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This study assesses the productivity and efficiency of maize production under conservation agriculture
(CA). The analysis is based on a three year (2008–2010) panel sample of small holder farming households
across 15 rural districts in Zimbabwe. We make a comparison of CA with alternative conventional farm-
ing methods. Our empirical strategy consists of two methods. First, using a fixed effects model, we esti-
mate maize production functions and derive technical change estimates under CA and conventional
farming. Second, we estimate a joint stochastic production frontier to compare productivity and technical
efficiency between CA and conventional farming. Under CA, technical progress has been land-saving but
seed and fertilizer-using, while it has been land-using but seed-saving in conventional farming. Lastly,
the results of the efficiency analysis show that that farmers produce 39% more in CA compared with con-
ventional farming, but technical efficiency levels are essentially equal in both technologies. Overall, the
results show significant yield gains in CA practices and significant contributions to food production. CA
is land-saving, and this is an important issue for land constrained farmers because they can still have via-
ble food production on smaller area. However, high labor and fertilizer demands in CA present some
problems in adoption amongst resource-constrained farmers.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

An important challenge in Zimbabwe’s smallholder agricultural
sector is to raise the productivity of food crop production. In the
last decade, the productivity of important staples has declined
amongst rural households. For example, maize yields have signifi-
cantly declined over the years, from about 1500 kg/ha in the early
1990s to around 500 kg/ha after 2000 (Government of Zimbabwe,
2002). Similar to most parts of sub-Saharan Africa, agricultural pro-
ductivity levels in Zimbabwe have fallen partly due to land degra-
dation as a result of many years of erosive cultivation, and
declining soil fertility (Mano, 2006). Increasing frequency of
droughts due to growing variability in the climate also presents
formidable challenges for crop productivity and overall food secu-
rity amongst rural households (Mazvimavi, 2011).

A response to declining food production in Zimbabwe has been
the wide-scale relief distribution of agricultural inputs to small-
scale farmers (Rohrbach et al., 2005; DFID, 2009). As part of these
agricultural relief and recovery programs, dissemination of new
agricultural technologies has been seen as a strategy to comple-
ment input provision and sustain farmers’ productivity. Conserva-
tion agriculture (CA) is one such technology that has been
introduced to small-scale farmers as a more sustainable and pro-
ductive way of farming. CA is a set of technology principles whose
aim is to improve and stabilize crop yields while preserving soil
and water, and minimizing the use of some inputs through preci-
sion application methods. The three basic principles of CA are:
minimum soil disturbance, permanent soil cover, and diversifica-
tion of crops through rotations (Twomlow et al., 2008; Thierfelder
and Wall, 2010).

There have been major investments and a concerted policy
drive supporting CA as a way of improving crop productivity in
Zimbabwe. According to Andersson and Giller (2012), a significant
number of funding agencies, international research and develop-
ment agencies, and non-governmental organisations (NGOs) have
taken a keen interest in promoting CA; not only in Zimbabwe but
in other countries in Southern Africa. This growing focus on CA
as a policy option for smallholder farmers has also stimulated re-
search interest in evaluating the impact of CA. Specifically, does
the use of CA lead to productivity gains and contribute significantly
to household food security?
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There is a fast growing empirical literature on the impacts of
CA as a technology option in resource-constrained environments
in Zimbabwe and other countries in Africa. However, empirical
studies have turned in mixed results. Studies by Oduol et al.
(2011) and Musara et al. (2012) report that the adoption of CA
practices pushes smallholder farmers closer to their production
frontier. They also find that an improvement in human capital
variables, such as improved access to extension and education,
can significantly reduce inefficiencies in production. On the other
hand, Giller et al. (2009) report that empirical evidence on
CA contributions to yield gains is not clear and inconsistent. Gow-
ing and Palmer (2008), and Nkala et al. (2011) also note that CA
may not be an appropriate option for resource-poor farmers due
to its high demand for external inputs such as fertilizer and
herbicides.

Empirical studies that have been carried out to assess CA im-
pacts in Zimbabwe use different methods and analytical ap-
proaches, ranging from on-station and on-farm agronomic
experiments to broader socio-economic household surveys
(Nyagumbo, 1999; Nkala et al., 2011; Musara et al., 2012). How-
ever, most of these studies tend to use cross-sectional data, and
do not have a longitudinal dimension. Studies that do use longitu-
dinal data do tend to focus on agronomic impacts such as yield and
soil properties, but generally fail to control for household level
covariates that may have important interactions in the production
process. These data limitations present a challenge in drawing cor-
rect inferences and conclusions on the actual contributions of CA.
In addition, little is known empirically about the nature of eco-
nomic relationships, such as technical change, factor productivity,
and efficiency under CA technology. For example, higher yields
achieved under CA may simply be due to higher input usage but
this does not necessarily translate to higher technical efficiency
levels (Wouterse, 2010). An analysis of these economic relation-
ships should generate important insights on the effectiveness of
CA.

By monitoring farmers who have adopted CA over time, the
International Crops Research Institute for the Semi-Arid Tropics
(ICRISAT) has constructed a panel database, which captures
production and socio-economic information of farmers practising
CA in 15 districts in Zimbabwe. We make use of this panel data
set in this study. Our objective is to contribute to the
understanding of CA impacts by utilizing a unique data set that
captures maize production under CA and alternative conventional
farming practices across different agro-ecological regions. We em-
ploy a productivity and efficiency analytical approach and imple-
ment econometric methods to estimate factor productivity,
technical change and technical efficiency in maize production un-
der CA and draw comparisons with conventional farming
practices.

The structure of this article is as follows: in Section 2, we briefly
review the literature on CA practices in Africa. Section 3 outlines a
theoretical framework for productivity analysis. In Section 4, we
specify the empirical models and discuss econometric strategies
for estimation. Section 5 describes the data and presents some
descriptive analysis. Section 6 reports the major empirical findings
from the econometric estimation. We conclude and discuss policy
recommendations in Section 7.
2. Literature review

In Zimbabwe, CA is largely practiced by smallholder farmers
using small farm implements, such as the hand hoe, to create
planting basins. CA technologies typically involve agricultural
management practices that prevent the degradation of soil and
water resources and thereby permit sustainable farm production
Please cite this article in press as: Ndlovu, P.V., et al. Productivity and efficienc
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without environmental degradation (ECAF, 2002; Haggblade
et al., 2004). Mazvimavi (2011) provides a comprehensive review
of CA practices in Zimbabwe and other Southern African
countries.

Studies have been carried out to assess the effect of CA
practises in several African countries. Tsegaye et al. (2008) assess
the impacts of CA on land and labor productivity in Ethiopia.
Their study analyzes the adoption of the different components
of CA and finds that the initial decision to adopt CA is influenced
by regional location, family size, access to extension, and formal
education. They find a positive relationship between land
productivity and the use of CA practices. Hassane et al. (2000)
evaluate the impact of planting basins and the use of fertilizer
and manure on millet crops in Niger. Their study finds that farm-
ers experienced yield gains of up to 511% between 1991 and
1996. Similarly, significant yield gains are also noted in a planting
basins and applied crop residues and fertilizer achieved 56% yield
gains in their cotton fields and 100% yield gains in their maize
fields.

While there is evidence of CA gains in the literature, there are
also studies that present a sharply contrasting assessment of CA
impacts. Nyagumbo (1999) reports that the performance of CA
relative to existing technologies is highly variable, and dependent
on site and farmer characteristics. Gowing and Palmer (2008)
examine the evidence of CA benefits amongst small-scale farmers
in Africa and conclude that CA does not overcome the constraints
found in low external-input systems. They note that CA can deli-
ver the productivity gains required for food security and poverty
alleviation targets only if farmers have access to fertilizers and
herbicides. They further assert small-scale farmers are not likely
to completely adopt CA, but only as a complement to existing
management practices. Giller et al. (2009) suggest that the empir-
ical evidence is not clear and inconsistent regarding CA’s contri-
bution to yield gains. Their study highlights concerns that
include decreasing yields under CA, higher labor requirements
when herbicides are not used, a shift of the labor burden to wo-
men, and problems with meeting mulching requirements. They
also note many cases where the adoption of CA is temporary
and only lasts as long as NGOs and research institutions are pres-
ent, but once the organizations leave, CA is disadopted. Nkala
et al. (2011) carry out a meta-analysis of the impacts of CA in
Southern Africa and find that CA is better suited for smallholder
farmers who can readily access farm implements, financing, and
other livelihood assets. Their study concludes that the effective-
ness of CA towards improving livelihood outcomes in Southern
Africa remains debatable, especially when supportive government
policies are lacking. Lastly, Andersson and Giller (2012) note that
the appropriateness of CA in highly diverse smallholder farming
systems is unclear, and that adoption is only suitable for a limited
number of farmers.

Although the studies that have been highlighted above provide
key insights, little has been done in the literature to analyze pro-
ductivity in CA within a longitudinal framework that assesses evi-
dence of technical change in CA relative to conventional farming
technologies. In addition, possible differences in the nature of tech-
nical progress with respect to input use under CA and conventional
farming have not been explored empirically. While evidence of po-
sitive productivity impacts under CA have been reported, we do
not know whether or not farmers are technically efficient under
CA. This paper seeks to contribute to this literature by addressing
these gaps. This article will highlight important differences in the
contribution of factors of production to technical change in CA rel-
ative to conventional farming. In addition, we investigate the effi-
ciency of CA. Together, these results will help to inform best
practices and guide policy on technology adoption in small-scale
agriculture.
y analysis of maize under conservation agriculture in Zimbabwe. Agr. Syst.
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3. Theoretical framework

As a starting point in the analysis of productivity and efficiency
of CA, we consider a theoretical framework of Total Factor Produc-
tivity (TFP) growth. TFP growth is defined as growth in output that
is not explained by a change in inputs. Following this definition
and assuming that maize production is not always on the frontier,
a change in the productivity of maize can be decomposed into
three separate components: (a) movements towards or away from
the frontier due to changes in technical efficiency; (b) shifts in the
frontier due to the effect of technological innovations or progress;
and (c) productivity gains associated with economies of scale
(Coelli et al., 2005). We can also incorporate the effects of changes
in input allocative efficiency; i.e., a measure of the right mix of in-
puts in light of the relative price of each input (Kumbhakar and
Lovell, 2000). However, this requires data on input prices, which
we do not have. Within the scope of our study, TFP growth can
be expressed as

T _FP ¼ DTC þ DTEC þ DSCALE ð1Þ

T _FP is the growth in total factor productivity, DTC represents tech-
nical change, DTEC represents changes in technical efficiency, and
DSCALE represents changes in the scale of production. All three
components of Eq. (1) are time and producer-specific unless certain
parametric restrictions are specified. If maize production technol-
ogy or technical efficiency is time invariant, then it makes no con-
tribution to productivity growth. Also, the contribution of scale
economies depends on the technology being practiced and the data
available. Under constant returns to scale, input growth or contrac-
tion makes no contribution to productivity growth. Non-constant
returns to scale makes a positive contribution to productivity
growth if the scale elasticity is greater than one and input use ex-
pands, or if the scale elasticity is less than one and input use
contracts.

Following the work of Battese and Coelli (1988, 1992, 1995),
Farrell (1957), and Kumbhakar and Lovell (2000), we employ sto-
chastic frontier analysis to investigate technical change and techni-
cal efficiency of CA. Given a production technology where a single
output y is produced from a vector of inputs x at time t, we say that
technical progress occurs between periods t and t + 1 when the
production possibility set expands from (xt,yt) to (xt+1,yt+1) where
f(x, t + 1;b) > f(x, t;b). Production is technically inefficient in both
periods, if yt < f(xt, t;b) and yt+1 < f(xt+1, t + 1;b), and technical effi-

ciency improves from period t to period t + 1, if yt

f ðxt ;t;bÞ <
ytþ1

f ðxtþ1 ;tþ1;bÞ.

Productivity growth occurs, if ytþ1

xtþ1 >
yt

xt . To estimate productivity
growth, we assume a stochastic frontier production function in
the format:

yit ¼ f ðxit ; t; bÞ � expð�uitÞ; ð2Þ

where yit is the output of the ith producer (i = 1, . . .,N) in the tth per-
iod (t = 1, . . .,T), f(xit,t;b) is the production frontier with technology
parameter vector b to be estimated, x = (x1, . . .,xN) P 0, as men-
tioned, is an input vector, t is a time trend serving as a proxy for
technical change, and uit P 0 represents output-oriented technical
inefficiency, which is the ratio of observed output to maximum fea-
sible output. For this technology, the production frontier provides
the upper boundary of production possibility sets. The input–output
combination of each producer is located on or beneath the produc-
tion frontier. Totally differentiating the production frontier f(xit, t;b)
with respect to time yields:

d ln f ðxit; t; bÞ
dt

¼ d ln f ðxit ; t; bÞ
dt

þ
X

j

d ln f ðxit; t; bÞ
dxjit

dxjit

dt
: ð3Þ
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The first and second terms on the right-hand side of Eq. (3)
measure the change in frontier output caused by technical change
and change in input use, respectively. From the output elasticity of
input j, ej = o ln f(�)/o lnxj, the second term can be expressed asP

jej _xj, where a dot over a variable indicates its rate of change with
respect to time. Thus, Eq. (3) can be rewritten as

d ln f ðxit ; t; bÞ
dt

¼ TCit þ
X

j

ej _xjit : ð4Þ

The overall productivity change is not only affected by the tech-
nical change (TC), but also by the change in technical efficiency,
TEC ¼ � du

dt . Technical change is positive if exogenous technical
change shifts the production frontier upward for a given level of in-
puts. When TC is negative, the production frontier is shifted down-
ward. If du/dt is negative, technical efficiency improves over time,
and �du/dt can be interpreted as the rate at which an inefficient
producer catches up to the production frontier.

Given this theoretical framework, and the data that we have, we
can develop empirical models that allow us assess productivity of
CA technology. We are interested in measuring technical change,
factor productivity, and efficiency under the two different technol-
ogy regimes.
4. Empirical strategy

This study estimates a stochastic production frontier to investi-
gate productivity and technical efficiency. While there are deter-
ministic methods (e.g., data envelopment analysis), these assume
that all distributions are attributable to inefficiency. In agriculture,
however, this assumption is quite restrictive since stochastic fac-
tors such as rainfall and pests can have a large effect on the final
outcome. Therefore, we use a joint frontier, with a specific interest
in comparing efficiency levels in CA and conventional farming.
Observations from the two technologies are pooled so that techni-
cal efficiency predictions are derived from the same data, as sug-
gested by Battese et al. (2004).
4.1. Empirical specification

We estimate a stochastic frontier model using a translog func-
tional form. Specifically, we estimate the following:

ln yit ¼ ai0 þ
XJ

j

bj ln xjit þ
1
2

XJ

j

XJ

k

bjk ln xjit ln xkit þ btt

þ 1
2

bttt
2 þ

XJ

j

bjt ln xjitt þ bitAit þ v it � uit ; ð5Þ

where yit is output produced, subscript i = 1, 2, . . .,N denotes house-
holds, t = 1, 2, . . .,T are time periods, and j, k = 1, 2, . . ., J are the inputs
used, represented by vector x in farm production. The error term is
composed of two independent elements: vit � iid Nð0;r2

vÞ is the
random noise error component and uit P 0 is the technical ineffi-
ciency error component. A dummy variable Ait is included in the
model to identify the difference in production levels between CA
and conventional farming. The constant term ai0 controls for unob-
served factors that vary across households but are time-invariant,
such as soil quality.

Following the stochastic production frontier model in Eq. (5),
we assume that the inefficiency effects are independently distrib-
uted and lit arises by truncation at zero of the normal distribution
(Kumbhakar and Lovell, 2000) with mean lt, and variance, r2

u ,
where lt is defined by
y analysis of maize under conservation agriculture in Zimbabwe. Agr. Syst.
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Table 1
Study sample showing number of households practicing conservation agriculture and conventional farming. Source: ICRISAT Conservation Agriculture panel data 2008–2010.

Technology Number of households Observations

2008 2009 2010 Mean Total Percentage

Conservation agriculture 265 291 200 252 756 53.62
Conventional farming 155 270 229 218 654 46.38

Total 1410 100

Both technologies 137 197 133 156 467 49.52
Conservation agriculture only 128 94 67 96 289 30.65
Conventional farming only 18 73 96 62 187 19.83

Total 283 364 296 314 100
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lt ¼ d0 þ
XM

m¼1

dmZmt þ dtt; ð6Þ

Zmt is a vector of farm specific inefficiency related variables
(m = 1, . . .,M), at time t, and dm is a vector of unknown parameters
to be estimated. Technical efficiency is assumed to be time varying.
Since the dependent variable lt in the inefficiency model is a mea-
sure of inefficiency, a positive sign on a parameter indicates a neg-
ative efficiency effect. In our estimation of the stochastic frontier,
we employ a one stage approach that uses maximum likelihood
to estimate the production function for lnyit simultaneously with
the inefficiency effects model for lt. We use the econometric soft-
ware package LIMDEP to estimate the stochastic frontier.

4.2. Model variables

The dependent variable used in the stochastic frontier analysis
is the logarithm of quantity of maize harvested, in kilograms
(kg), by a household. If a household has more than one maize plot
under the same technology, then quantity harvested is total har-
vest from all maize plots under the same technology. The input
quantities are also aggregates of inputs used in different plots un-
der the same technology. Our data do not permit us to do a plot
specific analysis across the panel period. Hence, for each house-
hold, and for respective technologies, we aggregate the data from
individual plots. The variables for the direct factors of production
are land (A), labor (L), draft animals (K), fertilizer (F), and seed
(S). Land is total cultivated area in hectares. Labor is total farm la-
bor available in the household, expressed in male adult equivalent
units. Draft animals are mainly used in conventional farming for
land preparation. In our sample, land preparation in conservation
agriculture plots is accomplished by hand hoes. However, we do
not rule out interactions of draft input in the production process
Table 2
Summary statistics of variables used in analysis of maize production. Source: ICRISAT Con

Technology Production variables

Year Maize
(kgs)

Area
(ha)

Labor (male
adult)

Draft (number
of cattle)

Seed
(kgs)

Conservation
agriculture

2008 362.40 0.36 3.69 0.74 8.05
2009 484.25 0.36 3.66 0.62 9.19
2010 501.69 0.37 2.54 1.24 9.13
Average 449.45 0.36 3.30 0.87 8.79

Conventional
farming

2008 325.09 0.94 3.84 0.90 19.27
2009 575.07 0.75 2.93 0.64 17.20
2010 649.29 0.85 2.63 1.39 19.03
Average 516.48 0.85 3.14 0.98 18.50

Both
technologies

2008 348.63 0.57 3.74 0.80 12.19
2009 527.96 0.55 3.31 0.63 13.05
2010 580.48 0.63 2.59 1.32 14.42
Average 485.69 0.58 3.21 0.92 13.22
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under CA, for example for some weeding methods. So draft owner-
ship is included as a direct factor of production in both CA and con-
ventional farming. Fertilizer is the total amount of fertilizer applied
in kg. Seed is the total quantity of seed planted in kg. A time vari-
able is included to account for disembodied technical change.

To measure differences in maize productivity between CA and
conventional farming, we include a technology dummy (1 = CA,
0 = conventional farming). The technology dummy variable is spe-
cific to output observations from CA and conventional farming. For
example, if, for a given year, a household practiced both CA and
conventional farming, the household has 2 output observations
in the data set. The output observation under CA has the technol-
ogy dummy variable taking a value of 1, whereas the observation
for conventional farming has the technology dummy variable tak-
ing a value of zero. We also control for rainfall region by including
a dummy variable that equals 1 if it is a high rainfall area (agro-
ecological regions II and II or those with greater than 650 mm of
rainfall per annum), and 0 for low rainfall area (agro-ecological re-
gion IV and V, or those with fewer than 650 mm of rainfall per
annum).

In the efficiency model, we hypothesize that household socio-
economic factors, type of technology, and some direct factors of
production will affect technical efficiency. The variables used in
the efficiency model include: gender (dummy variable taking the
value of 1 if it is a male-headed household, zero otherwise), age
and education of the household head, and asset endowments,
which are expressed as an index that captures the household’s
ownership and access to farming implements – e.g., ploughs, culti-
vators, hoes. A time variable is included to estimate the effect of
time on technical efficiency. Land and labor are also included in
the efficiency model. Lastly, we include the technology dummy
variable (described earlier), to capture whether inefficiency varies
by technology.
servation Agriculture panel data 2008–2010.

Efficiency variables

Fertilizer
(kgs)

Gender (male = 1,
female = 0)

Age of
head

Education
(years of head)

Physical
asset index

35.46 0.63 50.48 6.50 72.98
33.84 0.68 55.79 6.53 97.04
53.53 0.59 54.03 6.91 287.95
40.94 0.63 53.43 6.65 152.66

38.68 0.63 50.75 6.57 84.00
33.52 0.69 54.53 6.79 91.74
62.64 0.65 54.21 6.81 356.20
44.95 0.66 53.16 6.73 177.31

36.65 0.63 50.58 6.53 77.05
33.69 0.69 55.20 6.65 94.49
58.39 0.62 54.13 6.86 324.38
42.91 0.65 53.30 6.68 165.31

y analysis of maize under conservation agriculture in Zimbabwe. Agr. Syst.
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Table 3
Quantity of inputs and output for maize production. Source: ICRISAT Conservation Agriculture panel data 2008–2010.

Technology Year Land (ha) Fertilizer (kg/ha) Seed (kg/ha) Maize yield (kg/ha)

Conservation agriculture 2008 0.36 143.68 33.23 1474.80
2009 0.36 142.09 37.71 1747.56
2010 0.37 187.52 29.79 1607.37
Average 0.36 154.66 34.04 1614.86

Conventional 2008 0.94 85.14 29.53 517.34
2009 0.75 68.94 33.44 1070.37
2010 0.85 97.26 25.33 857.02
Average 0.85 82.69 29.67 864.60

Both technologies 2008 0.57 122.07 31.86 1121.45
2009 0.55 106.88 35.66 1421.64
2010 0.63 139.34 27.41 1206.83
Average 0.58 121.28 32.02 1266.87

Fig. 1a. Output shares for alternative technologies (all households).

Fig. 1b. Output shares for alternative technologies (households practicing both
technologies).
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4.3. Factor productivity and technical change

Our interest here is in exploring differences in technical change
and factor productivity between CA and conventional farming.
Note that, we do not use a stochastic frontier model. This is
because, in this section, we are primarily interested in comparing
factor productivity between the two technologies, not the
Table 4
Comparison of efficiency levels between conservation agriculture and conventional farmin

Year Area Labor Draf

CA Conv. CA Conv. CA

2008 0.002*** 0.005 0.023* 0.027 0.01
2009 0.001*** 0.002 0.017*** 0.012 0.00
2010 0.002*** 0.003 0.014 0.014 0.01

Average 0.002*** 0.003 0.018 0.016 0.01

Notes: T-tests for equality of means of input output ratios are done. The significance lev
* Significance levels indicated for 10% significance.
*** Significance levels indicated for 1% significance.
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efficiency levels. However, to make this comparison, we do not
use a joint model for the two technologies, as in the efficiency anal-
ysis. Doing so would require us to introduce interaction terms for
all input variables with the technology dummy variable, but this
would result in too many variables, and possibly create problems
of multi-collinearity. Instead, we estimate separate maize produc-
tion functions for CA and conventional farming using fixed effects
panel regression. The availability of panel data makes it possible to
control for individual household specific effects. The decision lies
between choosing a fixed effects and random effects models. We
run a statistical test to choose the appropriate panel model
specification (Appendix A). In the panel specification test, we use
a Cobb–Douglas functional form and the more flexible translog
functional form. In both specifications, the test results favor a fixed
effects approach. We choose the translog as our preferred func-
tional form as suggested by the results of a likelihood ratio test
(Appendix B).

The production functions we estimate are:

ln yit ¼ ai0 þ
XJ

j

bj ln xjit þ
1
2

XJ

j

XJ

k

bjk ln xjit ln xkit þ btt

þ 1
2

bttt
2 þ

XJ

j

bjt ln xjitt þ eit: ð7Þ

The notation is the same as for Eq. (5), except that the error
term eit is normally distributed, and there is no technology dummy
since we run separate regressions. Technical change is neutral with
respect to inputs if bjt = 0 j, and absent if bt = btt = bjt = 0 j. We are
interested in identifying whether there are differences in the nat-
ure of technical progress with respect to input use under the two
technologies.
5. Data and descriptive analysis

This study uses ICRISAT panel data from household surveys
collected between 2008 and 2010 in 15 rural districts in
Zimbabwe. By observing the same farmers in successive seasons
g using input–output ratios.

t Seed Fertilizer

Conv. CA Conv. CA Conv.

3 0.011 0.046*** 0.111 0.189*** 0.264
7 0.006 0.029*** 0.049 0.116 0.123
2 0.011 0.040*** 0.073 0.230 0.225

1 0.009 0.037*** 0.072 0.174 0.201

els compare CA and conventional farming input output ratios.
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Table 5
Results of fixed effects regressions of Translog production functions.

Conservation agriculture fixed effects regression Conventional farming fixed effects regression

Variable Coefficient Standard error Variable Coefficient Standard error

Land bA �0.307 0.254 Land bA 0.956* 0.534
Labor bL 0.739** 0.337 Labor bL �0.651 0.621
Draft Animal bK �1.023** 0.488 Draft Animal bK 2.292*** 0.741
Seed bS 0.008 0.305 Seed bS �0.532 0.741
Fertilizer bF 0.338** 0.138 Fertilizer bF �0.081 0.184
Land * Land bAA 0.068 0.084 Land * Land bAA 0.097 0.114
Labor * Labor bLL �0.124 0.138 Labor * Labor bLL 0.203 0.176
Draft * Draft bKK 0.205 0.348 Draft * Draft bKK 0.896*** 0.285
Seed * Seed bSS 0.294*** 0.091 Seed * Seed bSS 0.169 0.227
Fertilizer * Fertilizer bFF 0.022 0.028 Fertilizer * Fertilizer bFF 0.168*** 0.031
Land * Labor bAL 0.170* 0.088 Land * Labor bAL �0.082 0.157
Land * Draft bAK �0.131 0.097 Land * Draft bAK 0.766*** 0.162
Land * Seed bAS �0.137* 0.081 Land * Seed bAS �0.171 0.131
Land * Fertilizer bAF 0.062** 0.031 Land * Fertilizer bAF 0.055 0.043
Labor * Draft bLK 0.127 0.109 Labor * Draft bLK �0.468** 0.191
Labor * Seed bLF �0.172 0.098 Labor * Seed bLF 0.001 0.166
Labor * Fertilizer bLS 0.026 0.036 Labor * Fertilizer bLS 0.079* 0.042
Draft * Seed bKS 0.106 0.134 Draft * Seed bKS �0.695 0.202
Draft * Fertilizer bKF 0.060 0.060 Draft * Fertilizer bKF �0.088** 0.044
Seed * Fertilizer bSF �0.026 0.042 Seed * Fertilizer bSF �0.118** 0.051
Land * Time bAT 0.296*** 0.062 Land * Time bAT �0.173* 0.098
Labor * Time bLT �0.072 0.060 Labor * Time bLT 0.040 0.090
Draft * Time bKT 0.096 0.067 Draft * Time bKT �0.096 0.085
Seed * Time bST �0.155** 0.069 Seed * Time bST 0.259** 0.105
Fertilizer * Time bFT �0.111*** 0.031 Fertilizer * Time bFT 0.022 0.025
Time bT 2.312*** 0.321 Time bT 1.183** 0.464
Time2 bTT �0.615*** 0.100 Time2 bTT �0.927*** 0.129
Draft access bDD 0.135 0.125 Draft access bDD 0.310** 0.133
Rainfall region bR �0.231*** 0.078 Rainfall region bR �0.211** 0.093

Observations 756 654
Households 392 405
R-squared 0.800 0.860
Adj R-squared 0.548 0.583

* Statistical significance for the 10% significance level.
** Statistical significance for the 5% significance level.
*** Statistical significance for the 1% significance level.
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of real CA practice in a non-experimental setting, it is possible to
compare CA and conventional farming practices within the same
households. Since we are primarily interested in the effects of CA
on maize production, we omit observations where no maize is
produced (e.g. due to drought). As a result, we exclude
approximately 14% of the data. Whenever a sub-sample of the
data is used, there is always a concern of sample bias. We esti-
mate a Heckman selection model to check for sample selection
bias. The test result suggests that there is no sample selection
bias (Appendix C). In addition, during the study period, there
was some attrition as several households could not be re-inter-
viewed in successive waves of the survey. Consequently, the pa-
nel is un-balanced. A possible strategy is to account for attrition
by using dynamic panel data models, but this is not the focus
of the paper.

Table 1 shows the average number of households and total
observations. The total number of observations from CA and con-
ventional farming equals 1410 for the entire panel period. This
number of observations is based on a total of 470 different house-
holds interviewed during the three year panel period. In our sam-
ple, there are some overlaps in the technologies being practiced.
On average, across the three years panel period, about 50% the
households practice both CA and conventional farming. Fewer
households specialize in just one type of technology i.e. about
30% of households only practice CA, and approximately 20% only
practice conventional farming. The average number of households
interviewed in each panel period is 314.

Table 2 gives some descriptive statistics of the production
variables and factors hypothesized to explain productivity and
Please cite this article in press as: Ndlovu, P.V., et al. Productivity and efficienc
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technical efficiency in maize production. These are elaborated fur-
ther in the next section, which gives a descriptive analysis of maize
productivity under CA and conventional farming.

Table 3 shows land allocation in hectares, where on average
plots under conventional farming are significantly larger: 0.85 ha
compared to 0.35 ha for CA. The most likely reason for this large
difference is that farmers are more likely to allocate a larger share
of their land to the familiar technology, especially when the exist-
ing technology is relatively easier to implement on larger tracts of
land. CA is generally implemented on smaller tracts of land due to
labor constraints in digging planting basins, where handheld hoes
are typically used. Fertilizer application rates are significantly
higher on CA plots, with 155 kg/ha being compared with 83 kg/
ha on the conventional plots. This is likely due to the fact that fer-
tilizer subsidies are available for CA plots. Seed application rates
are higher in CA, and this is due to planting recommendations that
encourage using more seed per planting station. In terms of general
input use, CA is not necessarily associated with conservative input
levels. The conservation attributes of CA are mainly realized
through the agronomic aspects, such as conserving soil structure,
improving soil moisture through the use of mulch, and the preci-
sion application of inputs.

Fig. 1a shows that in both high and low rainfall areas, CA output
share is quite high, even though CA is implemented on only 0.36 ha
of land compared to 0.85 ha for conventional farming, on average.
In high rainfall areas, CA contributes on average 53.59% of the total
output. In low rainfall areas, the share of output from CA is 37.60%.
However, since some households do not practice CA, we go a step
further in our analysis of output shares and limit the sample to
y analysis of maize under conservation agriculture in Zimbabwe. Agr. Syst.
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households practicing both technologies (Fig. 1b). We find that the
output shares remain very similar. In high rainfall areas, CA con-
tributes on average 53.19% of total output. In low rainfall areas,
the share of output from CA is 38.12%. These findings strongly indi-
cate that CA technology, although implemented on smaller plots,
still contributes significantly to food production, in both high and
low rainfall areas.

The last descriptive statistic we calculate is a partial productiv-
ity index, which is the ratio of input use to output produced. These
input–output (IO) ratios allow for comparison of factor productiv-
ity where lower IO ratios indicate higher factor productivity.
Table 4 shows the mean differences in IO ratios between CA and
Table 6
Joint stochastic production frontier estimates for maize production.

Translog stochastic frontier model

Variable Coefficient Standard error

Constant b0 2.855*** 0.497
Land bA �0.076 0.188
Labor bL 0.665*** 0.2255
Draft Animal bK 0.236 0.299
Seed bS 0.320 0.233
Fertilizer bF 0.05 0.078
Land * Land bAA 0.059 0.054
Labor * Labor bLL 0.055 0.093
Draft * Draft bKK 0.229 0.135
Seed * Seed bSS 0.078 0.079
Fertilizer * Fertilizer bFF 0.090*** 0.015
Land * Labor bAL 0.185*** 0.062
Land * Draft bAK 0.143** 0.079
Land * Seed bAS 0.023 0.056
Land * Fertilizer bAF 0.003 0.021
Labor * Draft bLK �0.028 0.069
Labor * Seed bLF �0.196*** 0.069
Labor * Fertilizer bLS 0.005 0.021
Draft * Seed bKS �0.112 0.081
Draft * Fertilizer bKF 0.049** 0.021
Seed * Fertilizer bSF �0.057** 0.023
Land * Time bAT 0.132*** 0.038
Labor * Time bLT �0.017 0.047
Draft * Time bKT �0.043 0.050
Seed * Time bST 0.073 0.045
Fertilizer * Time bFT �0.011 0.014
Time bT 1.394*** 0.231
Time2 bTT �0.573*** 0.091
Draft access bDD 0.244*** 0.057
Rainfall region bR 0.001 0.040
CA technology bT 0.394*** 0.048

k 1.916 0.735
Sigma u 1.232 0.337
r2v 0.413
r2u 1.517

Likelihood ratio �1549.7
Observations 1410
Households 470

* Statistical significance for the 10% significance level.
** Statistical significance for the 5% significance level.
*** Statistical significance for the 1% significance level.

Table 7
Distribution of efficiency scores derived from Stochastic production frontier estimates for

Technology Year Percentage of households in

<0.40 0.41–0.60

Conservation agriculture 2008 1.89 21.13
2009 0.69 19.59
2010 1.00 22.50
Average 1.19 21.07

Conventional farming 2008 1.29 24.52
2009 0.76 19.70
2010 2.18 21.40
Average 1.41 21.87

Please cite this article in press as: Ndlovu, P.V., et al. Productivity and efficienc
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conventional farming. In every year, CA has higher factor produc-
tivity for all the inputs except draft. CA technology by design
avoids the use of draft as a coping strategy for households with
no draft animals. These households can carry out land preparation
and plant on time without having to wait to borrow draft animals
from neighbors. Fertilizer productivity is only significantly higher
for CA in 2008. Not surprisingly, the significantly higher fertilizer
regimes on CA do not yield correspondingly higher productivity
for this factor. A common concern with subsidized inputs is that
they can be overused as their marginal cost is artificially lower,
which leads to their being used at the point where the marginal
productivity is not as high as it would be otherwise (i.e., if the mar-
Inefficiency effects model

Variable Coefficient Standard error

Age cAG �0.003 0.013
Education cE 0.000 0.086
Gender cG �0.001 0.632
Physical assets cAV �0.003* 0.001
Draft cD 0.430 0.628
Time cT �4.383*** 1.654
Time * Time cTT 1.389*** 0.470
Area cA 1.404*** 0.380
Labor cL 0.263 0.571
Region cR 0.009 0.570
Technology cTC 0.416 0.730

maize production (percentage of households).

efficiency score category N

0.61–0.80 >0.80 Average

60.00 16.98 0.681 265
64.60 15.12 0.684 291
59.00 17.50 0.687 200
61.20 16.53 0.684 252

63.87 10.32 0.664 155
65.53 14.02 0.684 264
58.08 18.34 0.677 229
62.49 14.23 0.677 216

y analysis of maize under conservation agriculture in Zimbabwe. Agr. Syst.
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ket price had been paid). While these productivity indices are use-
ful, it is important to note that they are limited in terms of how
accurately and comprehensively they portray overall productivity,
and can be misleading when considered in isolation (Kalirajan and
Wu, 1999). The subsequent sections of the paper discuss more
complete measures of productivity.
Fig. 2a. Technical efficiency scores in high rainfall regions.

Fig. 2b. Technical efficiency in low rainfall regions.
6. Empirical results

Table 5 presents results from the fixed effects regressions under
CA and conventional farming. Under CA, labor has a positive and
statistically significant effect on yield. Strangely, the use of draft
animals has a negative and statistically significant effect. This
unexpected result may be because in years of poor output, farmers
may be using more draft inputs to control for weeds (Battese and
Coelli, 1992). The coefficients on land and seed are not statistically
significant. The models include a time variable to account for tech-
nical change, and a quadratic time variable that allows for non-
monotonic technical change (Coelli et al., 2005). There is evidence
of technical progress in CA (46% on average) for the three year pa-
nel period. The coefficient on time-squared is negative and statis-
tically significant, which indicates that the rate of technical
change has been increasing at a decreasing rate. Time is also inter-
acted with each (logged) input variable to allow for non-neutral
technical change. In the CA model, the positive coefficient of time
interacted with land implies that technical change has been land
saving under CA. Time interactions with draft and labor have no
significant effects under CA. This implies that technical change is
neutral with respect to these inputs. However, overall technical
change is not neutral because some production factors significantly
change over time. The coefficients of time interactions with seed
and fertilizer are negative (and significant) implying factor using
technical change for these inputs.

Under conventional farming, the coefficients on land and draft
animals are both positive and statistically significant, while the
coefficients for labor, seed and fertilizer are not statistically differ-
ent from zero. These results suggest that draft animals contribute
to yields under conventional farming, in contrast to CA, but this
may be because draft animals are the dominant form of land prep-
aration under conventional farming but used only sparingly (possi-
bly only when conditions are most dire) in the case of CA. The
coefficient on time is positive and statistically significant, which
suggests evidence of technical progress. The time-squared coeffi-
cient is particularly large and suggests that technical progress in
recent years has greatly slowed down. Looking at the time and in-
put interaction coefficients reveals that technical change has been
land using and seed saving. Coefficients on labor, draft, and fertil-
izer are not significant, implying technical neutrality with respect
to these inputs.

Table 6 presents the results of the stochastic frontier model. The
key result here is the coefficient on the technology dummy (CA
technology). This result suggests that, holding all other factors con-
stant, a farmer produces 39% more maize per unit of land under CA
than conventional farming. This result is statistically significant at
the 1% level, and consistent with empirical findings from other
studies, where different forms of soil and water conservation tech-
nologies are reported to be associated with significant yield gains
compared to traditional methods.

We also present the results from the inefficiency model in Ta-
ble 6. Technical efficiency scores are estimated and simultaneously
used in the inefficiency model. In the inefficiency model, a positive
sign indicates that the variable increases inefficiency. The results
show that technical efficiency is not affected by the type of
technology that farmers use (the technology coefficient is not sta-
tistically significant). Demographic factors (gender, education, la-
Please cite this article in press as: Ndlovu, P.V., et al. Productivity and efficienc
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bor availability) also have no effect on inefficiency. Households
with higher physical asset levels are more efficient. This seems
plausible given that higher asset values imply greater availability
of farming implements-which translates to more timely and effec-
tive farming operations. Our results also show that farmers operat-
ing on relatively large tracts of land are likely to be less efficient.
This is characteristic of the production environment where inputs
are limited; hence increasing land while holding other direct fac-
tors (such as draft and labor) constant will lead to inefficiency in
production. Lastly, farmer efficiency is increasing over time, but
at a decreasing rate.

Technical efficiency scores are reported in Table 7. Average
efficiency levels in both high and low rainfall areas are not statis-
tically different between CA and conventional farming. Fewer
than 25% of households have average efficiency scores below
60%. The majority of households (62% under both technologies)
have average efficiency scores in the range of 61–80%. In CA
about 16.5% of households achieve technical efficiency levels
greater than 80% while 14% of households achieve the same range
in conventional farming. Figs. 2a and 2b show the efficiency lev-
els for the alternative technologies in high and low rainfall areas,
respectively. On average for CA plots, the level of efficiency is 70%
and 68% in high and low rainfall areas, respectively. Conventional
plots achieve 68% efficiency regardless of rainfall area. Technical
efficiency tends to vary more in high rainfall areas compared to
low rainfall areas under both technologies. Again, the efficiency
levels remain the same for both technologies. Although the fixed
effects regressions showed that factor productivity is strikingly
different between CA and conventional farming, it’s interesting
to note that technical efficiency levels between the two technol-
ogies are very similar. The higher yield in CA does not translate
into higher efficiency.
7. Conclusion and discussion

CA technology is implemented in relatively smaller plots than
conventional farming. However, there is evidence of significant
contribution of CA technology to total maize production amongst
y analysis of maize under conservation agriculture in Zimbabwe. Agr. Syst.
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households. Our results show that productivity is greater in CA
for all inputs except draft. There is also evidence of technical
progress in CA for the three year panel period. Technical progress
has been land-saving but seed and fertilizer-using in CA, while
land-using and seed-saving in conventional farming. Joint frontier
estimates indicate greater productivity gains in CA (39% more
than conventional farming-ceteris paribus). Although CA is
associated with higher yields, technical efficiency levels are gen-
erally the same for both technologies. The majority of farmers
achieve efficiency scores in the 60–80% range under both
technologies.

Interesting policy insights can be drawn from these results.
First, it is clear that CA results in significant yield gains and signif-
icant contributions to food production although it is implemented
on small pieces of land. CA is land saving, and this is an important
issue for land constrained farmers because they can still have via-
ble food production with limited land. On the other hand, high la-
bor demands in CA present some problems in adoption. NGOs that
promote CA commonly target vulnerable farmers, such as women,
the elderly, and households affected by HIV/AIDS. NGO targeting of
vulnerable households may impact negatively on labor availability
for CA practices. Hence there is a need to include better resourced
farmers as technology innovators.
Table A.1
Panel regressions to test fixed effects versus random effects.

OLS translog model

Variables Coefficient Standard error

Constant b0 2.200*** 0.583
Land bA �0.209 0.217
Labor bL 0.464** 0.275
Draft Animal bK 0.440 0.370
Seed bS 0.390 0.261
Fertilizer bF 0.083 0.094
Land * Land bAA �0.010 0.057
Labor * Labor bLL 0.002 0.096
Draft * Draft bKK 0.210 0.172
Seed * Seed bSS 0.058 0.082
Fertilizer * Fertilizer bFF 0.091*** 0.018
Land * Labor bAL 0.127** 0.065
Land * Draft bAK 0.163** 0.084
Land * Seed bAS 0.028 0.057
Land * Fertilizer bAF 0.029 0.022
Labor * Draft bLK �0.020 0.091
Labor * Seed bLF �0.139** 0.078
Labor * Fertilizer bLS 0.010 0.024
Draft * Seed bKS �0.165** 0.089
Draft * Fertilizer bKF 0.034 0.027
Seed * Fertilizer bSF �0.058** 0.026
Land * Time bAT 0.086** 0.048
Labor * Time bLT �0.011 0.055
Draft * Time bKT �0.046 0.058
Seed * Time bST 0.056 0.056
Fertilizer * Time bFT �0.005 0.018
Time bT 1.809*** 0.257
Time * Time bTT �0.852*** 0.086
Draft access bDD 0.182*** 0.067
Region bR �0.012 0.047
CA technology bRT 0.336*** 0.046

R2 0.427
Huasman p value 0.000
Observations 1410
Households 470

Significant Hausman p-value indicates that the fixed effects model is preferred to the ra
* Statistical significance for the 10% significance level.
** Statistical significance for the 5% significance level.
*** Statistical significance for the 1% significance level.
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CA requires higher quantities of seed and fertilizer. These inputs
are not readily available to most small holder farmers hence adop-
tion may be stalled by that fact. However, there are opportunities
to counter this problem if CA farmers can achieve a marketed sur-
plus, which can generate money to buy the seed and fertilizer. It is
therefore important for functional output markets to be in place to
complement technology adoption.

Some limitations to this study include the short panel period,
which limits observing long-term trends. The unavailability of
price information also prevents us from doing a more complete
economic analysis. It would also be interesting to look at adoption
intensity, in terms of what components of CA are being practiced
more and how adoption levels are related to efficiency and produc-
tivity gains.
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Appendix A
OLS Cobb Douglas

Variables Coefficient Standard error

Constant c0 2.682*** 0.208
Land cA 0.298*** 0.041
Labor cL �0.012 0.054
Draft Animal cK �0.001 0.084
Seed cS 0.273*** 0.049
Fertilizer cF 0.145*** 0.016
Draft cD 0.163** 0.087
Time cT 1.622*** 0.262
Time * Time cTT �0.377*** 0.066
Region cR 0.074 0.056
CA technology cRT 0.301*** 0.057

0.634
0.098
1470
470

ndom effects.
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Appendix B

In the literature, the translog has commonly been preferred as
a more flexible functional form that allows for interaction of in-
puts, unlike the Cobb Douglas which does not allow for input
interactions and assumes elasticity of substitution between in-
puts equals one. To tests for functional forms a likelihood ratio
(LR) tests is used. The LR test is only valid for nested models.
The LR test statistic is k ¼ �2½LðH0Þ � LðH1Þ�, where L(H0) and
L(H1) are the values of the log-likelihood function under the spec-
ifications of the null and alternative hypotheses, H0 and H1,
respectively. If the null hypothesis is true, then k has approxi-
mately a Chi-square (or mixed Chi-square) distribution with de-
grees of freedom equal to the number of restrictions. The
assumption that the maize production in this sample follows
Cobb–Douglas estimations (bjk = 0, "j, k and bjt = 0 "j, t) are
strongly rejected at 1 percent significance level (Chi calcu-
lated = 63.691, with 35df).
Table C.1
Heckman sample selection model.

Probit model of participation in sample OLS corrected regression for the selected sample

Variable Coefficient Standard error Variable Coefficient Standard error

Constant �1.33207*** 0.63128 Constant 2.5282*** 0.321265
Area 0.4585*** 0.062441 Area 0.31377*** 0.050756
Labor 0.061906 0.117707 Labor 0.059642 0.041665
Daft access 0.12438 0.130738 Draft 0.137109 0.054606
Time 3.391665*** 0.779112 Seed 0.327514*** 0.04257
Time * Time �0.86496*** 0.194115 Fertilizer 0.146021*** 0.013163
Region 0.201059 0.129679 Draft access 0.140083** 0.057376
Benefit 0.228885* 0.139119 Time 2.085827*** 0.31167

Time * Time �0.48684*** 0.079125
Region 0.040619 0.04845
CA technology 0.336713*** 0.052969
r (1) 0.797177*** 0.023915
Rho(1,2) 0.249532 0.351051
Log likelihood �2206.438
N total sample 1635
N selected sample 1410

* Statistical significance for the 10% significance level.
** Statistical significance for the 5% significance level.
*** Statistical significance for the 1% significance level.
Appendix C

C.1. Sample selection

There are instances in the survey data set were households did
not produce maize in a particular year. These observations were
excluded from the analysis carried out in the study. An average
of about 13.8% of observations were excluded from the analysis
A concern that might arise is that of sample selection bias. If
the excluded farmers had particular characteristics specific to
them and not observed in the included sample (e.g. non beneficia-
ries are likely to be less vulnerable households), then the sample
used for analysis would not be random but rather biased. House-
holds that did not receive input subsidies were more likely to be
excluded from the sample. The full sample consisted of 1635
observations and the proportion of households that were non
beneficiaries1 (of input subsidies) in this sample is 20.6%. In the se-
lected sample, about 20% of non beneficiaries were excluded, com-
1 Beneficiary households are households that received input support mainly
through NGOs. In many instances these were free gifts of seed and fertilizer targeted
at vulnerable households.
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pared to 11% of beneficiaries being excluded. To explore the
potential problem of sample selection bias, a Heckman’s sample
selection model is implemented. In the model the probability of
being a maize producer for a particular year is modeled as a func-
tion of whether or not a household received input subsidies (dum-
my variable taking the value 1 if beneficiary and 0 otherwise). An
assumption is made that receiving input subsidies will have an ef-
fect on whether a household produced or not, but will not have a
direct effect on levels of production. Within reason, this assumption
seems plausible.

The results of the model are presented in Table A.1. The probit
model for participation in the sample indicates that there is a
greater probability for participation if a household is a beneficiary
(coefficient on beneficiary is positive and statistically significant).

To evaluate if there is sample selection bias, we look at the rho
(1,2) coefficient in the corrected model. The rho (1,2) coefficient is
not statistically significant at 10% level, which suggests that there
is no sample selection bias (see Table C.1).
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