
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

5-2019

A large scale study of long-time contributor
prediction for GitHub projects
Lingfeng BAO

Xin XIA

David LO
Singapore Management University, davidlo@smu.edu.sg

Gail C. MURPHY

DOI: https://doi.org/10.1109/TSE.2019.2918536

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Numerical Analysis and Scientific Computing Commons, and the Software

Engineering Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
BAO, Lingfeng; XIA, Xin; LO, David; and MURPHY, Gail C.. A large scale study of long-time contributor prediction for GitHub
projects. (2019). IEEE Transactions on Software Engineering. 1-22. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4359

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/211018634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TSE.2019.2918536
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4359&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

1

A Large Scale Study of Long-Time Contributor
Prediction for GitHub Projects

Lingfeng Bao, Xin Xia, David Lo, Gail C Murphy

Abstract—The continuous contributions made by long time contributors (LTCs) are a key factor enabling open source software (OSS)
projects to be successful and survival. We study GITHUB as it has a large number of OSS projects and millions of contributors, which
enables the study of the transition from newcomers to LTCs. In this paper, we investigate whether we can effectively predict newcomers
in OSS projects to be LTCs based on their activity data that is collected from GITHUB. We collect GITHUB data from GHTorrent, a
mirror of GITHUB data. We select the most popular 917 projects, which contain 75,046 contributors. We determine a developer as a
LTC of a project if the time interval between his/her first and last commit in the project is larger than a certain time T . In our experiment,
we use three different settings on the time interval: 1, 2, and 3 years. There are 9,238, 3,968, and 1,577 contributors who become
LTCs of a project in three settings of time interval, respectively.
To build a prediction model, we extract many features from the activities of developers on GITHUB, which group into five dimensions:
developer profile, repository profile, developer monthly activity, repository monthly activity, and collaboration network. We apply several
classifiers including naive Bayes, SVM, decision tree, kNN and random forest. We find that random forest classifier achieves the best
performance with AUCs of more than 0.75 in all three settings of time interval for LTCs. We also investigate the most important features
that differentiate newcomers who become LTCs from newcomers who stay in the projects for a short time. We find that the number of
followers is the most important feature in all three settings of the time interval studied. We also find that the programming language and
the average number of commits contributed by other developers when a newcomer joins a project also belong to the top 10 most
important features in all three settings of time interval for LTCs. Finally, we provide several implications for action based on our analysis
results to help OSS projects retain newcomers.

Index Terms—Long Time Contributor, GitHub, Prediction Model

F

1 INTRODUCTION

Open source projects can have many contributors, but only
a small proportion of contributors typically stay with the
project for a long time. These long time contributors (LTC)
often contribute a large proportion of code [12], [20], [32],
[42], [48]. They are also usually experienced developers with
extensive project experience who play important roles in the
success of the project. Their contributions not only involve
code writing, but also other tasks, such as solving bug re-
ports, performing code review, understanding requirements
from users, and helping and encouraging newcomers. An
open source project is more likely to be successful if it can
attract talented developers and retain them to be LTCs.

Unfortunately, most of contributors in an open source
project leave the project and do not become LTCs. Foucault
et al. [16] report that more than 80% of developers are either
newcomers or leavers based on the history data of five OSS
projects. There are many factors that can affect a newcomer

• Lingfeng Bao is with the School of Computer & Computing Science,
Zhejiang University City College, China.
E-mail: baolf@zucc.edu.cn

• Xin Xia is with the Faculty of Information Technology, Monash Univer-
sity, Australia.
E-mail: Xin.Xia@monash.edu

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore.
E-mail: davidlo@smu.edu.sg

• Gail C Murphy is with the Department of Computer Science, University
of British Columbia, Canada.
E-mail: murphy@cs.ubc.ca

• Xin Xia is the corresponding author.

to an open source project to become a LTC including the
personality and expectation of the contributors, the working
environment of the project, and the difficulty of tasks. These
factors can be potentially inferred from the development
activities of newcomers, which gives us a chance to predict
which newcomers will potentially become LTCs based on
developer activities.

By identifying potential LTCs early, project maintainers
can take some actions to retain more contributors for long
time, such as providing more attention to them or allocating
more resources to them. Additionally, project maintainers
can understand what factors are more important to retain
contributors then improve the project. To predict long-
time contributors, researchers have considered several ap-
proaches. For instance, Zhou and Mockus [76] extracted
multiple factors based on bug report data from two OSS
projects (i.e., Mozilla and Gnome). These factors cover three
dimensions: extent of involvement (the first month activities
of a newcomer from the date they join), macro-climate
(i.e., the overall environment of the project) and micro-
climate (i.e., the environment of individual contributor) of
the project. They built a logistic regression model to predict
whether a newcomer will become a LTC. In this model,
two important features where how a newcomer started
contribution to a project (i.e, by contributing to an existing
issue report or by creating a new report) and whether an
issue report submitted by the newcomer was worked on and
completed by the project. Asri et al. [13] used five long-lived
OSS projects to explore the temporal dynamics of GITHUB
communities by time series analysis. They found that the

2

number of submitted commits is the most important factor
that affects whether a newcomer shifts to a core OSS team
member. These previous studies consider a small number
of projects and focus on a limited set of information (bug
reports used by Zhou and Mockus, and commits used by
Asri et al.).

In this paper, we take a new direction to predict long-
term contributors by building a prediction model based on
the first month of development activities of newcomers with
a much larger dataset from GITHUB. At present, GITHUB
holds ∼67 million OSS repositories involving 24 million de-
velopers1. GITHUB also tracks and provides access to several
development activities, including code commits, issues (bug
reports), pull requests, and discussions among developers.
In this study, we select 917 projects from GHTorrent [21] – a
mirror of Github data – based on developer rating (number
of stars). Similar to the study of Zhou and Mockus [76], we
build a model to predict whether a developer will become
an LTC of a GITHUB project based on his/her first month
development activities in the project. For each contributor
of a project, we extract 63 features based on the GITHUB
data which belong to five dimensions: developer profile,
repository profile, developer monthly activity, repository
monthly activity, and collaboration network. Based on these
extracted features, we investigate four research questions:

RQ1: Can we effectively predict whether a developer will
become a long time contributor of a project soon after
developer submits his or her first commit to the project?

We apply several classic classifiers including naive
Bayes, SVM, decision tree, kNN and random forest. We
evaluate these classifiers on three different settings of time
interval for LTCs and find that we can effectively predict
whether a newcomer will become a LTC based on our
extracted features. The random forest classifier has the best
performance, achieving an AUC score of more than 0.75.

RQ2: How effective are the prediction models built on all
features compared with prediction models built on only a
subset of features?

We build a random forest model based on features in
each dimension. In terms of AUC, the random forest built on
all the features on average improves the random forests built
on features from individual dimensions by a substantial
margin.

RQ3: Which features are most important in identifying
developers who become long time contributors?

We apply correlation and redundancy analysis to better
model the integrated impact of features on newcomers being
LTCs. We find that the number of a contributor’s followers
when he/she joins the project is the most important feature
in all time interval settings. The user age of a developer,
a project’s programming language, the number of commits
and watchers of a project before a newcomer join the project,
the number of commits of a developer and a project in
his/her first month also belong to the top-10 most important
features in all three settings.

RQ4: How effective is our proposed approach in cross-
project, cross-programming-language and cross-project-
size prediction?

1. https://octoverse.github.com/

To perform cross-project prediction, we use a single
project to build a model to predict contributors in other
projects, and use all the other projects to build a model
to predict contributors in the remaining one. We also use
two similar setting to perform cross-programming-language
and cross-project-size prediction. The results show that the
models built on our proposed features achieve good perfor-
mance on cross project (programming language or project
size) prediction.

Paper Contributions:
• We build a prediction model based on a total of 63

features to determine whether a newcomer will become
a LTC in a GITHUB project. We extract features based on
a developer’s first month activities in GITHUB, which
belong to five dimensions. We conduct an experiment
on a total of 75,046 developers from 917 projects. The
results show that our approach can effectively predict
whether a newcomer will become a LTC soon after
he/she submits his/her first commit to the project.

• We investigate the most important characteristics that
impact a newcomer being a LTC. We find that the
number of a contributors followers when he/she joins
the project is the most important feature in all time
interval settings. We also find that the models built on
our proposed features achieve good performance on
cross-project (programming language or project size)
prediction.

Paper Structure: The remainder of the paper is structured as
follows. Section 2 describes the experimental setup includ-
ing constructed dataset, extracted features, prediction mod-
els, and evaluation metrics. Section 3 presents the results of
analysis for the three research questions. Section 5 discusses
implications and threats to validity. Section 6 reviews related
work. Section 7 concludes the paper and discusses future
directions.

2 EXPERIMENT SETUP

2.1 Dataset

In our study, we use data from GHTorrent [21]; in partic-
ular, we analyze GHTorrent’s MySQL database snapshot
of 2017/09/01. Table 1 presents the entities considered in
our study. To create a dataset for this study, we first select
top 1,000 projects sorted by the number of their stars2. To
select projects that are appropriate for our prediction task,
we exclude projects for which:
1) the programming language of the project is empty

in the GHTorrent database. We make this choice be-
cause these kinds of projects are usually not related
to software development. For example, the project tt
free-programming-books3 is a collection of pro-
gramming books and gitignore4 is a collection of
.gitignore templates.

2) GITHUB is not used as the issue tracker system. For such
case, we cannot get issue data for the prediction task. For

2. developers can keep track of a Github repository by starring it.
3. https://github.com/EbookFoundation/free-programming-books
4. https://github.com/github/gitignore

https://octoverse.github.com/
https://github.com/EbookFoundation/free-programming-books
https://github.com/github/gitignore

3

TABLE 1: GHTorrent schema entities used in our study

Entity Description

projects Github repository
users Github users
commits List of all commits for each project
commit comments Comments associated with each commit
issues Issues that have been recorded for each project
issue comments Discussion comments on an issue
issue events List of events on an issue, e.g., opened, assigned, closed
pull requests List of pull requests for each project
pull request comments Discussion comments on a pull request
pull request history List of events on a pull request, e.g., opened, merged
watchers Users that have starred (was watched) a project
followers Users that are following another user

example, the source code of linux5 is hosted in GITHUB
but it uses Bugzilla as issue tracker system.

3) the project is forked from another project, which can
be determined by the field fork_from in the table
projects of GHTorrent.

4) the project has been deleted from GITHUB, which can be
determined by the field deleted in the table projects
of GHTorrent.

Applying these criteria results in 917 projects in total in
our dataset. Next, for each project, we consider developers
who have submitted at least one commit as contributors.
For some developers, the time of their first commits in a
project can be earlier than the creation time of their GITHUB
accounts. This might be because some projects are migrated
from other hosting platforms (e.g., GitLab, Bitbucket). We
exclude these developers from the projects as we cannot
obtain all of their activities in the project.

We define a long time contributor (LTC) to be a contrib-
utor who stays with a project for more than a certain time
T , i.e., the time interval between the first commit and the
last commit of a contributor to the project is larger than T .
In this study, we use three different settings of time interval
for LTCs: 1, 2, and 3 years.

We follow a right censoring method [40] to discard the
developers who joined within time T of the data gathering
time, which is as follows: given a time interval T for the defi-
nition of LTC, if the time interval between the first commit of
a developer in a project and the GHTorrent data dump time
(i.e., 2017/09/01) is less than T , we exclude the developer
since we cannot determine whether he/she becomes a LTC
of the project or not. Table 2 presents the number of LTC and
non-LTC for different time interval settings. When the time
interval requirement is increased from 1 year to 3 years,
the total number of contributors decreases from 75,046 to
26,698 as the time period between many contributors joining
a project and the GHTorrent data dump time is less than 3
years. The constructed data set is unbalanced. The ratios of
LTC and non-LTC are approximately 1:7, 1:11, and 1:16 when
the time interval for LTC is 1, 2, and 3 years, respectively.

Table 4 presents project statistics including contribu-
tors, commits, issues, and pull requests in our constructed
dataset. The projects used in our study have different sizes.
For example, the project homebrew6, which is a package
manager in macOS, has the most contributors (close to

5. https://github.com/torvalds/linux
6. https://github.com/Homebrew/legacy-homebrew

TABLE 2: The number of contributors in different time intervals
for definition of LTC

Year #LTC #non-LTC Total

1 9,238 65,808 75,046
2 3,968 45,384 49,352
3 1,577 25,121 26,698

TABLE 3: The number of projects on different programming
languages.

Lang. #Project Lang. #Project

JavaScript 358 HTML 30
Java 75 CSS 27
Python 61 PHP 24
Ruby 47 Shell 19
Go 45 CoffeeScript 13
Objective-C 42 VimL 12
C++ 38 TypeScript 11
Swift 35 C# 10
C 30 Others 41

3500 developers) while the project playground7, which
is a deep learning visualization tool for tensorflow, only
has two contributors. On average, there are 120.54±263.33
(mean±standard deviation) contributors in a project. The
values of the other three project statistics (i.e., commits,
issues, pull request) also vary very much. On average, the
projects have 3,697±8,628, 1,573±2,628, and 1,124±2,842
commits, issues, and pull requests, respectively. Table 3
shows the number of projects developed using different
primary programming languages. The 917 projects in our
constructed dataset are developed using 37 different pro-
gramming languages. We aggregate the languages used in a
small number of projects as Others in Table 3. Javascript is
used by the most projects in our dataset (358 projects). Other
widely used languages are Java (75), Python (61), Ruby (47),
and Go (45). This data analysis shows that projects in the
dataset are diverse.

2.2 Studied Features

In this study, to investigate whether a developer will leave
an open source project or be a long time contributor of the
project, we consider data that is related to the developer and
the project in GHTorrent and extract 63 features along five

7. https://github.com/tensorflow/playground

https://github.com/torvalds/linux
https://github.com/Homebrew/legacy-homebrew
https://github.com/tensorflow/playground

4

TABLE 4: Project statistics in constructed dataset.

Contributor Commit Issue Pull Request

Total 110,538 3,390,447 1,442,358 1,030,559
Mean 120.54 3,697.33 1,572.91 1,123.84
Median 41 1,013 673 315
Minimum 2 24 1 7
Maximum 3,475 114,576 31,584 34,062
Std. 263.33 8,628.02 2,628.28 2,841.75

dimensions that might affect a newcomer become a LTC. We
describe the meaning of each feature in Table 5.

Developer Profile Dimension. This dimension refers
to features extracted from the overall information of
a newcomer when he/she submits the first commit
to a project, which is dependent on his/her historical
activities in GITHUB. We use eight features to measure
a new developer’s profile – user age, user own repos,
user watch repos, user contribute repos, user history commits,
user history issues, user history pull requests, and
user history followers.

The user age feature quantifies the number of days
between the registration date of the new developer and
the date that he/she joins a project, which might be
an indicator of his experience. The user own repos fea-
ture quantifies the number of project owned by the
new developers, which might indicate his/her use of
GITHUB. Additionally, a repository owned by the new
developer might be forked from other repositories. It
is likely that he/she wants to use or contribute to the
forked repository. The user watch repos feature quantifies
the number of repositories watched by the new devel-
oper, which might indicate he/she is interested in these
watched projects. The new developer is more likely to con-
tribute to a watched project than unwatched projects. The
user contribute repos feature quantifies the number of repos-
itories that the new developer has contributed to, which
measures his/her experience on contributing to OSS projects
in GITHUB. The user history commits, user history issues and
user history pull requests features measure the history ac-
tivities in GITHUB. The user history followers feature might
be an indicator of the programming and social ability of
the new developer. These features indicate a developer’s
professional experience, activeness in GITHUB and willing-
ness to contribute to OSS projects. An experienced GITHUB
contributor might be more likely to stay with an OSS project
for longer time than a junior GITHUB user. Schilling et
al. reported that the level of development experience and
conversational knowledge is strongly associated with devel-
oper retention [51]. Therefore, we believe that these features
might affect a newcomer to be a LTC of an OSS project.

Repository Profile Dimension. This dimension refers to
features extracted from the overall information of a project
when a newcomer submits his/her first commit, which is
dependent on the historical activities of all contributors in
the project. This dimension is similar to the macro-climate
of the project used in the study of Zhou and Mockuss [76].
Thus, we collect several kinds of project information. First,
we get the main programming language used in the project.
As some languages are complex and difficult to learn, while

some (e.g., simple script languages) can be mastered fairly
easily, the difficulty of programming language might be
a barrier of being LTCs for newcomers [63]. Second, for
each project, we count the number of commits before target
developer first commit and their corresponding comments.
The number of commits might indicate the workload and
activeness of the project community, and the comments
are the responses from other developers in the project,
which might indicate the reactivity of the project commu-
nity. Based on the commits, we also get the number of
contributors, and calculate several metrics on the number of
contributors commits including max, min, mean, median, std
(aka. standard deviation) since we want to get a more accurate
distribution of commits in the project history. For example,
although the mean of contributors’ commits indicates the av-
erage workload of the contributors in the project, but if some
core developers contribute the majority of commits, the
mean of commits might be still very high. So, we calculate
these different metrics. These metrics provide insight into
the development style of a project. For example, a higher
standard deviation of the number of contributors commits
means that a small proportion of developers contribute most
of the source code, possibly indicating the difficulty for
newcomers to become core developers of the project. Third,
we count the number of issues and their corresponding
comments and events8. We also count the number of assigned
and closed issue events, which might show whether the
project developers fix bugs efficiently. Similar to issues, we
count the number of pull requests and their corresponding
comments and events. We also count the merged and closed
events of pull requests. Finally, we count the number of
users who watch the project, which is a proxy for the
popularity of the project. The study of Zhou and Mockus has
shown that popular projects with more contributors have a
higher barrier for newcomers to be LTCs [76].

Developer Monthly Activity Dimension. This dimension
refers to features computed based on the first month
activities of a newcomer since he/she joins the project. The
initial effort that a newcomer spends in an OSS project
is an important indicator of being an LTC [13], [76]. The
activities of a developer in a project can be inferred from the
commits, issues, and pull requests he/she submitted. Thus,
we compute the number of commits (month user commits),
the number of issues (month user issues), and the number
of pull requests (month user pull requests), which is
similar to the number of tasks in the study of Zhou and
Mockus [76]. These three features are direct indicators
of activities of a newcomer in the first month. Zhou and
Mockus used the duration of time between the newcomers
first action until somebody responds to measure the amount
of attention from the community. Meanwhile, we count
the number of received comments for his/her submitted
commits, issues, and pull requests (i.e., the feature
month user commit comments, month user issue comments,
month user pull request comments). These received
comments represent the feedback from the community,
which indicates how welcoming and inclusive the project
community is [33]. Finally, we count the number of closed
and assigned events for a newcomers submitted issues,

8. please refer to https://developer.github.com/v3/issues/events/

https://developer.github.com/v3/issues/events/

5

TABLE 5: Features Potentially Affecting Developers Being Long Time Contributors

Demension Factor Name Explanation

Developer Profile

user age Number of days between the registration date of the new developer and the date that he/she joins the repository
user own repos Number of repositories the new developer owns when he/she joins the repository
user watch repos Number of repositories the new developer watches when he/she joins the repository
user contribute repos Number of repositories in which the new developer has submitted at least one commit when he/she joins the repository
user history commits Number of commits the new developer has submitted when he/she joins the repository
user history pull requests Number of pull requests the new developer has submitted when he/she joins the repository
user history issues Number of issues the new developer has submitted when he/she joins the repository
user history followers Number of users who follow the new developer

Repository Profile

language Main programming language used by the repository
before repo commits Number of commits that the repository have when the new developer joins
before repo commit comments Number of commit comments that the repository has when the new developer joins
before repo contributors Number of contributors that the repository has when the new developer joins
before repo contributor {S} Statistics of commits of contributors in the repository, where S can be max, min, mean, median, and std
before repo issues Number of issues that the repository have when the new developer joins
before repo issue comments Number of issue comments that the repository has when the new developer joins
before repo issue events Number of issue events that the repository has when the new developer joins
before repo issue events closed Number of issue closed events that the repository has when the new developer joins
before repo issue events assigned Number of issue assigned events that the repository has when the new developer joins
before repo pull requests Number of pull requests that the repository has when the new developer joins
before repo pull request comments Number of pull request comments that the repository has when the new developer joins
before repo pull request history Number of pull request events the repository has when the new developer joins
before repo pull request history merged Number of merged pull request events the repository has when the new developer joins
before repo pull request history closed Number of closed pull request events the repository has when the new developer joins
before repo watchers Number of watchers the repository has when the new developer joins

Developer
Monthly Activity

month user commits Number of commits that the new developer submits to the repository in the first month
month user commit comments Number of comments received in the commits submitted by the new developer in the first month
month user issues Number of issues that the new developer submits to the repository in the first month
month user issue comments Number of comments received in the issues submitted by the new developer in the first month
month user issue events Number of events received in the issues that the new developer submits to the repository in the first month
month user issue events closed Number of closed events received in the issues submitted by the new developer in the first month
month user issue events assigned Number of assigned events received in the issues submitted by the new developer in the first month
month user pull requests Number of pull request that the new developer submits to the repository in the first month
month user pull request comments Number of comments received in the pull request submitted by the new developer in the first month
month user pull request history Number of pull request events received in the pull request submitted by the new developer in the first month
month user pull request history merged Number of merged pull request events received in the pull request submitted by the new developer in the first month
month user pull request history closed Number of closed pull request events received in the pull request submitted by the new developer in the first month

Repository
Monthly Activity

month repo commits Number of commits submitted to the repository in the first month that the new developer joins
month repo commit comments Number of comments received in the commits submitted to the repository in the first month
month repo contributors Number of contributors who submitted at least one commits to the repository in the first month
month repo contributor {S} Statistics of commits of contributors in the first month, where S can be max, min, mean, median, and std
month repo issues Number of issues submitted to the repository in the first month
month repo issue comments Number of comments received in the issues submitted to the repository in the first month
month repo issue events Number of events received in the issues submitted to the repository in the first month
month repo issue events closed Number of closed events received in the issues submitted to the repository in the first month
month repo issue events assigned Number of assigned events received in the issues submitted to the repository in the first month
month repo pull requests Number of pull requests submitted to the repository in the first month
month repo pull request comments Number of comments received in the pull requests submitted to the repository in the first month
month repo pull request history Number of events received in the pull requests submitted to the repository in the first month
month repo pull request history merged Number of merged events received in the pull requests submitted to the repository in the first month
month repo pull request history closed Number of closed events received in the pull requests submitted to the repository in the first month

Collaboration Network

degree centrality these metrics are used to quantify a newcomer’s degree of activity in the collaboration structure of an OSS project
closeness centrality
betweenness centrality
eigenvector centrality
clustering coefficient

and the number of merged and closed events for his/her
submitted pull requests. These features are also similar to
the feature whether or not the first reported issue gets fixed
used in the study of Zhou and Mockus [76]. From these
features, we can know the first experience of a newcomer
in the project. For example, if his/her first pull request is
merged into the main branch of the project, he/she may feel
happy and is willingness to make more contribution for the
project.

Repository Monthly Activity Dimension. This dimen-
sion refers to features based on the first month activi-
ties of all contributors in an OSS project after a new-
comer joins the project. The activities of all contributors
might indicate the working environment in an OSS project.
The working environment and other contributors in a
project might have an important effect on a developers
working experience [4]. Thus, similar to the features in
repository profile dimension and developer monthly ac-
tivity dimension, we first count the number of commits
(month repo commits), issues (month repo issues), and pull
requests (month repo pull requests) submitted to the project
in the first month that a newcomer joins. These features

gives a first idea about the volume of the development effort
contributed by all contributors in the first month. For these
commits (issues and pull requests), we count the number
of corresponding comments, which might be an indicator of
interactions among the project contributors. We also count
the number of closed and assigned events for the issues and
the number of merged and closed events for the pull requests
submitted to the project in the first month that a newcomer
joins. These features might be indicators of responsiveness
of the project community. Finally, we count the number
of contributors (month repo contributors), which is similar
to the feature project sociality (measured by the number of
participants in the first month) in the study of Zhou and
Mockus [76]. This feature might indicate the activeness of
the project community. Additionally, we also compute five
kinds of statistics on the number of commits of contributors:
max, min, mean, median, std, which is similar to repository
profile dimension. However, these statistics indicate the cur-
rent state of the project in the first month that a newcomer
joins, while the statistics in repository profile dimension
indicate the history state of the project. Additionally, Zhou
and Mockus also use the minimum number of issues in

6

network to measure the performance of peers [76].

Collaboration Network Dimension. This dimension refers
to features based on collaboration activities between a new-
comer and other contributors in an OSS project in the first
month after he/she joins the project. Zhou and Mockus also
constructed the collaboration network based on bug reports
and calculated several features including the size of a persons
workflow peer group and the social clustering (referred to be
the amount of replication among the workflow networks
of peers) [76]. The underlying assumption is that if a new-
comer is in a more central position in the collaboration struc-
ture of the OSS project (i.e., he/she has more interactions
with different contributors), it is more likely that he/she has
good working experience. Furthermore, a central position in
a collaboration network may indicate a better environment
for newcomers to learn and become more effective, which
can increase his or her work satisfaction and willingness
to stay [11], [33], [57]. Given a month of activity data of a
project, we build a collaboration network using the com-
ments associated with commits, issues, and pull requests.
Then, we extract features of the newcomers corresponding
node in the network. In particular, given a project and a
newcomer, we first collect all the commits, issues, and pull
requests of the projects and their corresponding comments
for the first month since the newcomer submit his/her
first commit. Then, we build a graph based on creators of
commits/issues/pull requests and the developers who pro-
vide comments on the corresponding commits/issues/pull
requests. In the graph, each node denotes a developer, and
for each discussion on commits/issues/pull requests, we
create a directed edge from each participant to its creator.
Subsequently, we compute five social network features that
are proposed by Zanettiet al. [74] using the Python package
NetworkX:

• degree centrality: the number of links incident upon a node
(i.e., the number of ties that a node has), which can be can
be interpreted either in terms of the potential impact of
a node on other nodes or as the amount of information
available to a node. The value of degree centrality is nor-
malized by dividing the number of nodes in the graph.

• closeness centrality: the inverse of sum of all distances of a
node to all the other nodes [17]. It quantifies the degree
to which a node is close to all other nodes in a network.
A higher value of closeness centrality of a new developers
node indicates that he/she is closer to all other developers
in the collaboration network.

• clustering centrality: the ratio between the number of tri-
angles connected to a node and the number of triples that
are centered around it, where a triple centered around it
is a set of two edges that are connected to the node [50].
This feature quantifies the degree to which nodes in the
network tend to cluster together. A higher value of clus-
tering centrality of a new developer indicates that he/she
has higher dense of collaboration activities with his/her
neighbors in the network.

• betweenness centrality: the total number of shortest paths
between all possible pairs of nodes that pass through that
node [8]. A higher value of betweenness centrality of a new
developers node indicates that he/she has more control
on the collaboration network since more information will

pass through his/her node.
• eigenvector centrality: a network metric that assigns scores

to nodes in a network based on the concept that connect-
ing to high centrality nodes increases the nodes central-
ity [6]. The eigenvector centrality of a node is recursively
computed by the centrality of the nodes direct neighbors
as shown in Formula 1, in which DN(ni) denotes the set
of direct neighbors of the node ni and λ is the largest
eigenvalue of the adjacency matrix of the network:

Ev(ni) =
1

λ

∑
nj∈DN(ni)

Ev(nj) (1)

2.3 Prediction Model

We study different classifiers that are widely used in soft-
ware engineering research [29], [31], [34], [36], [45], includ-
ing Naive Bayes, Support Vector Machine (SVM), Decision
Tree, K-Nearest Neighbor (kNN), and Random Forest.

Naive Bayes: Naive Bayes classifiers [24] are a family of
simple probabilistic classifiers based on applying Bayes’
theorem with strong (naive) independence assumptions be-
tween the features. The major advantage of naive Bayes
classification is its short computational training time, since
it assumes conditional independence.

SVM: Support Vector machine (SVM) [67] is developed from
statistical learning theory, and it constructs a hyperplane or
a set of hyperplanes in a high- or infinite-dimensional space,
which are used for classification. SVM selects a small num-
ber of critical boundary instances as support vectors for each
label (in our case, the labels are not-retained and retained), and
builds a linear or non-linear discriminant function to form
decision boundaries with the principle of maximizing the
margins among training instances belonging to the different
labels.

Decision Tree: C4.5 is one of the most popular decision tree
algorithms [24]. A decision tree contains nodes and edges;
each node in the decision tree represents a factor in the
input factor space, while each branch in the decision tree
represents a condition value for the corresponding node. A
decision tree algorithm classifies data points by comparing
their factor with various conditions captured in the nodes
and branches of the tree.

K-Nearest Neighbor: K-Nearest Neighbor is an instance-
based algorithm for supervised learning, which delays the
induction or generalization process until classification is
performed [24]. We use the Euclidean distance as the dis-
tance metric, and since the performance of kNN may be
impacted by different values of k, we set k from 1 to 10, and
report the best performance (in terms of F1-score) among
the 10 values of k.

Random Forest: Random forest is a kind of combination
approach, which is specifically designed for the decision
tree classifier [9]. The general idea behind random forest
is to combine multiple decision trees for prediction. Each
decision tree is built based on the value of an independent
set of random vectors. Random forest adopts the mode of
the class labels output by individual trees.

7

2.4 Evaluation Metrics
We use AUC, namely Area Under the receiver operating
characteristic (ROC) Curve, to evaluate the effectiveness of
the proposed prediction models. The ROC curve is created
by plotting the true positive rate (TPR) against the false
positive rate (FPR) across all thresholds. The value of AUC
ranges from 0 to 1. The higher an AUC value, the better
the performance of a classifier. Previous studies consider an
AUC value of 0.7 as a promising performance score [36],
[44]. For the random classifier, the values of AUC are
equal to 0.5 regardless of class distribution [15]. AUC has
been widely used in many software engineering research,
e.g. [34], [36], [44], [49].

We choose AUC as the performance measure for several
reasons:
• Unlike threshold-dependent measures (e.g., F1-measures)

that often rely on a probability threshold (e.g., 0.5) for
constructing a confusion matrix, the AUC is an inde-
pendent threshold measure, which considers all possi-
ble thresholds. For threshold-dependent measures, it is
difficult to determine an appropriate threshold in some
cases. Therefore, we use AUC to avoid the threshold
setting problem. Several researchers also suggest to use
threshold-independent measures (e.g., AUC) instead of
threshold-dependent measures (e.g. F1-measures). For ex-
ample, Lessmann et al. recommended AUC as the pri-
mary accuracy indicator for comparative studies [36];
Tantithamthavorn and Hassan suggested to use AUC to
avoid conflicting conclusions [58].

• Due to class imbalance being observed in our dataset,
the AUC is a better choice, because it is more robust
towards class distribution than other measures such as
F1-measure. Using F1-measure to compare two prediction
models in unbalanced dataset is unfair [44], [46], while
AUC is insensitive to class distribution [36].

• The AUC has a clear statistical interpretation [36]. In our
context, it evaluates the possibility that a classifier ranks
a randomly chosen developer who becomes a LTC higher
than a randomly chosen developer who does not become
a LTC. Since our motivation is to identify LTC, the AUC
is an appropriate measure to evaluate the performance of
the proposed prediction models in our study.

3 EXPERIMENT RESULTS

To investigate whether we can predict a newcomer in a open
source community to be a long time contributor based on
our proposed features, we investigate four research ques-
tions.

RQ1 Can we effectively predict whether a developer will become a
long time contributor of a project soon after developer submits his
or her first commit to the project?

Motivation: Attracting and retaining new developers is
important to the continuous development of an open source
project. We would like to effectively predict whether de-
velopers will be long time contributors of a open source
project soon after they submit the first commit to the project
when there is still time to proactively create an environment
to raise the probability of creating a LTC. We use our
proposed features based on the activities of developers and

apply different prediction models to investigate whether
it is feasible to build accurate models that help to predict
whether developers will become LTCs.

Approach: We use the implementations of the prediction
models described in Section 2.4 provided as part of the Weka
tool [23].

In our analysis, we combine all developers of the 917
projects as a whole dataset and keep the time order of
joining the projects amongst developers. These developers
are first sorted in chronological order of the time on which a
developer joins the project, and the list is then divided into
10 non-overlapping windows of equal sizes. We use the first
n windows as the training data and the remaining 10 − n
windows as the testing data (n from 1 to 9). Finally, we mea-
sure the evaluation performance by AUC. Since the classi-
fiers used in this study have configurable parameters, which
might have impact on their performance on predicting
LTCs [19], [30], [38], [39], we follow the parameter optimiza-
tion method of Tantithamthavorn et al. [59] to identify the
optimal settings for the classifiers used in our study. In many
defection prediction studies [35], [36], [59], researchers have
investigated the effectiveness of many classifiers techniques
with different parameter settings. Thus, we believe that the
parameter settings used in these studies are enough for the
classifiers techniques used in this study for LTC prediction.
Table 6 presents the candidate parameter settings for these
classification techniques. For SVM and decision tree, there
are several candidate techniques. SVM can use two kinds of
kernel, i.e., linear kernel and Radial basisi function kernel.
Decision tree has three classification techniques including
J48, LMT, and CART. We repeat the evaluation for each
parameter setting, then report the highest averaged AUCs
with the most optimal parameter settings.

In this research question, we use three time interval
settings to decide LTC: 1, 2, and 3 years. Thus, we repeat the
evaluation for each setting. We also choose a baseline model,
i.e., random prediction, to compare our proposed prediction
models with. For random prediction, it randomly predicts
developers being long time contributors of a project. The
AUC of the random prediction model is 0.5 since it is a
random classifier with two possible outcomes.

Results: Table 7, 8 and 9 present the results of AUC of
each prediction model with parameter optimization for time
interval of 1, 2 and 3 years, respectively. In terms of AUC,
random forest achieves the best performance because its
AUCs on all settings are larger than those of the other
prediction models. The average AUCs of random forest
considering a time interval of 1, 2 and 3 years for LTC
prediction are 0.768, 0.783, and 0.802, respectively. Except
when the training data is the first window of developers and
the time interval to decide LTC is 2 and 3 years (see Table 8
and 9), all AUCs of the random forest model are larger than
0.7, which indicates promising performance. On the other
hand, other classifiers also achieve acceptable performance,
i.e., their averaged AUCs are close or larger than 0.7.

Table 10 presents the parameter settings for the best per-
formance of each prediction model. For KNN and random
forest, the prediction models achieve the best performance
in the same parameter setting for time interval of 1, 2, and
3 years. On the other hand, the best performance of the

8

TABLE 6: The classification techniques with different parameters.

Classifier Classification Techniques Parameter Parameter Description Studied classification tech-
niques with their default (in
bold) and candidate param-
eter values

Naive Bayes Naive Bayes (NB) Laplace Correction [N] Laplace correction (0 indicates no cor-
rection).

NB = {0}

Distribution Type [L] TRUE indicates a kernel density estima-
tion, while False indicates a normal density
estimation.

NB = {TRUE, FALSE}

SVM SVM with linear kernel
(SVMLinear), SVM with
Radial basis function kernel
(SVMRadial)

Sigma [N] The width of the Gaussian kernels
. SVMRadial={0.1, 0.3, 0.5, 0.7,

0.9}

Cost [N] A penalty factor to be applied to the
number of errors.

SVMRadial={0.25, 0.5, 1, 2, 4}
SVMLinear={1}

KNN k-Neareast Neighbour
(KNN)

#Cluster [N] The number of non-overlapping clus-
ters to produce.

KNN={1, 5, 9, 13, 17}

Decision Tree
C4.5-like trees (J48), Logistic
Model Trees (LMT),
Classification And
Regression Trees (CART)

Complexity [N] A penalty factor that is applied to the
error rate of the terminal nodes of the tree. CART={0.0001, 0.001, 0.01,

0.1, 0.5}

Confidence [N] The confidence factor that are used for
pruning (smaller values incur more prun-
ing).

J48={0.25}

#Iterations [N] The number of iterations. LMT={1, 21, 41, 61, 81}

Random Forest Random Forest (RF) #Trees [N] The number of classification trees. RF={10, 20, 30, 40, 50, 60, 70,
80, 90, 100}

[N] denotes a numeric value; [L] denotes a logical value.

TABLE 7: AUCs of each prediction model for LTC with 1 year
of time interval.

#Training
Window

Random Naive
Bayes

KNN Decision
Tree

SVM Random
Forest

1 0.500 0.668 0.631 0.691 0.657 0.735
2 0.500 0.686 0.637 0.697 0.710 0.745
3 0.500 0.684 0.663 0.680 0.713 0.753
4 0.500 0.726 0.668 0.735 0.736 0.767
5 0.500 0.705 0.678 0.735 0.711 0.774
6 0.500 0.704 0.678 0.726 0.728 0.770
7 0.500 0.715 0.678 0.729 0.731 0.777
8 0.500 0.718 0.687 0.751 0.742 0.791
9 0.500 0.705 0.682 0.756 0.719 0.802

Mean 0.500 0.701 0.667 0.722 0.716 0.768

TABLE 8: AUCs of each prediction model for LTC with 2 year
of time interval.

#Training
Window

Random Naive
Bayes

KNN Decision
Tree

SVM Random
Forest

1 0.500 0.635 0.658 0.549 0.650 0.694
2 0.500 0.662 0.673 0.702 0.714 0.744
3 0.500 0.696 0.689 0.708 0.719 0.779
4 0.500 0.668 0.739 0.755 0.749 0.794
5 0.500 0.695 0.738 0.781 0.738 0.809
6 0.500 0.716 0.757 0.795 0.746 0.824
7 0.500 0.740 0.780 0.823 0.776 0.839
8 0.500 0.750 0.778 0.803 0.802 0.857
9 0.500 0.725 0.766 0.833 0.836 0.878

Mean 0.500 0.699 0.731 0.750 0.748 0.802

TABLE 9: AUCs of each prediction model for LTC with 3 year
of time interval.

#Training
Window

Random Naive
Bayes

KNN Decision
Tree

SVM Random
Forest

1 0.500 0.581 0.630 0.643 0.647 0.684
2 0.500 0.658 0.668 0.702 0.684 0.712
3 0.500 0.677 0.690 0.705 0.729 0.751
4 0.500 0.681 0.669 0.726 0.712 0.743
5 0.500 0.715 0.678 0.775 0.718 0.775
6 0.500 0.721 0.738 0.777 0.784 0.806
7 0.500 0.712 0.754 0.799 0.780 0.842
8 0.500 0.732 0.762 0.745 0.795 0.845
9 0.500 0.756 0.799 0.813 0.824 0.884

Mean 0.500 0.692 0.710 0.743 0.742 0.783

other classifiers (i.e., Naive Bayes, decision tree, and SVM)
is achieved in different parameter settings for different time
intervals.

To investigate whether random forest has improvement
in AUC compared to other prediction models, we ap-
ply Wilcoxon signed-rank test [65] with Bonferroni correc-
tion [2]. We also use Cliff’s delta [10]9, which is a non-
parametric effect size measure, to show the effect size of
the difference between the results of two prediction mod-
els. Table 11 shows adjusted p-values and Cliff’s delta for
random forest compared with other prediction models. The
improvements on AUC are all statistically significant at the
confidence level of 99% and of a large effect size except for
decision tree and SVM in time interval of 3 years (medium
effect size). Therefore, we find that random forest has the

9. Cliff defines a delta which is less than 0.147, between 0.147 and
0.33, between 0.33 and 0.474 and above 0.474 as negligible, small,
medium, large effect size, respectively

9

TABLE 10: The parameter settings for the best performance of each prediction model.

1 Year 2 Year 3 Year

Naive Bayes Distribution Type=TRUE Distribution Type=FALSE Distribution Type=FALSE

KNN #Cluster=17 #Cluster=17 #Cluster=17

Decision Tree Classification Technique=LMT Classification Technique=LMT Classification Technique=CART
#Iterations=21 #Iterations=21 Complexity=0.001

SVM
Classification Technique=SVMRadial Classification Technique=SVMRadial Classification Technique=SVMRadial
Sigma=0.9 Sigma=0.9 Sigma=0.9
Cost=0.5 Cost=0.25 Cost=0.25

RF #Trees=100 #Trees=100 #Trees=100

TABLE 11: Adjusted p-values and Cliff’s delta for random
forest compared with other prediction models on AUCs

1 Year 2 Year 3 Year

Naive Bayes 1 (Large)** 0.83 (Large)** 0.73 (Large)**
KNN 1 (Large)** 0.73 (Large)** 0.60 (Large)**
Tree 0.85 (Large)** 0.83 (Large)** 0.33 (Medium)**
SVM 0.95 (Large)** 0.53 (Large)** 0.36 (Medium)**

**p<0.01

best performance and can effectively predict whether a
developer will be a long time contributor of a project.

RQ2 How effective are the prediction models built on all features
compared with prediction models built on only a subset of the
features?

Motivation: In our study, we extract 63 features from five
dimensions, i.e., developer profile, repository profile, devel-
oper monthly activities, repository monthly activities, and
social network. In this research question, we investigate
whether the prediction model benefits by using all features
– as compared with its subsets.

Approach: As we find that random forest achieves the best
performance in RQ1, we build random forest models (the
parameter #Tree is set to 100) based on subsets of dimension
features. For each dimension, we have two experiment set-
tings: one is that building a random forest model only based
on the features in it, and the other one is that building a
random forest model based on the features in the other four
dimensions. We use the same setup as RQ1 to evaluate the
performance of prediction models and the reported AUCs
are the average of nine runs of validation. Then we compare
the AUC of the random forest model built on all features
with those built on a subset of our proposed features.
We also apply Wilcoxon signed-rank test with Bonferroni
correction to investigate whether the improvements of the
random forest built on all features over the five models are
statistically significant. And we use Cliff’s delta to measure
effect size. We repeat this process for each setting of time
interval setting for LTC prediction.

Results: Table 12 presents the results of average AUCs of
the random forest models built from the subsets of fea-
tures for all three settings of time interval for LTCs, and
Tablee 13 present the corresponding adjusted p-values and
Cliff’s delta for the random forests built on all features
compared with the random forests built on a subset of
features. Comparing with the prediction models built from

TABLE 12: AUCs of the random forest models built using
subsets of dimension features

1 Year 2 Year 3 Year

All 0.768 0.802 0.783

Dev. Profile 0.669 0.706 0.722
Repo. Profile 0.631 0.630 0.577
Dev. Mon. Act. 0.635 0.612 0.603
Repo. Mon. Act. 0.662 0.674 0.659
Collab. Network 0.372 0.571 0.525

˜Dev. Profile 0.754 0.741 0.713
˜Repo. Profile 0.765 0.793 0.785
˜Dev. Mon. Act. 0.761 0.797 0.774
˜Repo. Mon. Act. 0.757 0.771 0.746
˜Collab. Network 0.744 0.759 0.719

TABLE 13: Adjusted p-values and Cliff’s delta for random
forest with all features compared with those built on a subset
of features.

1 year 2 year 3 year

Dev. Profile 1 (Large)** 0.83 (Large)** 0.58 (Large)**
Repo. Profile 1 (Large)** 0.98 (Large)** 0.95 (Large)**
Dev. Mon. Act. 1 (Large)** 1 (Large)** 1 (Large)**
Repo. Mon. Act. 1 (Large)** 0.93 (Large)** 0.90 (Large)**
Collab. Network 1 (Large)** 0.98 (Large)** 0.85 (Large)**

˜Dev. Profile 0.41 (Medium)** 0.53 (Large)** 0.46 (Medium)**
˜Repo. Profile 0.16 (Small)** 0.11 (Negligible)** 0.06 (Negligible)
˜Dev. Mon. Act. 0.21 (Small)* 0.06 (Negligible)* 0.14 (Negligible)*
˜Repo. Mon. Act. 0.28 (Small)** 0.31 (Small)** 0.26 (Small)**
˜Collab. Network 0.48 (Large)** 0.41 (Medium)** 0.48 (Large)**

*p<0.05 **p<0.01

one dimension of features, the random forest models built
on all the features achieve much higher values of AUCs (i.e.,
>0.75) for all three settings. Considering all feature subsets,
the deltas in AUC are large. The largest delta (i.e., 36.9%) is
for features in the collaboration network dimension consid-
ering the time interval of 1 year for LTC prediction, while
the smallest delta (i.e., 6.1%) is for features in the developer
profile dimension considering the time interval of 3 years for
LTC prediction. Comparing with the prediction models built
from four dimension of features, the random forest models
built on all the features also achieves better performance
except that built from the features without repository profile
dimension features considering the time interval of 3 years
for LTC prediction. But the delta is very small (i.e., 0.2%) and
the difference is not significant and the effect size level is
negligible. Thus, combining the five dimensions of features
is beneficial in improving the effectiveness of the random
forest model.

10

RQ3 Which features are most important in identifying developers
who become long time contributors?

Motivation: Although there are multiple factors that may
affect a developer to be a long time contributor of a project,
some factors might be more influential than others. In this
research question, we investigate these factors. Open source
communities can use the influential factors to adjust policies
for developers to be long time contributors.

Approach: Random forest has been shown to have the best
performance in predicting whether a newcomer will become
a LTC in RQ1. Therefore, we only investigate the most
important features considering the random forest model.
Step 1: Correlation Analysis. To find the correlations among
the features, we construct a hierarchical overview of correla-
tions among the features by taking advantage of a variable
clustering analysis, which is implemented in a R package
named Hmisc. In the hierarchical overview, the correlated
features are grouped into sub-hierarchies. We exclude the
correlated features following the procedure performed in
previous studies [4], [60] – we randomly select one feature
and remove the other features from a sub-hierarchy in which
the correlations of features are larger than 0.7. At the end
of this step, for different time intervals for LTC prediction,
i.e., 1, 2, and 3 years, there are 40, 40, and 38 features left,
respectively.
Step 2: Redundancy Analysis. After reducing collinearity
among the features by correlation analysis, we identify re-
dundant factors that do not have a unique signal relative to
other features. Redundant factors in an explanatory model
will interfere with one another, distorting the modeled re-
lationship between the factors and predictors. We use the
redun function in the rms R package to perform redundancy
analysis. But no redundancy is found in this step, thus we
need not remove any features.
Step 3: Identification of Important Features. There are 40, 40,
and 38 remaining features for three time intervals for LTC
prediction after we remove the redundant features. Then,
we build the random forest model using the bigrf R pack-
age. To evaluate the importance of features, we use 10-fold
cross-validation to evaluate the effectiveness of the model,
which is different from the evaluation approach used in
RQ1. In the training process, we use the varimp function
in bigrf package to compute the importance of a factor,
which is based on out of the bag (OOB) estimates. OOB is an
internal error estimate of a random forest classifier [66]. The
underlying idea is to check whether the OOB estimates will
be reduced significantly or not when features are randomly
permuted one by one. To avoid randomness involved in the
experiments, we repeat this step 100 times. Thus, we build
and run the prediction models 1,000 times.

We get an important value for each feature in each run
of validation. We apply the ScottKnott ESD test [1] using
the importance values from all 1,000 runs to determine
the features that are the most important for the whole
dataset. This test takes as input a set of distributions (one
for each variable) and identifies groups of variables that are
statistically significantly different from one another.
Step 4: Effect of Important Features. To understand the impact
of these features, we apply the Wilcoxon rank-sum test [65]

TABLE 14: Top 10 most important features (1 Year)

Group Feature δ

1 user history followers8 -0.286 (small)**
2 month user commits8 -0.333 (medium)**
3 language8 —
4 before repo watchers8 0.239 (small)**

user age8 0.054 (negligible)**
before repo contributor mean8 -0.019 (negligible)*

5 before repo contributor std 0.046 (negligible)**
before repo commits8 0.056 (negligible)**
month repo commits8 -0.120 (negligible)**

6 month repo pull requests -0.017 (negligible)*

*p<0.01 **p<0.001

with Bonferroni correction [2] to analyze the statistical sig-
nificance of the difference between LTC and not-LTC devel-
opers. We use Cliff’s delta to measure the effect size of the
difference between the two groups.

Results: Table 14, 15, and 16 present the top 10 most
important features in three time interval settings for LTC
prediction (1, 2, and 3 years), respectively. In these tables,
different groups of features whose importance values are
statistically significant different from other groups of fea-
tures (i.e., p − value < 0.05). The last column δ shows the
p-values and Cliff’s deltas. The symbol 8in these tables
indicates that a feature belongs to the top 10 important
features in all three time interval settings for LTC prediction.
Since language is a non numeric feature, we do not compute
the p-value and Cliff’s delta for it. If p − value < 0.01 and
|δ| > 0.147 (i.e., statistically significant difference with at
least a small effect size), the text in the last column is in bold
font. A positive value of Cliff’s delta means that developers
who do become LTCs of a project have significantly lower
value on this feature, while a negative value of Cliff’s
delta means developers who become LTCs of a project have
significantly higher value on this feature.

There are eight features that belong to the
top 10 most important features in all three set-
tings, i.e., user history followers, user age, language,
before repo watchers, before repo contributor mean,
before repo commits, month user commits, and
month repo commits.

Among these features, user history followers, i.e., the
number of followers, is the most important feature which
affects the random forest model to differentiate LTC de-
veloper from not-LTC developers in all three settings. The
statistical test shows that developers who become LTCs of
a project have a significantly larger number of followers.
The more followers a developer has, the more active and
experienced he/she likely is. This finding indicates that
developer activeness and experience have a big impact on
developers’ willingness for continually contributing to a
project for a long period of time. The feature user age is
also an indicator of developers’ experience, which have a
potential impact on the models.

The feature language, i.e., programming language, might
have potential impact on developers being LTCs. For ex-
ample, Table 17 shows 10 programming languages with
the largest number of contributors and the corresponding
percentages of LTCs in 1 year time interval for LTCs. C/C++,

11

TABLE 15: Top 10 most important features (2 Year)

Group Feature δ

1 user history followers8 -0.390 (medium)**
2 language8 —
3 before repo contributor mean8 -0.071 (negligible)**
4 before repo commits8 0.064 (negligible)**
5 month user commits8 -0.343 (medium)**
6 user age8 -0.087 (negligible)
7 before repo watchers8 0.194 (small)**
8 before repo pull requests 0.299 (small)**
9 month repo contributor mean -0.179 (small)**
10 month repo commits8 -0.022 (negligible)

*p<0.01 **p<0.001

TABLE 16: Top 10 most important features (3 Year)

Group Feature δ

1 user history followers8 -0.390 (medium)**
2 language8 —
3 before repo contributor mean8 -0.071 (negligible)**
4 user age8 0.087 (negligible)**

before repo commits8 0.064 (negligible)**
5 month user commits8 -0.343 (medium)**
6 month repo contributor mean -0.179 (small)**
7 before repo pull requests 0.299 (small)**
8 month repo commits8 -0.022 (negligible)

before repo watchers8 0.194 (small)**

*p<0.01 **p<0.001

Java, and PHP have much higher percentages of LTCs than
Javascript, HTML, and Shell. This might be because C/C++,
Java, and PHP have been already applied in many industrial
projects successfully, which require more complex technical
and business knowledge. On the other hand, scripting lan-
guage (e.g., Javascript, HTML, and Shell) is much easier to
learn and the projects using these languages develop very
fast so that the projects using these programming languages
have more new contributors.

The feature before repo contributor mean, be-
fore repo commits, and before repo watchers belong to the
repository profile dimension, which indicate the size and
workload of a project before a newcomer join the project.
The feature before repo watchers is statistically significant
and has positive values of Cliff’s delta in all three settings,
which indicates that it is difficult for newcomers to be LTCs
in a mature and popular open source project, which usually
have many watchers. The underlying reason might be that
newcomers cannot get more resources and attention from
project maintainers when they join a mature and large OSS
project.

The feature month user commits, which belongs to devel-
oper monthly activity dimension, is statistically significant
and has negative value of Cliff’s delta in all three settings.
The developers’ work in the first month is an important
indicator to predict whether they would become LTCs.
Meanwhile, the feature month repo commits indicates the
workload of a project in the first month that a newcomer
joins.

We also find that the workload of other project members
in the first month have a potential impact on newcomers
being LTCs, i.e., month repo contributor mean is statistically
significant and has a negative value of Cliff’s delta in

TABLE 17: The ratio of LTCs for different program language (1
Year).

Lang. LTC (%) #Contributor

JavaScript 9.29% 20,477
Ruby 12.35% 13,177
Python 12.77% 8,112
Go 12.75% 5,074
Java 14.55% 4,523
PHP 14.59% 4,454
C++ 18.53% 4,090
HTML 6.53% 2,036
Shell 7.46% 1,716
C 14.48% 1,561

Table 15 and 16.
Although there are no features of collaboration network

dimension in the top 10 most important features for all the
settings, we find that the differences between LTCs and non-
LTCs on eigenvector centrality, betweenness centrality, and
clustering coefficient are statistically significant and Cliff’s
deltas are smaller than zero and in small level. This indicates
that developers who have more interactions with others are
more likely to be LTCs.

RQ4 How effective is our proposed approach in cross-project,
cross-programming-language and cross-project-size prediction?

Motivation:
In the experiment setting of the previous research ques-

tions, we built prediction models based on all the historical
data of the projects in our dataset. However, a newly built
project may not possess enough historical data to build a
model. Hence, in this research question, we want to know
the effectiveness for predicting developers becoming long
time contributors based on our proposed features in a cross-
project setting. Additionally, the 917 projects used in this
study can be divided into different groups in different
dimensions such as programming language and project size.
Since programming language evolves rapidly, there could
be an emerging programming language in the future but
not many projects on it yet, we want to investigate whether
our approach is effective in cross programming language
setting. Furthermore, the project size in GITHUB follows a
long tail distribution (i.e., there are more than 96 millions
repositories in GITHUB10 but only a small fraction of them
have more than 1,000 contributors). There are little data for
larger projects, so we want to see if our approach is sensitive
to project size.

Approach: For each project, we first build a prediction
model based on the data from it then we use the model to
predict the label of developers in other projects. Since there
are too few developers in some projects of our dataset to
build a prediction model, we only use the projects that have
more than 500 developers in this setting of cross-project
prediction. Consequently, we get 21 projects with different
programming languages and numbers of contributors as
shown in Table 18. The project pandas and homebrew has the
minimum and maximum number of contributors (i.e., 660
and 3475 contributors), respectively (see the 3rd column in
Table 18). For these 21 projects, we also build a prediction

10. https://octoverse.github.com/projects#repositories

https://octoverse.github.com/projects#repositories

12

TABLE 18: The results of cross project prediction. #Contr. = Number of contributors, AUC (Single) = mean and standard deviation
of AUCs when using developers that belong to one project/language as training data to predict developers that belong to another
one project/language. AUC (Combined) = AUCs when using developers that belong to all the other projects/languages as training
data to predict developers that belong to the remaining one.

Project Language #Contr. AUC
(Single)

AUC
(Combined)

pandas Python 660 0.630±0.079 0.689
spacemacs Emacs Lisp 725 0.658±0.074 0.720
spree Ruby 749 0.652±0.102 0.783
rust Rust 827 0.654±0.062 0.643
kubernetes Go 853 0.660±0.081 0.672
react JavaScript 880 0.638±0.063 0.579
oh-my-zsh Shell 902 0.603±0.061 0.638
scikit-learn Python 1,019 0.675±0.055 0.778
docker Go 1,022 0.655±0.093 0.704
gitlabhq Ruby 1,036 0.604±0.075 0.682
framework PHP 1,131 0.648±0.070 0.706
odoo Python 1,162 0.648±0.084 0.714
salt Python 1,206 0.594±0.080 0.722
Spoon-Knife HTML 1,278 0.538±0.085 0.737
symfony PHP 1,350 0.652±0.060 0.726
angular.js JavaScript 1,796 0.686±0.059 0.615
react-native Java 1,966 0.609±0.090 0.696
ansible Python 1,975 0.629±0.061 0.770
rails Ruby 2,655 0.653±0.064 0.771
homebrew-cask Ruby 3,099 0.588±0.066 0.640
homebrew Ruby 3,475 0.667±0.077 0.786

TABLE 19: The results of cross language prediction.

Language #Contr. AUC
(Single)

AUC
(Combined)

Objective-C 1,117 0.679±0.057 0.860
Shell 1,758 0.650±0.101 0.715
HTML 2,280 0.683±0.095 0.703
Scala 2,293 0.717±0.059 0.658
PHP 4,654 0.702±0.063 0.737
C++ 5,095 0.703±0.064 0.697
Go 5,209 0.693±0.078 0.787
C 5,541 0.695±0.068 0.677
Java 5,599 0.707±0.064 0.755
Python 8,544 0.705±0.074 0.741
Ruby 1,3656 0.702±0.070 0.701
JavaScript 2,1439 0.695±0.071 0.830

model based on the data from all the other projects in
the whole data, then use the model to predict the label of
developers in this project. We only use random forest to
build prediction models as it has been proved to have best
performance in RQ1.

For the cross-language setting for LTC prediction, given
one programming language, we build a prediction model
based on all the projects using it as the main programming
language11, and then we use the model to predict the label
of developers in the projects using another programming
language. Similarly, we also build a prediction model based
on the projects using all the other languages, then use the
model to predict the label of developers in the projects using
the remaining one. In this setting, we select 12 programming
languages that have more than 1,000 instances as shown in
Table 19. We also list the number of contributors for each
programming language (see the 2nd column in Table 19).

For the cross-project-size experiment for LTC prediction,

11. The main programming language is determined by GITHUB and
we get the language of a project from the table projects in GHTorrent.

we first sort all the projects by the number of contributors
and divide them into four equal-sized groups using quan-
tiles. The four group are denoted as Q1, Q2, Q3, Q4, respec-
tively. Then, for each group, we build a prediction model
based on the projects in it and use the model to predict the
label of developers in the projects of other groups. Similarly,
we also build a prediction model based on the projects of all
the other groups, then use the model to predict the label of
developers in the projects of the remaining one. We list the
total number of contributors in the four groups in Table 20.
As shown in the table, we find that the first group (Q1) has
much less contributors than the last group (Q4).

Results: Tables 18 and 19 present the results of cross-project
prediction and cross-programming language prediction, re-
spectively. We refer to single cross-project (cross-language
or cross-project-size) prediction setting as building a model
based on a single project or a single dimension of projects to
predict another single project or dimension of projects; on
the other hand, we refer to combined cross-project (cross-
language or cross-project-size) prediction setting as building
a model based on all the other projects to predict the
remaining one.
Cross project: In single cross project prediction setting, the
mean of AUCs over all the projects in Table 18 is equal
to 0.635, and the maximum and minimum AUCs are 0.686
and 0.538, respectively. The standard deviations of AUCs
are not very large, which indicates that the performance
of cross project prediction is stable. For some projects such
as scikit-learn and angular.js, the prediction per-
formance is promising, i.e., close to 0.70. In combined cross
project prediction setting, our prediction model achieves a
promising performance, i.e, 0.703 in average. The maximum
and minimum AUCs are 0.786 and 0.615, respectively.

Cross-language setting: In single cross-language prediction
setting, the mean of AUCs over all the languages in Table 19

https://github.com/pydata/pandas
https://github.com/syl20bnr/spacemacs
https://github.com/spree/spree
https://github.com/rust-lang/rust
https://github.com/kubernetes/kubernetes
https://github.com/facebook/react
https://github.com/robbyrussell/oh-my-zsh
https://github.com/scikit-learn/scikit-learn
https://github.com/docker/docker
https://github.com/gitlabhq/gitlabhq
https://github.com/laravel/framework
https://github.com/odoo/odoo
https://github.com/saltstack/salt
https://github.com/octocat/Spoon-Knife
https://github.com/symfony/symfony
https://github.com/angular/angular.js
https://github.com/facebook/react-native
https://github.com/ansible/ansible
https://github.com/rails/rails
https://github.com/caskroom/homebrew-cask
https://github.com/Homebrew/homebrew

13

TABLE 20: The results of cross-project-size prediction.

Group #Contr. AUC
(Single)

AUC
(Combined)

Q1 1,557 0.761±0.063 0.897
Q2 4,597 0.792±0.090 0.864
Q3 11,408 0.821±0.072 0.835
Q4 57,484 0.861±0.020 0.719

is equal to 0.694. The maximum and minimum AUCs are
0.717 and 0.659, respectively. Meanwhile, the mean of AUCs
in combined cross-language prediction setting is equal to
0.738, and the maximum and minimum AUCs are 0.860
and 0.658, respectively. All these values of AUCs are close
to or more than 0.7, which indicates the prediction model
achieves promising performance in cross-language predic-
tion.

Cross-project-size setting: In single cross-project-size predic-
tion setting, the maximum and minimum AUCs are 0.861
and 0.761, respectively. Meanwhile, the maximum and min-
imum AUCs in combined cross-project-size setting are 0.897
and 0.719, respectively. All these values of AUCs are larger
than 0.7, which indicates the prediction model achieves
promising performance in cross-project-size prediction.

4 FEEDBACK FROM DEVELOPERS

To investigate how developers participate in OSS projects
and their opinions on the factors that affect developers
being LTCs, we conducted a survey. The primary goal of the
survey is to validate whether important features proposed
in our approach are considered by OSS developers to have
impact on whether developers become LTCs.

4.1 Survey Participants
We randomly sampled 1,250 individuals from 75,046 de-
velopers in our dataset. Among them, 250 recipients were
chosen to be LTCs in time interval of 3 years, and 1,000
are from non-LTCs in time interval of 1 years. Out of these
recipients, we received 26 responses from LTCs and 122
responses from non-LTCs, respectively, providing an overall
response rate is 11.84%, which is similar to previous surveys
performed on GITHUB [3], [5], [47]

4.2 Survey Design
Each survey recipient was sent an email in which the
project name and recipients first comment in the project
was mentioned. This email provided specific retrieval cues
and context for the recipient (i.e., the project name and the
recipient’s first commit in the project) to help the recipient
recall their previous work [61], [76]. Each recipient was
asked about (see Table 20):

1) their role and working experience they started the
project (Q1 and Q2).

2) their motivation for contributing to the project (Q3).
3) to rate their agreement on a 5-point scale the

three most important features determined for
RQ3 (i.e., user history followers, language, and
before repo contributor mean).

4) any other factors they believe can affect the chance that
a newcomer will contribute for a long time.

4.3 Survey Results

As shown in Table 20, the majority of respondents (70.3%)
were volunteers when they started to contribute we asked
them about. Many of them were experienced developers:
34.6% and 47.5% of respondents had more than 6 years
of work experience for LTCs and non-LTCs, respectively.
Meanwhile, only a small fraction of respondents (12.8%)
were junior developers. The top two factors cited that
prompted respondents to start contributing to an OSS
project are to report or fix a bug (39.2%) and to implement a
new feature (26.4%).

For the three important features proposed by our ap-
proach, 58%, 64%, and 62% of respondents agree or strongly
agree that they have big impact on a developer being a LTC.
The overall scores are 3.56, 3.61, and 3.57, respectively. This
indicates that the features proposed by our approach have
the support of developers.

For the last open question, 42 out of 122 respondents
gave an answer. We follow an open card sort approach [55]
to identify three categories of factors that can affect the
chance that a newcomer will contribute for a long time:
• Many survey respondents mention that project quality is

an important factor. Project quality is related to the quality
of code, documentation, build or setup process, etc. The
comments that fall into this category include:
� “An easy build process. Guides on how to contribute. Clean

source code. Friendly community.”
� “The processes employed by a project. If a project makes it

difficult to get code merged - old projects are terrible for
this often using mailing lists - then I think people lose their
motivation to contribute. Conversely projects that make it
easy to contribute, have good infrastructure and prompt code
review help encourage repeat contributions.”

• We also find that characteristics of project community are
influential. These correspond to community response to
a newcomers first commit (issue or pull request), activity
of project owner and pull request reviewers, mentors, etc.
The comments that fall into this category include:
� “I think the most important aspect is the community. How

welcoming, how inclusive, how fun it is.”
� “reactivity of the community , if your Pull Request wait too

long you won’t create a second one on this project”
• Another category that we identify is personal factors,

which is related to developers interest, time, needs, etc.
The comments that fall into this category include:
� “I stopped contributing to the kernel because I changed jobs,

and my current job uses too old a kernel to push patches
to upstream Linux. I contributed code to u-boot bootloader
instead. Access to hardware and speed of kernel project are
main barriers to continued contribution.”

� “How important that project is to the contributor when I
contribute to projects that arent particularly central to the
kinds of work I do, I am less likely to see that as a project I
want to continue to spend a lot of time with, or that I have a
real connection with.”

Table 22 present the number of responses that belong to
each category of factors that affect chances that a newcomer
will contribute for a long time. Notice that one respondent
could mention multiple factors in their answer, for example:

14

TABLE 21: The quesitons in the survey and the corresponding statistics.

#LTC #Non-LTC All

#Response 26 122 148

Q1.What was your role for the project when you started to contribute the project (please refer to your project name in the email).

An employee of a company that develops a project 2 (7.7%) 14 (13.3%) 16 (10.8%)
An employee of a company that works on / contributes to the project; 3 (11.5%) 13 (14.3%) 16 (10.8%)

A volunteer 18 (69.2%) 86 (87.8%) 104 (70.3%)
Others 3 (11.5%) 9 (9.2%) 12 (8.1%)

Q2. How many years of work experience in software development did you have when you started to contribute to the project?

<1 year 3 (11.5%) 16 (13.1%) 19 (12.8%)
1 - 3 year 5 (19.2%) 27 (22.1%) 32 (21.6%)
4 - 6 year 9 (34.6%) 21 (17.2%) 30 (20.3%)
>6 year 9 (34.6%) 58 (47.5%) 67 (45.3%)

Q3.What prompted you to start contributing to an OSS project?

It is a popular project, I wanted to contribute 4 (15.4%) 6 (4.9%) 10 (6.8%)
It has a good community with many interesting people 1 (3.8%) 1 (0.8%) 2 (1.4%)

I wanted to learn, and doing something in this project could achieve that 5 (19.2%) 13 (10.7%) 18 (12.2%)
I wanted to report or fix a bug in the project 8 (30.8%) 50 (41.0%) 58 (39.2%)

I wanted to implement a new feature that the project did not have 3 (11.5%) 36 (29.5%) 39 (26.4%)
My job was related to the project 4 (15.4%) 12 (9.8%) 16 (10.8%)

others 1 (3.8%) 4 (3.3%) 5 (3.4%)

Please indicate your agreement and disagreement Average Score

”A developer who is experienced and active in Github is more likely to be a long time contributor if
that developer starts to contribute a new project”

3.15 3.65 3.56

”The programming language a project uses has an impact on a developer being a long time
contributor”

3.23 3.69 3.61

”The development stage of a project has an impact on a developer being a long time contributor” 3.65 3.55 3.57

Open Question

If you have more suggestions about which factors can affect the chances that a newcomer will contribute for a long time, please kindly advise.

TABLE 22: The number of responses that belong to each
category of factors that affect chances that a newcomer will
contribute for a long time.

LTC non-LTC All

ALl Response 10 32 42

Project Quality 4 14 18
Project Community 7 17 24
Personal Factor 4 11 15

� “In my experience, I typically contribute to projects that I need
for my work either development tools or components/libraries.
Some factors that are important to me are the readability of the
project and its code, the responsiveness of the members to issues,
how well they organize and maintain the issues, responsiveness
of members to pull requests (big one!), the existence of devel-
opment documentation or tutorials, and simply how long the
project is important to me if I stop using bootstrap in my work,
I will stop contributing to it.”

From this feedback, we believe that the features pro-
posed as part of our approach have modeled many fac-
tors deemed suitable by respondents. Comments related to
project community characteristics are covered by features
in repository profile dimension and repository monthly
activity dimension. For example, the number of comments
received in commits (issues or pull requests) is an indicator
of how “warmly” a community welcomes a newcomer.
The project quality factors are covered by features in the
repository profile dimension. For example, a project with
good quality usually has more watchers; one respondent

said that “I also believe that people are more likely to contribute
to relevant projects. In other words, the most popular a project
is, higher are the chances newcomers will help.” For personal
factors, they are covered by features in the developer profile
dimension.

4.4 Survey Implications
From the survey results, we find that several factors (project
quality, project community, and personal factors) that may
affect the chances that a newcomer will contribute for a
long time have not been fully considered by our approach.
These may result in incorrect predictions. Additionally, most
of the factors considered by our approach are measured
considering statistics obtained from counts of development
activities (e.g., number of commits, etc.) happening in a
project. Our approach did not consider detailed information,
e.g., the contents of commit logs, the text contents in a pull
request review, etc. Based on these, we list some additional
steps that can potentially be considered (in a future work)
to improve the accuracy of our approach:
• Project quality: To consider this factor for LTC prediction,

there are a number of analyses that we can perform. For
example, we can investigate the quality of the projects
code base. The code base quality can be estimated in var-
ious ways, e.g., by counting the number of self-admitted
technical debts [64], by running static analysis tools to
identify code smell instances [62], etc. Additionally, we
can evaluate the quality of the projects documentation by
measuring the readability of the projects readme file or
checking whether there is a wiki page for the project [28].

15

Moreover, we can also assess how thorough is the projects
quality assurance process, e.g., by investigating the cover-
age of the test cases (if they exist) [25].

• Project community: We can extract additional information
to better characterize and model the project commu-
nity [56]. For example, we can use sentiment analysis to
measure whether comments in the discussions are posi-
tive or not. By doing so, we may better characterize how
welcoming the people in the project are and the culture of
the project community.

• Personal factors: To model personal factors that affect a
newcomer to be a LTC of a target project, we can analyze
whether the other projects contributed by the newcomer
are dependent on the target project. Thus, we can infer
the likelihood of a newcomer to contribute to a project
in a long term based on how important is the project to
him/her.

Extracting the above features requires much additional
effort that we consider to be beyond the scope of this work,
and thus we leave their explorations for a future work.

5 DISCUSSION

5.1 Comparison with LTC Prediction based on Bug Re-
ports

The work based on bug reports conducted by Zhou and
Mockus [76] is the most similar to our study. They also
considered the activities in the first month that a newcomer
joins and extracted nine features based on three dimensions:
extent of involvement, macro-climate, micro-climate – see
Table 23. Of the 9 features considered by Zhou and Mockus,
8 are similar to our features. For example, they considered
the number of tasks measured by the number of comments
while we measure this by the number of commits submitted
by developers. They built a workflow network based on
bug reports and extracted two features related to workflow
network, while we construct a collaboration network based
on the discussion among developers and extract a set of
social network features. Only one feature, i.e., the way to
start participation (by commenting an existing report or by
creating a new report via a bug report tool), is not considered
in our approach, because we only regard a developer as
a contributor of a project only if he/she has submitted a
commit.

We use these similar features to Zhou and Mockus to
build a random forest model and compare the AUC of this
model with that built on all features. We apply the same
evaluation approach as RQ1. The results of these prediction
models are as shown in Table 24. We find that the average
AUCs considering 1, 2, and 3 years as time-interval for
LTC prediction are 0.712, 0.734, and 0.723, respectively. The
improvements of the prediction model built on all of our
proposed features are 6.7%, 7.6%, and 9.0%, respectively.
We apply Wilcoxon signed-rank test [65] with Bonferroni
correction [2] to investigate whether the models built on
our features have improvement compare to those built on
similar features to Zhou and Mockus. We also compute
the Cliff’s delta [10]. The improvements on AUC in three
time interval settings are all statistically significant at the
confidence level of 99% and of a large effect size. Hence,

we believe that the prediction models built on our proposed
features achieve better performance.

In our approach, we not only consider the contributors’
first month activities, but also consider the contributors’
experience and the historical activities of the project. This
might be the reason that our approach achieves better
performance than that of Zhou and Mockus. Some features
that are related to experience belong to the top 10 impor-
tant features that impact the effectiveness of our models,
such as user history followers, user age. We find that some
features that indicate the history activities of a project, e.g.,
before repo contributor mean, before repo commits, belong to
the top 10 important features in our models. Additionally,
the programming language belongs to the top 10 important
features in the models of all three time interval settings.
Thus, we believe that more information about developers
and projects can improve the performance of prediction
models. However, if a contributor is a pure newcomer
to GITHUB and a project has few historical activities, our
approach will have a similar performance to that of Zhou
and Mockus.

5.2 Impact of 10-fold Cross-Validation
In the results we have presented, we keep the time order
of joining the projects among developers to evaluate the
results of all the prediction models (referred to as time-series
cross-validation). As 10-fold cross-validation is widely used
to evaluate the performance of prediction models, we con-
sider whether there exist differences between the evalu-
ation method used in our experiment and 10-fold cross-
validation. In 10-fold cross validation, we randomly divide
the dataset into ten folds. Of these ten folds, nine folds are
used to train the classifier, while the remaining one fold
is used to evaluate the performance. The class distribution
in the training and testing dataset is kept the same as the
original dataset to simulate real-life usage of the algorithm.
We also use the parameter optimization method used to
answer RQ1 and report the highest averaged AUCs with the
most optimal parameter settings. Table 25 presents the av-
eraged AUCs of time-series and 10-fold cross-validation of
each prediction model considering different time intervals
for LTC. For all classifiers, the AUCs using 10-fold cross-
validation are better than those using time-series cross-
validation. Random forest still has the best performance
and its AUCs using 10-fold cross-validation are a bit larger
than those using time-series cross-validation. In summary,
we believe that the models built on our proposed features
can still predict whether a developer will become a LTC
effectively considering both time-series and ten-fold cross-
validation.

5.3 Impact of Developer Productivity
Productivity is an important indicator for LTCs but the
definition of LTCs in the experiment does not consider con-
tributors’ productivity. Hence, here we want to investigate
whether another definition of LTC considering productivity
would affect the performance of our proposed approach.
More specially, given a time interval T , for the definition
of LTC considering productivity, a LTC is a contributor
who stay with the project for at least T (from his/her first

16

TABLE 23: The features used in the study of Zhou and Mockus [76] and our similar features.

Dimension Their features Our similar features

extent of
involvement

the number of tasks
(measured by the number of comments) month user commits

whether or not the first reported issue gets fixed month user issue events closed

whether or not starting participation from a comment
for an existing issue or reporting a new issue —

macro-climate the number of product users before repo watchers

project sociality
(measured by the number of participants
in the first month)

month repo contributors

micro-climate

the number of peers in a developer’s
workflow network

degree centrality
closeness centrality

social clustering
(measured by the amount of replication
among the workflow networks of peers)

betweenness centrality
eigenvector centrality
clustering coefficient

the performance of peers
(measured by the minimum number of
issues in network)

month repo contributor min

the duration of time between the newcomers
first action until somebody responds month user issue comments

TABLE 24: The averaged AUCs of random forest built on a
subset of similar features to Zhou and Mockus and all features.

1 Year 2 Year 3 Year

Similar features 0.712 0.734 0.723
All features 0.760 0.790 0.788

TABLE 25: AUCs of each prediction model in different time
intervals for LTC using our evaluation method and 10-fold
cross-validation

Our evaluation method 10-fold

1 Year 2 Year 3 Year 1 Year 2 Year 3 Year

Naive Bayes 0.701 0.699 0.692 0.725 0.718 0.716
SVM 0.716 0.748 0.742 0.773 0.792 0.792
Decision Tree 0.722 0.750 0.743 0.630 0.497 0.529
KNN 0.667 0.731 0.710 0.750 0.768 0.751
Random Forest 0.768 0.802 0.783 0.814 0.840 0.841

commit) and who has productivity (measured via number
of commits) exceeding Xth percentile among contributors
with a tenure exceeding T . Table 26 presents the number
of LTC and non-LTC for different settings of time interval
(T) and productivity measurement (X). If we consider pro-
ductivity to define LTC, the number of LTC would decrease
because some contributors who are not very productive are

TABLE 26: The number of contributors for definition of LTC
considering productivity.

1 Year 2 Year 3 Year

#LTC #non-
LTC

#LTC #non-
LTC

#LTC #non-
LTC

Without Pro-
ductivity

9,238 65,808 3,968 45,384 1,577 25,121

10th 7,994 67,052 3,637 45,715 1,489 25,209
20th 7,966 67,080 3,634 45,718 1,489 25,209
30th 7,860 67,186 3,613 45,739 1,480 25,218

excluded. However, the number of reduced contributors is
not large and the ratios of LTC and non-LTC don’t vary very
much for the three time interval settings. Additionally, when
the productivity measurement increases, the number of LTC
does not vary very much. This indicates most contributors
who stay with a project for a long time are considerably
productive.

We use the same approach in the RQ1 (see Section 3) to
evaluate the performance of the prediction models on the
new dataset considering contributors’ productivity. Table 27
presents the averaged AUCs of each prediction model in
three time intervals for LTC. For all prediction models, the
AUCs increase when considering contributors’ productivity
but the improvement is small. Thus, we believe considering
productivity to define LTCs does not affect our experiment
results.

5.4 Impact of Feature Selection

Feature selection is widely used to improve performance
of classifiers in previous studies [22]. In RQ3, we apply
a feature selection method when we investigate the most
important features. In this section, we would like to in-
vestigate whether automated feature selection methods can
further improve the performance of our approach. For con-
venience, we denote our model without using automatic
feature selection methods as Default. And we denote the
feature selection method that is used in RQ3 as CRA, with
C, R and A denotes correlation, redundancy and analysis,
respectively.

We apply feature selection to all the features in five
dimensions. And we use the longitudinal data setup, which
is the same as RQ1, to evaluate the random forest models.
In each fold, we first use CRA to remove correlated and
redundant features for the training dataset. Then, we build a
model using the preprocessed training dataset and evaluate
the model on the testing dataset. Finally, we report the
average AUC. We denote our model built with CRA applied

17

TABLE 27: AUCs of each prediction model in different time intervals for LTC without considering productivity and considering
productivity.

1 Year 2 Year 3 Year

Without Pro-
ductivity

10th 20th 30th Without Pro-
ductivity

10th 20th 30th Without Pro-
ductivity

10th 20th 30th

Naive Bayes 0.701 0.718 0.718 0.718 0.699 0.715 0.715 0.714 0.692 0.700 0.700 0.700
KNN 0.667 0.684 0.684 0.685 0.731 0.740 0.741 0.741 0.710 0.717 0.717 0.717
Decision Tree 0.722 0.767 0.770 0.772 0.750 0.776 0.775 0.779 0.743 0.758 0.758 0.758
SVM 0.716 0.739 0.736 0.738 0.748 0.764 0.773 0.761 0.742 0.759 0.762 0.758
Random Forest 0.766 0.797 0.799 0.798 0.802 0.820 0.818 0.821 0.783 0.796 0.796 0.800

TABLE 28: AUCs of each prediction model built from all
features and applied by feature selection.

1 Year 2 Year 3 Year

Default 0.767 0.802 0.783
Default + CRA 0.777 0.804 0.784

as Default+CRA. Table 28 presents the average AUCs of
Default+CRA models in comparison with Default models.
We find the deltas between the performance of Default and
Default+CRA models are small, i.e., 0.01, 0.002, 0.001 for
time interval of 1, 2 and 3 years, respectively. Thus, we
believe that the feature selection has little impact on the
performance of our approach.

5.5 Impact of Project Popularity
We select popular projects (i.e., 1,000 most starred projects)
in our earlier experiments. These popular projects might
attract developers, which introduces a bias on the devel-
opers being LTCs. In this section, we want to investigate
whether project popularity can affect the performance of our
approach. We use another dataset collected by Munaiah et
al. [43], which publish 800 engineered projects in GITHUB 12.
First, we remove 176 overlapping projects between these
projects and the projects in our dataset. Then, we follow the
steps in Section 2.1 to filter the remaining projects. Finally,
we get 166 projects – the statistics of these projects are
shown in Table 29. The mean and median star number of
these projects are only 574.22 and 117, which are much less
than those of the popular projects in our dataset. These
less popular projects also have less contributors (34.14 vs.
120.54), commits (1648.58 vs. 3,697.33), issues (289.58 vs.
1,572.91) and pull requests (384.50 vs. 1,123.84). Table 30
presents the number of LTC and non-LTC contributors in
different time intervals across these unpopular projects.

We construct two dataset using these unpopular projects:
one only contains the contributors in the less popular
projects (denoted as “Unpopular”) and the other is that by
combining contributors in the popular projects used in our
earlier experiments and less popular projects (denoted as
“Default + Unpopular”). We run random forest models on
these dataset and report the average AUCs. Table 31 present
the AUCs of the random forest models built on Default
and Unpopular dataset. We find that AUCs of prediction
models built on the “Unpopular” and the “Default + Un-
popular” datasets are less than those built on the popular

12. https://gist.github.com/nuthanmunaiah/
23dba27be17bbd0abc40079411dbf066

TABLE 29: The statistics of unpopular projects

Contributor Commit Issue Pull Request Star

Total 5633 272016 47781 63443 94747
Mean 34.14 1648.58 289.58 384.50 574.22
Median 13 335.5 48.5 57.5 117
Minimum 2 3 1 0 0
Maximum 341 16609 6139 3549 5213
Std. 48.63 2660.80 709.54 722.52 989.71

TABLE 30: The number of contributors in different time inter-
vals across unpopular projects for definition of LTC

Year #LTC #non-LTC Total

1 931 2,920 3,851
2 525 2,537 3,062
3 2,61 1,614 1,875

projects considering all time interval settings for LTCs. But
all AUCs are larger than 0.7, which indicates a promising
performance and the deltas are not very large. Thus, we
believe that project popularity has not too much impact on
the performance of our approach.

5.6 Evaluation using Matthews Correlation Coefficient

In this subsection, we evaluate our proposed approach
using an additional measure, i.e., Mattews correlation coef-
ficient (MCC) [37]. Unlike F1-measure, MCC takes account
into all four quadrants of the confusion matrix, i.e., true
positve (TP), false positives (FP), true negative (TN), and
false negative (FN). Thus, it is generally regarded as a
balanced measure which can be used even if the classes
are highly imbalanced [7]. MCC is also widely used in
previous software engineering studies [53], [54]. MCC is
defined below:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2)

The above formula returns a value between -1 and 1. A
value of +1 indicates a perfect agreement between actuals
and predictions, -1 indicates a perfect disagreement between

TABLE 31: AUCs of random forests built on unpopular and
popular projects.

1 Year 2 Year 3 Year

Default 0.768 0.802 0.783
Unpopular 0.734 0.793 0.729
Default + Unpopular 0.759 0.787 0.777

https://gist.github.com/nuthanmunaiah/23dba27be17bbd0abc40079411dbf066
https://gist.github.com/nuthanmunaiah/23dba27be17bbd0abc40079411dbf066

18

TABLE 32: MCCs of the prediction model in each time interval
for LTC.

1 Year 2 Year 3 Year

MCC 0.304 0.255 0.219

actuals and predictions, and 0 means the prediction may as
well be random with respect to the actuals.

We use a threshold tuning approach to handle the high
imbalance of our dataset. A threshold indicates a decision
boundary to differentiate LTC from non-LTC. A classifier will
classify a newcomer to be a LTC if its likelihood score is
higher than the threshold. Usually, the default threshold is
0.5, however, the high imbalanced data causes a classifier to
favor the majority class. Thus, we use a threshold tuning ap-
proach to automatically determine an imbalanced decision
boundary using the training set [68]. Note that we did not
use threshold tuning approach in the experiment, because
the AUC would not be impacted by threshold.

The process of threshold tuning approach is: first, we
randomly sample 20% instances of the training set (follow-
ing a stratified sampling procedure) as the validation set,
and use the remaining 80% instances of the training set as
our new training set to build a classifier. Second, we use the
built classier to evaluate the MCC score on the validation set
by varying the threshold from 0.01 to 1.00, stepped by 0.01.
Third, we determine the threshold that achieves the best
MCC on the validation set. Finally, we use the new training
set and the determined threshold to evaluate performance
on our testing set.

We build random forest models using the same setting
as RQ1 and report the average MCC for each setting of time
interval for LTC prediction. Table 32 present average MCCs
of the prediction model in each time interval for LTC. The
average MCC of these prediciton models are 0.304, 0.255,
and 0.219 in the time interval of 1, 2, and 3 years, respec-
tively. Our proposed approach achieves similar MCCs to
those in other prediction tasks such as defect prediction [54],
[69], [75]. Due to highly imbalance nature of our dataset, we
think the MCC results are reasonable.

5.7 Qualitative Analysis of Incorrect Predictions

In this section, we perform a qualitative analysis to under-
stand the underlying reasons behind some incorrect predic-
tions. The cases that we consider are the error cases in the
first round of the 10-fold cross validation for LTCs predicted
considering a time interval of 3 years. We have 49 error cases
including 6 false positives and 43 false negatives. We focus
on the five most important features as identified in RQ4,
i.e., user history followers, language, before repo commits, be-
fore repo contributor mean, and month repo commits.

For the false positive cases, we find that their features
are very similar to true positive cases. For example, they
are more popular than developers in the false negative
cases, i.e., thay have 422 followers on average, while the
average for the false negative cases is only 186. We randomly
select two developers who are wrongly classified as LTCs of
their respective project. The first developer submitted his
initial commit to slackhq/SlackTextViewController

(Mar 2018 – Feb 2019)

Fig. 1: The contributions of a developer in 2014 and now.

on August 2014 and the second one submitted his ini-
tial commit to kriasoft/react-starter-kit also on
August 2014. Both commits were the first commit of the
respective project. We find that the first project has been
“deprecated” since the project owner – a company named
Slack – wants to focus on their internal projects. The second
developer is still very active for other projects but not for
kriasoft/react-starter-kit as the project does not
grow much anymore. Note that our models are only learned
based on developers activities. Based on this data, it is very
difficult to predict a projects “fate” after a substantially long
period of time time (i.e., 3 years) has passed. For these false
positive cases, the corresponding projects are basically no
longer under active development.

For the false negative cases, we also randomly select
and analyze two developers who are wrongly classified as
non-LTCs. The first developer submitted his first commit
to the project rapid7/metasploit-framework on July
2014 and the second developer submitted his first commit
to the project owncloud/core on the same month. When
they started their first contribution, neither of them are
popular (i.e., they only had 12 and 0 followers, respectively)
nor active in GITHUB. Meanwhile, the two project already
had a large number of commits (i.e., 17,471 and 25,292).
Thus, our approach predicts them as non-LTCs. However,
after that, both of them became more and more active; for
example, before June 2014, the first developer made few
contributions in GITHUB but after that he submitted a large
number of contributions (see Figure 1). Thus, it is difficult
to predict them as LTCs based on their activities in the
first month as these developers behave “anomalously” as
compared to others.

Although we cannot achieve zero false positive and neg-
ative cases, we have demonstrated that our approach can
outperform the work of Zhou and Mockus by about 10%.
An improvement of 10% on AUC have been considered
substantial in many past work [14], [44], [49], [71].

5.8 Implications for Action

Retaining newcomers is important for the health and
longevity of OSS projects. In this study, we proposed a data-
driven approach to effectively predict whether newcomers
will stay in a project. Maintainers of GITHUB projects can
easily extract and extend our proposed features and build
a prediction model for their own projects. Moreover, OSS

19

project maintainers can use features to monitor and manage
the community contributing to the project. Based on our
analysis results and feedback from the survey (see Sec-
tion 4), we have several recommendations for OSS projects:
Retain experienced developers who show interest. We
find that developers with larger user histroy followers are
more likely to become LTCs. Additionally, in the survey, a
respondent mentioned that “how many other projects does a
newcomer already contribute to” is another factor that affects
the chances that a newcomer will contribute for a long time.
Another respondent said that “In my experience developers
become long time contributors of a project if they have another im-
portant project (work or personal) that depends on the project they
contribute to.” It is important to attract and retain developers
with these characteristics as they are usually experienced.
When the first contribution of an experienced developer
is detected, the project maintainers should notice and pay
attention to the experienced newcomer. Some actions can
be taken to improve the possibility of the contributors
retention, such as communicating with the contributor to get
their feedback, assigning tasks of interest and other similar
actions.
Put special emphasis on encouraging more con-
tributions in a newcomers first-month.We find that
month user commit, a proxy of newcomers workload, is one
important feature in the prediction models. Thus, after a
newcomer makes a first contribution, project maintainers
can encourage the contributor to make more by providing
positive feedback and recommending more tasks of interest.
As an alternative, a maintainer can assign an LTC to men-
tor a promising newcomer at least in the newcomers first
month. One respondent mentions that having “[m]entors that
are already long-time contributors” contributes positively to
retaining newcomers. If a newcomer can be encouraged to
make a considerable amount of contribution in their first
month, there is a high likelihood that the newcomer would
stay on as an LTC.
Improve the activeness of a projects community to re-
tain newcomers. We find that month repo contributor mean,
which is an indicator of activeness of a project community,
has a positive relationship with newcomers retention, i.e.,
the more work submitted by other contributors when a
newcomer joins the project, the more likely the newcomer
will stay in the project. In the survey, the majority of respon-
dents who answer the last open question mentioned that
the project community is an important factor that affects a
newcomer to contribute for a long time. Thus, maintainers
need to continue to innovate and drive the project with new
requirements that can result in more activities in the project.
This active community will in turn motivate the newcomers
to stay and contribute more.
Different retention strategies may be appropriate for
projects developed in different languages. Our results
show that language is one of the most important features
for the prediction models. The projects using C/C++, Java,
and PHP have a much higher percentage of LTCs than those
using Javascript, HTML, and Shell. Different from projects
written in these scripting languages, we hypothesize that
participation in projects written using C/C++, Java, and
PHP may require more difficult technical and business

knowledge [63], which increases contribution barriers. For
these projects, maintainers should take some actions to
lower the barrier for newcomers, such as providing more
complete tutorials and documentation, improving the code
quality to make the code easily understandable, and giving
newcomers quick response to their queries. We find that
respondents in the survey give many suggestions to retain
newcomers, which are also applicable to these projects. For
example, a respondent mentions the following ways: “1)
Proper documentation about how to contribute. 2) List of issues
that could be solved by newcomers. 3) Active community members
guiding newcomers. 4) Clear roadmap about new features...”

On the other hand, for projects using Javascript, HTML
and Shell, there are more contributors, but a lower per-
centage of LTCs. This might be because these scripting lan-
guages are easy to learn [63] so that many developers have
the ability to make a contribution to the project using these
languages. However, many of them are not willing to make
continuous contributions to the projects. For these project,
the project owner should be more inclusive. A respondent
in the survey mentioned that “The project owner sometimes
thinks he knows more than a new contributor and this causes
problem when they are wrong on a subject the newbie knows more
about.” Project maintainers also need to pay particular atten-
tion to keeping the project community active. Thus, more
developers will be attracted to submit their contributions

Projects in different stages of development should use dif-
ferent strategies to retain newcomers. We find that the pop-
ularity of a project may prevent newcomers from staying
in the project, i.e., before repo watchers and before repo issues
have a negative relationship with newcomers retention.
Thus, for established projects, it is more difficult for new-
comers to become LTCs. This finding highlights that main-
tainers of more popular projects should monitor the influx
and departure of newcomers. If fewer newcomers do not
want to contribute to the project for a long time, maintainers
need to think about why the attractiveness of the project for
newcomers has decreased and take action to retain newcom-
ers. For example, project maintainers can communicate with
newcomers frequently and giving timely responses to them.
Our experiment results show that the features in the collab-
oration network have statistically significant differences and
the effect size of the differences is small. Project maintainers
can increase the “centrality” of newcomers by assigning
more tasks to them and providing more guidance to them
by commenting on and acknowledging their contributions.
Some respondents suggested that the following are impor-
tant factors to retain newcomers: “Provide a community where
they are encouraged to ask questions e.g. irc/slack and feel like they
are part of a family”, “Maintainer’s response on first issue/pull
request”, and “Actionable comments during code review”. For
popular projects, more emphasis need to be put on these
since it is easy to forget the newcomers and only focus on
existing LTCs.

On the other hand, for new projects, newcomers are
more likely to become LTCs. In the survey, a respondent
said that “Being an early contributor to project is strongest
indicator of long term continued contribution”. But project
maintainers can use more approaches to retain newcomers
at the beginning of the project. For example, a respondent

20

in the survey mentioned that some factors that worked for
retaining newcomers include: “(1) Code quality, (2) Explaining
what the code fixes if it is a bug fix, (3) Explaining why a new
feature is needed if submitted, and (4) Contributing hardware to
the project to verify future code will still work.”

5.9 Threat to Validity

Threats to internal validity. To avoid the risk of selecting
only an evaluation approach that provides strong results, we
keep the time order of joining the projects among developers
and divide the whole dataset into 10 windows. Then, we use
the first n windows as the training data and the remaining
10 − n windows as the testing data. The results shows that
the averaged AUCs with 1, 2, and 3 years as time-interval
for LTC prediction are more than 0.75. We also compare our
evaluation approach with 10-fold cross-validation and find
that the average AUCs in 10-fold cross-validation are a bit
more than those in our evaluation approach. This might be
because the values of AUC increase when the number of
training windows increases (see Table 7, 8, and 9), while
the sizes of training data in 10-fold cross-validation are all
the same and equal to 90% of contributors in our dataset.
Thus, we believe our evaluation approach achieves similar
performance with 10-fold cross-validation in terms of AUC.
The criteria that we use to determine if a developer is an LTC
is also a threat to validity. We only consider a developer as
a contributor if he/she modifies source code of projects by
submitting commits. However, developers can participate
in the development of projects in other ways (e.g., reporting
bugs, discussing in mailing list). The time interval require-
ments that we use to determine LTCs could also affect our
findings. In this study, we determine newcomers that stay in
a project for more than 1, 2, and 3 years to be LTCs. We have
tried to mitigate this threat by considering multiple time-
interval settings. Another threat to validity is that we use the
right censoring method [40] to discard the developers who
joins within time T (1, 2 and 3 years) of the data gathering
time. In the future, we plan to use some survey analysis
models to investigate these discarded data.

Threats to external validity. We select 917 GIHUB projects
that use different programming languages and have dif-
ferent numbers of contributors. Although GITHUB contains
much software development data, not all development ac-
tivities of projects are recorded in GITHUB since they might
use some other kinds of systems to manage project devel-
opment and evolution, e.g., bug tracking systems, mail lists,
etc. To mitigate this threat, we have excluded projects that
do not have any issue data.

Threats to construct validity. We use AUC to evaluate
the results of prediction models. AUC is widely used to
evaluate the effectiveness of various software engineering
studies [34], [36], [49]. Moreover, AUC, which is a threshold-
independent measure, is recommended as a good measure
to evaluate the performance of a classifier by many re-
searchers [36], [58].

6 RELATED WORK

Developer turnover, referred to as the phenomenon of
continuous influx and retreat of developer in software

development, has been studied for many years. Some re-
searchers try to understand developers’ motivations to join
and reasons to leave OSS projects. Zhou and Mockus use
the bug report data to predict whether a developer will
become a long-time contributor [76]. Yu et al. found that the
two most important factors to indicate developer turnover
were the objective attribute of OSS projects and personal
expectations [72]. Schilling et al. reported that the level
of development experience and conversational knowledge
were strongly associated with developer retention by an-
alyzing the contribution behavior of former Google Sum-
mer of Code [51]. Hynninen et al. conducted a survey
with developers and found that developer turnover could
be an important manifestation of low commitment [26].
Sharma et al. built a linear logistic model that considers
both the developer and project level factors and found past
activity, developer role, project size and project age have
important impacts on developer turnover [52]. Zanatta et
al. conducted a study to identify barriers to newcomers
contributing to software-crowdsourcing projects and found
that lack of documentation is the first barrier that pre-
vents newcomer to participate the projects [73]. Different
to previous studies, our study uses a large scale number of
OSS projects from GITHUB, considers cover more completed
activities of developers, and uses data mining technique to
predict developer turnover. Yamashita et al. also used a
large number of projects from GITHUB to measure project
characteristics from the perspective of developer attraction
and retention [70]. Based on the developer migration in
Github, they divided GITHUB projects into two categories:
magnet and sticky projects. They find that ∼23% of de-
velopers remain in the same project that they contribute
to and the larger projects are likely to attract and retain
more developers. Comparing with this study, we extract
many features in different dimensions based on developers’
activities in GITHUB and predict whether a newcomer will
contribute to a project for a long time.

The impact of developer turnover is also studied by
many researchers. Hall et al. conducted a survey and found
that developer turnover is crucial to the success of an OSS
project. Developer turnover could also cause knowledge
loss in software development team. Izquierdo-Cortazar et
al. used the evolution of orphan lines of code lastly edited
by a developer who left the team to measure the knowledge
loss of the projects [27]. Fronza et al. proposed a wordle to
visualize the level of cooperation of a team and mitigate the
knowledge loss due to turnover [18]. Software quality is also
related to developer turnover [16], [41]. Mockus finds that
only leavers have relationship with software quality due to
the loss of knowledge and experience [41]. On the contrary,
Foucault et al. find that newcomers have a relationship with
quality and leavers do not have such relationship [16].

With the huge data generated in modern software devel-
opment, data mining techniques are applied to investigate
developer turnover. Bao et al. [4] used monthly reports from
two industry IT companies to extract 67 features along six
dimensions. They found that the most effective classifier
is random forest and the top three important features are
the content of task report in monthly reports, the standard
deviation of working hours, and the standard deviation of
working hours of project members in the first month. Zhou

21

and Mockus [76] collected the bug reports from Mozilla and
Gnome, which both contain more than 100,000 contributors.
They built a linear logistic model based on 10 features
from three dimensions: extent of involvement (contribu-
tors’ activities), macro-climate (the overall of projects), and
micro-climate (the environment of individual contributor).
The reported average precision and recall of their model
for predict who will stay in the project are 31.64% and
24.29%. Comparing to these studies, our data collected from
GITHUB cover more developers’ activities and more OSS
projects. We also try different kinds of prediction models.
Our results show that the random forest model achieves the
best performance with more than 0.75 AUCs. We also find
that the number of followers, the programming language
and the averaged number of commits contributed byother
developers when a newcomer joins a project are the three
important features in three settings of time interval for LTC.

7 CONCLUSION & FUTURE WORK

In this paper, based on multiple kinds of data in software
development from GITHUB, we apply data mining tech-
niques to investigate whether newcomers will become LTCs
of a project. Our data is constructed from GHTorrent and
contains 917 projects. We use three time interval settings
for LTC prediction: 1, 2, and 3 years, and get 9,238, 3,968,
and 1,577 developers who become LTCs, respectively. Our
study reveals that the most effective classifier (i.e., random
forest) for predicting whether newcomers will become LTCs
achieves more than 0.75 AUC for the three time interval
settings. We find that the number of followers is the most
important feature in all three time interval setting studied.
We also find that the programming languages and average
number of commits contributed by other developers when
a newcomer joins a project also belong to the top 10 most
important features in all three time interval setting for LTC
prediction. In the future, we want to collect more devel-
opers’ activities in OSS projects and further validate the
effectiveness of our approach using more developers and
projects.

REFERENCES

[1] Scott-knott esd test. https://cran.r-project.org/web/packages/
ScottKnottESD/ScottKnottESD.pdf.

[2] H. Abdi. Bonferroni and šidák corrections for multiple compar-
isons. Encyclopedia of measurement and statistics, 3:103–107, 2007.

[3] S. Baltes, R. Kiefer, and S. Diehl. Attribution required: Stack
overflow code snippets in github projects. In Proceedings of the 39th
International Conference on Software Engineering Companion, pages
161–163. IEEE Press, 2017.

[4] L. Bao, Z. Xing, X. Xia, D. Lo, and S. Li. Who will leave the
company?: a large-scale industry study of developer turnover by
mining monthly work report. In Proceedings of the 14th International
Conference on Mining Software Repositories, pages 170–181. IEEE
Press, 2017.

[5] K. Blincoe, J. Sheoran, S. Goggins, E. Petakovic, and D. Damian.
Understanding the popular users: Following, affiliation influence
and leadership on github. Information and Software Technology,
70:30–39, 2016.

[6] P. Bonacich. Power and centrality: A family of measures. American
journal of sociology, 92(5):1170–1182, 1987.

[7] S. Boughorbel, F. Jarray, and M. El-Anbari. Optimal classifier for
imbalanced data using matthews correlation coefficient metric.
PloS one, 12(6):e0177678, 2017.

[8] U. Brandes and C. Pich. Centrality estimation in large networks.
International Journal of Bifurcation and Chaos, 17(07):2303–2318, 2007.

[9] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[10] N. Cliff. Ordinal methods for behavioral data analysis. Psychology

Press, 2014.
[11] S. Daniel, L. Maruping, M. Cataldo, and J. Herbsleb. When

cultures clash: Participation in open source communities and its
implications for organizational commitment. 2011.

[12] T. T. Dinh-Trong and J. M. Bieman. The freebsd project: A replica-
tion case study of open source development. IEEE Transactions on
Software Engineering, 31(6):481–494, 2005.

[13] I. El Asri, N. Kerzazi, L. Benhiba, and M. Janati. From periphery
to core: A temporal analysis of github contributors’s collaboration
network. In Working Conference on Virtual Enterprises, pages 217–
229. Springer, 2017.

[14] Y. Fan, X. Xia, D. Lo, and A. E. Hassan. Chaff from the wheat:
Characterizing and determining valid bug reports. IEEE Transac-
tions on Software Engineering, 2018.

[15] T. Fawcett. An introduction to roc analysis. Pattern recognition
letters, 27(8):861–874, 2006.

[16] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R. Falleri.
Impact of developer turnover on quality in open-source software.
In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, pages 829–841. ACM, 2015.

[17] L. C. Freeman. Centrality in social networks conceptual clarifica-
tion. Social networks, 1(3):215–239, 1978.

[18] I. Fronza, A. Janes, A. Sillitti, G. Succi, and S. Trebeschi. Cooper-
ation wordle using pre-attentive processing techniques. In Proc.
CHASE, pages 57–64. IEEE, 2013.

[19] W. Fu, T. Menzies, and X. Shen. Tuning for software analytics: Is it
really necessary? Information and Software Technology, 76:135–146,
2016.

[20] M. Goeminne and T. Mens. Evidence for the pareto principle in
open source software activity. In the Joint Porceedings of the 1st
International workshop on Model Driven Software Maintenance and
5th International Workshop on Software Quality and Maintainability,
pages 74–82, 2011.

[21] G. Gousios. The ghtorrent dataset and tool suite. In Proc. of the
10th Working Conference on Mining Software Repositories, MSR ’13,
pages 233–236, Piscataway, NJ, USA, 2013. IEEE Press.

[22] I. Guyon and A. Elisseeff. An introduction to variable and feature
selection. Journal of machine learning research, 3(Mar):1157–1182,
2003.

[23] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten. The weka data mining software: an update. ACM
SIGKDD explorations newsletter, 11(1):10–18, 2009.

[24] J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques.
Elsevier, 2011.

[25] J. R. Horgan, S. London, and M. R. Lyu. Achieving software
quality with testing coverage measures. Computer, 27(9):60–69,
1994.

[26] P. Hynninen, A. Piri, and T. Niinimaki. Off-site commitment and
voluntary turnover in gsd projects. In Global Software Engineering
(ICGSE), 2010 5th IEEE International Conference on, pages 145–154.
IEEE, 2010.

[27] D. Izquierdo-Cortazar. Relationship between orphaning and pro-
ductivity in evolution and gimp projects. ence, Eindhoven Univer-
sity of Technology, The Netherlands., page 6.

[28] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and
A. Wierzbicki. Github projects. quality analysis of open-source
software. In International Conference on Social Informatics, pages 80–
94. Springer, 2014.

[29] T. Jiang, L. Tan, and S. Kim. Personalized defect prediction. In
Proc. ASE, pages 279–289. IEEE, 2013.

[30] Y. Jiang, B. Cukic, and T. Menzies. Can data transformation help
in the detection of fault-prone modules? In Proceedings of the 2008
workshop on Defects in large software systems, pages 16–20. ACM,
2008.

[31] S. Kim, E. J. Whitehead Jr, and Y. Zhang. Classifying software
changes: Clean or buggy? IEEE Transactions on Software Engineer-
ing, 34(2):181–196, 2008.

[32] S. Koch and G. Schneider. Effort, co-operation and co-ordination
in an open source software project: Gnome. Information Systems
Journal, 12(1):27–42, 2002.

[33] R. E. Kraut, P. Resnick, S. Kiesler, M. Burke, Y. Chen, N. Kittur,
J. Konstan, Y. Ren, and J. Riedl. Building successful online communi-
ties: Evidence-based social design. Mit Press, 2012.

[34] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals. Predicting the
severity of a reported bug. In Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on, pages 1–10. IEEE, 2010.

https://cran.r-project.org/web/packages/ScottKnottESD/ScottKnottESD.pdf
https://cran.r-project.org/web/packages/ScottKnottESD/ScottKnottESD.pdf

22

[35] I. H. Laradji, M. Alshayeb, and L. Ghouti. Software defect predic-
tion using ensemble learning on selected features. Information and
Software Technology, 58:388–402, 2015.

[36] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings. IEEE Transactions on Software
Engineering, 34(4):485–496, 2008.

[37] B. W. Matthews. Comparison of the predicted and observed
secondary structure of t4 phage lysozyme. Biochimica et Biophysica
Acta (BBA)-Protein Structure, 405(2):442–451, 1975.

[38] T. Mende. Replication of defect prediction studies: problems,
pitfalls and recommendations. In Proceedings of the 6th International
Conference on Predictive Models in Software Engineering, page 5.
ACM, 2010.

[39] T. Menzies and M. Shepperd. Special issue on repeatable results
in software engineering prediction, 2012.

[40] R. G. Miller Jr. Survival analysis, volume 66. John Wiley & Sons,
2011.

[41] A. Mockus. Succession: Measuring transfer of code and developer
productivity. In Proc. ICSE, pages 67–77. IEEE, 2009.

[42] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of
open source software development: Apache and mozilla. ACM
Transactions on Software Engineering and Methodology (TOSEM),
11(3):309–346, 2002.

[43] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan. Curating
github for engineered software projects. Empirical Software Engi-
neering, 22(6):3219–3253, 2017.

[44] J. Nam and S. Kim. Clami: Defect prediction on unlabeled datasets
(t). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on, pages 452–463. IEEE, 2015.

[45] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In Proc.
ICSE, pages 382–391. IEEE Press, 2013.

[46] F. Rahman, D. Posnett, and P. Devanbu. Recalling the imprecision
of cross-project defect prediction. In Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software
Engineering, page 61. ACM, 2012.

[47] M. Ramos, M. T. Valente, R. Terra, and G. Santos. Angularjs in
the wild: A survey with 460 developers. In Proceedings of the 7th
International Workshop on Evaluation and Usability of Programming
Languages and Tools, pages 9–16. ACM, 2016.

[48] G. Robles, S. Koch, J. M. GonZÁlEZ-BARAHonA, and J. Carlos.
Remote analysis and measurement of libre software systems by
means of the cvsanaly tool. In Proceedings of the 2nd ICSE Workshop
on Remote Analysis and Measurement of Software Systems (RAMSS),
pages 51–56. IET, 2004.

[49] D. Romano and M. Pinzger. Using source code metrics to predict
change-prone java interfaces. In Software Maintenance (ICSM), 2011
27th IEEE International Conference on, pages 303–312. IEEE, 2011.

[50] J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski, and J. Kertesz.
Generalizations of the clustering coefficient to weighted complex
networks. Physical Review E, 75(2):027105, 2007.

[51] A. Schilling, S. Laumer, and T. Weitzel. Who will remain? an
evaluation of actual person-job and person-team fit to predict
developer retention in floss projects. In System Science (HICSS),
2012 45th Hawaii International Conference on, pages 3446–3455. IEEE,
2012.

[52] P. N. Sharma, J. Hulland, and S. Daniel. Examining turnover
in open source software projects using logistic hierarchical linear
modeling approach. In IFIP International Conference on Open Source
Systems, pages 331–337. Springer, 2012.

[53] M. Shepperd. How do i know whether to trust a research result?
IEEE Software, 32(1):106–109, 2015.

[54] M. Shepperd, D. Bowes, and T. Hall. Researcher bias: The use of
machine learning in software defect prediction. IEEE Transactions
on Software Engineering, 40(6):603–616, 2014.

[55] D. Spencer. Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[56] I. Steinmacher, M. A. Gerosa, and D. Redmiles. Attracting,
onboarding, and retaining newcomer developers in open source

software projects. In Workshop on Global Software Development in a
CSCW Perspective, 2014.

[57] K. J. Stewart and S. Gosain. The impact of ideology on effective-
ness in open source software development teams. Mis Quarterly,
pages 291–314, 2006.

[58] C. Tantithamthavorn and A. E. Hassan. An experience report on
defect modelling in practice: Pitfalls and challenges. In In Proceed-
ings of the International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP’18), page To Appear, 2018.

[59] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Mat-
sumoto. The impact of automated parameter optimization on de-
fect prediction models. IEEE Transactions on Software Engineering,
2018.

[60] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan. What are the
characteristics of high-rated apps? a case study on free android
applications. In Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on, pages 301–310. IEEE, 2015.

[61] R. Tourangeau, L. J. Rips, and K. Rasinski. The psychology of survey
response. Cambridge University Press, 2000.

[62] E. Van Emden and L. Moonen. Java quality assurance by detecting
code smells. In Ninth Working Conference on Reverse Engineering,
2002. Proceedings., pages 97–106. IEEE, 2002.

[63] G. Von Krogh, S. Spaeth, and K. R. Lakhani. Community, joining,
and specialization in open source software innovation: a case
study. Research Policy, 32(7):1217–1241, 2003.

[64] S. Wehaibi, E. Shihab, and L. Guerrouj. Examining the impact of
self-admitted technical debt on software quality. In Proceedings of
the 23rd IEEE International Conference on Software Analysis, Evolu-
tion, and Reengineering (SANER’16), 2016.

[65] F. Wilcoxon. Individual comparisons by ranking methods. Biomet-
rics bulletin, 1(6):80–83, 1945.

[66] D. H. Wolpert and W. G. Macready. An efficient method to esti-
mate bagging’s generalization error. Machine Learning, 35(1):41–55,
1999.

[67] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip, et al. Top 10 algorithms in
data mining. Knowledge and information systems, 14(1):1–37, 2008.

[68] X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang. Elblocker: Predict-
ing blocking bugs with ensemble imbalance learning. Information
and Software Technology, 61:93–106, 2015.

[69] X. Xuan, D. Lo, X. Xia, and Y. Tian. Evaluating defect prediction
approaches using a massive set of metrics: An empirical study.
In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, pages 1644–1647. ACM, 2015.

[70] K. Yamashita, Y. Kamei, S. McIntosh, A. E. Hassan, and
N. Ubayashi. Magnet or sticky? measuring project characteristics
from the perspective of developer attraction and retention. Journal
of Information Processing, 24(2):339–348, 2016.

[71] M. Yan, X. Xia, E. Shihab, D. Lo, J. Yin, and X. Yang. Automating
change-level self-admitted technical debt determination. IEEE
Transactions on Software Engineering, 2018.

[72] Y. Yu, A. Benlian, and T. Hess. An empirical study of volunteer
members’ perceived turnover in open source software projects. In
System Science (HICSS), 2012 45th Hawaii International Conference
on, pages 3396–3405. IEEE, 2012.

[73] A. L. Zanatta, I. Steinmacher, L. S. Machado, C. R. de Souza,
and R. Prikladnicki. Barriers faced by newcomers to software-
crowdsourcing projects. IEEE Software, 34(2):37–43, 2017.

[74] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer. Catego-
rizing bugs with social networks: a case study on four open source
software communities. In International Conference on Software
Engineering, pages 1032–1041, 2013.

[75] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou. Towards building
a universal defect prediction model with rank transformed predic-
tors. Empirical Software Engineering, 21(5):2107–2145, 2016.

[76] M. Zhou and A. Mockus. Who will stay in the floss community?
modeling participant’s initial behavior. IEEE Transactions on Soft-
ware Engineering, 41(1):82–99, 2015.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-2019

	A large scale study of long-time contributor prediction for GitHub projects
	Lingfeng BAO
	Xin XIA
	David LO
	Gail C. MURPHY
	Citation

	Introduction
	Experiment Setup
	Dataset
	Studied Features
	Prediction Model
	Evaluation Metrics

	Experiment Results
	Feedback from Developers
	Survey Participants
	Survey Design
	Survey Results
	Survey Implications

	Discussion
	Comparison with LTC Prediction based on Bug Reports
	Impact of 10-fold Cross-Validation
	Impact of Developer Productivity
	Impact of Feature Selection
	Impact of Project Popularity
	Evaluation using Matthews Correlation Coefficient
	Qualitative Analysis of Incorrect Predictions
	Implications for Action
	Threat to Validity

	Related Work
	Conclusion & Future Work
	References

