
14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 96

A Software Tool for Selection and Integrability
on Service Oriented Applications*

Martín Garriga1,3, Alan De Renzis1, Andres Flores1,3,

Alejandra Cechich1, Alejandro Zunino2,3

1 GIISCo Research Group, Facultad de Informática, Universidad Nacional del Comahue,
Neuquén, Argentina.

[martin.garriga, andres.flores, alejanda.cechich]@fai.uncoma.edu.ar, derenzis.alan@gmail.com
2 ISISTAN Research Institute, UNICEN,

Tandil, Argentina, azunino@isistan.unicen.edu.ar,
3 CONICET (National Scientific and Technical Research Council), Argentina.

Abstract. Connecting services to rapidly developing service-oriented
applications is a challenging issue. Selection of adequate services implies to
face an overwhelming assessment effort, even with a reduced set of candidate
services. On previous work we have presented an approach for service selection
addressing the assessment of WSDL interfaces and the expected execution
behavior of candidate services. In this paper we present a plugin for the Eclipse
IDE to support the approach and to assist developers’ daily tasks on exploring
services integrability. Particularly for behavioral compatibility we make use of
two testing frameworks: JUnit and MuClipse to achieve a compliance testing
strategy.

Keywords: Service oriented Computing, Component-based Software Enginee-
ring, Web Services, Software Testing.

1. Introduction
Service-oriented applications development implies a business facing solution

which consumes services from one or more providers and integrates them into the
business process [1,2]. From an architectural perspective developing service-oriented
applications involve to reuse existing third-party components or services that are
invoked through specialized protocols. Particularly, the industry has adopted the Web
Services technology [3], which leads to a concrete decentralization of business
processes and a low investment on new technologies and execution platforms.
However, the efficient reuse of existing Web Services is still a major challenge. After
searching for candidate services, a developer still requires high skills to deduce the
most appropriate service to be selected from the set of candidates, for the subsequent
integration tasks. Even with a reduced set of services, the required assessment effort
could be overwhelming. Besides, the set of meaningful properties to explore on
candidates also involve the required adaptations for a correct integration allowing
client applications to safely consume services while enabling loose coupling for
maintainability.

* This work is supported by projects: ANPCyT–PAE-PICT 2007-02312 and UNCo-DSBR

(04-F001)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/211017799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 97

In order to ease the development of service-oriented applications we presented on
previous work [4,5] a proposal for service selection, which is based on a recent
approach [6] that was initially developed to work with software components as a
solution for substitutability of component-based systems. The approach was properly
adjusted and extended to be applied in the context of service-oriented applications.

The selection method comprises two assessment procedures: an Interface
Compatibility analysis and a Behavioral Compatibility evaluation. The former is made
at a syntactic level, by means of a comprehensive scheme to evaluate the interface
provided by candidate services. The latter is based on a specific Test Suite (TS) which
has been designed from a particular selection of testing coverage criteria, to achieve a
behavior dynamic representation of services, viz. a Behavioral Test Suite.

In this paper we present the architecture of a software tool, which supports the
development of service-oriented applications. In particular, we have developed the
tool support as a plug-in for the Eclipse IDE†, to agile developers’ daily tasks through
an environment that provides a way to integrate different tools to improve developers’
productivity and code quality. As Eclipse has been adopted as the most popular IDE
nowadays, adding new functionality as a plugin reduces the learning curve of
developers. Besides, from an organizational software production perspective, software
vendors are keen to benefit from the increased productivity and quality that a good
IDE promises to deliver [8].

The paper is organized as follows. Section 2 presents an overview of the Selection
Method and the architecture of the Plug-in. Section 3 focuses in the Interface
Compatibility analysis, and Section 4 details the Behavior Compatibility evaluation.
Finally, Section 5 presents the Related Work, while Conclusions and future work are
presented afterwards.

2. Service Selection Method
During the development of a service-oriented application, a developer may decide

to implement specific parts of a system in the form of in-house components. However,
the decision could also involve the acquisition of third-party components, which in
turn could be solved with the connection to Web services. When many candidate
services are discovered a developer still needs to deduce the most appropriate
candidate. Fig. 1 depicts the proposal intended to assist developers in the process of
selection of Web services, which is briefly described as follows:

The selection method requires the definition of a simple specification (in the form
of a required interface IR) as input for its two main assessment procedures. The
Interface Compatibility evaluation (step 1.1) is based on a comprehensive Assessment
Scheme to recognize direct (strong) and potential matchings between a required
interface (IR) and the interface provided by a candidate service (IS). The outcome of
this step is an Interface Matching list where each operation from IR may have a
correspondence with one or more operations from IS. If some mismatching is
detected, a developer may apply a solution through a semi-automatic procedure (step

† Integrated Development Environment (IDE)

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 98

1.2). The same step can also be used to set up a different matching for some operation
of IR, even when an initial matching had been initially identified [4].

The Behavioral Compatibility evaluation is intended to analyze the execution of
candidate services by means of a Behavioral Test Suite (TS), which is built to
represent behavioral aspects from a third-party service. For this evaluation, the
Interface Matching list produced in the previous step is processed, and a set of
wrappers (adapters) W is generated (step 2), where remote invocations to IS are solved
through a proxy (PS) derived from service’s WSDL description. Thus, a candidate
service is evaluated by executing the TS against each w ∈ W (step 3), where at least
70% successful tests must be identified on some wrapper to confirm a behavioral
compatibility [5]. Besides, such successful wrapper allows an in-house component to
safely call the candidate service once integrated into a client application.

Fig. 1. Service Selection Method

Next section describes the software architecture of the supporting tool. A simple
example will be used to illustrate the usefulness of the Selection Method.

2.1. Software Tool Architecture

In order to provide support for the Selection Method we have developed a
software tool into the Java language, which has adopted the form of a plug-in for the
Eclipse IDE. In this way, developers are provided with an augmented environment, in
which building service-oriented applications is now assisted by an automated and
guided process easing evaluation and selection of Web services.

Fig. 2 depicts the plug-in’s software architecture, in which a central component is
the Testing Meta-Model: a Java representation of the OMG UML Testing Profile [9]
that is used to build the Behavioral TS. In addition, both checker components:

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 99

Interface Compatibility and Behavior Compatibility make use of the meta-model as a
way to manage, store and assess the structure of candidate services’ specifications
(static and dynamic aspects).

The Interface Compatibility Checker receives as input a Java required interface
(IR) and a set of WSDL files of candidate services (S) from the (remote)
ServiceRepository. From those WSDL files a set of Java interfaces (IS) are derived by
the Converter component, which is based on the Apache Axis2 framework. After
applying the Interface Assessment Scheme their Results are properly stored and shown
in a User Interface‘s view. The Behavior Compatibility Checker makes use of those
Results as input for the Service Wrappers Generator, where the Axis2 framework is
used to build a service proxy (PS) to allow safe execution of an evaluated candidate
(S). Then the Testing Executor component evaluates such candidate by exercising the
Behavioral TS that could be formatted under the JUnit [10] framework or MuClipse
[11] – an Eclipse plug-in version of the MuJava framework [12] to address Mutational
Testing. Final stored Results from both checker components are shown into the
corresponding User Interface‘s view to present a selected candidate Web service.

2.2. Example

Let us suppose the development of a Mail Management Application (MMA) being
developed under the Java platform. Fig. 3 depicts the invoking and coordinating
component MMA and the interfaces for its required key features: 1) a Mail Validation
tool, to validate an email address; 2) a Mail Sending tool, to send emails to one or
multiple receivers, in a blind (bcc) or the usual (cc) copy mode – emails must include
both their subject and body. To clearly illustrate the use of the plug-in, the example is
reduced to the second required interface (IR), named Mail_IF, shown in Fig. 4(a), and
one candidate Web service: the AtMessaging service, whose interface (IS) is shown in
Fig. 4 (b).

Fig. 2. Software Architecture of Plug-in for Eclipse IDE

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 100

This example is used in the following sections to explain the basis of the two main
evaluations: Interface Compatibility and Behavior Compatibility, which also
corresponds to the checker components in the plug-in software architecture (Fig. 2).

(a) Required Interface (IR) – Mail_IF (b) Candidate Web Service (IS) – AtMessaging

3. Interface Compatibility
The Interface Compatibility analysis – presented in a previous work [4] –

comprises a practical Assessment Scheme to analyze operations from the interface IS
(of a candidate service S), with respect to the required interface IR. This step may
avoid discarding a candidate service upon simple mismatches but also preventing
from a serious incompatibility. In addition, helpful information about the adaptation
effort of a candidate service may take shape for a positive integration into the
consumer application.

The Assessment Scheme is divided in two parts: direct (strong) and potential
(weaker) matching cases, which are automatically identified. Weaker matching cases
can also be used to solve incompatibilities in a semi-automatic manner. Both parts
consists of four compatibility levels (exact, near-exact, soft, near-soft) to classify
matching cases, defined as syntactic constraints, applied on a pair of corresponding
operations. Constraints are based on conditions for elements of an operation’s
signature (return, name, parameter, exception).

The outcome of this step is an Interface Matching list that characterizes each
correspondence according to the four levels of the Assessment Scheme. For each
operation opR ∈ IR, a list of compatible operations opS ∈ IS is shaped. For example, let
be IR with three operations and IS with five operations. The matching list might result
as follows:

Fig. 3. Structure of Mail Management Application – MMA

Fig. 4. Mail Management Application – IR and IS for Mail sending feature

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 101

{(opR1, {opS1, opS5}), (opR2, {opS2, opS4}), (opR3, {opS3})}

The Interface Matching list is also used to calculate a structural dissimilarity value,
named Compatibility Gap, based on specific equivalence values assigned to different
syntactic constraints of the Assessment Scheme – e.g., the value of exact equivalence
is 4. The Compatibility Gap between IR and IS can be calculated by taking the highest
compatibility level for each operation opR ∈ IR – the formula can be seen in [4]. This
value also gives evidence of the expected adaptation effort for the candidate service
integrability.

3.1. Interface Compatibility for the Mail feature

Fig. 5 shows the initial user interface of the plug-in, a view of the Interface
Compatibility checker, to analyze the required interface Mail_IF and the candidate
AtMessaging service (through its WSDL document). A summary result is shown in Fig.
6, where all operations from Mail_IF – i.e., sendMail, sendBcc and sendCc – obtained one
near-exact match with an equivalence value of 6. From the total equivalence value
(18) and the best possible value (12) the compatibility gap between Mail_IF and the
AtMessaging service can be calculated as: 18/12−1 = 0.5.

When asking for detailed results, Fig. 7 shows that all operations from Mail_IF match
the same operation sendSMTPMail of the candidate AtMessaging service, with a near-
exact_12 equivalence. Operations coincide on the parameters list (P1) and neither of
them have exceptions (E1). For the return type, the String type is considered as a
wildcard type allowing equivalence or subtyping (R2) with the int type. They also
have substring equivalence on operations names (N2) – terms ‘send’ and ‘mail’. In
fact, the last two correspondences could be quite reasonable considering that after
sending the main email copy, additional copies (Cc/Bcc) could also be iteratively sent
with a similar procedure afterwards.

Fig. 5. Interface Compatibility Checker – Mail_IF and AtMessaging service

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 102

If a mismatch is found for some operation, a developer can solve it by the semi-

automatic facility. Fig. 8 shows the view of manual matching with a hypothetical case
where a developer is setting up a specific operation-pair correspondence.

After that, the Interface Matching list for Mail_IF and the candidate AtMessaging

service is available – i.e., the table in Fig. 7. A conclusive decision to either accept or
reject a candidate service S must be made through the step of Behavior Compatibility.

Fig. 6. Interface Compatibility Checker – Result summary for Mail_IF and AtMessaging service

Fig. 7. Interface Compatibility Checker – Detailed Results for Mail_IF and AtMessaging service

Fig. 8. Interface Compatibility Checker – Manual Matching example
for Mail_IF and AtMessaging service

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 103

The following section gives details of these step in which a required service’s
functionality is represented as a particular Test Suite.

5. Behavior Compatibility
To carry out the Behavior Compatibility evaluation – presented in [5] – for a

candidate service S, a wrappers set W needs to be built. Those wrappers will be
necessary to execute the Behavioral TS (designed for the required interface IR) against
each w ∈ W. Initially, only the higher compatibility level of the Interface Matching
List is considered.

This process is based on the Interface Mutation technique [13,14], and it applies
the mutation operator to change invocations to operations and another operator to
change arguments for parameters. Then a Wrapper Generation Tree is created, where
in each level of the tree the set of correspondences (opS ∈ IS) is added for a different
operation opR ∈ IR. When a operations’ pair contains various parameters of the same
or equivalent type, also combination of arguments is needed. Each combination
arising from different parameters matching should be added into the Wrapper
Generation Tree, in the form of a new branch.

Considering the case study, the operation sendMail implies a likely case in which its
String parameters exactly match (P1) with parameters from operation sendSMTPMail,
supposing that parameters lists are defined in the same order.

If it is not the case, in order to find the right match there should be a swap into the
parameter list, to successfully identify the behavior compatibility for those operations.
Considering the parameters list with 4 String parameters, the number of permutations
rises to 24 for each level of the tree, making the whole number of wrappers to be
24*24*24 = 13824. Although this wrappers’ set becomes unwieldy to be tested, the
partial generation option of the tool (shown in Fig. 9) can be used in order to build a
manageable wrappers’ set.

Fig. 9. Wrappers set generation options

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 104

Therefore, initially a sub-set (W1) of 24 wrappers was generated as a result of this
step – from wrapper0 to wrapper23, corresponding to the left branch in the wrapper
generation tree shown in Fig. 10.

Test Suite Generation

To build a Behavioral TS for Mail_IF, a concrete class implementing this interface
must be initially created to describe the required behavior in the form of expected
results for some representative test data. This shadow class is called Mail and simply
resembles an expected behavior according to certain input/output data for each
operation within the Mail_IF interface. For example, the operation sendMail receives as
input four String parameters (sender, receiver, subject and body), and returns a String
containing a control data (success/error). The expected behavior is checking that the
email is able to be sent to the receiver address by a successful return code. For this
case study, the test data involve two valid email addresses (authors’ personal mails)
for sender/receiver, and the subject and body is always “hello” and “message”
respectively.

Relevant sequences of operations’ invocation are described as test templates,
which are combined with the test data to generate the Behavioral Test Suite (TS). The
TS has been generated inside a test driver file (TestMail) in the specific JUnit format
[10]. Fig. 11 shows the test method testTS_5_1, which exercises the following
sequence: sendMail, sendCC, and sendBcc.

Service Wrappers Evaluation.

At this point, the Behavioral Assessment activity requires executing the Behavioral
TS (built through the required interface IR) against candidate services through the
generated wrappers.

Fig. 10. Wrapper Generation Tree for Mail_IF and AtMessaging
(considering parameter combinations)

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 105

public void testTS 5 1() {
 Mail obtained=null;
 obtained = new Mail();

java.lang.String arg1=(java.lang.String)
"martin.garriga@fai.uncoma.edu.ar";
java.lang.String arg2=
(java.lang.String)"andres.flores@fai.uncoma.edu.ar";

 java.lang.String arg3= (java.lang.String) "hello";
 java.lang.String arg4= (java.lang.String) "message";

java.lang.String result0=
obtained.sendMail(arg1, arg2, arg3, arg4);
java.lang.String arg5=
(java.lang.String)"alejandra.cechich@fai.uncoma.edu.ar";

 java.lang.String result1=
obtained.sendCc(arg1, arg5, arg3, arg4);

 java.lang.String arg6=
(java.lang.String) "azunino@isistan.unicen.edu.ar";

 java.lang.String result2=
obtained.sendBcc(arg1, arg6, arg3, arg4);

 assertTrue(result0 == result1 == result2 == "success"
}

Fig. 11. JUnit Test Case for Mail.

In this process, the wrappers are generated with an additional responsibility of

auto-configuration, by instantiating the corresponding subclass for IS (of a service S).
In addition, the subclass implementing the interface IS, which links wrappers to the
proxy PS, is also auto-configurable by instantiating classes comprising the generated
proxy. Fig. 12 depicts the class structure for the Mail_IF feature. Also, Fig. 13 shows
the source code of one generated wrapper (wrapper0). This wrapper complies with the
structure depicted in Fig. 12 in which a proxy (PS) has been generated for invoking
operations of service AtMessaging.

The TS TestMail instantiates and invokes the Mail class, which represents not only
the shadow class for the required interface Mail_IF, but also represents the wrappers.
This is done to avoid name modifications into the TS (designed for the shadow class).

Thus, if a wrapper successfully passes at least 70% of the Behavioral TS, it will be
correctly describing the required behavior defined by the shadow class. Finally, this
wrapper may be used instead of the shadow class allowing a safe integration of a
candidate service.

After setting the specific class structure, the TestMail test file can be run against the
generated subset (W1) of wrappers. The tool support makes use of the MuClipse
framework [11] to execute the Test, as shown in Fig. 14.

In this case, only wrapper0 successfully passed the tests, which confirms the
expected behavior specified for the required interface Mail_IF. A detailed description of
the service wrappers evaluation procedure can be found in [5].

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 106

public class Mail implements Mail_IF {
private AtMessaging proxy = null;
public Mail() { proxy = new AtMessaging();
} // ---
public java.lang.String sendMail(String x0, String x1,
 String x2, String x3){

java.lang.String result0 = "";
 try { result0 = proxy.sendSMTPMail(x0, x1, x2, x3);
 } catch (Exception e) {
 e.printStackTrace();
 throw new RuntimeException(e); }
 return result0;
} // ---
public java.lang.String sendCC(String x0, String x1,
 String x2, String x3){
 java.lang.String result0 = "";
 try { result0 = proxy.sendSMTPMail(x0, x1, x2, x3);
 } catch (Exception e) {
 e.printStackTrace();
 throw new RuntimeException(e); }
 return result0;
} // ---
public java.lang.String sendBCC(String x0, String x1,
 String x2, String x3){
 java.lang.String result0 = "";
 try { result0 = proxy.sendSMTPMail(x0, x1, x2, x3);
 } catch (Exception e) {
 e.printStackTrace();
 throw new RuntimeException(e); }
 return result0;} // ---
}

Fig. 13. Mail wrapper for the AtMessaging service.

Since the selection method has been defined from a testing based assessment
model, intermediate processes were defined not only to perform an evaluation of
candidate services, but also to provide an early solution through the testing activity.
The process offers a pragmatic guide to analyze any off-the-shelf component,
including web services as a particular form of software component [15].

Results of the underlying behavior compatibility evaluation against a case study
can be seen in [16]. Also, an initial insight into the procedure performance is
provided, although it has been improved through fine tuning the test suite and
wrappers set generation.

Fig. 12. TestSuite for Mail_IF to evaluate Wrappers through the Proxy

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 107

6. Related Work
Several approaches have been proposed towards IDE support for the development of
service-oriented applications.

From the Web service composition point of view, in [17] the development of an
end-to-end service composition IDE is presented. The tooling support mainly
encompasses requirement analysis and design of an IDE, mechanisms for leveraging
and integrating existing tools and technologies into the IDE and the development of
the IDE as a set of Eclipse plugins. As service selection is a key part of the service
composition problem, our plugin can be seen as one of the technologies which could
be integrated into such an IDE.

Another Eclipse plug-in for formal verification of Web service composition is
presented in [18]. Such plug-in was originally a part of the LTSA tool suite which
provides model-checking tools. It was conveniently extended to support the
development of (composite) service-oriented applications, featuring UML Message
Sequence Charts for scenario modeling, which are then compiled in Finite State
Process algebra to formalize behavior. The plugin is architected following the model-
view-controller pattern. In contrast, our plugin is intended as a ready-to-use tool to
support developers’ daily tasks of service selection, without introducing extra
complexity.

Fig. 14. MuClipse test configuration for running the TS

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 108

From the service discovery point of view, the EasySOC project [19] presents a
catalog of guidelines to build service-oriented applications and services. This catalog
synthesizes best SOC development practices. The corresponding EasySOC plug-in for
the Eclipse IDE has been implemented to simplify the utilization of the guidelines for
service publication, discovery and consumption. Plug-in provision encourages readily
adoption of proposed ideas in the software industry. Recent works have demonstrated
the suitability of integrating EasySOC with our proposal featuring a comprehensive
process for building Service-oriented Applications [4].

 Another approach with a similar scope to ours is presented in [20]. Studying the
similarity between (WSDL) Web service descriptions appears as a key solution for
service interoperability. The similarity measurement process encompasses calculating
similarity between service names, operations, input/output messages, parameters, and
documentation, mainly gathered from XML Schema Documents (XSD) associated
with services. Those calculations are supported through a stand-alone Java-based tool
called WSSim which parses WSDL documents, calculates similarities and returns a
final score – equivalent to our Compatibility Gap value. However, an initial
comparison of complex type similarity can be performed without dealing with the
complexity of a XML schema. In our approach, the analysis of WSDL documents
allows addressing complex data types while aiming a lightweight proposal, and
reducing the learning curve and the adoption effort of the tool.

With regard to the behavioral and syntactic assessment of services, the following
works are also related to our goals.

The approach in [21] evaluates compatibility for services with two purposes:
substitutability and composability. The evaluation is based on input and output data
registered after testing individual operations for each candidate service. For this, a
different TS is built for each operation in each service under evaluation, which is
based on selected input data (either randomly or manually). The main aspect of our
TS relies on describing a complex behavior exhibited by operational sequences
(instead of testing individual operations), which is more likely on stateful Web
Services. The behavioral evaluation is only done after passing the syntactic Interface
Compatibility analysis, which reduces computation for the testing phase.

The work in [22] is also concerned with substitutions of inoperable services with
compatible ones. Automatically finding optimal solutions implies the challenging
issue of discerning the behavior of services. The approach attempts to discover and
comprehend services’ behavior and classify them into clusters by means of
compliance testing. However, the approach has a very low confidence on any service
description, also ignoring WSDL specifications or the derived Java interfaces.

The work in [23] addresses the improvement of test efficiency during service
selection and composition, focusing in dependability and trustworthiness issues. A
framework is proposed to support group testing, applied over a set of atomic services
that could be potential parts of a service composition. Some of the ideas proposed in
this paper are being implemented to prune the wrappers generation tree and
minimizing the TS.

Another work [24] is intended to cope with Web service testing. A collaborative
testing framework has been proposed, where testing tasks are performed through the

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 109

collaboration of various test services (T-services) that are registered, discovered and
invoked at runtime using an ontology of software testing called STOWS. Each
functional service should be accompanied with a special T-service, though managing
the T-services’ set introduces an inconvenient overhead. The proposed framework is
particularly intended to verify a proper service execution through strategies to find
faults, using a semantic Web Service approach. As semantic information of Web
Services such as ontologies is rarely available [25], our plugin relies on syntactic and
structural definitions of Web Services available in WSDL specifications.

To support programmatic service discovery, in [26] the authors have developed a
suite of methods to assess the similarity between two WSDL specifications based on
the structure of their data types and operations, and the semantics of their natural
language descriptions and identifiers, given only a (potentially partial) description of
the desired service.

7. Conclusions and Future Work

In this paper we have presented an Eclipse IDE plug-in as a support of a Selection
Method to assess a candidate Web service for its likely integration into a SOC-based
application under development. This method provides a practical Interface
Compatibility analysis and a Behavioral Compatibility evaluation.

The availability of IDE-integrated tools that aids development processes will help
software practitioners to rapidly adopt best practices, particularly for building real
service-oriented applications.

The architecture of our plugin is based on integration with well-known frameworks
such as Apache Axis2 for service handling, and JUnit and MuClipse for behavioral
evaluation. Besides, a Testing Meta-Model crosses over the entire architecture as a
way to manage, store and assess the structure of candidate services’ specifications
(static and dynamic aspects).

Our current work is focused on integrating in the plug-in some Information
Retrieval techniques to better analyzing concepts from interfaces. This will be
complemented with a semantic-basis – particularly, through the WordNet lexical
dictionary [27] and its Java API JWI‡.

Besides, performance evaluation of the plugin is mandatory. We are carrying out
experiments using different data-sets previously used by numerous authors to validate
service-oriented proposals [28,29], and including real-word Web Services. Initial
results show an improvement of the service selection procedure in terms of classic IR
metrics such as recall and precision independently from the underlying service
discovery registry.

Another concern implies the composition of candidate services to fulfill
functionality, which is particularly useful when a single candidate service cannot
provide the whole required functionality. We will expand the current procedures,
models and tools mainly focusing service orchestration [30,31,32].

‡ The MIT Java Wordnet Interface – http://projects.csail.mit.edu/jwi/

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 110

Acknowledgments

We would like to thank to the anonymous reviewers for their helpful feedback.
Also, we would like to thank to the BSc. student Martin Weingart for his valuable
contribution in tool development.

References
1. Sprott D, L W. Understanding Service-Oriented Architecture. The Architecture Journal.

MSDN Library. Microsoft Corporation; 1(13). January. http://msdn.microsoft.com/en-
us/library/aa480021.aspx. (2004)

2. Erickson, J., Siau, K.: Web service, service-oriented computing, and service-oriented
architecture: Separating hype from reality. Journal of BD Management, 19(3), 42-54 (2008).

3. Bichler, M., Lin, K.: Service-oriented computing. Computer, 39(3), 99-101 (2006)
4. Garriga, M., Flores, A., Cechich, A., Zunino, A.: Practical Assessment Scheme to Service

Selection for SOC-based Applications. SADIO Electronic Journal (EJS), vol. 11, no. 1.
Special Issue dedicated to ASSE’11. pp. 16-30 (2012)

5. Garriga, M., Flores, A., Cechich, A., Zunino, A.: Behavior Assessment based Selection
Method for Service Oriented Applications Integrability. 13th ASSE’12, 41 JAIIO, SADIO.
pp. 339-353. Córdoba, Argentina. 27-31 August. (2012)

6. Flores, A., Polo, M.: Testing-based Process for Component Substitutability. Journal STVR,
vol. 22. no. 8. pp. 529–561, Wiley. DOI: http://dx.doi.org/10.1002/stvr.438 (2012)

7. The Eclipse Foundation. Eclipse.org Home Page. http://www.eclipse.org/ (2013)
8. Yap, N.; Chiong, H.C.; Grundy, John; Berrigan, R.: Supporting dynamic software tool

integration via Web service-based components. Proceedings of the Australian Software
Engineering Conference. pp.160,169, 29 March- 1 April. (2005).

9. OMG. UML Testing Profile version 1.0. Technical Report formal/05-07-07, OMG, July.
(2005).

10. JUnit Home Page. JUnit.org Resources for Test Driven Development.
http://www.junit.org/home (2013)

11. MuClipse Home Page. Eclipse Plug-in for the MuJava mutation engine.
http://muclipse.sourceforge.net (2013)

12. µJava Home Page: Mutation system for Java programs.
http://cs.gmu.edu/~offutt/mujava/ (2011)

13. Gosh, S., Mathur, A. P.: Interface Mutation. Software Testing, Verification and Reliability,
11:227–247. (2001)

14. Delamaro, M, Maldonado, J., Mathur, A.: Interface Mutation: An Approach for Integration
Testing. IEEE Transactions on Software Engineering, 27(3):228–247. (2001)

15. Kung-Kiu, L., Zheng, W.: Software Component Models. IEEE Transactions on Software
Engineering, 33(10), 709-724 (2007).

16. Garriga, M.; Flores, A.; Cechich, A.; Zunino, A., Testing-Based Process for Service-
Oriented Applications, IEEE 30th International Conference of the Chilean Computer
Science Society (SCCC), pp.64,73, 9-11 Nov. (2011)

17. Chafle, G.; Das, G.; Dasgupta, K.; Kumar, A.; Mittal, S.; Mukherjea, S.; Srivastava, B.: An
Integrated Development Environment for Web Service Composition. IEEE International
Conference on Web Services ICWS, pp.839-847, 9-13 July (2007)

18. Foster, H., Uchitel, S., Magee, J., & Kramer, J. LTSA-WS: a tool for model-based
verification of web service compositions and choreography. Proceedings of the 28th
international conference on Software engineering (pp. 771-774). ACM. (2006)

14th Argentine Symposium on Software Engineering, ASSE 2013

42 JAIIO - ASSE 2013 - ISSN: 1850-2792 - Page 111

19. Rodriguez, J. M., Crasso, M., Mateos, C., Zunino, A., & Campo, M. The EasySOC project:
a rich catalog of best practices for developing web service applications. CLEI Electronic
Journal, 14(3). (2011)

20. Tibermacine, O., Tibermacine, C., & Cherif, F. WSSim: a Tool for the Measurement of
Web Service Interface Similarity. To appear in Proceedings of the 25th International
Conference on Software Engineering and Knowledge Engineering. (2013)

21. Ernst, M., Lencevicius, R., Perkins, J.: Detection of Web Service Substitutability and
Composability. In: WS-MaTe 2006: International Workshop on Web Services — Modeling
and Testing. pp. 123–135. Palermo, Italy. (2006)

22. Church, J., Motro, A.: Learning Service Behavior with Progressive Testing. In: IEEE
SOCA’11. Irvine, USA. (2011)

23. Tsai, W., Zhou, X., Chen, Y., Bai, X.: On Testing and Evaluating Service-Oriented
Software. IEEE Computer 41(8), 40–46 (2008)

24. Zhu, H., Yufeng, Z.: Collaborative Testing of Web Services. IEEE Transactions on
Services Computing 5(1), 116–130 (2010)

25. Brogi, A. On the potential advantages of exploiting behavioral information for contract-
based service discovery and composition. The Journal of Logic and Algebraic
Programming, 80(1):3–12, (2011)

26. Stroulia, E. & Wang, Y. Structural and Semantic Matching for Assessing Web-Services
Similarity. International Journal of Cooperative Information Systems, 14, 407-437. (2005)

27. WordNet: A lexical database for English. Princeton University, NJ, USA.
http://wordnet.princeton.edu/ (2012)

28. Heß, A., Johnston, E., & Kushmerick, N., Assam: A tool for semi-automatically annotating
semantic Web Services. The Semantic Web Conference ISWC, pp. 320-334. Springer
Berlin Heidelberg. (2004)

29. Mateos, C., Crasso, M., Zunino, A. & Ordiales, J. L., Detecting WSDL bad practices in
code–first Web Services. International Journal of Web and Grid Services, 7(4):357–387,
(2011)

30. Weerawarana, S.; et al., Web Services Platform Architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR (2005).

31. Daniel, F., Pernici, B.: Insights into Web Service Orchestration and Choreography.
International Journal of E-Business Research 2(1), 58–77 (2006)

32. Peltz, C. Web Services Orchestration and Choreography. IEEE Computer, 36(10), 46-52.
(2003)

