMNZ multiplies the summation of all the recommen-
dation scores of Pi with the number of approaches that assign non-zero scores to Pi .
Assume that ni denotes this number, CombMNZ calculates the new recommendation
score for Pi as follows:

Score(Pi) = ni × (RSSEM (Pi) + RSCBR(Pi)) (12)

Example Based on Table 2, the set of new recommendation scores for Permission 1
to 3 would be {1×0.55, 2×1.75, 1×0.39}={0.55, 3.5, 0.39}

6.6 Borda count

To combine the recommendation scores from different approaches, Borda Count first
converts each recommendation score set into a rank set—permissions with higher
scores would obtain smaller ranks. Then, for each permission, this method computes
its ranking points given by different approaches. The ranking point of a permission
given by an approach is defined as the subtraction of the permission’s rank from the
total number of permissions, i.e.:

RP j
i = |P| − rank j

i (13)

123

Automated Software Engineering

Table 3 Example of ranks and
ranking points

Permission Ranks Ranking points

1 {2, 3} {1, 0}

2 {1, 1} {2, 2}

3 {3, 2} {0, 1}

In the above equation, rank j
i is the rank of Pi that is outputted by approach j , |P| is

the total number of permissions and RP j
i is the corresponding ranking point. Finally,

the new recommendation score of a permission is the sum of its ranking points given
by all approaches. In this work, the new score can be computed as follows:

Score(Pi) = RPSEM
i + RPCBR

i (14)

Example The ranks and ranking points of Permission 1 to 3 are shown in Table 3.
Based on these ranking points, the set of new recommendation scores for Permission
1 to 3 would be {1, 4, 1}.

7 Implementation

In this section, we present the implementation details of PerRec.

PerRec is implemented on top of scikit-learn (Pedregosa et al. 2011), a well-known
machine learning library in Python. Our approach takes API Lists and Permission Lists
of apps as well as API descriptions as input.

API List extraction APIs which are used by an app are declared in import statements
in Java source code files. By using srcML (Collard et al. 2003), a lightweight static
analysis tool which transforms source code to a single XML file, we extract the API
List of an app from such XML file. Considering user-defined classes, we only select
the API classes which are contained in the Android software stack and Java standard
libraries, such as android.app.Notification and java.net.URL.

Permission List extraction The Permission List of an app is extracted from its Android-
Manifest.xml file directly.

API description extraction To obtain API descriptions, we first download Java API
docs from the official website of Java (Oracle 2017b) and collect Android API docs
from Android SDK (Android 2017d). Then we extract the description of each API
class from its corresponding HTML file. We only collect the textual descriptions of
API class, and code snippets and method descriptions are removed through XPath
expression.

Pre-Trained Word Embeddings. To calculate the semantic similarities between
words, we leverage the word embeddings pre-trained by GloVe (Pennington et al.
2014) in Sect. 4.1. The authors of GloVe publish several pre-trained sets of word
embeddings in GloVe’s official website (Pennington et al. 2017). We use the one

123

Automated Software Engineering

whose training corpus is Wikipedia 2014 and Gigaword 5 and vector dimension is 50.
This set ofword embeddings are powerful enough for Sem to performwell, and vectors
with 50 dimensions can reduce the time needed to calculate semantic similarity.

In addition, to enable others to use PerRec, we have published our source code
and dataset on GitHub.1

8 Evaluation

In this section, we first describe our key research questions and experimental setup.
Then,wepresent the details of the baseline approaches, i.e.,Axplorer,Cor andText,
followed by the evaluation metrics used to measure the recommendation performance.
Finally, we present the results of our experiments..

8.1 Research questions

We are interested in answering the following key research questions:

– RQ1: How effective are the 6 variants of PerRec?
– RQ2: Howmuch improvement can PerRec achieve over the baseline approaches?
– RQ3: Can PerRec outperform its own components, i.e., Sem and Cbr?
– RQ4: Do word embeddings learned from project-specific corpora change the per-
formance of Sem and PerRec?

– RQ5: Do different similarity metrics affect the performance of Cbr and PerRec?

8.2 Experimental setup

To answer these research questions, we collected 730 open source Android apps from
F-Droid, which is a free and open source Android app repository, and Google Play.

To collect Android apps from F-Droid, we first crawled the list of apps in F-Droid,
which contains 2899 Android apps. Since GitHub provides convenient REST APIs
and the stargazers on GitHub can help us identify high-quality projects (Munaiah et al.
2017), we only kept those apps which are hosted in GitHub, and obtained 2107 apps.
Then, we removed the apps with no more than 50 stargazers on GitHub to filter out
potential low-quality apps, and 719 apps remained.

We also make use of GitHub to help us collect apps distributed by Google Play.
We first obtained the list of all Java projects in GitHub using GHTorrent (Gousios and
Spinellis 2012, 2018). The list contains over 1,600,000 projects. Next, we crawled the
readme files of these projects through GitHub’s REST API, and parsed each readme
file to identifywhether it contains Google Play links.We only found 1304 Java projects
of which the readme files contain Google Play links. Then, we extracted the Google
Play links of each project, and filter out the projects withmore than one distinct Google
Play links. There were 1217 projects left. We treated the 1217 projects as Android
apps, and assumed their distinct Google Play links directed to their Google Play pages.

1 https://github.com/Tbabm/PerRec.

123

https://github.com/Tbabm/PerRec

Automated Software Engineering

Finally, we extracted the score and score number of each app from its Google Play
page.We only reserved the apps which obtain a score of no less than 3.5 and are scored
by at least 10 users, obtaining 334 apps.

We merged the two app lists obtained from F-Droid and Google Play, removed 87
duplicate apps and got 966 apps in total. Given an app, its source codewas downloaded
byus fromGitHubas follows: If the app leveragedGitHubReleases to release its source
code, we downloaded its latest release. If the app did not use GitHub releases, but its
GitHub repository contained tags, we downloaded its source code at the latest tag. If
the app used neither GitHub Releases nor tags, we downloaded its source code in the
master branch. In this work, we only consider the Android apps written in Java, hence
the non-JavaAndroid apps, such as appswritten inKotlin andC++,were deleted. Since
we use srcML (Collard et al. 2003) to parse the source code and extract API Lists, the
apps of which the source code can not be parsed by srcML were removed. The apps
which do not require any system permissions were also filtered out. Ultimately, we
collected 730 apps to form our dataset.

For the 730 apps, we construct our ground truth from the permissions that are
actually used by them, which are declared in their AndroidManifest.xml files. The API
lists and Permission Lists of the 730 apps are extracted using the methods discussed
in Sect. 7. On average, the 730 collected apps require 5.37±4.64 (mean± standard
deviation) permissions and use 147.83±99.14 APIs. The average number of required
permissions is close to that reported byWu et al. (2012) (4.67 permissions on average)
in their dataset.

We used a tenfold cross-validation procedure to evaluate the effectiveness of a
permission recommendation approach. To perform tenfold cross-validation, the 730
apps in our dataset are first shuffled and evenly divided into tenfold, i.e., each fold
has 73 apps. Training and testing are performed 10 times (i.e., in 10 runs). For the
ith run, the ith fold is regarded as testing set, and other ninefold are combined as
training set. A permission recommendation system is built from the training set, and
then recommends permissions for apps in the testing set. For each app in the testing
set, we calculate several evaluation metrics (which will be described in Sect. 8.4) for
it. For each run, the means of these metrics for the testing set are then calculated as
the test result of this run. After 10 runs, every fold has been used as testing set, and
we can get 10 test results. We compute the mean value for every metric using the 10
test results, and regard these mean values as the final result.

8.3 Baseline approaches

In this study, we use a program-analysis-based approach Axplorer (Backes et al.
2016) and twomining-based approaches, i.e.,Cor and Text (Bao et al. 2016, 2017) as
our baseline approaches. The following paragraphs briefly describe how these baseline
approaches work.

123

Automated Software Engineering

Table 4 A tiny permission map
to illustrate how Axplorer
works

API Permissions

A1 P1, P3
A2 P2, P3
A3 P1

8.3.1 AXPLORER

Axplorer (Backes et al. 2016) is an Android application framework analysis tool,
which does not directly recommend permissions for apps. However, Axplorer can
be used to extract Android permission maps, which are leveraged to make permission
recommendations. The permission maps extracted by other program-analysis-based
tools, e.g., Stowaway (Felt et al. 2011) and PScout (Au et al. 2012), can also be
utilized in the same way. But Stowaway is now out-of-date (Felt et al. 2017), and
PScout has not updated its permission map for 3 years (Au et al. 2017). Compared
to them, the permission maps extracted by Axplorer are still maintained. Moreover,
Backes et al. (2016) have shown that Axplorer improves over PScout in terms of
precision. Therefore, we choose Axplorer as our experimental program-analysis-
based baseline.

Since Android apps are usually developed for several or a range of Android OS/API
levels, we first combine all the permission maps extracted by Axplorer and pub-
lished in its official website (Backes et al. 2017) into one. Then, given a test app
APPi , we take all API classes in its API List and query their mappings from the
permission map to find corresponding permission sets as query results. Finally, we
merge these permission sets into one. This permission set, in which permissions are
ranked according to the number of times they appear in the query results, is the final
recommendation.

For example, with the permission map in Table 4, if APPi ’s API List is {A1, A3},
we first query the mappings of A1 and A3. The query results are two permission sets.
Then we merge the two sets into one and rank these permissions according to their
frequencies of occurrence.

8.3.2 COR

Cor recommends permissions for APPt based on the Permission Lists of the apps
which are similar to APPt . In this approach, similarity between two apps aremeasured
by their jointly used APIs; more specifically, by the Pearson correlation similarity
between their API vectors (defined in Eq. 4). Based on the similarities between APPt
and each of the training apps, Cor can find the k nearest neighbors (kN Ns) of APPt
from the training apps. The permission recommendation is then made according to
the permissions required by APPt ’s kN Ns. To align with Bao et al. (2016, 2017)’s
approach, we set Cor to use 10 nearest neighbors to make recommendations.

123

Automated Software Engineering

8.3.3 TEXT

Text builds a text mining model based on multinomial Naive Bayes to recommend
permissions. This model is constructed from apps’ readme files, which are collected
from GitHub. All the readme files are first preprocessed and represented in the form
of “bags-of-words”. In bag-of-words model, a readme file is represented as a multiset
of its words, disregarding grammar and word order but keeping multiplicity. Each
processed word becomes a feature. After using a feature selection method, Text
forms a classifier for each permission based on selected text features.

In the recommendation phase, Text first extracts the text features of APPt , and
then the probability that APPt requires permission Pi is calculated by the ith classifier
in the text mining model. Finally, permission recommendations are made based on
these probabilities. According to Bao et al. (2017), Text selects 1000 term features
for each multinomial Naive Bayes classifier.

8.4 Evaluationmetrics

In order to evaluate the effectiveness of these approaches, we use Mean Average
Precision (MAP) and two metrics we refer to as Necessary Recall (NR) and Total-
Recall Ratio (TRR).

8.4.1 Mean average precision (MAP)

MAP provides a single-figure measure of recommendation quality (Christopher et al.
2008), and it has been shown to have good discrimination and stability to evaluate
ranking techniques (Baeza-Yates et al. 1999). An app usually requires more than one
permissions. MAP considers all correct results, hence we use it to measure the average
performance of PerRec to recommend all the required permissions.

Given a single query (in our case: an app APPt), its average precision is defined
as the mean of the precision values obtained for different sets of top-k documents (in
our case: permissions) that were retrieved before every relevant document is retrieved,
which is computed as:

AvgP(APPt) =
∑M

k=1 P(k) × Rel(k)

|APs|
where M is the number of candidate permissions in a ranked list, Rel(k) indicates
whether the permission at position k is actually required by APPt or not, and APs
refers to the permissions which are actually needed by APPt . P(k) is the precision at
the given cut-off position k, and is computed as:

P(k) = |APs in top-k|
k

where top-k is the set of top-k permissions returned by an approach. The MAP for a
set of apps S is then the mean of the average precision scores for all apps in S:

123

Automated Software Engineering

MAP(S) =
∑

APPt∈S AvgP(APPt)

|S|
8.4.2 Necessary recall (NR)

A metric, we refer to as Necessary Recall (NR), is used to measure the recall of our
approach.Given a test app APPt ,NR is thepercentageof actually requiredpermissions
out of the first n permissions returned by a recommender system for APPt , where n
is the number of the necessary permissions of APPt . NR is defined as:

N R(APPt) = |APs in top-n|
n

The APs are APPt ’s necessary permissions, and top-n is the set of top-n permissions
returned by an approach. For a set of apps, NR is the mean of the NR values for all
apps in it.

8.4.3 Total-recall ratio (TRR)

To measure the effort our approach requires to achieve total recall, i.e., to recommend
all the correct permissions for an app, we propose an evaluation metric Total-Recall
Ratio (TRR). Given a training set and a test app APPt , an approach can recommend
a list of permissions RPs for APPt , and APPt ’s TRR is then calculated as follows:

T RR(APPt) =

⎧
⎪⎪⎨

⎪⎪⎩

nmin

|APs|, if APs − RPs = ∅;
nall

|APs|, otherwise
(15)

In a nutshell, TRR measures that if we want to recall all the correct permissions of
APPt , howmany permissions on averagewill be recommended by an approach for one
correct permission.More specifically, if the approach can achieve total recall for APPt ,
we simply compute the ratio of the minimal number of recommended permissions to
achieve total recall, i.e., nmin , and the number of APPt ’s correct permissions, i.e.,
|APs|, as APPt ’s TRR. Otherwise, we penalize TRR by replacing nmin with the total
number of permissions captured by the training set, i.e., nall . The closer TRR is to
one, the better it is. For a set of apps, TRR is the mean of the TRR values for all apps
in it.

For example, using the examples shown in Table 5, the TRR value of APP1 is 3
2 =

1.5 since we can achieve total recall using the first three permission in APP1’s RPs.

Table 5 Examples to illustrate
how TRR is calculated

APP APs RPs

APP1 P1, P2 P3, P2, P1, P4
APP2 P3, P4 P2, P3, P1

123

Automated Software Engineering

Assuming the training set captured 50 distinct permissions in total, i.e., nall = 50,
the TRR value of APP2 is 50

2 = 25 since APP2’s RPs do not contain all the correct
permissions.

8.5 Results

RQ1: How effective are the 6 variants of PERREC?

Motivation We want to investigate the effectiveness of the 6 variants of PerRec, i.e.,
PerRecMax , PerRecMin , PerRecSUM , PerRecAN Z , PerRecMNZ , PerRecBC , and
find the variant with best performance.

ApproachWe evaluate the performance of each variant by computing MAP, TRR and
NRfor it onour dataset using tenfold cross validation.Then,we select the best approach
according to all the three metrics. We also conducted a Wilcoxon signed-rank test at
the confidence level of 95% to check whether the performance differences between
the selected best variant and the other variants are significant. For each variant, we
collected 10 effectiveness values in terms of each metric. The Wilcoxon signed-rank
tests are conducted on the 10 pairs of effectiveness values. Moreover, to analyze the
magnitude of the observed differences, we used an effect size measure named Cliff’s
Delta (δ). Following the guidelines inGrissom andKim (2005), theCliff’sDelta values
are interpreted according to Table 6.

Results Table 7 presents the means of MAP, TRR and NR for each PerRec’s variant,
and we also plot the MAP, TRR and NR values of the tenfold using boxplots, as
shown in Fig. 4. We can see that in terms of MAP, the performance of PerRecSUM ,

Table 6 The effectiveness level
of Cliff’s delta

Cliff’s delta (|δ|) Effectiveness level

|δ| < 0.147 Negligible

0.147 ≤ |δ| < 0.33 Small

0.33 ≤ |δ| < 0.474 Medium

0.474 ≤ |δ| Large

Table 7 Means of MAP, TRR
and NR for PerRec’s variants

Metrics Max Min SUM ANZ MNZ BC

MAP 0.707 0.680 0.713 0.712 0.713 0.717

Rank 5 6 2 4 2 1

TRR 3.99 5.01 3.93 3.94 3.93 4.26

Rank 4 6 1 3 1 5

NR 0.607 0.607 0.611 0.611 0.611 0.620

Rank 5 5 2 2 2 1

Rank sum 14 17 5 9 5 7

Max, Min, SUM, ANZ, MNZ and BC refers to PerRecMax , Per-
RecMin , PerRecSUM , PerRecAN Z , PerRecMNZ and PerRecBC

respectively

123

Automated Software Engineering

Ma
x Min SU

M AN
Z

MN
Z BC

0.62

0.64

0.66

0.68

0.70

0.72

0.74

M
A
P

Ma
x Min SU

M AN
Z

MN
Z BC

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

T
R
R

Ma
x Min SU

M AN
Z

MN
Z BC

0.54

0.56

0.58

0.60

0.62

0.64

0.66

N
R

(a) MAP (b) TRR (c) NR

Fig. 4 MAP, TRR and NR for PerRec’s variants

Table 8 p value and Cliff’s delta (δ) for PerRecSUM compared with the other variants

Metrics S versus Max S versus Min S versus ANZ S versus MNZ S versus BC

p value (δ) p value (δ) p value (δ) p value (δ) p value (δ)

MAP 0.001 (0.22) 0.010 (0.58) 0.138 (0.02) 1.000 (0.00) 0.278 (−0.10)

TRR 0.002 (−0.10) 0.001 (−0.64) 0.246 (0.00) 1.000 (0.00) 0.002 (−0.28)

NR 0.007 (0.18) 0.461 (0.10) 0.295 (0.01) 1.000 (0.00) 0.161 (−0.16)

S refers to PerRecSUM , and Max, Min, ANZ, MNZ and BC refers to PerRecMax , PerRecMin , Per-
RecAN Z , PerRecMNZ and PerRecBC respectively

PerRecAN Z , PerRecMNZ and PerRecBC is close, and is better than that of the other
two variants. On TRR, PerRecMax , PerRecSUM , PerRecAN Z and PerRecMNZ

perform similarly, and outperform PerRecMin and PerRecBC . As forNR,PerRecBC

outperforms other variants, but its performance is less stable than that of PerRecSUM ,
PerRecAN Z and PerRecMNZ . Sincewe need to select the best variant according to all
the metrics, for each variant, we calculate its rank according to the means of the three
metrics, and add the three ranks together as Rank Sum. We can learn from Table 7 that
PerRecSUM and PerRecMNZ have the highest Rank Sum, and their performance on
all the metrics is the same. Therefore, each of them can be chosen as the best variants.
In this work, we choose PerRecSUM to answer the subsequent research questions.

We then compute the p values of the Wilcoxon signed-rank tests and the Cliff’s
Delta (δ) for PerRecSUM compared with the other variants, as shown in Table 8. We
consider the performance difference between PerRecSUM and another variant on a
metric to be statistically significant at the confidence level of 95% if the corresponding
p value is less than 0.05. We can see from Table 8 that in terms of MAP, the perfor-
mance of PerRecSUM is significantly better than PerRecMax and PerRecMin , while
PerRecBC does not statistically significantly improve PerRecSUM . On TRR, Per-
RecSUM achieves significantly better performance than PerRecMax , PerRecMin and

123

Automated Software Engineering

PerRecBC . As for NR, PerRecSUM only significantly improves PerRecMax . We can
also know that the performance difference between PerRecSUM and PerRecAN Z in
terms of all the metrics is not significant.

In summary, PerRecSUM and PerRecMNZ perform equally, and both can be cho-
sen as the best variant. The variants which consider two components outperform those
which only use the scores from one component to rank, i.e., PerRecMax and Per-
RecMin . Such finding highlights the benefit of combining the two components. In
the following research questions we use PerRecSUM to conduct experiments, and
PerRec is used to represent PerRecSUM for brevity.

RQ2: How much improvement can PERREC achieve over the baseline approaches?

MotivationWewant to investigatewhether PerRec can providemore accurate permis-
sion recommendations than the three baseline approaches (Axplorer, Cor, Text).

Approach We compare PerRec with the three baselines in terms of MAP, TRR and
NR. The Wilcoxon signed-rank test and the Cliff’s Delta (δ) are also conducted as
described in RQ1.

Results Table 9 presents the means of MAP, TRR and NR for Axplorer, Text, Cor
and PerRec, and the MAP, TRR and NR values of the tenfold are plotted in Fig. 5.

Table 9 Means of MAP, TRR
and NR for PerRec and the
baselines

Metrics Axplorer Cor Text PerRec

MAP 0.132 0.574 0.632 0.713

Improved 440.2% 24.2% 12.8% –

TRR 30.41 5.34 5.10 3.93

Ratio 0.13 0.74 0.77 –

NR 0.168 0.496 0.541 0.611

Improved 263.7% 23.2% 12.9% –

Ax
plo

rer Co
r

Te
xt

Pe
rR

ec

0.10

0.20

0.30

0.40

0.50

0.60

0.70

M
A
P

Ax
plo

rer Co
r

Te
xt

Pe
rR

ec

5.0

10.0

15.0

20.0

25.0

30.0

T
R
R

Ax
plo

rer Co
r

Te
xt

Pe
rR

ec

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

N
R

(a) MAP (b) TRR (c) NR

Fig. 5 MAP, TRR and NR for PerRec and the baselines

123

Automated Software Engineering

Table 10 p value and Cliff’s delta (δ) for PerRec compared with the baselines

Metrics PerRec versus Axplorer PerRec versus COR PerRec versus TEXT

p value (δ) p value (δ) p value (δ)

MAP 0.001 (1.00) 0.001 (1.00) 0.001 (0.90)

TRR 0.001 (−1.00) 0.001 (−0.76) 0.001 (−0.70)

NR 0.001 (1.00) 0.001 (0.98) 0.001 (0.92)

Table 11 Means of MAP, TRR
and NR for Sem, Cbr, and
PerRec

Metrics Sem Cbr PerRec

MAP 0.701 0.679 0.713

Improved 1.7% 5.0% –

TRR 5.01 4.03 3.93

Ratio 0.78 0.98 –

NR 0.606 0.600 0.611

Improved 0.8% 1.8% –

We can see that in terms of the three metrics, PerRec performs better than all the
baseline approaches. On MAP, PerRec outperforms Axplorer, Text and Cor by
12.8% to 440.2%. The ratios between the TRR value of PerRec and the TRR values of
Axplorer, Text and Cor are all less than 0.8, whichmeans to recall all the necessary
permissions for an app, PerRec only requires less than 80% of the efforts that are
needed by the baseline approaches. PerRec also improves over the three baselines in
terms of NR by 12.9% to 263.7%.

Table 10 shows the p values and the Cliff’s Delta values when we compare PerRec
with the baseline approaches in terms of MAP, TRR and NR. We can see that all the
p values are less than 0.05, and the absolute values of Cliff’s Delta (|δ|) are all greater
than 0.474. These values means that the improvements achieved by PerRec over the
baselines are statistically significant and substantial.

These results demonstrate that PerRec outperforms the baseline approaches i.e.,
Axplorer, Text and Cor. The key differences between PerRec and the baselines is
that PerRec takes relationships betweenAPIs into consideration and leveragedifferent
components to capture such relationships. Therefore, we think the good performance
of PerRec indicates that capturing relationships between APIs matters for permission
recommendation tasks.

RQ3: Can PERREC outperform its own components, i.e., SEM and CBR?

MotivationSem andCbr are important components of PerRec.Wewant to investigate
whether the composition of the two components of PerRec is actually beneficial or
not.

Approach Following the process used to answer RQ2, we evaluate the effectiveness of
Sem, Cbr and PerRec based on their MAP, TRR and NR. The Wilcoxon signed-rank
test and the Cliff’s Delta (δ) are also used.

123

Automated Software Engineering

Sem Cb
r

Pe
rR

ec

0.62

0.64

0.66

0.68

0.70

0.72

0.74

M
A
P

Sem Cb
r

Pe
rR

ec

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

T
R
R

Sem Cb
r

Pe
rR

ec

0.54

0.56

0.58

0.60

0.62

0.64

0.66

N
R

(a) MAP (b) TRR (c) NR

Fig. 6 MAP, TRR and NR for PerRec and its components

Table 12 p value and Cliff’s
delta (δ) for PerRec compared
with its components

Metrics PerRec versus Sem PerRec versus Cbr

p value (δ) p value (δ)

MAP 0.001 (0.46) 0.014 (0.62)

TRR 0.001 (−0.64) 0.188 (−0.14)

NR 0.002 (0.22) 0.188 (0.16)

Results Table 11 shows the means of MAP, TRR and NR for PerRec and its two
components. The MAP, TRR and NR values of the tenfold are plotted in Fig. 6, and
Table 12 presents the p values and the Cliff’s Delta (δ) when we compare PerRecwith
Sem and Cbr in terms of the three metrics. We can see that Sem performs better than
Cbr in terms of MAP and NR, while Cbr outperforms Sem on TRR. By combining
them together, PerRec improves Sem on all the three metrics. The improvements
are statistically significant since the three corresponding p values are less than 0.05.
PerRec also shows significant improvement over Cbr in terms of MAP with large
effect size, and achieves similar performance to Cbr on TRR and NR.

The reason of Sem’s better performance compared to Cbr in terms of MAP and
NRmay be that Sem recommends permissions for a new app by learning from similar
apps, and tends to recommend the permissions that are frequently used by these similar
apps. It is often the case that such permissions are also required by the new app, hence
Sem can be accurate when recommending the top-k permissions, which leads to better
MAP and NR. Cbr constructs permission profiles from all the apps in the training
set instead of only considering similar apps. It is more accurate to predict whether a
permission that is not frequently used by similar apps is required by a new app or not.
This may make Cbr achieve total recall more easily, and hence obtain better TRR.
The reason that PerRec outperforms Sem and Cbr on the three metrics may be that
the two components complement each other in PerRec.

123

Automated Software Engineering

Table 13 Means of MAP, TRR and NR for Semwiki , Semdocs , PerRecwiki and PerRecdocs

Metrics Semwiki Semdocs PerRecwiki PerRecdocs

MAP 0.701 0.699 0.713 0.712

Improved – 0.3% – 0.1%

TRR 5.01 5.06 3.93 3.95

Ratio – 0.99 – 0.99

NR 0.606 0.604 0.611 0.610

Improved – 0.3% – 0.2%

In summary, combining Sem and Cbr together can significantly improve the MAP
of Cbr without reducing its TRR and NR, and significantly improve the Sem on
all the metrics with at least small effect size. Therefore, the composition of the two
components in PerRec is beneficial.

RQ4: Do word embeddings learned from project-specific corpora change the
performance of SEM and PerRec?

Motivation For Sem, we use the pre-trained word embeddings which are learned from
Wikipedia 2014 and Gigaword 5. Recently, some researchers (Ye et al. 2016; Xu et al.
2016) learn word embeddings used in Software Engineering (SE) tasks from project-
specific corpora, and show that the project-specific word embeddings perform well
even if the size of the corpus is limited. Therefore, we want to determine if there exists
a performance difference between the variants of Semwhich use different sets of word
embeddings, and whether these variants of Sem impact the performance of PerRec.

Approach We refer to the pre-trained word embeddings as wiki embeddings, and the
project-specific embeddings as docs embeddings. In order to learn docs embeddings,
we first create a project-specific corpus from Android docs and JDK 7 docs. Android
docs are contained in Android SDK, and JDK 7 docs can be downloaded from its
official website (Oracle 2017a). Since Sem does not consider code snippets, we also
delete all the code snippets, which are usually placed between special HTML tags such
as < pre > and < code > from these docs. The GloVe model is used to train docs
embeddings, and the parameters we use are nearly the samewith those used to train the
wiki embeddings, except that we do not specify the maximum size of the vocabulary
(max-vocab). When training wiki embeddings, the maximum size of the vocabulary
is set to 400,000. However, our project-specific corpus, which only contains about 23
million tokens, is much smaller thanWikipedia 2014 and Gigaword 5 – in which there
are more than 6 billion tokens. Hence there is no need for us to specify max-vocab.

Afterwe get the docs embeddings, we use them in Sem. The variant of Sem based on
docs embeddings is referred to as SEMdocs , and the old approach is named SEMwiki .
The variants of PerRec which use different variants of Sem are referred to as Per-
Recdocs and PerRecwiki . We first evaluate the MAP, TRR and NR of the two variants
of Sem, and then evaluate the performance of PerRecdocs and PerRecwiki on the
same metrics.

123

Automated Software Engineering

Results We can see from Table 13 that the performance differences between Semwiki

and Semdocs on the three metrics are very small. The performance of PerRecwiki

and PerRecdocs is also nearly the same in terms of the used metrics. These results
show that project-specific word embeddings do not improve the effectiveness of Sem.
Making use of different variants of Sem in PerRec also does not result in substantial
difference in performance either.

RQ5: Do different similarity metrics affect the performance of CBR and PER-
REC?

Motivation We want to investigate whether it is possible to improve the performance
of Cbr and PerRec by simply changing the similarity measure used in Cbr.

Approach In addition to cosine similarity, we investigate Euclidean similarity and
Pearson correlation similarity in Cbr, and the three variants of Cbr are named
CBRcos , CBReuc and CBRcor respectively. The corresponding variants of PerRec
are referred to as PerReccos , PerReceuc and PerReccor . Cosine similarity is defined
in Equation 3. The Pearson correlation between two vectors x and y is:

Cor(x, y) = COV (x, y)
σxσ y

where COV (x, y) is the covariance between x and y, and σx and σ y are the standard
deviation of x and y. Then, Pearson correlation similarity is calculated as:

simcor (x, y) = Cor(x, y) + 1

2

Euclidean similarity is defined as follows:

simeuc(x, y) = 1/

√
√
√
√

n∑

i=1

(xi − yi)2 (16)

where n is the size of the vector.
We evaluate the performance of these variants of Cbr and PerRec by computing

their MAP, TRR and NR values.

Result Table 14 presents the means of MAP, TRR and NR for the variants of Cbr and
the corresponding variants of PerRec. We can see that Cbrcor performs better than
the other two variants of Cbr on the three metrics. But the performance differences
are very small. As for PerRec, PerReccos only slightly outperforms PerReceuc and
PerReccor . There results show that using different similarity metrics in Cbr does not
substantially affect the performance of Cbr and PerRec.

123

Automated Software Engineering

Table 14 Means of MAP, TRR and NR for Cbrcos , Cbreuc , Cbrcor , PerReccos , PerReceuc and Per-
Reccor

Metrics Cbrcos Cbreuc Cbrcor PerReccos PerReceuc PerReccor

MAP 0.679 0.679 0.688 0.713 0.708 0.711

Improved 1.3% 1.3% – – 0.7% 0.3%

TRR 4.03 4.03 3.94 3.93 3.98 3.94

Ratio 0.98 0.98 – – 0.99 1.00

NR 0.600 0.600 0.609 0.611 0.608 0.609

Improved 1.5% 1.5% – – 0.5% 0.3%

10 20 30 40 50 60 70 80 90
the amount of training data (%)

45

50

55

60

65

70

75

80

85

90

95

100

#
P
er
m
is
si
on

s

10 20 30 40 50 60 70 80 90
the amount of training data (%)

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

M
A
P
,
N
R

or
IT

R
R

MAP
NR
ITRR

(a) Average numbers of captured
 permissions

(b) MAP, NR and ITRR

Fig. 7 Evaluating PerRec with varying amount of training data

9 Discussion

9.1 Sensitivity study

Our dataset captures 97 Android system permissions, while the total number of system
permissions in Android 7.1 (Android 2017c) is 151. To explore the saturating speed of
our dataset with respect to the captured permission number, we conduct a sensitivity
study with varying amount of training data.

We first shuffled and evenly divided our dataset into tenfold. Then we performed
10 experiments. In the ith experiment, we used the ith fold as the test set, shuffled the
remaining ninefold and selected the first consecutive 1, 2,…, 9 folds to construct 9
training sets which contain different amount of data. 9 models were trained using the
9 training sets, and were evaluated on the same test set in terms of MAP, NR and TRR.
After finishing the 10 experiments, for each amount of training data (e.g., 10% data),
we calculated the average number of distinct permissions captured by the training sets
and the means of MAP, NR and TRR for PerRec.

Figure 7a presents the average numbers of distinct permissions captured by different
amount of training data. We can see that the more training apps we use, the more
permissions the training set can capture. We also plot our evaluative results in Fig. 7b.

123

Automated Software Engineering

5 10 15 201 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19

K

0.50

0.55

0.60

0.65

0.70

M
A
P Sem

PerRec

5 10 15 201 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19

K

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

T
R
R Sem

PerRec

5 10 15 201 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19

K

0.45

0.50

0.55

0.60

0.65

N
R Sem

PerRec

(a) (b)

(c)

Fig. 8 MAP, TRR and NR for Sem and PerRec when using K nearest neighbors in Sem

Different from MAP and NR, the lower TRR is, the better the performance is. To
better visualize our results, we plot inverse Total-Recall Ratio (ITRR, i.e., 1/T RR,
the greater the better) instead of TRR. We can see that MAP, NR and ITRR increases
as the amount of training data increases. But compared to the growth rate of captured
permission numbers, the ascending speed of MAP, NT and ITRR is slow. In addition,
we conduct these experiments by randomly selecting data as training set. In practice,
we can pick a small amount (e.g., 20%) of data which is themost diverse as the training
set. Such strategy may help our approach achieve the same performance as using 90%
of data.

9.2 The number of nearest neighbors in SEM

The Sem component select k nearest neighbors to make recommendations. In our
evaluative experiments, we set k to 10 by default. To explore how the number of
nearest neighbors in Sem affects the recommendation performance, we evaluate the
MAP, TRR and NR for Sem and PerRec with different ks. The results are shown in
Fig. 8. We can see from Fig. 8a that when k is less than 10, the greater k is, the better
performance Sem can achieve in terms of MAP. When k is greater than or equal to
10, the MAP value of Sem becomes stable. Different from MAP, the TRR value of

123

Automated Software Engineering

Sem increases as k increases, but the increasing rate becomes very small after k is
greater than 14. In terms of NR, the performance of Sem increases with k when k
is less than 7, fluctuates when k is between 7 and 16, and then becomes stable. As
for PerRec, its performance is stable on MAP and TRR with k increasing. On NR,
although PerRec’s performance fluctuates when k is less than 16, the performance
differences are small, and the NR values become stable when k is greater than 16.
These results show that when k is small, the more nearest neighbors we consider in
Sem, the better Sem’s performance is. But with k increasing, Sem’s performance will
become stable. Moreover, by combining two components together, PerRec is not
sensitive to the number of nearest neighbors in Sem.

9.3 The customization of PERREC

Although the ranked permission list returned by PerRec usually contains a number of
permissions, in practice, our tool can be easily adapted to only recommend a limited
number of permissions for users to review according to some heuristic rules and the
accuracy of PerRec. For example, when recommending potentially missing permis-
sions for an app, if there are no permissions declared by this app, the front end of our
tool can only display the top 6 permissions returned by PerRec for users to review.
If the app already declares n permissions, our tool can only display the permissions
which are in the top 6 or the top 0.7× n returned permissions but are not declared yet.
We limited the permission number to 6 since in our dataset apps require 5.37 permis-
sions on average, and to 0.7×n due to theMAP value of PerRec on our dataset.When
detecting extraneous permissions for an app, if the app has declared n permissions in
the manifest file, the front end of our tool can only display the permissions which have
been declared by the app but are not in the set of the top 4×n permissions returned by
PerRec. We set such number to 4× n since the TRR value of PerRec on our dataset
is 3.93. These strategies can make our approach more user-friendly.

9.4 False positive results of PERREC

As amining-based approach, a shortcoming of PerRec is that it may recommend false
positive permissions, i.e., predict unnecessary permissions to be required. We do not
claim that PerRec can automatically identify a perfect set of permissions for an app.
Instead, PerRec aims to assist developers, especially new developers, inmaking quick
and accurate decisions aboutwhat permissions their apps should declare.Asmentioned
in Sects. 2.2 and 9.3, our approach can achieve this goal by recommending a limited
number of permissions for developers to review during and after their development.
After reviewing the recommended permissions of our approach, developers may, for
example, find necessary but undeclared permissions or extraneous permissions before
releasing. Therefore, we argue that although there are false positive results, PerRec
is still useful for helping developers.

123

Automated Software Engineering

9.5 Where PERREC performs badly

By investigating our test results, we find two types of apps where PerRec per-
forms badly. First of all, PerRec can not recommend permissions which do not
appear in the training set. If an app requires one or more such permissions, Per-
Rec can not achieve a good performance on it. For example, there is an app named
RemoteDroid (Khan 2018) in our dataset which can stream an Android device’s dis-
play to another Android device. To provide users with this function, RemoteDroid
declares 4 permissions, but two of them, i.e.,CAPTURE_VIDEO_OUTPUT andCAP-
TURE_SECURE_VIDEO_OUTPUT, are not required by any app in the training set.
Therefore, our approach fails to recommend the two permissions for RemoteDroid
and performs badly on it.

In addition, we find PerRec also performs badly on apps requiring unpopular per-
missions. Given an app, the unpopular permissions refer to the permissions which are
seldom required by both training apps and the app’s nearest neighbors. For example,
an app named Applications Info (Majeur 2018) can monitor available information of
all installed apps, and requires only one permission GET_PACKAGE_SIZE. How-
ever, such permission is only required by 2 out of 657 training apps, and none
of the nearest neighbors found by Sem declare it. Hence GET_PACKAGE_SIZE
is an unpopular permission. The rank of GET_PACKAGE_SIZE recommended by
Sem is 94 with 96 permissions used by apps in the training set. Since Cbr recom-
mends permissions through permission profiles learned from all training apps rather
than only similar apps, it performs better than Sem in this case and recommends
GET_PACKAGE_SIZE as the 47th permission. By combining Sem and Cbr, PerRec
recommends GET_PACKAGE_SIZE as the 48th permission, and does not perform
well on Applications Info either.

10 Threats to validity

In this section, we discuss several threats that may affect the validity of our experiment
results.

– Mistakes in our code and experiment bias Although we have checked our code
many times, there may still exist some analytical errors of which we were not
aware.

– Properness of the measures This study makes use of the MAP, TRR and NR to
evaluate the performance of PerRec. MAP is widely used in many studies (Karim
et al. 2016; Bao et al. 2016, 2017; Xia et al. 2014). TRR and NR are proposed by
us according to the properties of this Android permission recommendation task.

– Incorrect permission declaration Android apps may declare permissions incor-
rectly. To mitigate this threat, we build our dataset by only using the Android apps
which either get more than 50 stargazers on GitHub or obtain an average score of
no less than 3.5 and are scored by no less than 10 users in Google Play. We believe
that most of the apps in our dataset are of high quality and declare permissions
correctly.

123

Automated Software Engineering

– Permissions coverage First, PerRec can not recommend permissions which are
not captured by the training set. Second, our approach can not handle dynamic
permissions. Besides, our evaluation makes use of 97 out of 151 Android system
permissions without considering customized permissions. Therefore, the experi-
mental results may not reflect all the system permissions.

– Generalization Our dataset contains a limited number of Android apps and there
may exist bias in our dataset. Thus the relationships between Android APIs and
permissions learned by our approach from our dataset may not generalize to some
new apps. To mitigate this threat, we carefully collect 730 high-quality Android
apps from Google Play and F-Droid to build our dataset. Nonetheless, additional
replication studies on larger high-quality datasets may prove fruitful.

11 Related work

To the best of our knowledge, the most related works to our study are ApMiner pro-
posed byKarim et al. (2016), and APRecCF aswell as APRecT EXT proposed byBao
et al. (2016, 2017). These approaches leverage data mining techniques to recommend
permissions for Android apps. As explained in the motivation (see Sect. 2), ApMiner
combines static analysis and association rule discovery tomake app permission recom-
mendations. APRecCF and APRecT EXT are based on collaborative filtering and text
mining techniques respectively. APRecCF has three variants, and APRecCFcorrelation ,
which is used as one of the baselines in this work, is the one with best performance.
PerRec is also based on data mining techniques. However, PerRec is able to capture
the relationships between APIs to make more accurate recommendations than these
approaches.

Many authors have proposed diverse approaches to build mappings between APIs
and Android app permissions or relate an app’s resources to permissions. Felt et al.
(2011) proposed a tool named Stowaway, which builds an Android permission map
by using automated testing tools on the Android API. Since Stowaway extracts the
permission map for only one version of Android and is now out-of-date, Au et al.
(2012) proposed PScout, a tool which performs static reachability analysis to recover
control dependencies between API calls and permission checks and is able to produce
a permission map for each Android version. Androguard (Desnos and Gueguen 2011)
is a reverse engineering tool which exploits the API to permission mappings extracted
by PScout for permission checking. Nevertheless, Karim et al. (2016) have shown that
ApMiner performs better than PScout and Androguard in terms of app permission rec-
ommendations. Backes et al. (2016) built an Android application framework analysis
tool, namely Axplorer, which can be used to create a permission map of Android,
and improves over PScout in terms of precision.

Our approach is a mining-based approach, which is less sensitive to Android evo-
lution and does not require manual inspection. In order to compare our approach with
the state-of-the-art program-analysis-based approach, we useAxplorer as one of the
baselines. In addition, Vidas et al. (2011) created one-to-many permission-API map-
pings by manually parsing the API documentation. However, the usability of their
work is limited by incomplete Android documentation. Qu et al. (2014) presented a

123

Automated Software Engineering

systemnamedAutoCogwhich applies natural language processing (NLP) techniques
to build links between app descriptions in Android market and permissions. Different
from Qu et al.’s work, our work only leverages API and API descriptions to recom-
mend permissions. Moreover, in practice, not every app provides a comprehensive app
description.

Compared to program-analysis-based approaches, PerRec by using data mining
techniques can capture more contextual information, which contributes much to accu-
rate permission recommendations. Compared to other mining-based approaches, the
technical novelty of our approach is reflected in the following aspects: First, Per-
Rec only takes as input APIs that are called by apps and API descriptions that can
be collected from Android documentation easily. Second, our approach can capture
similarities between APIs, which help to improve the accuracy of app permission rec-
ommendations. In order to capture these similarities, Sem utilizes API descriptions
and semantic similarities between APIs to select nearest neighbors. Given a permis-
sion, its profile constructed by Cbr contains the information about which APIs may
require this permission. Hence similarities between APIs are also captured by permis-
sion profiles in Cbr. Finally, PerRec is a composite framework, which combines two
data mining techniques using data fusion methods to achieve high performance.

12 Conclusion

In this study, we propose a new permission recommendation system named PerRec,
which contains two recommender components, i.e., a semantic-based similarity ana-
lyzer (Sem) and a content-based recommendation approach (Cbr). By leveraging data
fusion methods, PerRec combines the two sets of recommendation scores outputted
by Sem and Cbr to make better Android permission recommendations. According to
our evaluation on 730 Android apps collected from F-Droid and Google Play, Per-
Rec improves the effectiveness of its two components, i.e., Sem and Cbr. Moreover,
PerRec performs better than the state-of-art approaches proposed by Bao et al. (2016,
2017) and Backes et al. (2016) significantly and substantially in terms of MAP, TRR
and NR.

References

Android: Android API reference. https://developer.android.com/reference/classes.html (2017a). Accessed
10 Aug 2017

Android: Android security tips. https://developer.android.com/training/articles/security-tips.html (2017b).
Accessed 10 Aug 2017

Android:Android security tips. https://developer.android.com/reference/android/Manifest.permission.html
(2017c). Accessed 10 Aug 2017

Android: The download page of android SDK. https://developer.android.com/sdk/download.html (2017d).
Accessed 10 Aug 2017

Aslam, J.A., Montague, M.: Models for metasearch. In: Proceedings of the 24th Annual International ACM
SIGIRConference on Research and Development in Information Retrieval, pp. 276–284. ACM (2001)

123

https://developer.android.com/reference/classes.html
https://developer.android.com/training/articles/security-tips.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/sdk/download.html

Automated Software Engineering

Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: analyzing the android permission specification. In:
Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 217–228.
ACM (2012)

Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: The website of PScout. https://github.com/zyrikby/PScout
(2017). Accessed 10 Aug 2017

Backes, M., Bugiel, S., Derr, E., McDaniel, P.D., Octeau, D., Weisgerber, S.: On demystifying the android
application framework: re-visiting android permission specification analysis. In: USENIX Security
Symposium, pp. 1101–1118 (2016)

Backes, M., Bugiel, S., Derr, E., McDaniel, P.D., Octeau, D.,Weisgerber, S.: The website of axplorer. http://
www.axplorer.org/ (2017)

Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval, vol. 463. ACM Press, New York
(1999)

Bao, L., Lo, D., Xia, X., Li, S.: What permissions should this android app request? In: International
Conference on Software Analysis, Testing and Evolution (SATE), pp. 36–41 . IEEE (2016)

Bao, L., Lo, D., Xia, X., Li, S.: Automated android application permission recommendation. Sci. China
Inf. Sci. 60(9), 092,110 (2017). https://doi.org/10.1007/s11432-016-9072-3

Bartel, A., Klein, J., Le Traon, Y., Monperrus, M.: Automatically securing permission-based software
by reducing the attack surface: an application to android. In: Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, pp. 274–277. ACM (2012)

Christopher, D.M., Prabhakar, R., Hinrich, S.: Introduction to information retrieval. Introd. Inf. Retr.
151(177), 5 (2008)

Collard, M.L., Kagdi, H.H., Maletic, J.I.: An XML-based lightweight C++ fact extractor. In: 11th IEEE
International Workshop on Program Comprehension, pp. 134–143 . IEEE (2003)

Desnos, A., Gueguen, G.: Android: from reversing to decompilation. In: Proceedings of Black Hat Abu
Dhabi, pp. 77–101 (2011)

F-Droid: F-Droid. https://f-droid.org (2017). Accessed 10 Aug 2017
Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystified. In: Proceedings of

the 18th ACM Conference on Computer and Communications Security, pp. 627–638. ACM (2011)
Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android permissions: user attention, com-

prehension, and behavior. In: Proceedings of the Eighth Symposium on Usable Privacy and Security,
p. 3. ACM (2012)

Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: The website of stowaway. http://android-permissions.
org/ (2017). Accessed 10 Aug 2017

Fox, E.A., Shaw, J.A.: Combination of Multiple Searches, vol. 243. NIST Special Publication SP, Gaithers-
burg (1994)

Fox, E.A., Koushik, M.P., Shaw, J., Modlin, R., Rao, D., et al.: Combining evidence frommultiple searches.
In: The First Text Retrieval Conference (TREC-1), vol. 500, p. 319. US Department of Commerce,
National Institute of Standards and Technology (1993)

GitHub: The repository of MP3 voice recorder in github. https://github.com/yhirano/
Mp3VoiceRecorderSampleForAndroid (2017). Accessed 10 Aug 2017

Gousios, G., Spinellis, D.: Ghtorrent: Github’s data from a firehose. In: 9th IEEE Working Conference on
Mining Software Repositories (MSR), pp. 12–21. IEEE (2012)

Gousios, G., Spinellis, D.: The website of ghtorrent. http://ghtorrent.org/ (2018). Accessed 10 Aug 2017
Grissom, R.J., Kim, J.J.: Effect Sizes for Research: A Broad Practical Approach. Lawrence Erlbaum Asso-

ciates Publishers, London (2005)
Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommendation tasks. J. Mach.

Learn. Res. 10(Dec), 2935–2962 (2009)
IDC: Smartphone vendor market share. https://www.idc.com/promo/smartphone-market-share/ (2017).

Accessed 10 Aug 2017
Karim, M.Y., Kagdi, H., Di Penta, M.: Mining android apps to recommend permissions. In: IEEE 23rd

International Conference on Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp.
427–437. IEEE (2016)

Khan, U.: RemoteDroid in F-Droid. https://f-droid.org/wiki/page/in.umairkhan.remotedroid (2018).
Accessed 10 Aug 2017

Lucia, D.L., Xia, X.: Fusion fault localizers. In: Proceedings of the 29th ACM/IEEE International Confer-
ence on Automated Software Engineering, pp. 127–138. ACM (2014)

123

https://github.com/zyrikby/PScout
http://www.axplorer.org/
http://www.axplorer.org/
https://doi.org/10.1007/s11432-016-9072-3
https://f-droid.org
http://android-permissions.org/
http://android-permissions.org/
https://github.com/yhirano/Mp3VoiceRecorderSampleForAndroid
https://github.com/yhirano/Mp3VoiceRecorderSampleForAndroid
http://ghtorrent.org/
https://www.idc.com/promo/smartphone-market-share/
https://f-droid.org/wiki/page/in.umairkhan.remotedroid

Automated Software Engineering

Majeur: Applications info in Google Play. https://play.google.com/store/apps/details?id=com.majeur.
applicationsinfo (2018). Accessed 10 Aug 2017

Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Softw. Eng. 3, 371–386 (2010)
Mihalcea, R., Corley, C., Strapparava, C., et al.: Corpus-based and knowledge-based measures of text

semantic similarity. AAAI 6, 775–780 (2006)
Munaiah, N., Kroh, S., Cabrey, C., Nagappan,M.: CuratingGitHub for engineered software projects. Empir.

Softw. Eng. 22(6), 3219–3253 (2017)
Oracle: Java API documentation. https://docs.oracle.com/javase/7/docs/api/ (2017a). Accessed 10 Aug

2017
Oracle: The official website of Java. http://www.oracle.com/technetwork/java/javase/downloads/index.

html (2017b). Accessed 10 Aug 2017
Pedregosa, F., Varoquaux, G., Gramfort, A.,Michel, V., Thirion, B., Grisel, O., Blondel,M., Prettenhofer, P.,

Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct),
2825–2830 (2011)

Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. EMNLP 14,
1532–1543 (2014)

Pennington, J., Socher, R., Manning, C.D.: The website of glove. https://nlp.stanford.edu/projects/glove/
(2017). Accessed 10 Aug 2017

Qu, Z., Rastogi, V., Zhang, X., Chen, Y., Zhu, T., Chen, Z.: Autocog: measuring the description-to-
permission fidelity in android applications. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1354–1365. ACM (2014)

Vidas, T., Christin, N., Cranor, L.: Curbing android permission creep. Proc. Web 2, 91–96 (2011)
Wu, S. (ed.): Ranking-based fusion. In: Data Fusion in Information Retrieval, pp. 135–147. Springer, Berlin

(2012)
Wu,D.J.,Mao, C.H.,Wei, T.E., Lee,H.M.,Wu,K.P.: Droidmat: androidmalware detection throughmanifest

and API calls tracing. In: Seventh Asia Joint Conference on Information Security (Asia JCIS), pp.
62–69. IEEE (2012)

Xia, X., Lo, D., Wang, X., Zhang, C., Wang, X.: Cross-language bug localization. In: Proceedings of the
22nd International Conference on Program Comprehension, pp. 275–278. ACM (2014)

Xu, B., Ye, D., Xing, Z., Xia, X., Chen, G., Li, S.: Predicting semantically linkable knowledge in developer
online forums via convolutional neural network. In: Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pp. 51–62. ACM (2016)

Ye,X., Shen,H.,Ma,X., Bunescu, R., Liu, C.: Fromword embeddings to document similarities for improved
information retrieval in software engineering. In: Proceedings of the 38th International Conference on
Software Engineering, pp. 404–415. ACM (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Zhongxin Liu1 · Xin Xia2 · David Lo3 · John Grundy2

Zhongxin Liu
liu_zx@zju.edu.cn

David Lo
davidlo@smu.edu.sg

John Grundy
john.grundy@monash.edu

1 College of Computer Science and Technology, Zhejiang University, Hangzhou, China

2 Faculty of Information Technology, Monash University, Melbourne, Australia

3 School of Information Systems, Singapore Management University, Singapore, Singapore

123

https://play.google.com/store/apps/details?id=com.majeur.applicationsinfo
https://play.google.com/store/apps/details?id=com.majeur.applicationsinfo
https://docs.oracle.com/javase/7/docs/api/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://nlp.stanford.edu/projects/glove/
http://orcid.org/0000-0002-6302-3256

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	3-2019

	Automatic, highly accurate app permission recommendation
	Zhongxin LIU
	Xin XIA
	David LO
	John GRUNDY
	Citation

	Automatic, highly accurate app permission recommendation
	Abstract
	1 Introduction
	2 Motivation
	2.1 Background
	2.2 Usage scenario
	2.3 Mining-based permission recommendation

	3 PerRec
	4 Semantic-based similarities (Sem)
	4.1 API–API similarities
	4.2 NearestNeighborProcessor
	4.3 PermissionRanker

	5 Content-based recommendation (Cbr)
	5.1 FeatureVectorExtractor
	5.2 PermissionProfileConstructor
	5.3 SimilarityProcessor

	6 PerRecFuser
	6.1 Max
	6.2 Min
	6.3 CombSUM
	6.4 CombANZ
	6.5 CombMNZ
	6.6 Borda count

	7 Implementation
	8 Evaluation
	8.1 Research questions
	8.2 Experimental setup
	8.3 Baseline approaches
	8.3.1 Axplorer
	8.3.2 Cor
	8.3.3 Text

	8.4 Evaluation metrics
	8.4.1 Mean average precision (MAP)
	8.4.2 Necessary recall (NR)
	8.4.3 Total-recall ratio (TRR)

	8.5 Results

	9 Discussion
	9.1 Sensitivity study
	9.2 The number of nearest neighbors in Sem
	9.3 The customization of PerRec
	9.4 False positive results of PerRec
	9.5 Where PerRec performs badly

	10 Threats to validity
	11 Related work
	12 Conclusion
	References

