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Abstract: Soil depth generally varies in 
mountainous regions in rather complex ways. 
Conventional soil survey methods for evaluating the 
soil depth in mountainous and hilly regions require a 
lot of time, effort and consequently relatively large 
budget to perform.  This study was conducted to 
explore the relationships between soil depth and 
topographic attributes in a hilly region in western 
Iran. For this, one hundred sampling points were 
selected using randomly stratified methodology, and 
considering all geomorphic surfaces including 
summit, shoulder, backslope, footslope and toeslope; 
and soil depth was actually measured. Eleven 
primary and secondary topographic attributes were 
derived from the digital elevation model (DEM) at 
the study area. The result of multiple linear 
regression indicated that slope, wetness index, 
catchment area and sediment transport index, which 
were included in the model, could explain about 76 % 
of total variability in soil depth at the selected site. 
This proposed approach may be applicable to other 
hilly regions in the semi-arid areas at a larger scale. 
 
Keywords: Soil depth prediction; Topographic 
attributes; Digital elevation model; Soil-landscape 
model 

Introduction 

Soil depth is defined as the depth from the 
surface to more-or-less consolidated material and 

can be considered as the most crucial soil indicator, 
affecting desertification and degradation in 
disturbed ecosystems. Vegetation under semi-arid 
climatic conditions is principally controlled by soil 
water storage capacity and therefore, soil depth 
(Kuriakose et al. 2009). Soil depth decreases   as a 
result of soil erosion; and soil erosion is a serious 
threat to soil quality and productivity in the hilly 
areas of western Iran (Afshar et al. 2010). Solum 
depth is controlled by overland and intra-soil 
water dynamics, depending on the relief. This 
results from the dependence of soil depth on the 
spatial differentiation of moisture according to 
land surface morphology (Moore et al. 1991). 

The effects of soil erosion on agricultural 
productivity depend largely on the thickness and 
quality of the topsoil, and on the nature of the 
subsoil. Most hilly soils in steep slopes (shoulder 
position) are shallow or have some undesirable 
properties in the subsoil such as petrocalcic 
horizon, or bedrock that adversely affect growth 
and yield of crops (Norouzi et al. 2009; Meyer et al. 
2007). 

Soil depth varies as a function of many 
different factors, including slope, land use, 
curvature, parent material, weathering rate, 
climate, vegetation cover, upslope contributing 
area, and lithology (Minasny and McBratney 1999; 
Kuriakose et al. 2009). Topography, one of the 
major soil forming factors, controls various soil 
properties.  Soil scientists have identified 
topography as one of the pedogenic factors 
(Florinsky et al. 2002), which significantly 
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influences the spatial distribution of soil properties 
and soil depth. Thus, quantitative information on 
the topographic attributes has been applied in the 
form of digital terrain models (DTMs). The 
prediction of soil depth by topographic attributes 
depends mainly on: i) the spatial scale of 
topographic variation in the area, ii) the nature of 
the processes that are responsible for spatial 
variation in soil depth, and iii) the degree to which 
terrain-soil relationships have been disturbed by 
human activities (Boer et al. 1996; Kuriakose et al. 
2009; Vanwalleghem et al. 2010; Ziadat 2010)  

Since, the soil properties prediction based on 
DTM could describe the relationships between soil 
and topographic attributes at a point in the 
landscape (Thompson et al. 1997), quantitative 
topographic data are often used in soil studies 
including modeling and prediction of soil 
properties. Field data acquisition techniques such 
as drilling or trench excavation are labor-intensive, 
costly and involve extensive fieldwork including 
sampling and laboratory analysis. They can be 
effectively complemented by soil-landscape 
models by using auxiliary variables, which are time, 
labor and cost effective. Various terrain attributes 
for improved prediction of soil depth have been 
employed including slope and curvature (Tsai et al. 
2001) as compound terrain index (Saulnier et al. 
1997). 

The integration of the auxiliary terrain 
attributes can be made by different techniques. 
Many studies have been applied including 
geostatistical approaches to use terrain attributes 
as auxiliary variables for the estimation of soil 
properties (e.g. Kalivas et al. 2002; McBratney et 
al. 2003; Mueller and Pierce 2003; Penížek and 
Borůvka 2006). Also, multiple linear regressions 
have been widely used for predicting soil 
properties and soil depth at the watershed scale 
(Florinsky et al. 2002). Canonical correspondence 
analyses (Odeh et al. 1991), expert knowledge and 
fuzzy logic (Zhu et al. 2001), principal component 
analysis and maximum likelihood classification 
(Boer et al. 1996), and multiple linear regression 
and maximum likelihood classification (Ziadat 
2005) have also been used to predict soil depth. 
Logistic regression methods also have been 
successfully used in predicting soil classes 
(Campling et al. 2002; Debella-Gilo et al. 2009; 
Hengl et al. 2007). 

Calcareous hilly regions cover much of 
mountainous region in western Iran. The 
knowledge about the quantitative information for 
soil depth variability plays a vital role in the 
precise management of landscapes in these 
hillslopes. Traditional soil surveys for this purpose 
are much time, labor and cost consuming. 
Therefore, developing regional soil landscape 
models using the easily available data such as 
DEM and its derivations as an alternative way was 
the key objective of this study.  Little attention has 
been paid to predict soil depth using topographic 
attributes in the arid and semiarid hilly regions 
therefore, this study was conducted to explore the 
relationships of soil depth with topographic 
attributes in a hilly region of western Iran.  

1    Materials and Methods 

1.1 Description of the study area  

The study area is located at Koohrang district 
between 32°20′ to 32°30′ N latitudes and 50°14′ to 
50°24′ E longitudes, in Charmahal and Bakhtiari 
province, western Iran (Figure 1). The mean 
elevation of this area is approximately 2,510 m a.s.l. 
Mean annual temperature is 9.4 °C and the 
average annual precipitation is 1,400 mm, which 
falls mainly from November to May (Iran 
Metrological Organization 2012). Soil moisture 
and temperature regimes in this area are Xeric and 
Mesic, respectively (Soil Survey Staff 2006). The 
field sites with an area of 30,000 ha are located on 
the hillslopes at about 20% transversal slope. 

The parent material and bedrocks mainly 
included marly limestone with interlayer of 
limestone which is ascribed to Oligomiocene 
period. Table 1 presents selected morphological, 
physical and chemical properties of representative 
soil profiles in various land form positions in the 
area studied. Our results showed that the soils are 
predominantly calcareous (high calcium carbonate 
equivalent) because they have developed on 
calcareous parent material. The soils mainly had 
soil texture of silty clay and clay. The soils studied 
are poor in soil organic matter induced by 
extensive cultivation and show alkaline acidity 
controlled by CaCO3.  

The soils at the site are classified as Typic 
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Calcixerepts, Typic Xerorthents and Calcic 
Haploxerepts for the representative excavated 
profiles in summit, shoulder and backslope, 

respectively (Table 1).  The soils located at 
footslope and toeslope were classified as Chromic 
Calcixererts (Soil Survey Staff 2006). 

 
Figure 1 Location of the studied area in Chelgerd district, Charmahal and Bakhtiari province, Iran 

Table 1 Selected soil morphological, physical, and chemical properties, and soil classification (Soil Survey Staff, 
2006) for the representative soil profiles in different land form positions in the area studied. CCE: calcium carbonate 
equivalent; SOM: soil organic matter 

Depth(cm) Horizon Color 
(moist) Texture Gravel

% 
Sand

% 
Silt
% 

Clay 
% 

SOM 
% 

CCE
% pH 

Summit position (Typic Calcixerepts) 
0-15 Ap 7.5YR4/4 Silty clay 9 10.5 40.5 49.0 1.018 16.67 7.66
15-40 Bw 10YR 5/6 Clay 39 11.0 34.5 54.5 1.035 26.00 7.58
40-70 Bk1 10YR5/4 Silty clay 15 2.0 42.0 56.0 1.560 19.75 7.47
70-120 Bk2 7.5YR5/4 Silty clay 23 12.0 40.0 48.0 0.449 42.50 7.66

Shoulder position( Typic Xerorthents) 
0-10 Ap 7.5YR5/4 Clay 13 20.5 37.0 42.5 0.965 37.88 7.54
10-27 Bw1 7.5YR5/4 Silty clay loam 15 16.0 45.0 39.0 0.896 19.06 7.77
27-58 Bw2 7.5YR /4 Clay 19 27.0 32.5 40.5 0.702 45.50 7.72
58-90 BC 7.5YR6/6 Loam 10 29.0 49.0 22.0 0.254 47.50 7.79
90+ C - - - - - - - - - 

Back slope position (Calcic Haploxerepts) 
0-10 Ap 5YR 4/4 Clay loam 9 21.00 44.50 34.50 1.109 19.19 7.63
10-28 Bd 2.5Y 4/4 Silty clay 26 10.00 42.00 48.00 1.300 1.50 7.58
28-54 Bk1 5YR 4/4 Clay 32 13.00 35.50 51.50 0.701 4.90 7.62
54-100 Bk2 5YR 4/6 Clay 20 20.00 38.00 42.00 0.191 14.75 7.63

100-130 BC 10YR 6/6 Sandy clay 
loam 22 53.00 20.50 26.50 0.431 48.04 7.85

Footslope position (Chromic Calcixererts) 
0-18 Ap 7.5YR4/4 Clay 10 15.00 38.50 46.50 0.907 23.74 7.54
18-39 Btkss1 10YR 5/3 Clay 11 15.00 33.00 52.00 1.473 11.50 7.72
39-130 Btkss2 10YR 5/4 Clay 25 7.00 35.50 57.50 0.341 26.96 7.83
130-150+ Bk 5YR  5/4 Clay 30 16.00 28.00 56.00 0.431 48.04 7.85

Toeslope position (Chromic Calcixererts) 
0-30 Ap1 10YR 5/4 Clay 5 9.00 41.00 50.00 0.904 22.73 7.55
30-65 Bw 10YR 5/4 Silty clay 15 8.00 43.00 49.00 0.799 20.00 7.54
65-122 Btkss1 7.5YR /4 Clay 34 10.00 34.50 55.50 0.593 26.96 7.66
122-150+ Btkss2 5YR 5/4 Silty clay 24 12.00 43.00 45.00 0.644 38.50 7.67
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1.2 Field work and soil depth 
measurements 

Field work was conducted in 2009 summer. 
Because of the variable terrain, purposive 
sampling of representative sites was used. 
Measurements were made in twenty representative 
hillslopes of the studied area. At the selected site, 
one hundred points were selected using randomly 
stratified methodology, considering all geomorphic 
surfaces including summit, shoulder, backslope, 
footslope and toeslope during sampling. The 
positions of the sampling points were recorded by 
a GPS (model: 76CSx). Overall, 100 profiles were 
dug and described according to the Soil Survey 
Manual (2006); and the solum thickness was 
measured for each profile (Figure 2).  

1.3 Digital terrain modeling (DTM) 

DEM data were created by using a 1:2,5000 
topography map with 10 m elevation resolution. 
The raster format of DEM was produced by using 
interpolation algorithm in ILWIS software (ITC 
1997). Then topographical indices were generated 
from the DEM using ILWIS software and DIGEM 

software (http//:www.geogr.uni-goettingen.de/ 
pg/saga/digem, Accessed: 22 February 2011). 
Moor et al. (1991) divided the terrain attributes in 
two categories--primary and secondary 
(compound) attributes; primary attributes are 
calculated directly from DEMs and included 
elevation (Elev), slope (Slop), aspect (ASP), 
catchment area (CA), dispersal area (DispA), plan 
curvature (PLanC), profile curvature (ProfC), 
tangential curvature (TangC), shaded relief 
(Shaded). The definitions of the selected 
topographic attributes are provided in Table 2. 
Secondary or compound attributes involve 
combinations of the primary attributes, and are 
indices that describe the spatial variability of 
specific processes occurring in the landscape such 
as  soil water content or the potential for sheet 
erosion, stream power index (SPI), wetness index 
(WI), and sediment transport index (STI).Wetness 
index is calculated by Equation 1 (Wilson and 
Gallant 2000). 

where, “As” is the specific catchment area and “ß” 
is the slope degree. 

 
Figure 2 Soil depth measured at different slope positions in the selected hillslopes 

ln
tan

sAWI
β

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1) 
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To reflect on the erosive power of the terrain, 
stream transport index (STI) was calculated using 
the Equation 2.  

( / . ) (sin / . )m nSTI SCA S= 22 13 0 0896     (2) 

where, “As” is the specific catchment area, “ß” is 
the slope degree, and “m” and “n” are constant 
parameters (Wilson and Gallant 2000). 

 The distribution of topographic attributes 
within the studied area derived from the DEM is 
shown in Figure 3. 

1.4 Statistical analysis  

Descriptive statistics of the experimental data 
including mean, minimum, maximum, range, 
standard deviation (SD), variance, and skewness 
were determined using the software statistical 
SPSS (IBM Com., Chicago, USA). Correlation 
coefficients to define relationships between soil 

depth and terrain attributes, and analysis of 
variance (ANOVA) by Duncan test were done using 
the SPSS software.   

In this study, the statistical software SPSS 
(IBM Com., Chicago, USA) was used for 
developing multiple linear regression models. 
Terrain attributes were selected as the 
independent variables and soil depth was 
employed as dependent variable in the model. One 
hundred sampling sites were divided into data sets, 
70% and 30% for modeling and validation 
processes, respectively. The data sets for modeling 
and validation processes were selected randomly 
at different points on the landscape in the field to 
avoid biases in estimation.  

Thirty sampling sites were used to validate the 
developed soil-landscape model. In testing soil-
landscape model, we calculated two indices from 
the observed and predicted values suggested by 
Odeh et al. (1994), and included mean error (ME) 

Table 2 Definitions of topographic attributes (Moore et al. 1991; Florinsky et al. 2002; Basso 2005) 

Variable Definition 

Wetness index (WI)  

Sets catchment area in relation to the slope gradient. It has been used to 
characterize the spatial distribution of zones of surface saturation and soil water 
content in landscapes. It shows the extent of flow accumulation.  

ln
tan

sAWI
β

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Profile curvature (PROFC) 
1/m 

Curvature of a surface in the direction of steepest slope. It is a measure of the rate 
of change of the potential gradient, and is important for water flow and sediment 
transport processes. It decelerates  substance flow 

Slope (S)  

Maximum rate of change in elevation from each DEM cell. It is the gradient at a 
specified point, and is used to identify the steepest of the gradients between a 
point and its neighbors. It shows the velocity of substance flows. 

arctanS p q a= +2 2  

Plan curvature (PLANC) 
1/m 

Curvature of a surface perpendicular to the direction of steepest slope. It is a 
measure of the convergence or divergence and thus indicates water content. 

Sediment transport index 
(STI) 

This term accounts for the effects of topography on erosion and soil loss. 
sin( / . ) ( )
.

m nSSTI SCA= 22 13
0 0896

 

Mean curvature (MEANC) 
1/m 

Average of plan and profile curvature. It shows the degree of flow accumulation.
kh kvH +=
2

 

Specific catchment area 
(SCA) m2/m 

Upslope area per unit width of contour, and it is ratio of an area of an exclusive 
figure formed on the one hand by a contour intercept with a given point on the 
land surface and is a measure of the contributing area. 

Aspect (A) ° 

Direction of the maximum rate of change in the elevation from each cell DEM so 
aspect is the direction of gradient. It is shows the direction of substance flows. 

arctan( )aqA
p

=  

Elevation. M Elevation above sea level. 
Tangential curvature (Tang) Plan curvature multiplied by the slope. 
Dispersal area  Area downslope from a short length of contour 
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and root mean square error (RMSE) as follows: 

ME = ∑[z*(sj) – z (sj)]/n                                 (3) 

RMSE = {∑[z* (sj) – z (sj)]2/n}1/2                  (4) 

where, Z (sj) and Z*(sj) are the observed and 
predicted values of soil depth for validation data 
set (n= number of data set). ME measures the bias 
of the predicted value and should be close to zero 
for unbiased methods. RMSE is a measure of the 
precision of the predicted value and should be as 
small as possible for unbiased precise prediction. 

2    Results and Discussion 

2.1 Descriptive statistical analysis  

Descriptive statistics for soil properties, soil 
depth and terrain attributes are given in Table 3. 
The soil depth in the studied profiles varied from 
30 cm to 150 cm with an average of 108.6 cm. 
Coefficient of variation (CV) was calculated to 

estimate and explain the variability in soil depth. 
Relatively high variability (CV = 76%) was 
obtained for soil depth in the study area. It seems 
that the high variability for soil depth in the 
studied area depends on topography of the field, 
and the landscape position, causing differential 
accumulation of water at different positions on the 
landscape; and moreover the soil erosion and 
deposition processes, resulting in high variability 
in the soil depth. Kuriakose et al. (2009) reported 
that the CV values for soil depth varied from 45.93 
to 80.82% in a landscape in Western Ghats of 
Kerala, India. Moreover, Vanwalleghem et al. 
(2010) in a study on spatial prediction of soil 
horizon depth using topographic attributes, 
reported CV values of 50.00, 28.26, 21.05% for E, 
Bt and BC horizons, respectively. 

2.2 Correlation analysis 

The linear correlation analysis of the 12 
topographic attributes and one soil property (soil 
depth), showed that there was a significant 

Figure 3 Topographic attributes (aspect, sediment transport index, shaded relief, slope, and wetness index) 
derived form the digital elevation model of the studied area. 
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correlation among 36 of the 77 attribute pairs (P < 
0.01, and P < 0.05) (Table 4). Soil depth in the 
study area showed high positive significant 
correlations with catchment area (r = 0.65, P < 
0.01), plan curvature (r = 0.66, P < 0.01), and 
wetness index (r = 0.71 P < 0.01), and showed high 
negative correlation with sediment transport index 
(r = -0.73, P < 0.01), sediment power index (r = -
0.68, P < 0.01) and slope (r = -0.76, P < 0.01). Low 
positive significant correlations of soil depth were 
identified with tangential curvature (r = 0.23, P < 
0.05), and profile curvature (r = 0.20, P < 0.01). 
Moreover, soil depth was negatively correlated 
with elevation (r = -0.23, P < 0.05). The rest of the 
topographic attributes including aspect, shaded 
relief, and dispersal area were not significantly 
correlated with soil depth in the area studied.  

Many of these relationships are similar to 
those found in other landscapes. As slope gradient 
increases, soil and A-horizon depth tends to 
decrease (Moore et al. 1991; Gessler et al. 2000; 
Thompson et al. 2006). Florinsky et al. (2002) in a 
study on the prediction of solum depth using 
topographic attributes indicated that there were 
negative significant correlations of solum depth 
with elevation, slope gradient, aspect, and 
curvature. They also found positive significant 
correlations between solum thickness and 
catchment area and sediment power index. 
Thompson et al. (2006) in the Pennyroyal region 
of Kentucky reported that A- horizon depth 
showed positive correlation with elevation and 
negative relationship with slope gradient. Tsai et al. 
(2001) in a forest landscape in Taiwan reported 

Table 3 Summary statistics for soil depth and terrain attributes at the 100 selected pointed at the site studied 

Variable Unit Minimum Maximum Mean Skewness Kurtosis Range 
Soil depth cm 30 150 108.63 0.43 1.78 120 
Elevation m 2337.30 2773.40 2510.44 0.61 1.22 436.10 
Aspect º 1.00 359.89 210.97 -0.43 -0.72 358.89 
CA m2 100.06 69539.54 2531.44 0.89 0.98 69439.54 
TangC 1/m -1.78 1.22 0.03 -0.68 3.01 3.00 
PLANC 1/m -0.04 0.05 -0.58 0.44 2.09 0.09 
PROFC 1/m -1.28 1.01 0.013 -0.39 4.70 2.29 
Shaded relief - 0.22 0.73 0.47 0.47 -1.27 0.51 
STI - 4.84 44.90 24.87 0.87 2.90 40.06 
Slope % 0.00 21.17 10.58 0.62 0.85 21.17 
WI - 3.39 12.00 7.69 0.83 1.20 8.61 
DispA m2 100.06 41423 1861 1.01 3.33 41322.9 

CA: Catchment area; TangC: Tangential curvature; PLANC: Plan curvature; PROFC: Profile curvature; STI: 
Sediment transport index; WI: Wetness index; DispA: Dispersal area. 
 
Table 4 Pairwise correlation coefficients among soil depth and terrain attributes at the site studied (n=100) 

  SD Elev ASP CA TangC PlanC ProfC Shad STI SPI Slope WI DispA
SD 1             
Elev -0.23* 1            
Asp -0.09 0.04 1           
CA 0.65** 0.03 0.04 1          
TangC 0.23* 0.04 0.03 0.09 1         
PlanC 0.66** -0.01 -0.04 0.19 0.66** 1        
ProfC 0.20* 0.03 0.02 0.06 0.70** 0.44** 1       
Shad 0.12 -0.01 0.60** -0.06 0.04 0.06 0.11 1      
STI -0.73** 0.08 -0.11 0.61** 0.44** 0.29** 0.21* -0.03 1     
SPI -0.68** 0.11 -0.17 0.56** 0.56** 0.33** 0.23* -0.05 0.76** 1    
Slope -0.76** -0.12 -0.18 -0.07 0.16 0.28** 0.01 -0.04 0.41** 0.33** 1   
WI 0.71** 0.06 0.11 0.61** 0.42** 0.23** 0.31** 0.01 0.48** -0.41** -0.38** 1  
DispA 0.14 0.04 0.13 -0.07 -0.41** -0.37** -0.24** 0.03 -0.15 -0.10 -0.09 0.20* 1 

* Correlation is significant at the 0.05 level (2-tailed); ** Correlation is significant at the 0.01 level (2-tailed); SD 
= Soil depth. 
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that solum thickness had non-significant negative 
(r = -0.011) and non-significant positive (r = 0.095) 
correlation coefficients with elevation and aspect, 
respectively, whereas solum thickness had 
negative significant correlation (r = -0.24***) with 
slope gradient.   

We found relatively high correlation 
coefficients of soil depth with two groups of 
topographic attributes. The first group included 
that controls the soil erosional processes. 
Sediment transport index and sediment power 
index; and slope as the indices of soil erosional 
processes across the hilly mountainous regions 
have negative correlation with soil depth. It is 
presumably an indicator of greater erosion and 
topsoil loss from shoulder and backslope locations 
with higher SPI, STI and slope and less soil loss or 
even deposition at footslope and toeslope positions, 
which have lower indices. The second group of 
topographic attributes such as wetness index and 
catchment area are dominantly attributed to water 
accumulation and soil genesis processes within the 
hillslope. Wetness index reflects the spatial 
distribution of water flow, and thus the 
accumulation processes in a closed catchment. 
Topography has a vital role in solum thickness by 
natural pathways, especially by water 
accumulation in concaves and downslope positions 
of landscape (Florinsky et al. 2002).  

2.3 Effect of slope position on soil depth 

The results of analysis of variance (ANOVA) 
showed that there are significant differences (P < 
0.05) for soil depth among the selected slope 
positions in the studied area. The results of mean 
comparisons among slope positions are presented 
in Figure 4. The highest values of soil depth were 
observed in the downslope positions including 
footslope and toeslope. A significant difference was 
observed between two mentioned positions with 
summit position; and it seems that this position 
has been partially influenced by soil loss processes.  

The lowest spoil depth was observed in 
shoulder position with the highest rate of soil 
erosion. Afshar et al. (2010) who made a study in 
the semiarid region in western Iran showed that 
the highest rate of soil loss amounting to 
approximately 180 t·ha-1·y-1 was observed for steep 
slope such as observed at the shoulder position. 

They also reported similar deposit rate in flat and 
low land such as observed at footslopes. Tsui et al. 
(2004) in a study along a gradient in Taiwan 
showed that slope can control the movement of 
water and material in a hillslope, and contributes 
to the spatial differences in soil properties. 
Khormali and Ajami (2011) in hilly region in 
loessial deposits in northern Iran indicated that 
cultivation in steep slopes following deforestation, 
the surface and in some cases the subsurface 
horizons such as Argillic horizon had been 
degraded during 50 years. They also showed that 
degradation of the soils was the major process on 
the summit, shoulder and back slope positions, 
and deposition was the dominant process in the 
footslope position.  

2.4 MLR analysis 

The results of ANOVA applied to MLR for soil 
depth using topographic attributes are presented 
in Table 5. As can be seen from the results, MLR 
provides significant explanation of soil depth using 
input variable. Empirical model (MLR) using 
selected terrain attributes explains 76% of the 
variation of soil depth in the studied area. The 
terrain attributes that best predicted soil depth 
variability in the selected site were mainly the 
attributes that had significant relationships with 
soil depth. The dominant attributes in the MLR 
model included slope, wetness index (WI), 
catchment area (CA) and sediment transport index 
(STI) as expressed in following regression equation 
(Equation 5): 

Soil depth (cm) = 122.13 − 0.11Slope + 
0.012WI + 0.012CA − 0.23STI                     
p < 0.001, R2 = 0.76                                           (5) 

Slope gradient was identified as the most 
important predictor, and then WI, CA and STI 

 
Figure 4 Comparison of mean soil depth among 
the slope positions in the studied area 
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were included in the predictor as important 
topographic attributes. Some significant attributes 
such as plan curvature, SPI were not included in 
the model developed, presumably induced by 
collinearity among these variables with variables 
included in the model. Vanwalleghem et al. (2010) 
in a study in forest in Belgium, for predicting the 
lower soil horizons depth, found significant 
relationships of soil depth with slope gradient, 
plan curvature and wetness index among the 
topographic predictors. 

Thompson et al. (2006) indicated that MLR 
models could explain 44% and 28% of the 
variability of A-horizon depth in east and central 
fields in the Pennyroyal region of Kentucky mainly 
with elevation, slope gradient, TCI and upslope 
contributing area. Penížek and Borůvka (2006) in 
southern Bohemia located  in the Czech Republic, 
used regression kriging as compared with other 
interpolation approaches, for predicting  spatial 
variability in  soil depth and reported that aspect, 
altitude and slope were included in the MLR 
model developed. Ziadat (2010) using topographic 
attributes showed that MLR models predicted soil 
depth with a difference of 50 cm for 77% of the 
field observations within small watershed 
subdivision. A study in hillslopes of California by 
Gessler et al. (2000) indicated that models which 
utilize only CTI could explain 84% of variations in 
soil depth. Recently, Kuriaskose et al. (2009) using 
multiple regression model for prediction of soil 
depth in India, indicated that integration of 
topographic attributes and some auxiliary 
environmental variables such as rock out crops 
and land sue type improved the accuracy of the 
prediction at the watershed scale.  

2.5 Soil depth validation by MLR  

The results of the validation using 30 
sampling sites are presented in Figure 5. A good 

agreement (r = 0.88) existed between predicted 
and observed soil depth for the validation data set 
in various landscape positions. The ME and RMSE 
values provide additional indication of how well 
the models predict soil depth variability in the 
studied hillslopes. As expected, ME (0.004) and 
RMSE (1.23) values tended to be the lowest, and 
confirm the acceptable accuracy of the predictors 
in the study area.  

3    Conclusions 

A soil-landscape modeling approach provides 
a framework for the assessment of soil variability 
among similar soil forming factors. We attempted 
to develop a simple and interpretive predictive 
model for soil depth in the hilly region of western 
Iran using DEM-derived attributes that are readily 
available, and provide cost effective information 
for use. The MLR modeling of measured soil depth 
and topographic attributes showed that this model 
could explain about 76% of the total variability in 
soil depth within the hilly region studied.  

Slope, wetness index, catchment area, and 
sediment transport index were included as the 
most important variables for explaining the 
variability in soil depth. Overall, such topographic 
attributes directly or indirectly affected by 
pedogenic and erosional processes seem to control 
the soil depth in the hilly regions. The model 
developed in this study should be used and 
validated in other hillslopes with similar 
environmental conditions as in western Iran, to 
evaluate its overall accuracy for model 
transportability. Furthermore, there is need to test 

Table 5 Results of analysis of variance (ANOVA) for 
predicting soil depth using topographic attributes 

Model Sum of 
square df Mean of 

square F P value

Regression 556.144 12 46.345 2.193 0.001

Residual 1,711.752 81 21.133   
Total 2,267.897 93    

 
 

Figure 5 Scatterplot showing the relationship 
between predicted and observed soil depth by 
validation data set (n = 30) in the studied area. ME: 
Mean error, RMSE: Root mean square error. 
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the DEM of different horizontal resolutions to 
distinguish the optimum DEM resolution to 

achieve more accurate soil landscape modules.
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