
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

2-2018

VT-Revolution: Interactive programming video
tutorial authoring and watching system
Lingfeng BAO

Zhenchang XING

Xin XIA

David LO
Singapore Management University, davidlo@smu.edu.sg

DOI: https://doi.org/10.1109/TSE.2018.2802916

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
BAO, Lingfeng; XING, Zhenchang; XIA, Xin; and LO, David. VT-Revolution: Interactive programming video tutorial authoring and
watching system. (2018). IEEE Transactions on Software Engineering. 1-16. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4351

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TSE.2018.2802916
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4351&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


1

VT-Revolution: Interactive Programming Video
Tutorial Authoring and Watching System

Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo

Abstract—Procedural knowledge describes actions and manipulations that are carried out to complete programming tasks. An
effective way to document procedural knowledge is programming video tutorials. Unlike text-based software artifacts and tutorials that
can be effectively searched and linked using information retrieval techniques, the streaming nature of programming videos limits the
ways to explore the captured workflows and interact with files, code and program output in the videos. Existing solutions to adding
interactive workflow and elements to programming videos have a dilemma between the level of desired interaction and the efforts
required for authoring tutorials. In this work, we tackle this dilemma by designing and building a programming video tutorial authoring
system that leverages operating system level instrumentation to log workflow history while tutorial authors are creating programming
videos, and the corresponding tutorial watching system that enhances the learning experience of video tutorials by providing
programming-specific workflow history and timeline-based browsing interactions. Our tutorial authoring system does not incur any
additional burden on tutorial authors to make programming videos interactive. Given a programming video accompanied by
synchronously-logged workflow history, our tutorial watching system allows tutorial watchers to freely explore the captured workflows
and interact with files, code and program output in the tutorial. We conduct a user study of 135 developers to evaluate the design and
effectiveness of our system in helping developers learn programming knowledge in video tutorials.

Index Terms—Program Comprehension, Human-Computer Interaction, Workflow

F

1 INTRODUCTION

To accomplish a program task, developers need not only
conceptual knowledge, i.e., knowledge about concepts and
APIs involved in the task, but also procedural knowledge, i.e.,
actions and manipulations that apply conceptual knowledge
in the task. Software artifacts, such as code created in a
task, records factual knowledge for software development.
Procedural knowledge is usually documented in text-based
or video-based programming tutorials that explain the flow
of actions or events in the course of task completion. Inter-
acting with software artifacts and tutorials and harnessing
the knowledge in them has become an integral part of
software development.

In term of authoring, it is often easier to record a 5-
minutes programming video using screen-capturing tools
like Snagit1 than it is to take the necessary screenshots and
write up an easy to follow text-based tutorial [33]. Further-
more, programming videos offer live and interactive expe-
rience which is absent in text-based tutorials. Programming
videos can serve as a reasonable approximation of watching

• Lingfeng Bao is with the College of Computer Science and Technology,
Zhejiang University, China.
E-mail: lingfengbao@zju.edu.cn

• Zhenchang Xing is with the Research School of Computer Science,
Australian National University, Australia.
E-mail: zhenchang.Xing@anu.edu.au

• Xin Xia is with the Faculty of Information Technology, Monash Universi-
ty, Australia, and College of Computer Science and Technology, Zhejiang
University, China.
E-mail: xin.xia@monash.edu, xxia@zju.edu.cn

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore.
E-mail: davidlo@smu.edu.sg

• Xin Xia is the corresponding author.
1https://www.techsmith.com/snagit.html

a developer’s live coding practice. Seeing a developer’s
coding in action, for example, how changes are made to the
source code step-by-step and how errors occur and are being
fixed, can be more valuable than text-based tutorials [26].

In spite of these advantages, programming videos suf-
fer some important drawbacks. Unlike text-based software
artifacts and tutorials that can be effectively searched and
linked using information retrieval techniques, the streaming
nature of programming videos, i.e., a stream of screen-
captured images, limits the ways that video watchers can
interact with the tutorial workflow and content and harness
the knowledge in the video. These limitations include:

• Lack of a high-level overview of the workflow. A program-
ming task often involves several files and many changes
made to the files step-by-step. Because programming
videos lack a good summarization of the workflow
history, it is often difficult for a video watcher to get an
overview of the task completion process, e.g., when and
how to modify which file, or what content the tutorial
author already added to a file up till now.

• No effective navigation support of workflow and tutorial
content. Unlike in the IDE where developers can freely
switch between files to view their content, video watch-
ers can only view the file content that is currently visible
at a specific time. Furthermore, as video content is non-
searchable images, it is difficult to navigate to a point
in the video which contains a specific information of
interest, for example, the time when a specific API call
is added to a particular source file, or the time when a
specific error occurs.

• Inconvenience in linking to supplementary resources. A
programming video may involve APIs that a tutorial
watcher is unfamiliar with, but the tutorial author does



2

not explain in detail. As such, tutorial watchers often
need supplementary resources (e.g., API documenta-
tion) to assist their learning of the tutorial content.
As video content cannot be directly copy-pasted and
used for search, tutorial watchers have to memorize
the information in the video and use it to find relevant
resources manually.

These limitations in interacting with tutorial workflow
and content can lead to misunderstandings of the video con-
tent [20], difficulties in keeping up with the pace of the tu-
torial and reduced knowledge retention [32]. Studies show
that adding interactive elements or workflows in videos
can effectively enhance the learning experience of video
tutorials [40], [24], [28], [31]. Simply put, the goal of our
work is to make programming video tutorials interactive so
that tutorial watchers can freely explore the workflow of a
programming task in the video (e.g., jumping steps, filtering
actions, navigating to a specific action or event), and interact
with files, code and program output in the video in a similar
way to the IDE interaction.

Multimedia tutorial authoring tools (e.g. HyperCard2,
Adobe Authorware3, Adobe Director4) allow authors to create
interactive workflows and elements in videos to enhance the
video watcher’s interaction with the tutorial. However, the
interaction is limited to only the author-defined workflow
and elements, which can be inefficient for programming
tasks. Furthermore, creating multimedia video tutorials in-
cur a significant burden on tutorial authors. Alternatively,
some approaches [35], [5] use Optical Character Recognition
(OCR) to convert video content into text so that video
watchers can interact with tutorial content via OCRed text.
However, OCR-based approaches cannot recognize actions
in the videos, such as switching views, minor editing of
file content, and thus cannot reliably recover the workflow
history of the tutorial. That is, although OCR-based ap-
proaches do not increase the efforts for tutorial authoring,
they provide only limited interaction with tutorial content.

To tackle the dilemma between the desirable interactive
programming video tutorials and the undesirable burden on
tutorial authors, two correlated design challenges must be
addressed. First, what interaction designs would be effective
for programming videos, considering the characteristics of
programming tasks and data? Second, which level and what
kinds of workflow history data is required for supporting
programming-specific interactive designs, and how can we
unobtrusively collect the required workflow history data to
obviate the burden on tutorial authors?

In this paper, we design a set of programming-specific
workflow history and timeline-based browsing interactions
that allow programming video watchers to freely explore
the workflow of a programming task and interact with files,
code and program output in the video tutorial. To obviate
the burden on tutorial authors, we leverage operating-
system (OS) level instrumentation to log the tutorial au-
thor’s low-level Human-Computer Interaction (HCI) data
while he is interacting with software development tools.
Sufficient details of HCI data are collected so that it can

2http://hypercard.org/
3http://www.adobe.com/products/authorware/
4http://www.adobe.com/products/director.html

be abstracted into intuitive programming operations to sup-
port efficient interactions with the workflow and artifacts in
the programming videos.

We recruit 135 developers from two IT companies in
a user study to evaluate our VT-Revolution system. The
user study involves three programming video tutorials with
different functions and complexities. Participants are asked
to use our VT-Revolution system, an OCR baseline prototype
that assist video watching with OCRed-text based search,
or just regular video player to watch video tutorials, and
then answer the questions that cover four types of infor-
mation related to the programming tasks in the tutorials.
We analyze the correctness of answers, the time taken, and
the satisfaction score of the learning experience between
the participants using different tools. Our results show that
developers using our VT-Revolution system can learn pro-
gramming tutorials better and faster, and are more satisfied
with the learning experience, compared with those using the
OCR prototype and video player.

This paper makes the following contributions:
• It presents VT-Revolution, and to our best knowledge,

we are the first to build a practical interactive program-
ming video tutorial authoring and watching system.
with special consideration of software data characteris-
tics in system design, to capture procedural knowledge
during programming tasks and allow developers to
freely interact with procedural knowledge

• It presents the results of a user study with 135 de-
velopers to evaluate our VT-Revolution system, and
the results show VT-Revolution improves the baseline
approaches substantially.

Paper Structure: The remainder of the paper is structured
as follows. Section 3 and 4 present the implementation
of VT-Revolution system. Section 5 presents the procedure
and results of the user study. Section 6 discusses several
directions for further exploration. Section 7 reviews related
work. Section 8 concludes the paper.

2 SYSTEM OVERVIEW

As shown in Figure 1, our VT-Revolution system contains a
tutorial authoring system and a tutorial watching system.
The tutorial authoring system does not require any special
tutorial authoring tools like Adobe Director. Neither does
it require the instrumentation of screen-capturing tools or
software development tools (e.g., IDEs). Instead, our tutorial
authoring system integrates a regular screen-capturing tool
(e.g., Snagit), the ACTIVITYSPACE framework [8], [6], and
a workflow operation abstraction component. While the
tutorial author is interacting with software development
tools to create a programming tutorial, a screen-capturing
tool records a video of the programming task, and, at the
same time, the ACTIVITYSPACE framework synchronously
logs the workflow history during the task. The workflow
history logged by ACTIVITYSPACE is a time series of the
tutorial author’s human-computer interaction (HCI) actions
and relevant contents in software development tools. The
file management component extracts various pieces of infor-
mation of files that the user has opened from action records,
e.g name, content, and timestamp. It also keeps all versions



3

Video-Workflow
Synchronization Component

Low Level 
HCI Actions

Workflow Operation 
Abstraction Component

ActivitySpace API Docs

Tutorial Authoring System

Tutorial Watching System

Tutorial Author Tutorial Watcher

API Document 
Linker

Workflow 
Operations

Screen Capturing 

Video 
Caption

Operation
Timeline

File Content
View

Workflow
Search

Workflow History UIs

Video Player
Screen-capturing video

File 
Manager

Fig. 1: The Framework of the VT-Revolution system

of such files. The workflow operation abstraction compo-
nent abstracts low-level HCI actions and contents into high-
level workflow operations pertinent to programming tasks,
such as open/switch files, inspect exceptions, add/delete
code elements.

The tutorial watching system takes as input an interac-
tive programming tutorial, consisting of a screen-captured
programming video and a synchronously-logged time-
series of workflow operations. The tutorial watching system
integrates a video player, several workflow history user
interfaces, a video-workflow synchronization component,
and an API document linker [39]. The video player plays
programming video. Workflow history user interfaces (see
feature summary in Table 4 and screenshots in Figure 1)
enhance programming video with automatic workflow-
operation caption, and support timeline-based visualiza-
tion, exploration and search of workflow operations and file
contents. The video-workflow synchronization component
supports synchronous video-operation and video-file navi-
gation of tutorial content. The API document linker allows
tutorial watchers to conveniently access API documents for
code elements involved in the programming tutorial from
within workflow history user interfaces.

3 TUTORIAL AUTHORING SYSTEM

Our tutorial authoring system does not require any
special interactive tutorial authoring tools like Adobe Direc-
tor4. Instead, it consists of a synchronous video recording
and workflow history logging component and a workflow
operation abstraction component. The design challenge for
the tutorial authoring system is how to log the tutorial
author’s activity at a low enough level to obviate the
need for instrumenting specific software development tools,
while ensuring that sufficient activity details are logged to
abstract high-level programming operations and reconstruct
workflow history.

3.1 Synchronous Video Recording & Workflow History
Logging
This component consists of a screen-capturing tool (e.g.,
Snagit1) and the ACTIVITYSPACE tool [8], [6]. While the
tutorial author is interacting with software development

TABLE 1: HCI Actions being Logged in IDE Editors and Views

UI Events Type When to Log Content to Log

Loss focus Edit Key inputs occur Component type, Window title
File content, File display name

View —- Component type
View content, View name

Gain focus Edit —- Component type, Window title
File content, File display name

View —- Component type
View content, View name

Mouse click Edit Key inputs occur Component type, Window title
File content, File display name

tools to create a programming tutorial, a screen-capturing
tool records a screen-captured video of the programming
task, and, at the same time, the ACTIVITYSPACE tool syn-
chronously logs the workflow history during the task.

The ACTIVITYSPACE tool developed by Bao et al. [8], [6]
is a HCI data collection framework that is specially designed
for tracking a developer’s interactions with a wide range
of software tools commonly used in software development,
such as IDEs, web browsers, text editors. Screen-capturing
tools usually support shortcut keys (for example, Snagit
uses Shift+F9 and Shift+F10) to start and stop screen captur-
ing. We configure the ACTIVITYSPACE tool to monitor such
key events. Once the ACTIVITYSPACE tool detects that the
tutorial author starts (or stops) the video recording using the
screen-capturing tool, it will start (or stop) the synchronous
logging of the tutorial author’s workflow history during the
programming tutorial.

ACTIVITYSPACE does not require any application-
specific instrumentation to log the developer’s actions with-
in an application. Instead, it incorporates OS window APIs,
accessibility APIs and simple image-matching technique to
monitor the developers’ actions in a software tool and ex-
tract action-related information. When creating a program-
ming video tutorial, the tutorial author usually spends most
of the time in the IDE to demonstrate how to complete the
programming task. Therefore, as the first proof-of-concept of
our interactive programming video tutorial system, we log
only the tutorial author’s actions in the IDE. Considering the
working environment of our study participants, we deploy
ACTIVITYSPACE to collect HCI data in the Eclipse IDE on
Windows. However, the feasibility study of ACTIVITYS-
PACE [8] shows that it can be deployed in other IDEs and
on other operating systems.



4

As the developer is interacting with the IDE, ACTIVI-
TYSPACE logs a time series of low-level HCI action records.
Each action record has a time stamp at millisecond precision.
An action record is composed of event type and window
information collected using OS Window APIs and focused
UI component information that the application exposes to
the operating system through accessibility APIs.

We configure ACTIVITYSPACE to log three UI events and
five types of HCI actions in IDE editors and views as sum-
marized in Table 1. For example, when an UI component
losses the UI focus, if the UI component is an edit component
and some key inputs occur while the UI component has the
UI focus, an action record is logged which consists of: UI
component type, window title obtained by OS window API,
file content obtained from the UI value of the UI component,
and file display name obtained from the Parent UI Name of
the UI component. Similarly, when other UI events of inter-
est occur and the relevant logging conditions are satisfied,
corresponding action records will be logged with relevant
contents obtained by OS Window APIs and accessibility
APIs. The design space for HCI data to log is huge. The four
type of actions we currently log is based on the frequent
actions in the empirical study of developers’ work data [6],
If needed, ACTIVITYSPACE can be configured to collect more
actions like clicking button, inspecting project hierarchy, etc.

The tutorial authoring system has a file manager compo-
nent that extracts the file information including name, con-
tent, and timestamp from action records and keeps all the
versions of files that the user has opened. These file infor-
mation is used for workflow operation generation (e.g., AST
generation, file content comparison), and the file content is
automatically synchronized with the tutorial videos during
tutorial watching (File Content View, see Section 4.1.3).

3.2 Workflow Operation Abstraction

Considering the logging latency of HCI actions, the ACTIV-
ITYSPACE tool just logs the action records during tutorial
authoring. However, these low-level action records cannot
intuitively reflect the developer’s programming operations
in the workflow history. Therefore, once the tutorial author
stops the video recording and workflow history logging,
the workflow operation abstraction component will abstract
the logged low-level action records into a time series of
workflow operations. Table 2 summarizes the heuristics for
abstracting these workflow operations from low-level action
records.

Based on our field study on developers’ activities [7], the
current system prototype abstracts four categories of work-
flow operations pertinent to programming tasks: open/switch
file, inspect exception, add/delete code elements, and edit text
content. Although the number of inspecting exception ac-
tions in video tutorials is much less than other types of
actions (e.g.,, Ponzanelli et al. found that about 5% of video
tutorials are related to bug/error fixing [35].), we believe
that even when the tutorial author plans the tutorial very
well, unexpected issues do happen. Furthermore, fixing
exceptions or other runtime errors would be challenging if
some less experienced developers run into them during the
learning of the tutorial.

TABLE 3: Details of Add/Delete Code Element Operations

ASTNode Type Info

Import statement Import Package name in the
import statement

Field declaration FieldDeclare Field name,
Field datatype name

Variable declaration VarDeclare Variable name,
Variable datatype name

Method call MethodCall
Method identifier,
Object and its datatype
on which a method is called

3.2.1 Open/Switch File
The workflow operation abstraction component maintains a
set of distinct file display names from all the action records
till the time point ti−1. If the file display name of the action
record at the time ti does not appear in this list of file display
names, the abstraction component generates an operation
FileOpen < ti, name > where name is the corresponding
file display name at the time ti. If the component type of
the two consecutive action records at the time ti−1 and ti
are both edit component and the file display name of the
two action records are different, the abstraction component
generates an operation FileSwitch < ti, origin, target >
where origin and target are file display name at the time
ti−1 and ti respectively.

3.2.2 Inspect Exception
If the component type of the two consecutive action records
at the time ti−1 and ti are both view component, the view
names are the console view name of the IDE5, and the
view content contains string “exception”, this indicates that
console output view has the focus in between the time ti−1

and ti and the view content displays some programming
exceptions. Therefore, the abstraction component generates
an operation InspectException < ti−1, ti, exception >
where exception is the view content of the action record.
Our approach can be easily extended to collect “Examine
Compile Errors” actions. We do do not include this type of
action in our current prototype because compile errors in
programming tutorials are usually minor and easy to fix.

3.2.3 Edit File
If the component type of the two consecutive action records
at the time ti−1 and ti are both edit component and the file
display name of the two action records are the same, the
abstraction component attempts to abstract changes made
to the file in between ti−1 and ti. The system is currently
configured to distinguish two types of files: source file
and non-source text file. This is done by matching the file
extension extracted from the window title of the action
record with the a set of source file extensions as input
parameters to the system. For example, files with “.java”
extension are considered as source files, while file with
extension like “.xml”, “.properties” or “.txt” are considered
as non-source text files. Note that file display name of an UI
component may not contain this information. For example,
for the Eclipse plugin configuration file plugin.xml, the file
display name of the editor is the plugin name, not the file
name.

5Our system can be configured to check console view name of
different IDEs.



5

TABLE 2: Workflow Operation Abstraction

Operation Category Operation Type Notion Abstraction Heuristics

Open FileOpen < ti, name >
File display name at the time ti does not appear in the set of
file display names from all the action records till the time ti−1

File Switch FileSwitch < ti, origin, target >
The file display name at the time ti is different from the file display
name at the time ti−1

Exception Inspect Inspect < ti−1, ti, exception >
The console output view has the focus from the time ti−1 to ti,
and the view content contains string “exception”

Add Add < ti−1, ti, type, info >
Unmatched AST node in the AST at the time ti, compared with
the AST at the time ti−1

Code Element Delete Delete < ti−1, ti, type, info >
Unmatched AST node in the AST at the time ti−1, compared with
the AST at the time ti

Text content Edit Edit < ti−1, ti, file, change >
Text content differences in the non-source text file from
the time ti−1 to ti

TABLE 4: Tutorial Watching System Feature Summary

Workflow Overview Search & Navigation Access API Doc

Video Caption • What the tutorial author does
at this moment —– —–

• Filter operations by operation type or fileWorkflow Operation TimeLine • When the tutorial author does
what to which file • Synchronous video-operation navigation

• Code element in the
selected operation

• All the content of a file till
the current time of tutorial video • Switching between files

File Content View • When the tutorial author works
on which file and the time spent • Synchronous video-file navigation

• Code elements in
current file content

• All operations involve searched code
elementsSearch Workflow Operations —– • Synchronous video-operation navigation

• Code element in the
returned operation

• Edit text content. For non-source text files, the abstraction
component uses a text differencing tool 6 to compute the
differences between the file content of the two consecutive
action records at ti−1 and ti. It generates edit-text-content
operation Edit < ti−1, ti, file, change > where file is the
file display name of the action records and change is the
text differences of the file content in between ti−1 and ti.
• Add/delete code elements. For source files, the abstrac-
tion component attempts to detect various types of code
elements being added and/or deleted in between ti−1 and
ti, because code-element changes correspond better to the
developers’ intuition about code changes than simple text
changes [42], [17]. To detect code-element changes, the ab-
straction component first attempts to parse the file content of
an action record using an appropriate parser, for example a
Java parser for Java source files 7. Note that source files may
contain incomplete code fragments during a programming
tutorial and thus may not be parsable.

If the file content of the two consecutive action records
are both parsable, the abstraction component compares the
two obtained ASTs to detect changes to code elements of
interest. As the code changes between the two consecutive
time points in a programming tutorial are usually minor, we
implement a simple AST differencing algorithm to compare
the two ASTs. The algorithm recursively compares the two
ASTs from the root node down level by level. The two
nodes (one from each AST) are considered as a match if
they have the same set of attributes (e.g., node type, node
name). After tree differencing, we obtain a list of unmatched
AST nodes in each AST. Based on the unmatched AST nodes
in each AST, the abstraction component generates code
element change operations Delete < ti−1, ti, type, info >
and Add < ti−1, ti, type, info >. The current prototype
focuses on four types of code elements as summarized in

6https://code.google.com/p/java-diff-utils/
7https://github.com/javaparser/javaparser

Table 3: import statement, field declaration, variable decla-
ration, and method call, because they are usually code ele-
ments that a code search engine returns, such as Codebase8,
Krugle9. To extend the system, other types of code elements
can be extracted from the AST differencing results in the
same way.

4 TUTORIAL WATCHING SYSTEM

Table 4 summarizes the key features of our tutorial
watching system. Figure 2 shows the screenshots of current
prototype. Our tutorial watching system takes as input a
screen-captured programming video and a synchronously-
logged time-series of workflow operations. The design chal-
lenge for the tutorial watching system is how to seamlessly
incorporate programming video and workflow history data
to allow tutorial watchers to easily find the needed informa-
tion in the video tutorial.

4.1 Workflow History User Interfaces

Workflow history user interfaces enhance programming
video with automatic workflow-operation caption, and sup-
port timeline-based visualization, exploration and search
of workflow operations and file contents. These UIs use
a video-workflow synchronization component for syn-
chronous navigation of video content and workflow oper-
ations (or files).

4.1.1 Video Caption
This feature allows tutorial watchers to easily note “what the
tutorial author does at this moment” in the tutorial video. As
a tutorial video is playing in the video player, the system
automatically generates synchronous video caption based

8http://www.codase.com/
9http://www.krugle.com/



6

1

2
3 4

5

6

(a) Main

7

(b) Workflow Operation Timeline

8

(c) File Content View (d) API Document Linking

9

9

10

10

Fig. 2: Screenshots of VT-Revolution. (1) Video player. (2) Search Workflow Operations. (3) Show Workflow Operation Timeline. (4)
Show File Content View. (5) A programming task description in tutorial. (6) Video Caption: workflow operation at this moment.
(7) The highlighted workflow operation is synchronous with the video playing. (8) The file timeline: when to work on which file
and time spent. (9) File content is synchronous with the video playing. (10) Right click an operation in operation timeline to access
API document.

on workflow operations. The generated video caption high-
lights tutorial author’s actions and code-element changes in
the video content that is currently playing.

4.1.2 Workflow Operation Timeline
Workflow operation timeline provides an overview of “when
the tutorial author does what to which file” during a program-
ming tutorial. Tutorial watchers can show this timeline by
clicking “Workflow Operation Timeline” button below the
video player. It shows chronologically all workflow opera-
tions from top down. Each row represents an operation, and
it shows: the time span of the operation (a horizontal bar
proportional to the time span), the operation type, and the
involved file(s). For add/delete code elements operations,
the rows display the involved code elements. For inspect-
exception and edit-text-content operations, the rows display
a link which can be clicked to view details of exception or
text content changes in a pop-up view.

Workflow operation timeline allows tutorial watchers
to search and navigate tutorial content by workflow operations.
Tutorial watchers can filter the workflow operations by
operation type or the involved file(s). The tutorial video
timeline and the workflow operation timeline are synchro-
nized. As the tutorial video is playing or tutorial watchers

navigate the tutorial video timeline, the workflow operation
involved in the current video content will be highlighted in
yellow color. Double-clicking an operation in the workflow
operation timeline highlights the double-clicked operation
as the current operation and navigates the tutorial video to
the start time of the double-clicked operation. At any time,
tutorial watchers can view the operations before and after
the current operation in the workflow operation timeline
without the need to navigate the video to the time when an
operation occurs.

4.1.3 File Content View
File content view allows tutorial watchers to view “all the
content that the tutorial author already created to a file till to
the current time of video playing” during a programming
tutorial. Tutorial watchers can show/hide this view by
clicking “Show/Hide File Content View” button. The files
that have been opened till the current time of video playing
are displayed in a tabbed view. Each tab is annotated with
the display name of a file. The focused file and its content is
synchronized with the tutorial video playing. As the tutorial
video is playing or tutorial watchers navigate the video, the
focused file in the current video content will be underlined
in the file content view. As changes are made to the focused



7

file in the tutorial video, the content of the focused file will
be updated automatically in the file content view. Although
only a part of the focused file is visible in the current video
content, tutorial watchers can switch between files and view
file contents in the file content view just like in the IDE,
without the need to navigate the video to the time when
that content is visible.

File content view uses a timeline of file to provide an
overview of “when the tutorial author works on which file and
the time spent” during a programming tutorial . Each file
in the timeline is represented by a distinct color. The same
color is used in the corresponding file tab. The time spent
on a file is proportional to a horizontal bar on the timeline.
The horizontal bar is annotated with the corresponding
file display name. This file timeline and the tutorial video
timeline are synchronized. Combined with video and file
content synchronization, the file timeline allows tutorial
watchers to navigate tutorial content based on the time when the
tutorial author works on a particular file and creates particular
file content.

4.1.4 Search Workflow Operations
This feature allows tutorial watchers to find workflow opera-
tions that involve code elements they are interested in. Tutorial
watchers enter a keyword in the search box. The system
currently performs a simple substring match between the
entered keyword and the name attribute of code elements
(see Table 3) involved in workflow operations. It returns
a list of work operations that involve the matched code
elements in a chronological order. Tutorial watchers can
double-click an operation in the results list to navigate the
tutorial video to the start time of the double-clicked operation.

4.2 Accessing API Documentation

While tutorial watchers inspect workflow operations in
workflow operation timeline or workflow operation search
results, view code content in file content view, they can
select a code element and request supplementary resources.
Our current prototype supports the access of the official API
documents of the selected code element.

We adopt the approach proposed in the Live API doc-
umentation tool [39] for linking the selected code element
to its relevant API document. We build the knowledge
base of the official API documents by extracting the API
Javadocs from the source code of open source projects.
The knowledge base currently includes the official API
documents for JDK, Eclipse, and Java mail library. For a
select code element, the API document linker selects a set
of initial candidate APIs in the knowledge base whose
name matches the name of the selected code elements, and
then it uses the context-based disambiguation mechanism
proposed in the Live API documentation tool to determine
the most appropriate API for the selected code element.
This context-based disambiguation mechanism essentially
filters irrelevant candidate APIs by other code elements co-
occurring in the same file of the selected code element. This
mechanism has been shown to be effective in identifying
a unique API for a code element in a code snippet [39].
When several candidate APIs are still left after context-based
disambiguation, the system displays the API documents of
all of them for user selection.

5 EXPERIMENT

In this section, we conduct a controlled experiment with
135 developers who do not use Java as their main program-
ming language. We use our tutorial authoring system to
produce three interactive Java programming video tutorials.
For each tutorial, we design a questionnaire based on the
programming task of the tutorial. Our goal is to evaluate
how well developers can answer programming questions
related to the programming tutorials with or without VT-
Revolution.

5.1 Research Questions

The research questions guiding our study are:
RQ1 How well and efficiently does our VT-Revolution sys-

tem help developers search relevant information in video
tutorials, compared with developers using the OCR pro-
totype and regular video player?
Motivation. Our VT-Revolution system enhances the
video tutorial learning experience by providing visual-
ization, exploration and search of the captured workflow
history and tutorial content. We would like to investigate
whether VT-Revolution can make a significant difference
in helping participants understand the important knowl-
edge and information in a video tutorial better and faster.

RQ2 Are the participants using VT-Revolution more satis-
fied with the learning experience of the video tutorials
than those using the OCR prototype and regular video
player?
Motivation. VT-Revolution offers an interactive tutorial
learning experience, which is completely different from
just watching a video. We would like to investigate
the user experience and the participants’ subjective as-
sessment on VT-Revolution, compared with that of the
participants using the OCR prototype and regular video
player.

RQ3 Which feature(s) of VT-Revolution are most useful?
Motivation. Our VT-Revolution system includes a rich
set of interaction features for exploring workflow history
and interacting with tutorial content (see Table 4). We
would like to investigate the usefulness of these features
and obtain some insights to improve VT-Revolution.

5.2 Programming Tutorials

Experimental tutorials are designed based on watching sim-
ilar programming videos on the Internet. The first author
who has five-years Java programming experience first cre-
ates three Java programming video tutorials. The second
and third authors are university lecturers who teach pro-
gramming courses. We follow their teaching experiences in
authoring programming tutorials for teaching programming
practices. Then, all authors collaboratively revise the tutori-
als to adjust step sequence, proceeding speed, and tutorial
transcripts.

These three programming video tutorials can be found
on our VT-Revolution website10. As our study participants

10http://192.243.114.62:8080/VTRevolution/



8

TABLE 5: Three Java Programming Video Tutorials Used in Experiment

Tutorial Programming Task LOC #File Duration
[mm : ss]

Log
(MB)

Video
(MB)

#Frame
(OCR)

email
a simple program to send email:
1. load email configuration from a properties file
2. send a test email using Java mail library

75 2 8:39 0.38 49.5 77

mysql

a program to illustrate some MySql Database operations
1. query a table using Statement
2. query a table using PreparedStatement
3. insert a row into table then return the auto increment id
4. call a stored procedure

175 1 11:06 0.97 82.0 372

plugin
an Eclipse plugin:
1. a basic text editor with file edit and save function
2. a view to show the length of content in text editor

309 5 19:19 1.21 173.0 490

are all from China, the first author speaks Chinese when
recording these tutorials.

Table 5 shows the details of the three programming
tutorials. The first column is the name of the tutorial, the
second column summarizes the programming task in the
tutorial, the third column is the total line of code (LOC) after
finishing the programming task at the end of tutorial, the
forth column is the number of files that are opened and/or
modified in the tutorial, and the fifth column is the duration
of tutorial.

To evaluate the effectiveness of our VT-Revolution system
in a diverse setting, we design three programming tutorials
with different functionalities and complexity. The email tu-
torial is the simplest among the three programming tasks.
The email tutorial is the shortest tutorial (about 9 minutes),
and the final program is the smallest (75 LOC). The email
tutorial involves two files, a source file and a property
file that stores email configurations to be loaded when the
program starts. The mysql tutorial is of medium duration
and complexity. It implements four kinds of SQL database
operations. The final program in the mysql tutorial has
175 LOC. The mysql tutorial involves only one source file.
The plugin tutorial is the most complex programming task
among the three tutorials, which involves 4 source files and
1 plugin configuration file. The final program has 309 LOC,
and the tutorial duration is almost 20 minutes. Both the email
and the mysql tutorial require programming with a library.
The plugin tutorial is different from the other two tutorials in
that it requires knowledge of extending Eclipse framework,
which is a more complex task than calling library APIs.

The 6th and 7th columns of Table 5 show the size of
screen-captured videos and the size of workflow history log
data. We can see that the size of log data is very small,
because ACTIVITYSPACE logs only action, time stamp and
text content (if any). For example, the size of the email
tutorial video recorded by Snagit is ∼50MB (even when we
compress the video, its size is still ∼24M), while the size of
the workflow history log data is just 0.38M.

5.3 Baseline tools
In this study, we consider two baseline tools. The first
baseline is just regular video player to watch programming
videos. The second baseline is an OCR prototype that assists
video watching with OCRed-text based search and navi-
gation. We follow the CODETUBE approach [35] to build
the OCR prototype. First, we filter similar frames for the
three experimental tutorials. The 8th columns of Table 5

TABLE 6: Statistics of the Projects with Participants

Project Years #Devloper Pro. #Participant
A 6 136 C# 40
B 4 90 C# 25
C 4 18 C# 12
D 3 48 C# 15
E 2 10 Python 4
F 4 28 Python 12
G 2 32 C/C++ 12
H 6 68 C/C++ 15

Years

W
o

rk
in

g
 E

x
p

e
ri

e
n

c
e

0 2 4 6 8 10

Fig. 3: The Working Experience of Participants

shows the number of frame after filtering similar frame.
Second, we identify Java code using computer vision and
OCR techniques. With this OCR prototype, users can enter a
text query to search the video, and the prototype returns all
frames that contain the input query. Then users can choose
some returned frames to navigate the video tutorial.

5.4 Participants

We recruit 135 professional developers from two IT com-
panies in China, named Insigma Global Service 11 and
Hengtian 12. Insigma Global Service is an outsourcing com-
pany which has more than 500 employees, and it mainly
does outsourcing projects for Chinese vendors (e.g., Chi-
nese commercial banks, Alibaba, and Baidu). Hengtian is
an outsourcing company which has more than 2,000 em-
ployees, and it mainly does outsourcing projects for US
and European corporations (e.g., State Street Bank, Cisco,
and Reuters). To recruit the developers, we obtain a list
of projects in the two companies that do not use Java as
main programming language (as part of their education,
all developers have basic Java knowledge). We email the

11http://www.insigmaservice.com/
12http://www.hengtiansoft.com/



9

developers in the selected projects to seek volunteers for
our study. 135 developers from 8 different projects are
recruited. Table 6 shows the statistics of these 8 projects13.
The columns correspond to the name of project (Project),
the time duration of the project (Years), the number of the
developers (#Developer), the main programming language
(Pro.), and the number of developers who participate our
study (#Participant). These 8 projects have different time du-
rations, sizes, and main programming languages. All the 135
developers have basic knowledge about Java programming
but they do not use Java as main programming language in
their work.

Then, we conduct a pre-study survey to ask participants
the working experience and whether they have used Java to
write the three program tasks (i.e., send an email, execute
MySQL operations, create an eclipse plugin) in our study.
We find that 91% (123) of participants said they had not
written such kinds of programs, while the other participants
said that they wrote one or two similar programs in their
college days but they had forgotten the exact steps. As such,
the 135 participants are not familiar with the programming
tasks used in the experiment.

Figure 3 presents the working experience of the partic-
ipants. The average working experience is 3.69 years. We
divide these 135 developers into three groups based on
their working experience14: senior (more than 5 years of
professional experience), middle (3 to 5 years of professional
experience) and junior (less than 3 years of professional
years). Among the 135 participants, 26, 59, and 50 of them
belong to senior, middle, and junior category, respectively.
Due to developers’ time constraints, we adopt between-
subject design in our experiment. Based on the participants’
years of professional experience, we divide the 135 devel-
opers into nine comparable groups: three groups that use
VT-Revolution (experimental group), three groups that use
the OCR prototype (control group 1), and three groups that
use regular video player (control group 2). Each group has
15 participants and the ratio of junior, middle, and senior
developers for each group is kept approximately the same
as 1:2:2.

We deploy VT-Revolution and the baseline tools as web
applications so that participants can access them via a web
browser easily. We divide the whole experiment into three
sessions. In each session, participants in three groups for
one programming tutorial are required to complete the
questionnaire questionnaire for the relevant programming
tutorial (see Section 5.5). The participants may complete the
tasks before the session ends. Depending on their groups,
the participants use VT-Revolution, the OCR prototype or
regular video player to watch the programming tutorial,
and complete a questionnaire about programming knowl-
edge in the watched tutorial.

5.5 Questionnaire Design

To evaluate how well participants learn programming
knowledge in video tutorials, we design a questionnaire for

13Due to the security policies in these two companies, we anonymize
the project name.

14We decide the developer level based on the input from these two
companies.

TABLE 8: The Number of Questions for Experimental Video
Tutorials

Total
Question

API
Usage Workflow Output File

Content
email 9 4 2 1 2
mysql 9 3 3 2 1
plugin 11 4 3 1 3

each video tutorial. Each questionnaire has several ques-
tions, and each question is related to a knowledge point in
the video tutorial. Some questions ask the participants to
select one or more answers from multiple choices, while
other questions ask the participants to fill in blank with
relevant information. The first author develops standard
answers to the questionnaires, which are further validated
by the second and third author. A small pilot study with
three developers (one for each tutorial) is conducted to test
the suitability and difficulty of the tutorials and question-
naires. The complete questionnaires can be found in our
VT-Revolution website10.

It is important to note that these questionnaires are not
designed in favor of the VT-Revolution features. Instead,
they are designed based on our programming experiences
and a survey of two developers, with the goal to cover
four categories of information that tutorial watchers may be
interested in when learning a programming tutorial. Table 7
show example questions of different categories for the three
video tutorials. Table 8 shows the number of questions of
different categories for the three video tutorials.

1) API Usage: This category has two sub-categories.
API usage (in tutorial) sub-category asks tutorial watchers
to find the information about how an API explained in
the tutorial is used in the programming task of the video
tutorial. In contrast, API usage (API doc) sub-category
contains questions about APIs that appear in the tutorial
but the tutorial does not explain in detail. We give tips
to participants that the answers to API usage (API doc)
questions cannot be found in the tutorial.

2) Output: Output questions require tutorial watchers to
find program output information in a video tutorial. The
output can be normal results or exceptions after program
execution. Program output information can help tutorial
watchers identify important knowledge point in the tutorial.
For example, seeing what program may cause an exception
and how the exception can be fixed is very valuable for a
novice developer.

3) File Content: File content questions require tutorial
watchers to find the information about program configu-
ration and the resulting code after certain programming
actions.

4) Workflow: Different from locating a specific informa-
tion in a video tutorial, workflow questions check tutorial
watchers’ understanding of the overall process of complet-
ing a task or subtask.

It is important to note that, to evaluate the participants’
learning outcomes of a video tutorial, we do not ask devel-
opers to create a program from the video tutorial, because
a developer can literally copy-paste code in the tutorial to
make a working program, without understanding the task
completion process, why it works, and what to do when
something goes wrong. In contrast, our experimental ques-



10

TABLE 7: Example Questions of Different Categories for Experimental Video Tutorials

Category Video Question Examples
email A variable session of type javax.mail.Session is declared. How is this variable initialized?

API Usage
(in tutorial)

mysql How to create a Statement instance in the method executeStatement of the class DBImpl?

plugin What is the Class of the first parameter in the API call activePage.openEditor, and what
does the second parameter represent?

email
If the API java.mail.Message.setFrom is called without any parameters, which attribute
in the Property will be regarded as the “From” in the email? If no such attribute, what
is the value of “From” in the email?API Usage

(API Doc) mysql When creating Statement object, how to obtain a ResultSet that is scrollable, updateable,
and insensitive to updates by others?

plugin List the parameter list of all overloading APIs org.eclipse.ui.IWorkbenchPage.openEditor,
except the one used in the video.

email In the video, what kinds of exceptions are thrown?

mysql What is the query result after completing and running the method
executePreparedStatement?

Output
plugin

When running the Eclipse plugin, an IllegalArgumentException is thrown. To fix this
problem, the value of the first argument of activePage.openEditor is changed from null
to a new value. What is this new value?

email Which attributes are configured in the property file?
File

Content
mysql What is the name of output parameter of stored procedure?
plugin How many override methods in the class MyEditor are changed in the tutorial?
email What is the API call sequence on the variable message whose class is javax.mail.Message?
mysql Before you get a MySQL database connection instance, what step you must do?Workflow
plugin In the video, to create the UI of text editor, what is the code fragment in the method

createPartControl of the class MyEditor?

tions explicitly test the developers’s ability to search, explore
and understand the tutorial to satisfy their information
needs in learning, such as what are appropriate parameters
for an API call, how to handle an exception, and what is the
next step to complete the code.

5.6 Experiment Procedure
Before the experiment, we give a short tutorial on the
features of the VT-Revolution system to participants in the
experimental group. The training focuses only on system
features. We do not instruct the participants how they could
use our system to answer questionnaires. For the control
group using the OCR prototype, we introduce how to use
the prototype to search and navigate the video tutorial. For
the control group using regular video player, no training is
needed.

At the beginning of an experiment session, a question-
naire web page is shown to the participants. Once the
participants click the start button, a web page is opened
in another browser window or tab. The participants in
the three groups use the corresponding tool to watch the
video tutorial. Participants can answer the questionnaire
while watching the video tutorial. For API usage (API doc)
questions, the groups using the OCR prototype and regular
video player can use search engines to find the relevant
API documentation. When the participants complete the
questionnaire, they submit the questionnaire by clicking the
submit button.

After submitting the questionnaire, the participants in
the three groups are asked to rate an overall satisfaction
score of the corresponding tool (VT-Revolution, the OCR
prototype, and regular video player) they use for learning
video tutorials. They can also write some suggestions or

feedback to us. We use open card sorting [38] to group
the comments from the participants. In the preparation
phase, we create one card for each feedback comment. In
the execution phase, we extract some key words from each
comment, then match the key words to group the comments.
Finally, we choose some representative comments from each
group. One author and two graduate students jointly sort
the card. For the group using VT-Revolution, we also ask
the participants to rate the usefulness of the VT-Revolution
features: workflow operation timeline, file content view,
search and navigation, and API documentation linking. All
of the scores rated by participants are 5-points likert scales
(1 being the worst, 5 being the best).

5.7 Experiment Results

In this section, we show the results of our experiment to
answer three research questions.

5.7.1 RQ1

Approach. The accuracy of a participant’s answers to the
questions in the questionnaire and the time spent to com-
plete the questionnaire can reflect how well and how ef-
ficient the participant understands a video tutorial. We
define accuracy as the percentage of correct answers in
a questionnaire. The higher the accuracy is, the better a
participant understands the video tutorial. An answer to a
question is marked as correct if it contains only the choice(s)
or information as expected in the standard answer. The first
author marks the participants’ answers, which are validated
by the second and third authors. To get the total time to
complete a questionnaire, we collect the start time when the
start button is clicked and the end time when the submit



11

0
.2

0
.4

0
.6

0
.8

1
.0

A
c

c
u

ra
c

y

(a) email

0
.2

0
.4

0
.6

0
.8

1
.0

A
c

c
u

ra
c

y

(b) mysql

0
.2

0
.4

0
.6

0
.8

1
.0

A
c

c
u

ra
c

y

(c) plugin
Fig. 4: The Accuracy of Answers to Questionnaires for the Three
Experimental Video Tutorials

0
1
0

2
0

3
0

4
0

5
0

6
0

T
im

e
 (

In
 M

in
u

te
s
)

(a) email

0
1
0

2
0

3
0

4
0

5
0

6
0

T
im

e
 (

In
 M

in
u

te
s
)

(b) mysql

0
1
0

2
0

3
0

4
0

5
0

6
0

T
im

e
 (

In
 M

in
u

te
s
)

(c) plugin
Fig. 5: The Time of Completing Questionnaires for the Three
Experimental Video Tutorials

button is clicked. The shorter the completion time is, the
more efficient a participant finds relevant information the
video tutorial.

We use Wilcoxon Rank Sum test [41] to measure whether
the difference of accuracy and time between experimental
group using VT-Revolution and control group using the OCR
prototype (or regular video player) is statistically significant.
p value < 0.05 in Wilcoxon Rank Sum test is considered
as statistically significant. We compute Cliff’s delta [11] 15,
which is a non-parametric effect size measure that quantifies
the amount of difference between the two groups.
Results. Figure 4 presents in box plots the accuracy of
answers to the questionnaires for the three experimental
video tutorials. The data of the three groups is labeled as
VT-Revolution, OCR and Video Player respectively. We can
see that the average accuracy of answers in the experimental
groups using VT-Revolution is higher than that of the control
groups using OCR prototype or regular video player (on
average 0.89 vs. 0.80 and 0.74 for email, 0.94 vs. 0.85 and 0.84
for mysql, 0.91 vs. 0.78 and 0.75 for plugin). For the mysql
tutorial, 11 out of the 15 participants in the experimental
group using VT-Revolution answer the whole questionnaire
correctly, while only 4 in the control group using the OCR
prototype and 3 in the control group using regular video
player achieve this. For the email and plugin tutorial, there
are still some participants in the experimental groups who
answer the whole questionnaire correctly, while only 1
participant in the control groups using the OCR prototype

15Cliff defines a delta of less than 0.147, between 0.147 to 0.33,
between 0.33 and 0.474, and above 0.474 as negligible, small, medium,
and large effect size, respectively.

achieves this and none of the participants in the control
groups using regular video player achieve this.

Figure 5 presents in box plots the time of completing
questionnaire for the three experimental video tutorials. We
can see that the average time of completing questionnaire
in the experimental groups using VT-Revolution is less than
that of the control groups using OCR prototype or regular
video player (on average 11.17 vs. 17.77 and 17.16 minutes
for email, 16.05 vs. 22.26 and 25.67 minutes for mysql, 23.95
vs. 32.01 and 34.81 minutes for plugin). An interesting ob-
servation is that the time spent by many participants in
the experimental groups using VT-Revolution is actually less
than the duration of the video tutorial. This indicates that
participants using VT-Revolution may not need to watch the
entire tutorial videos in order to find relevant information
in the videos. This suggests that VT-Revolution can be very
useful when developers are not interested in the entire
tutorial but only some part(s) of the tutorial. In contrast,
the participants using the OCR prototype and regular video
player usually spend much longer time than the duration of
the video tutorial.

Table 9 presents the p-values of Wilcoxon Rank Sum
test with Bonferroni correction and the Cliff’s deltas of
the accuracy and time for the three experimental video
tutorials. The p-values are all smaller than 0.05 which means
that the differences between the experimental groups and
the corresponding groups are statistically significant at the
confidence level of 95%, except for the accuracy between the
group using VT-Revolution and the group using the OCR
prototype for the mysql tutorial, and the time between the
group using VT-Revolution and the group using video player
for the email tutorial. The differences are also substantial
with the Cliff’s deltas belonging to large effect size, except
for the accuracy between the group using VT-Revolution and
the group using the OCR prototype for the mysql tutorial.

Comparing the accuracy and time of the control groups
using the OCR prototype and regular video player, we can
see that using the OCR prototype can help people find
relevant information faster and better than using just video
player. But the improvement is much smaller, compared
with using VT-Revolution. Furthermore, although the differ-
ence of using VT-Revolution and the OCR prototype is not
significant in the mysql tutorial involving only one source
file, VT-Revolution can help people find relevant information
significantly faster and better in more complex tutorials
involving several files.

Feedback we receive from the participants using VT-
Revolution provide some evidence that how our tool helps
them answer the questionnaires better and faster. Some
examples are given below:
U “Some questions that are related to source code in the video

are very easy to answer using this tool, since I can view all
code files at any timestamp of the video tutorial.”

U “Using this tool, I need not to watch the video tutorial from
start to end, I just use the keyword in the question to search
workflow history.”

U “I can understand some APIs through viewing the docu-
ments directly using this tool, and need not to open another
web page to search online.”

Feedback from the participants using the OCR prototype
suggests that OCRed text can help search and navigate the



12

TABLE 9: The P-values and Cliff’s deltas of Accuracy and Time

OCR Prototype Video Player
email mysql plugin email mysql plugin

p-value 0.0420 0.1834 0.0138 0.0264 0.0488 0.0008accuracy Cliff’s delta 0.4267 (M) 0.2711 (S) 0.5156 (L) 0.5511 (L) 0.4844 (L) 0.7689 (L)
p-value 0.0210 0.0488 0.0296 0.0556 0.0296 0.0198time Cliff’s delta -0.4933 (L) -0.4267 (M) -0.4667 (M) -0.5000 (L) -0.5467 (L) -0.5733 (L)

S, M, and L are small, medium, and large effective size, respectively.

video, but it is often not accurate. some examples are given
below:
U “I use some keywords, e.g. ‘exception’, and find the target

location in the video very quickly.”
D “In many times, I use a keyword from the question but do not

find any results. In this situation, this tool doesn’t work.”
D “Some keywords return too many target locations. Checking

the returned locations one by one is very difficult and time
consuming.”

Feedback from the participants using regular video play-
er are generally not good. Some typical difficulties they are
faced with are given below:
D “Watching a 20-minutes video tutorial in which the pro-

gramming task is not well known to me continuously is very
boring. But I have to watch it very carefully to answer the
questions.”

D “I remember I saw something somewhere relevant to the
question, but i cannot recall the precise part of the video
for the relevant information. Finding it in the video is really
painful.”

D “As I do not know Eclipse APIs well, remembering the
interface and API name to be searched is a kind of mental
challenge.”

5.7.2 RQ2

Approach. We compare the overall satisfaction score of the
tools used by the experimental and control groups for learn-
ing video tutorials. We use Wilcoxon Rank Sum test [41] to
measure whether there is a significant difference between
the scores rated by the participants using VT-Revolution and
those using the OCR prototype (or regular video player) We
compute Cliff’s delta [11] to quantify the effect size of the
difference between the two groups.
Results. Figure 6 shows the overall satisfaction score rated
by the participants using VT-Revolution, the OCR prototype
and regular video player. We can see that almost all the
participants (43 out of 45) using VT-Revolution have positive
satisfaction scores (4 or 5), and only 2 participants are
neutral. For the OCR prototype, The number of participants
who have positive satisfaction scores (12 out of 45) is close
to that of participants who have neutral (16 out of 45) and
negative satisfactory scores (17 out of 45). The majority (34
out of 45) of the participants using regular video player have
negative satisfactory score (1 or 2). The average satisfaction
score rated by the participants using our VT-Revolution is
4.51, while the average satisfaction score rated by the par-
ticipants using the OCR prototype and regular video player
is only 2.83 and 1.89, respectively. The p − value between
the groups using VT-Revolution and the groups using the
OCR prototype is 1.184e-11, and The p− value between the
groups using VT-Revolution and the groups using regular

18 16

9

2 0
5

12
16

9

3

OCR Prototype Video Player

1 5

0 0 2

18

25

1 5 1 5

VT-Revolution

Fig. 6: The Overall Satisfaction Score

0 0
4

13

28

0 0
4

12

29

0 0
3

22 20

0 1

10

21

13

Workflow Timeline File Content View

Search & Navigation API Doc Linking

1 5 1 5

Fig. 7: The Score of Different Functions of VT-Revolution

video player is 7.45E-16. This indicates that the satisfaction
differences are statistically significant at the confidence level
of 99%. The Cliff’s delta is 0.79 and 0.97 respectively, which
corresponds to a large effect size.

Most feedback from the participants using VT-Revolution
are positive, except two participants complaining loading
time is very long. The reason is that they use non-common
360 Browser which has some issues with our current web
prototype. Examples of positives feedback are:

U “This tool is very interesting. I can clearly know what the
video author does at any time. It’s very useful to help me
understand the video tutorial.”

U “The code in text format is more familiar to me than the code
in video. I can copy the code fragment from the video tutorial
using this tool. Very cool!”

U “The prototype is designed very well. I can navigate the video
easily and find what I want.”

The participants using OCR prototype appreciates the
usefulness of OCRed text but propose some suggestions to
improve the OCR prototype, for example:

� “I can use this tool to navigate the video tutorial, but for
some questions in the questionnaire that require the context
and programming process, that’s not enough. I have to spend
more time to look into the tutorial.”

� “If the search results can show more information, e.g. what’s
the content of the returned location about, this will help locate
the target frame more faster, especially when too many results
are returned.”

The participants using regular video player have many
complaints, for example:



13

D “I always have no patience with watching the whole video
tutorial, but watching video discontinuously usually make
me miss some important things.”

D “Even though I can locate the information in the video, I
often need to watch this fragment of the video repeatedly so
that I can find out what really happen.”

From the above feedback, we can see that VT-Revolution
can be helpful to solve some typical problems that are
encountered by the participants using just video player.

5.7.3 RQ3

Approach. We study the usefulness scores of different fea-
tures rated by the participants using VT-Revolution. We
also review the feedback from these participants on these
features.
Results. From Figure 7, we can see that the average scores of
all VR-Revolution features are above 4 (i.e., useful). The users
like the most workflow operation timeline and file content
view. The majority of users rate these two features useful or
very useful. For search and navigation feature, about half of
the participants rate it as useful, while the other half rate it
as very useful. The API document linking feature receives
the lowest usefulness score.

Some comments from the users illustrate why they think
these features are useful:
U Workflow operation timeline: “I can know the whole

workflow more clearly using this timeline and use it to
navigate video more easily.”

U File content view: “File content view gives me an overview
of the program in the video, and it is easy to know the code
change by comparing the code content at two different times.”

U Search and navigation: “I like the synchronization be-
tween the video and the workflow. I can easily find the needed
information and jump to that video part.”

U API Doc linking: “I do not know the usage of many classes
and APIs in the video tutorial since I never write Eclipse
plugin programs. I can understand the video better using
API documentation, just like what I can do in the IDE”

Some participants also provide good suggestions to help us
improve VT-Revolution in the future, for example:
� “I can only view the API documentation, but sometimes it’s

not enough. It could be better to link to other resources (e.g.
Stack Overflow) or use the selected code as a query to search
the Web.”

� “This tool is very good now, but it will be much better if
it can analyze and abstract some good practices of tutorial
authors such as frequently used shortcut keys.”

� “If this tool can be applied to large amount of existing online
video tutorials, it will be very valuable. ”

5.8 Threats to Validity

Threats to internal validity refer to factors internal to our
studies that could have influenced our experiment results:

1) The quality of video tutorials: The first author who
creates the experimental tutorials is very experienced in the
involved programming tasks. To ensure the quality, all au-
thors collaboratively review the created video tutorials and
the first author makes necessary revisions to step sequence,
proceeding speed, and tutorial transcripts. However, we

are not aware of a methodical approach to generating the
tutorials in the literature. In the future, we might develop
some methodical approach to generating programming tu-
torials based on more experiences of creating video tutorials
and more feedback from professional developers. Further-
more, the simple programming tasks of the first two video
tutorials might be a threat to validity since participants
with basic Java knowledge might answer the questions
without watching video tutorials. However, all questions
except for those that belong to API usage (API doc) category
require participants to find relevant information in the video
tutorials. Moreover, it is difficult to answer the questions
of API usage (API doc) category without looking up API
documentation. We also confirm that most of participants
do not know the three program tasks well in the pre-study
study.

2) The implementation of OCR prototype: We have followed
the approach of CODETUBE [35]. But we use another OCR
tool ABBYY FineReader16, which is a professional OCR
software that has better OCR accuracy than the open source
OCR tool TESSERACTOCR. We use a smaller dissimilarity
threshold (0.001) as the threshold of CODETUBE (0.1) leaves
only several frames after filtering similar frames. In a pilot
study of the OCR prototype, all participants complain that
too few frames lead to incomplete understanding of the
workflow and inaccurate content navigation.

3) The appropriateness of the questionnaires: All authors
design the questionnaires together with the goal to cover
different categories of knowledge that developers could be
interested in the programming tutorials. However, there
might be some biases that favor VT-Revolution in the ques-
tionnaires. For instance, it is very difficult to answer some
questions that belong to “File Content” category using the
baseline tools since users have to inspect the video frame by
frame to identify the file content change. We recruit three
developers to test-run the experiment and make necessary
revisions of questionnaires based on their feedback on the
suitability and difficulty of tutorials and questionnaires. Our
test-runs ensure that not only the participants using VT-
Revolution but also the participants using the baseline tools
can answer all the questions in the questionnaires.

4) The equivalence of experiment and control groups: We
conduct a pre-study survey of participants’ years of pro-
gramming experience and familiarity with similar program-
ming tasks and make the best effort to divide them into
comparable groups. 5) the Hawthorne effect [1], namely that
participants change their behavior because they know they
are being watched: Since VT-Revolution is a new tool, which
could change participants’ behavior, we could never fully
exclude the Hawthorne effect, like many studies in software
engineering research [9], [2].
Threats to external validity refer to the generalizability of
the results in the experiment. Although our experiment uses
only three video tutorials, we carefully design the three pro-
gramming tasks with different functions and complexities.
The video tutorials we create have typical workflows like
those online programming videos. To improve the general-
izability of the results, we invest significant effort to recruit
135 developers from two IT companies in our experiment.

16https://www.abbyy.com/en-us/finereader/



14

6 DISCUSSION

Based on our own experiences in designing VT-Revolution,
and comments made by participants in our experiment, we
see several directions for further exploration:
Working environment as a tutorial system: ACTIVITYS-
PACE [8], [6] aims to support self-retrospect of a developer’s
workflow history. In this work, we show that this workflow
history can also become a powerful tool for finding relevant
information in video tutorials. Imagine a scenario where the
work flow of a senior developer on a task can be recorded
and shared among team members. This would help junior
developers improve their procedural knowledge about how
they could better carry out a task. To make effective use
of workflow history, advanced analysis of workflow data is
required. For example, we can infer different kinds of tasks
from a developer’s workflow history, which is called task
boundary identification [36]. This could help developers
manage their work more efficiently and find best practices
in their work.
Bridging conceptual and procedural knowledge in soft-
ware engineering: Code sharing and reuse is an established
practice. Unfortunately, the workflow by which developers
carry out to generate the code is lost. Online programming
videos capture the workflows of coding, but code in videos
cannot be easily explored and reused. Our VT-Revolution
system bridges these two complementary programming
knowledge: code to be developed and how to develop it.
This could lead to a new way of knowledge archiving and
sharing in which workflows can be freely explored and,
at the same time, code can be easily reused. Furthermore,
VT-Revolution can be used to enhance software engineering
education. For example, students can use VT-Revolution
to record videos and workflows when they are doing a
programming task. Then teachers can give comments on
task completion process rather than focusing on only end
results.
Making existing video tutorials interactive: Our system
showcases the design opportunities that are introduced
by having workflow data associated with videos. While
it shows promise, the vast collection of existing online
video tutorials does not possess such workflow data. Our
study shows that OCRed text offers only limited help in
searching and navigating videos. Recent years have seen
the advance of computer-vision techniques, such as Pre-
fab [12], Waken [3] and Sikuli [43], which can reverse-
engineer workflow data from videos. Novel interaction de-
sign of VT-Revolution, in combination with the OCRed text
and the reverse-engineered workflow data, could transform
the learning of existing video tutorials into an interactive
mode which is impossible for the video data alone. Further-
more, the recorded workflow data in VT-Revolution and the
reverse-engineered workflow data can be used to link VT-
Revolution-style programming tutorials with existing video
tutorials. The two types of workflow data could also be used
to optimize video search, which can help developers find
target video tutorials faster.

7 RELATED WORK

7.1 Video Tutorials
Video tutorials have been proved to be an effective medium
for learning, for example, by providing user-guided expe-
rience [14] and encouraging learners to explore and learn
at their own pace [29], [15]. A recent study by MacLeod
et al. [26] on programming videos on YouTube shows that
video tutorials are effective in providing an introduction to
a technology and demonstrating how a piece of software
can be developed within an IDE. A developer survey by
Ponzanelli et al. [35] shows that many developers use video
tutorial regularly.

In spite of their effectiveness for learning, video tutorials
have some drawbacks. One major drawback is navigation
issues within long video tutorials which could lead to mis-
understandings of the content [20]. Additionally, users may
be unable to keep up with the pace of the instructions due
to the lack of overall understanding of recorded workflow,
which could lead to reduced knowledge retention [32]. Past
research has shown that navigation and understanding of
workflows in video tutorials can be aided by providing
operation history and timeline-based browsing interaction-
s [30], [18], [27], [34], [3]. Existing tools are designed for
drawing applications and graphical design software. Our
system is specially designed for software data and program-
ming tasks.

Ponzanelli et al. [35] use Optical Character Recognition
(OCR) to extract text from videos, which enables developers
to query video content easily. Bao et al. [5] propose a
computer-vision based video scraping technique to auto-
matically extract time-series interaction data from program-
ming videos. Computer-vision techniques have limitations
in time cost and quality of extracted data. In contrast,
our system builds on the ACTIVITYSPACE framework that
collects precise workflow data in software tools.

7.2 Interactive Tutorial Authoring
Researchers find that interactive components or activities
for video viewers are very effective for learning [40], [24],
[28], [31]. Many tools [18], [3], [16] use operation histories
to help users understand the captured workflow. These
approaches require additional efforts to instrument target
applications. In contrast, our system requires no additional
instrumentation of IDEs and can be easily extended to in-
strument other applications (e.g., web browsers, text editors)
due to the adoption of the ACTIVITYSPACE framework.
Multimedia tutorial authoring tools, such as HyperCard2,
Adobe Director4, allow users to create interactive videos.
However, it can be very demanding to create programming
tutorials using such tools, due to the flexibility of workflows
to be captured and the amount of information (e.g., APIs) to
be annotated. In contrast, our system does not incur any
additional burden on tutorial authors, besides recording a
tutorial video as usual. A programming tutorial video with
logged workflow created by our system can be regarded
as an interactive video. It is possible to editing recorded
video and logged workflow in a similar way to editing
an interactive video in interactive tutorial design tools like
Adobe Authorware and Adobe Director. However, a specific
video and workflow editing tool needs to be developed,
which is out of the scope of this work.



15

7.3 Tracking User Interaction Data.

Tracking user’s interaction data within IDEs can help im-
prove developers’ performance. For example, Mylyn listens
to Eclipse IDE selection and view services to help manage
the task in the Eclipse workbench [21]. Reverb recommends
previously visited web pages that pertain to the code visible
in the developers’ editor [37]. Li et al. propose the amAssist
tool which monitors developers’ coding activities to recom-
mend relevant web resources [25]. These approaches require
to instrument IDEs to log user’s activities [10], [23], [19],
[13]. To obviate the need for application-specific instrumen-
tation, our system uses the ACTIVITYSPACE framework [8],
[6] which logs low-level HCI data using standard OS Win-
dows APIs and accessibility APIs which are commonly
provided by modern operating systems [4].

Some researchers propose several computer vision based
techniques to extract actions from video tutorials, e.g. Pause-
and-play [34], Waken [3]. The actions identified by these
techniques are usually based on a set of icons in an ap-
plication. However, when watching programming video
tutorials, tutorial watchers often focus on the process of
making a program work, e.g., code changes, API usage,
debugging, etc. These computer vision based techniques can
help watchers understand how to use a GUI application
by extracting the action list from video tutorials but they
cannot extract the kind of process knowledge in program-
ming video tutorials. For example, Pause-and-play [34] is
demonstrated to work on only two applications, Google
SketchUp and Adobe Photoshop; Waken [3] can extract only
actions like cursor movement, clicked icons, etc. Further-
more, Waken’s experiments show that it extracts only 14
cursor movements and 8 icons from 34 Google SketchUp
video tutorials, which demonstrates the difficulty of using
computer vision techniques to track user interaction data in
video tutorials.

Extracting and summarizing process knowledge in video
tutorials could help video watchers quickly scan, filter, and
review video tutorial. For example, Tooscape [22] uses a
video browsing interface with a storyboard summarization
and an interactive timeline to support the exploration of
how-to process knowledge in video tutorial, but it uses
crowdsourcing to ask people to label and verify video
segments into steps manually. In contrast, our system tracks
and abstracts user interaction data automatically.

8 CONCLUSION

We present a novel system that leverages automatically
logged workflow history to enhance the interactive learn-
ing experience of programming video tutorials. By linking
workflow history with video playback, tutorial watchers
can obtain a high-level overview of workflow and relevant
code and program output, and directly navigate to parts
of the video that they are interested in, without having
to watching the entire video. Our user study shows that
our system can help developers find relevant information
in video tutorials better and faster, and lead to more satis-
factory learning experience. Participants’ feedback suggest
that our system can help solve many problems that are
commonly encountered by watching the videos using just a

video player or assisting video watching with only OCRed-
text based search. Our current prototype VT-Revolution
can abstract multiple actions including open/switch file,
inspect exception, add/delete code elements, and edit text
content from programming video tutorials. In the future,
we consider adding more actions (e.g., examine compile
error, run program) into our system. This work also inspires
some future directions for software engineering practices,
for example, how to transform working environment into
an engaging tutorial system, and how to bridge conceptual
and procedural knowledge in software engineering.

ACKNOWLEDGMENT

This work was partially supported by NSFC Program (No.
61602403 and 61572426)

REFERENCES

[1] J. G. Adair. The hawthorne effect: A reconsideration of the
methodological artifact. Journal of applied psychology, 69(2):334,
1984.

[2] V. Augustine, P. Francis, X. Qu, D. Shepherd, W. Snipes, C. Braun-
lich, and T. Fritz. A field study on fostering structural navigation
with prodet. In Software Engineering (ICSE), 2015 IEEE/ACM 37th
IEEE International Conference on, volume 2, pages 229–238. IEEE,
2015.

[3] N. Banovic, T. Grossman, J. Matejka, and G. Fitzmaurice. Waken:
reverse engineering usage information and interface structure
from software videos. In Proceedings of the 25th annual ACM
symposium on User interface software and technology (UIST), pages
83–92. ACM, 2012.

[4] L. Bao, J. Li, Z. Xing, X. Wang, X. Xia, and B. Zhou. Extracting and
analyzing time-series hci data from screen-captured task videos.
Empirical Software Engineering, pages 1–41, 2016.

[5] L. Bao, J. Li, Z. Xing, X. Wang, and B. Zhou. Reverse engineer-
ing time-series interaction data from screen-captured videos. In
Proceedings of the 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pages 399–408. IEEE, 2015.

[6] L. Bao, Z. Xing, X. Wang, and B. Zhou. Tracking and analyzing
cross-cutting activities in developers’ daily work (n). In Proceedings
of 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 277–282. IEEE, 2015.

[7] L. Bao, Z. Xing, X. Xia, D. Lo, and A. E. Hassan. Inference
of development activities from interaction with uninstrumented
applications. Empirical Software Engineering, pages 1–39, 2017.

[8] L. Bao, D. Ye, Z. Xing, X. Xia, and X. Wang. Activityspace: a
remembrance framework to support interapplication information
needs. In Proceedings of 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 864–869. IEEE, 2015.

[9] M. Beller, G. Gousios, and A. Zaidman. How (much) do develop-
ers test? In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference on, volume 2, pages 559–562. IEEE, 2015.

[10] T.-H. Chang, T. Yeh, and R. Miller. Associating the visual rep-
resentation of user interfaces with their internal structures and
metadata. In Proceedings of the 24th annual ACM symposium on User
interface software and technology (UIST), pages 245–256, 2011.

[11] N. Cliff. Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[12] M. Dixon and J. Fogarty. Prefab: implementing advanced behav-
iors using pixel-based reverse engineering of interface structure. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI), pages 1525–1534. ACM, 2010.

[13] A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. McLaughlin,
L. Li, and J. L. Herlocker. TaskTracer: a desktop environment
to support multi-tasking knowledge workers. In Proceedings of
the 10th international conference on Intelligent user interfaces (IUI),
page 75, 2005.

[14] P. Duffy. Engaging the youtube google-eyed generation: Strategies
for using web 2.0 in teaching and learning. The Electronic Journal
of e-Learning, 6(2):119–130, 2008.



16

[15] I. Duncan, L. Yarwood-Ross, and C. Haigh. Youtube as a source
of clinical skills education. Nurse education today, 33(12):1576–1580,
2013.

[16] J. Fernquist, T. Grossman, and G. Fitzmaurice. Sketch-sketch
revolution: an engaging tutorial system for guided sketching
and application learning. In Proceedings of the 24th annual ACM
symposium on User interface software and technology (UIST), pages
373–382. ACM, 2011.

[17] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change distilling:
Tree differencing for fine-grained source code change extraction.
IEEE Transactions on Software Engineering, 33(11):725–743, 2007.

[18] T. Grossman, J. Matejka, and G. Fitzmaurice. Chronicle: capture,
exploration, and playback of document workflow histories. In
Proceedings of the 23nd annual ACM symposium on User interface
software and technology (UIST), pages 143–152. ACM, 2010.

[19] E. Harpstead, B. A. Myers, and V. Aleven. In search of learning:
facilitating data analysis in educational games. In Proceedings of the
SIGCHI conference on Human Factors in Computing Systems (CHI),
page 79, 2013.

[20] S. M. Harrison. A comparison of still, animated, or nonillustrated
on-line help with written or spoken instructions in a graphical user
interface. In Proceedings of the SIGCHI conference on Human factors
in computing systems (CHI), pages 82–89. ACM Press/Addison-
Wesley Publishing Co., 1995.

[21] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest model
for IDEs. In Proceedings of the 4th international conference on Aspect-
oriented software development, pages 159–168, 2005.

[22] J. Kim. Toolscape: enhancing the learning experience of how-to
videos. In CHI’13 Extended Abstracts on Human Factors in Computing
Systems, pages 2707–2712. ACM, 2013.

[23] J. H. Kim, D. V. Gunn, E. Schuh, B. C. Phillips, R. J. Pagulayan,
and D. Wixon. Tracking real-time user experience (TRUE): a
comprehensive instrumentation solution for complex systems. In
Proceedings of the SIGCHI conference on Human Factors in Computing
Systems (CHI), pages 443–451, 2008.

[24] C. Lankshear and M. Knobel. Diy media: A contextual background
and some contemporary themes. DIY media: Creating, sharing and
learning with new technologies. New York: Peter Lang, pages 1–21,
2010.

[25] H. Li, X. Zhao, Z. Xing, L. Bao, X. Peng, D. Gao, and W. Zhao.
amassist: In-ide ambient search of online programming resources.
In Proceedings of the 22nd International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER), pages 390–398. IEEE,
2015.

[26] L. MacLeod, M.-A. Storey, and A. Bergen. Code, camera, action:
How software developers document and share program knowl-
edge using youtube. In Proceedings of 23rd IEEE International
Conference on Program Comprehension (ICPC), pages 104–114. IEEE
Press, 2015.

[27] J. Matejka, T. Grossman, and G. Fitzmaurice. Ambient help. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI), pages 2751–2760. ACM, 2011.

[28] S. Mohorovičić. Creation and use of screencasts in higher e-
ducation. In MIPRO, 2012 Proceedings of the 35th International

Convention, pages 1293–1298. IEEE, 2012.
[29] D. Mullamphy, P. Higgins, S. Belward, and L. Ward. To screencast

or not to screencast. Anziam Journal, 51:C446–C460, 2010.
[30] T. Nakamura and T. Igarashi. An application-independent system

for visualizing user operation history. In Proceedings of the 21st
annual ACM symposium on User interface software and technology
(UIST), pages 23–32. ACM, 2008.

[31] J. Oud. Guidelines for effective online instruction using multime-
dia screencasts. Reference Services Review, 37(2):164–177, 2009.

[32] S. Palmiter, J. Elkerton, and P. Baggett. Animated demonstrations
vs written instructions for learning procedural tasks: a prelimi-
nary investigation. International Journal of Man-Machine Studies,
34(5):687–701, 1991.

[33] C. Plaisant and B. Shneiderman. Show me! guidelines for produc-
ing recorded demonstrations. In 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’05), pages 171–
178. IEEE, 2005.

[34] S. Pongnumkul, M. Dontcheva, W. Li, J. Wang, L. Bourdev, S. Avi-
dan, and M. F. Cohen. Pause-and-play: automatically linking
screencast video tutorials with applications. In Proceedings of the
24th annual ACM symposium on User interface software and technology
(UIST), pages 135–144. ACM, 2011.

[35] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, R. Oliveto,
M. Hasan, B. Russo, S. Haiduc, and M. Lanza. Too long; didn’t
watch!: extracting relevant fragments from software development
video tutorials. In Proceedings of the 38th International Conference on
Software Engineering (ICSE), pages 261–272. ACM, 2016.

[36] I. Safer and G. C. Murphy. Comparing episodic and semantic
interfaces for task boundary identification. In Proceedings of the
2007 Conference of the Center for Advanced Studies on Collaborative
Research, pages 229–243, 2007.

[37] N. Sawadsky, G. C. Murphy, and R. Jiresal. Reverb: Recommend-
ing code-related web pages. In Proceedings of the 2013 International
Conference on Software Engineering (ICSE), pages 812–821. IEEE,
2013.

[38] D. Spencer. Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[39] S. Subramanian, L. Inozemtseva, and R. Holmes. Live api doc-
umentation. In Proceedings of the 36th International Conference on
Software Engineering (ICSE), pages 643–652. ACM, 2014.

[40] W. Sugar, A. Brown, and K. Luterbach. Examining the anatomy
of a screencast: Uncovering common elements and instructional
strategies. The International Review of Research in Open and Dis-
tributed Learning, 11(3):1–20, 2010.

[41] F. Wilcoxon and R. A. Wilcox. Some rapid approximate statistical
procedures. Lederle Laboratories, 1964.

[42] Z. Xing and E. Stroulia. Umldiff: an algorithm for object-oriented
design differencing. In Proceedings of the 20th IEEE/ACM inter-
national Conference on Automated software engineering (ASE), pages
54–65. ACM, 2005.

[43] T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: using gui screenshots
for search and automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology (CHI), pages
183–192. ACM, 2009.


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	2-2018

	VT-Revolution: Interactive programming video tutorial authoring and watching system
	Lingfeng BAO
	Zhenchang XING
	Xin XIA
	David LO
	Citation


	tmp.1560420026.pdf.ApsyA

