View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institutional Knowledge at Singapore Management University

Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

5-2019

A large scale study of long-time contributor
prediction for GitHub projects

Lingfeng BAO
Xin XTA

David LO
Singapore Management University, davidlo@smu.edu.sg

Gail C. MURPHY

DOI: https://doi.org/10.1109/TSE.2019.2918536

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Numerical Analysis and Scientific Computing Commons, and the Software
Engineering Commons

Citation

BAO, Lingfeng; XIA, Xin; LO, David; and MURPHY, Gail C.. A large scale study of long-time contributor prediction for GitHub
projects. (2019). IEEE Transactions on Software Engineering. 1-22. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4359

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of

Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://core.ac.uk/display/211018634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TSE.2019.2918536
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

A Large Scale Study of Long-Time Contributor
Prediction for GitHub Projects

Lingfeng Bao, Xin Xia, David Lo, Gail C Murphy

Abstract—The continuous contributions made by long time contributors (LTCs) are a key factor enabling open source software (OSS)
projects to be successful and survival. We study GITHUB as it has a large number of OSS projects and millions of contributors, which
enables the study of the transition from newcomers to LTCs. In this paper, we investigate whether we can effectively predict newcomers
in OSS projects to be LTCs based on their activity data that is collected from GITHUB. We collect GITHUB data from GHTorrent, a
mirror of GITHUB data. We select the most popular 917 projects, which contain 75,046 contributors. We determine a developer as a
LTC of a project if the time interval between his/her first and last commit in the project is larger than a certain time T'. In our experiment,
we use three different settings on the time interval: 1, 2, and 3 years. There are 9,238, 3,968, and 1,577 contributors who become

LTCs of a project in three settings of time interval, respectively.

To build a prediction model, we extract many features from the activities of developers on GITHUB, which group into five dimensions:
developer profile, repository profile, developer monthly activity, repository monthly activity, and collaboration network. We apply several
classifiers including naive Bayes, SVM, decision tree, kNN and random forest. We find that random forest classifier achieves the best
performance with AUCs of more than 0.75 in all three settings of time interval for LTCs. We also investigate the most important features
that differentiate newcomers who become LTCs from newcomers who stay in the projects for a short time. We find that the number of
followers is the most important feature in all three settings of the time interval studied. We also find that the programming language and
the average number of commits contributed by other developers when a newcomer joins a project also belong to the top 10 most
important features in all three settings of time interval for LTCs. Finally, we provide several implications for action based on our analysis

results to help OSS projects retain newcomers.

Index Terms—Long Time Contributor, GitHub, Prediction Model

1 INTRODUCTION

Open source projects can have many contributors, but only
a small proportion of contributors typically stay with the
project for a long time. These long time contributors (LTC)
often contribute a large proportion of code [12], [20], [32],
[42], [48]. They are also usually experienced developers with
extensive project experience who play important roles in the
success of the project. Their contributions not only involve
code writing, but also other tasks, such as solving bug re-
ports, performing code review, understanding requirements
from users, and helping and encouraging newcomers. An
open source project is more likely to be successful if it can
attract talented developers and retain them to be LTCs.
Unfortunately, most of contributors in an open source
project leave the project and do not become LTCs. Foucault
et al. [16] report that more than 80% of developers are either
newcomers or leavers based on the history data of five OSS
projects. There are many factors that can affect a newcomer

e Lingfeng Bao is with the School of Computer & Computing Science,
Zhejiang University City College, China.
E-mail: baolf@zucc.edu.cn

e Xin Xia is with the Faculty of Information Technology, Monash Univer-
sity, Australia.
E-mail: Xin.Xia@monash.edu

e David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore.
E-mail: davidlo@smu.edu.sg

e Gail C Murphy is with the Department of Computer Science, University
of British Columbia, Canada.
E-mail: murphy@cs.ubc.ca

e Xin Xia is the corresponding author.

to an open source project to become a LTC including the
personality and expectation of the contributors, the working
environment of the project, and the difficulty of tasks. These
factors can be potentially inferred from the development
activities of newcomers, which gives us a chance to predict
which newcomers will potentially become LTCs based on
developer activities.

By identifying potential LTCs early, project maintainers
can take some actions to retain more contributors for long
time, such as providing more attention to them or allocating
more resources to them. Additionally, project maintainers
can understand what factors are more important to retain
contributors then improve the project. To predict long-
time contributors, researchers have considered several ap-
proaches. For instance, Zhou and Mockus [76] extracted
multiple factors based on bug report data from two OSS
projects (i.e., Mozilla and Gnome). These factors cover three
dimensions: extent of involvement (the first month activities
of a newcomer from the date they join), macro-climate
(i.e., the overall environment of the project) and micro-
climate (i.e., the environment of individual contributor) of
the project. They built a logistic regression model to predict
whether a newcomer will become a LTC. In this model,
two important features where how a newcomer started
contribution to a project (i.e, by contributing to an existing
issue report or by creating a new report) and whether an
issue report submitted by the newcomer was worked on and
completed by the project. Asri et al. [13] used five long-lived
OSS projects to explore the temporal dynamics of GITHUB
communities by time series analysis. They found that the

number of submitted commits is the most important factor
that affects whether a newcomer shifts to a core OSS team
member. These previous studies consider a small number
of projects and focus on a limited set of information (bug
reports used by Zhou and Mockus, and commits used by
Asri et al.).

In this paper, we take a new direction to predict long-
term contributors by building a prediction model based on
the first month of development activities of newcomers with
a much larger dataset from GITHUB. At present, GITHUB
holds ~67 million OSS repositories involving 24 million de-
Veloper.ﬂ GITHUB also tracks and provides access to several
development activities, including code commits, issues (bug
reports), pull requests, and discussions among developers.
In this study, we select 917 projects from GHTorrent [21]] — a
mirror of Github data — based on developer rating (number
of stars). Similar to the study of Zhou and Mockus [76], we
build a model to predict whether a developer will become
an LTC of a GITHUB project based on his/her first month
development activities in the project. For each contributor
of a project, we extract 63 features based on the GITHUB
data which belong to five dimensions: developer profile,
repository profile, developer monthly activity, repository
monthly activity, and collaboration network. Based on these
extracted features, we investigate four research questions:

RQ1: Can we effectively predict whether a developer will
become a long time contributor of a project soon after
developer submits his or her first commit to the project?
We apply several classic classifiers including naive
Bayes, SVM, decision tree, kNN and random forest. We
evaluate these classifiers on three different settings of time
interval for LTCs and find that we can effectively predict
whether a newcomer will become a LTC based on our
extracted features. The random forest classifier has the best
performance, achieving an AUC score of more than 0.75.

RQ2: How effective are the prediction models built on all
features compared with prediction models built on only a
subset of features?

We build a random forest model based on features in
each dimension. In terms of AUC, the random forest built on
all the features on average improves the random forests built
on features from individual dimensions by a substantial
margin.

RQ3: Which features are most important in identifying
developers who become long time contributors?

We apply correlation and redundancy analysis to better
model the integrated impact of features on newcomers being
LTCs. We find that the number of a contributor’s followers
when he/she joins the project is the most important feature
in all time interval settings. The user age of a developer,
a project’s programming language, the number of commits
and watchers of a project before a newcomer join the project,
the number of commits of a developer and a project in
his/her first month also belong to the top-10 most important
features in all three settings.

RQ4: How effective is our proposed approach in cross-
project, cross-programming-language and cross-project-
size prediction?

1. https:/ /octoverse.github.com/

2

To perform cross-project prediction, we use a single
project to build a model to predict contributors in other
projects, and use all the other projects to build a model
to predict contributors in the remaining one. We also use
two similar setting to perform cross-programming-language
and cross-project-size prediction. The results show that the
models built on our proposed features achieve good perfor-
mance on cross project (programming language or project
size) prediction.

Paper Contributions:

o We build a prediction model based on a total of 63
features to determine whether a newcomer will become
a LTC in a GITHUB project. We extract features based on
a developer’s first month activities in GITHUB, which
belong to five dimensions. We conduct an experiment
on a total of 75,046 developers from 917 projects. The
results show that our approach can effectively predict
whether a newcomer will become a LTC soon after
he/she submits his/her first commit to the project.

o We investigate the most important characteristics that
impact a newcomer being a LTC. We find that the
number of a contributors followers when he/she joins
the project is the most important feature in all time
interval settings. We also find that the models built on
our proposed features achieve good performance on
cross-project (programming language or project size)
prediction.

Paper Structure: The remainder of the paper is structured as
follows. Section [2| describes the experimental setup includ-
ing constructed dataset, extracted features, prediction mod-
els, and evaluation metrics. Section presents the results of
analysis for the three research questions. Section 5| discusses
implications and threats to validity. Section[6|reviews related
work. Section [7] concludes the paper and discusses future
directions.

2 EXPERIMENT SETUP
2.1 Dataset

In our study, we use data from GHTorrent [21]; in partic-
ular, we analyze GHTorrent’s MySQL database snapshot
of 2017/09/01. Table [I| presents the entities considered in
our study. To create a dataset for this study, we first select
top 1,000 projects sorted by the number of their starsﬂ To
select projects that are appropriate for our prediction task,
we exclude projects for which:

1) the programming language of the project is empty
in the GHTorrent database. We make this choice be-
cause these kinds of projects are usually not related
to software development. For example, the project tt
free—programming—booksﬂ is a collection of pro-
gramming books and gitignoreﬁ] is a collection of
.gitignore templates.

2) GITHUB is not used as the issue tracker system. For such
case, we cannot get issue data for the prediction task. For

2. developers can keep track of a Github repository by starring it.
3. https:/ / github.com/EbookFoundation/free-programming-books
4. https:/ / github.com/github/ gitignore

https://octoverse.github.com/
https://github.com/EbookFoundation/free-programming-books
https://github.com/github/gitignore

TABLE 1: GHTorrent schema entities used in our study

Entity Description

projects Github repository

users Github users

commits List of all commits for each project

commit_comments
issues

issue_comments
issue_events
pull_requests
pull_request_comments
pull_request_history
watchers

followers

Comments associated with each commit

Issues that have been recorded for each project
Discussion comments on an issue

List of events on an issue, e.g., opened, assigned, closed
List of pull requests for each project

Discussion comments on a pull request

List of events on a pull request, e.g., opened, merged
Users that have starred (was watched) a project

Users that are following another user

example, the source code of linuxﬂis hosted in GITHUB
but it uses Bugzilla as issue tracker system.

3) the project is forked from another project, which can
be determined by the field fork_from in the table
projects of GHTorrent.

4) the project has been deleted from GITHUB, which can be
determined by the field deleted in the table projects
of GHTorrent.

Applying these criteria results in 917 projects in total in
our dataset. Next, for each project, we consider developers
who have submitted at least one commit as contributors.
For some developers, the time of their first commits in a
project can be earlier than the creation time of their GITHUB
accounts. This might be because some projects are migrated
from other hosting platforms (e.g., GitLab, Bitbucket). We
exclude these developers from the projects as we cannot
obtain all of their activities in the project.

We define a long time contributor (LTC) to be a contrib-
utor who stays with a project for more than a certain time
T, i.e., the time interval between the first commit and the
last commit of a contributor to the project is larger than T
In this study, we use three different settings of time interval
for LTCs: 1, 2, and 3 years.

We follow a right censoring method [40] to discard the
developers who joined within time 7" of the data gathering
time, which is as follows: given a time interval 7" for the defi-
nition of LTC, if the time interval between the first commit of
a developer in a project and the GHTorrent data dump time
(i.e., 2017/09/01) is less than T', we exclude the developer
since we cannot determine whether he/she becomes a LTC
of the project or not. Table[2] presents the number of LTC and
non-LTC for different time interval settings. When the time
interval requirement is increased from 1 year to 3 years,
the total number of contributors decreases from 75,046 to
26,698 as the time period between many contributors joining
a project and the GHTorrent data dump time is less than 3
years. The constructed data set is unbalanced. The ratios of
LTC and non-LTC are approximately 1:7, 1:11, and 1:16 when
the time interval for LTC is 1, 2, and 3 years, respectively.

Table [presents project statistics including contribu-
tors, commits, issues, and pull requests in our constructed
dataset. The projects used in our study have different sizes.
For example, the project homebrew’} which is a package
manager in macOS, has the most contributors (close to

5. https:/ /github.com/torvalds/linux
6. https:/ / github.com/Homebrew /legacy-homebrew

TABLE 2: The number of contributors in different time intervals
for definition of LTC

Year #LTC #non-LTC Total
1 9,238 65,808 75,046
2 3,968 45,384 49,352
3 1,577 25,121 26,698

TABLE 3: The number of projects on different programming
languages.

Lang. #Project | Lang. #Project
JavaScript 358 HTML 30
Java 75 CSs 27
Python 61 PHP 24
Ruby 47 Shell 19
Go 45 CoffeeScript 13
Objective-C 42 VimL 12
C++ 38 TypeScript 11
Swift 35 C# 10
C 30 Others 41

3500 developers) while the project playgrounﬂ which
is a deep learning visualization tool for tensorflow, only
has two contributors. On average, there are 120.544+263.33
(meanztstandard deviation) contributors in a project. The
values of the other three project statistics (i.e., commits,
issues, pull request) also vary very much. On average, the
projects have 3,697+8,628, 1,573+2,628, and 1,124+2,842
commits, issues, and pull requests, respectively. Table
shows the number of projects developed using different
primary programming languages. The 917 projects in our
constructed dataset are developed using 37 different pro-
gramming languages. We aggregate the languages used in a
small number of projects as Others in Table 3| Javascript is
used by the most projects in our dataset (358 projects). Other
widely used languages are Java (75), Python (61), Ruby (47),
and Go (45). This data analysis shows that projects in the
dataset are diverse.

2.2 Studied Features

In this study, to investigate whether a developer will leave
an open source project or be a long time contributor of the
project, we consider data that is related to the developer and
the project in GHTorrent and extract 63 features along five

7. https:/ / github.com/ tensorflow / playground

https://github.com/torvalds/linux
https://github.com/Homebrew/legacy-homebrew
https://github.com/tensorflow/playground

TABLE 4: Project statistics in constructed dataset.

Contributor ~ Commit Issue Pull Request
Total 110,538 3,390,447 1,442,358 1,030,559
Mean 120.54 3,697.33 1,572.91 1,123.84
Median 41 1,013 673 315
Minimum 2 24 1 7
Maximum 3,475 114,576 31,584 34,062
Std. 263.33 8,628.02 2,628.28 2,841.75

dimensions that might affect a newcomer become a LTC. We
describe the meaning of each feature in Table

Developer Profile Dimension. This dimension refers
to features extracted from the overall information of
a newcomer when he/she submits the first commit
to a project, which is dependent on his/her historical
activities in GITHUB. We use eight features to measure
a new developer’s profile — user_age, user_own_repos,
user_watch_repos, user_contribute_repos, user_history_commits,
user_history_issues, user_history_pull_requests, and
user_history_followers.

The wuser_age feature quantifies the number of days
between the registration date of the new developer and
the date that he/she joins a project, which might be
an indicator of his experience. The user_own_repos fea-
ture quantifies the number of project owned by the
new developers, which might indicate his/her use of
GITHUB. Additionally, a repository owned by the new
developer might be forked from other repositories. It
is likely that he/she wants to use or contribute to the
forked repository. The user_watch_repos feature quantifies
the number of repositories watched by the new devel-
oper, which might indicate he/she is interested in these
watched projects. The new developer is more likely to con-
tribute to a watched project than unwatched projects. The
user_contribute_repos feature quantifies the number of repos-
itories that the new developer has contributed to, which
measures his/her experience on contributing to OSS projects
in GITHUB. The user_history_commits, user_history_issues and
user_history_pull_requests features measure the history ac-
tivities in GITHUB. The user_history_followers feature might
be an indicator of the programming and social ability of
the new developer. These features indicate a developer’s
professional experience, activeness in GITHUB and willing-
ness to contribute to OSS projects. An experienced GITHUB
contributor might be more likely to stay with an OSS project
for longer time than a junior GITHUB user. Schilling et
al. reported that the level of development experience and
conversational knowledge is strongly associated with devel-
oper retention [51]. Therefore, we believe that these features
might affect a newcomer to be a LTC of an OSS project.

Repository Profile Dimension. This dimension refers to
features extracted from the overall information of a project
when a newcomer submits his/her first commit, which is
dependent on the historical activities of all contributors in
the project. This dimension is similar to the macro-climate
of the project used in the study of Zhou and Mockuss [76].
Thus, we collect several kinds of project information. First,
we get the main programming language used in the project.
As some languages are complex and difficult to learn, while

4

some (e.g., simple script languages) can be mastered fairly
easily, the difficulty of programming language might be
a barrier of being LTCs for newcomers [63]. Second, for
each project, we count the number of commits before target
developer first commit and their corresponding comments.
The number of commits might indicate the workload and
activeness of the project community, and the comments
are the responses from other developers in the project,
which might indicate the reactivity of the project commu-
nity. Based on the commits, we also get the number of
contributors, and calculate several metrics on the number of
contributors commits including max, min, mean, median, std
(aka. standard deviation) since we want to get a more accurate
distribution of commits in the project history. For example,
although the mean of contributors’ commits indicates the av-
erage workload of the contributors in the project, but if some
core developers contribute the majority of commits, the
mean of commits might be still very high. So, we calculate
these different metrics. These metrics provide insight into
the development style of a project. For example, a higher
standard deviation of the number of contributors commits
means that a small proportion of developers contribute most
of the source code, possibly indicating the difficulty for
newcomers to become core developers of the project. Third,
we count the number of issues and their corresponding
comments and eventsﬂ We also count the number of assigned
and closed issue events, which might show whether the
project developers fix bugs efficiently. Similar to issues, we
count the number of pull requests and their corresponding
comments and events. We also count the merged and closed
events of pull requests. Finally, we count the number of
users who watch the project, which is a proxy for the
popularity of the project. The study of Zhou and Mockus has
shown that popular projects with more contributors have a
higher barrier for newcomers to be LTCs [76].

Developer Monthly Activity Dimension. This dimension
refers to features computed based on the first month
activities of a newcomer since he/she joins the project. The
initial effort that a newcomer spends in an OSS project
is an important indicator of being an LTC [13], [76]. The
activities of a developer in a project can be inferred from the
commiits, issues, and pull requests he/she submitted. Thus,
we compute the number of commits (month_user_commits),
the number of issues (month_user_issues), and the number
of pull requests (month_user_pull_requests), which is
similar to the number of tasks in the study of Zhou and
Mockus [76]]. These three features are direct indicators
of activities of a newcomer in the first month. Zhou and
Mockus used the duration of time between the newcomers
first action until somebody responds to measure the amount
of attention from the community. Meanwhile, we count
the number of received comments for his/her submitted
commits, issues, and pull requests (i.e., the feature
month_user_commit_comments, month_user_issue_comments,
month_user_pull_request_comments). These received
comments represent the feedback from the community,
which indicates how welcoming and inclusive the project
community is [33]. Finally, we count the number of closed
and assigned events for a newcomers submitted issues,

8. please refer to jhttps:/ /developer.github.com/v3/issues/events/

https://developer.github.com/v3/issues/events/

TABLE 5: Features Potentially Affecting Developers Being Long Time Contributors

Demension

Factor Name

Explanation

Developer Profile

user_age

user_own_repos
user_watch_repos
user_contribute_repos
user_history_commits
user_history_pull_requests
user_history_issues
user_history_followers

Number of days between the registration date of the new developer and the date that he/she joins the repository
Number of repositories the new developer owns when he/she joins the repository

Number of repositories the new developer watches when he/she joins the repository

Number of repositories in which the new developer has submitted at least one commit when he/she joins the repository
Number of commits the new developer has submitted when he/she joins the repository

Number of pull requests the new developer has submitted when he/she joins the repository

Number of issues the new developer has submitted when he/she joins the repository

Number of users who follow the new developer

Repository Profile

language

before_repo_commits
before_repo_commit_comments
before_repo_contributors
before_repo_contributor_{S}
before_repo_issues
before_repo_issue_comments
before_repo_issue_events
before_repo_issue_events_closed
before_repo_issue_events_assigned
before_repo_pull_requests
before_repo_pull_request_comments
before_repo_pull_request_history
before_repo_pull_request_history_merged
before_repo_pull_request_history_closed
before_repo_watchers

Main programming language used by the repository

Number of commits that the repository have when the new developer joins

Number of commit comments that the repository has when the new developer joins
Number of contributors that the repository has when the new developer joins

Statistics of commits of contributors in the repository, where S can be max, min, mean, median, and std
Number of issues that the repository have when the new developer joins

Number of issue comments that the repository has when the new developer joins
Number of issue events that the repository has when the new developer joins

Number of issue closed events that the repository has when the new developer joins
Number of issue assigned events that the repository has when the new developer joins
Number of pull requests that the repository has when the new developer joins

Number of pull request comments that the repository has when the new developer joins
Number of pull request events the repository has when the new developer joins
Number of merged pull request events the repository has when the new developer joins
Number of closed pull request events the repository has when the new developer joins
Number of watchers the repository has when the new developer joins

month_user_commits
month_user_commit_comments
month_user_issues
month_user_issue_comments
month_user_issue_events

Number of commits that the new developer submits to the repository in the first month

Number of comments received in the commits submitted by the new developer in the first month

Number of issues that the new developer submits to the repository in the first month

Number of comments received in the issues submitted by the new developer in the first month

Number of events received in the issues that the new developer submits to the repository in the first month

Developer month_user_issue_events_closed Number of closed events received in the issues submitted by the new developer in the first month

Monthly Activity month_user_issue_events_assigned Number of assigned events received in the issues submitted by the new developer in the first month
month_user_pull_requests Number of pull request that the new developer submits to the repository in the first month
month_user_pull_request_comments Number of comments received in the pull request submitted by the new developer in the first month
month_user_pull_request_history Number of pull request events received in the pull request submitted by the new developer in the first month
month_user_pull_request_history_merged = Number of merged pull request events received in the pull request submitted by the new developer in the first month
month_user_pull_request_history_closed Number of closed pull request events received in the pull request submitted by the new developer in the first month
month_repo_commits Number of commits submitted to the repository in the first month that the new developer joins
month_repo_commit_comments Number of comments received in the commits submitted to the repository in the first month
month_repo_contributors Number of contributors who submitted at least one commits to the repository in the first month
month_repo_contributor_{S} Statistics of commits of contributors in the first month, where S can be max, min, mean, median, and std
month_repo_issues Number of issues submitted to the repository in the first month
month_repo_issue_comments Number of comments received in the issues submitted to the repository in the first month

Repository month_repo_issue_events Number of events received in the issues submitted to the repository in the first month

Monthly Activity month_repo_issue_events_closed Number of closed events received in the issues submitted to the repository in the first month

month_repo_issue_events_assigned
month_repo_pull_requests
month_repo_pull_request_comments
month_repo_pull_request_history
month_repo_pull_request_history_merged
month_repo_pull_request_history_closed

Number of assigned events received in the issues submitted to the repository in the first month
Number of pull requests submitted to the repository in the first month

Number of comments received in the pull requests submitted to the repository in the first month
Number of events received in the pull requests submitted to the repository in the first month
Number of merged events received in the pull requests submitted to the repository in the first month
Number of closed events received in the pull requests submitted to the repository in the first month

Collaboration Network

degree_centrality
closeness_centrality
betweenness_centrality
eigenvector_centrality
clustering_coefficient

these metrics are used to quantify a newcomer’s degree of activity in the collaboration structure of an OSS project

and the number of merged and closed events for his/her
submitted pull requests. These features are also similar to
the feature whether or not the first reported issue gets fixed
used in the study of Zhou and Mockus [76]. From these
features, we can know the first experience of a newcomer
in the project. For example, if his/her first pull request is
merged into the main branch of the project, he/she may feel
happy and is willingness to make more contribution for the
project.

Repository Monthly Activity Dimension. This dimen-
sion refers to features based on the first month activi-
ties of all contributors in an OSS project after a new-
comer joins the project. The activities of all contributors
might indicate the working environment in an OSS project.
The working environment and other contributors in a
project might have an important effect on a developers
working experience [4]. Thus, similar to the features in
repository profile dimension and developer monthly ac-
tivity dimension, we first count the number of commits
(month_repo_commits), issues (month_repo_issues), and pull
requests (month_repo_pull_requests) submitted to the project
in the first month that a newcomer joins. These features

gives a first idea about the volume of the development effort
contributed by all contributors in the first month. For these
commits (issues and pull requests), we count the number
of corresponding comments, which might be an indicator of
interactions among th