# **Chapter 1 Building Capacity for Modeling in Africa**

Andre Bationo, Ramadjita Tabo, Job Kihara, Gerrit Hoogenboom, Pierre C.S. Traore, Kenneth J. Boote, and James W. Jones

**Abstract** The use of models in decision support is important as field experiments provide empirical data on responses to only a small number of possible combinations of climate, soil, and management situations. Yet, crop modeling by African scientists so far has been limited. Therefore, to build the capacity of African scientists in the use of decision support systems, a provision was made for training within two main projects: Water Challenge Project (WCP) and Desert Margins Programme (DMP), jointly led by TSBF-CIAT (Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture) and International Centre for Research in the Semiarid Tropics (ICRISAT). A unique approach to training on modeling was developed and was based on four main pillars: (a) learning by doing, (b) integrated follow-up, (c) continuous backstopping support and (d) multi-level training embedded in a series of three training workshops. Although crop models are useful they have limitations. For instance, they do not account for all of the factors in the field that may influence crop

A. Bationo (🖂)

R. Tabo Forum for Agricultural Research in Africa (FARA), Accra, Ghana

J. Kihara CIAT – Malawi Office, Tropical Soil Biology and Fertility (TSBF) Institute of CIAT, c/o ICRAF, Nairobi, Kenya

G. Hoogenboom AgWeatherNet, Washington State University, Prosser, WA 99350, USA

P.C.S. Traore International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Bamako, Mali

K.J. Boote • J.W. Jones Agricultural and Biological Engineering Department, University of Florida, Gainesville 32611, FL, USA

Soil Health Program, Alliance for a Green Revolution in Africa (AGRA) Agostino Neto Road, Airport Res. Area 6 Accra, PMB KIA 114, Airport-Accra, Ghana e-mail: abationo@agra-alliance.org

yield and inputs must be accurate for simulated outputs to match observations from the field. Thus it is imperative that these issues are carefully considered and weighted before attempting to evaluate the predictability of a crop model. However, the use of crop models and decision support systems in concert with experiments can provide very useful alternative management options for resource-poor farmers in Africa and other regions across the globe.

**Keywords** Crop models • Decision Support Systems • Africa • Farmers • African scientists

## Introduction

Farmers adapt their management systems to prevailing climate, soils, pests, and socioeconomic conditions by selecting suitable crops, varieties, and management practices. Seasonal climate variability often results in highly variable yields that may cause economic losses, food shortages, inefficient resource use, and environmental degradation. Market and policy changes occur at the same time, thereby creating highly complex combinations of factors that farmers must consider when making decisions related to agricultural production. Information is needed to help farmers and policy makers to evaluate all these factors in order to anticipate changes and make decisions and policies that promote long-term sustainable management practices.

A major role of agricultural science is to develop methods for analyzing and selecting production options that are well adapted to the range of weather and climate conditions that may occur, taking into account the needs and capabilities of farmers in a given region. Crop responses to weather are highly complex and nonlinear; they are determined by many interactions among weather, soil, crop, and management factors throughout the growing season. Field experiments provide empirical data on responses to only a small number of possible combinations of climate, soil, and management situations. Also, existing management systems from other regions, new crops and varieties and other technologies being developed by scientists may provide useful adaptation options. However, it is impossible to conduct experiments that cover the full range of possible management options and climate conditions to determine production systems that are more resilient to climate variability, potential changes in climate, and farmers' goals (Nix 1984; Uehara and Tsuji 1991; Jones 1993). Instead of prescriptions, farmers need information on options that can increase their resilience and capacity to adapt to current climate risk and likely future climate conditions (Tsuji et al. 1998).

Nix (1984) criticized the predominance of a "trial and error" approach in agricultural research for evaluating management practices. He emphasized the need for a systems approach in which: (1) experiments are conducted over a range of environments; (2) a minimum set of data is collected in each experiment; (3) cropping system models are developed and evaluated; and (4) models are used to simulate production technologies under different weather and soil conditions so as to provide a broad range of potential solutions for farmers. Nix (1984) referred to the high cost of field experiments in

addition to their limited extrapolation domain because results are site-specific. These concepts led to the development of the DSSAT (Decision Support System for Agrotechnology Transfer) under the auspices of the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) Project suite of crop models that was designed to help researchers use this systems approach (e.g., IBSNAT 1989; Uehara and Tsuji 1991; Jones 1993; Jones 2003 Hoogenboom et al. 1994, 2004). Some crop simulation models and soil water models were already available (e.g., Ritchie 1972; de Wit and Goudriaan 1978; de Wit and Penning de Vries 1985; Jones et al. 1974; Williams et al. 1983; Arkin et al. 1976; Wilkerson et al. 1983), but prior to the IBSNAT initiative, there had not been a broad international effort focusing on the application of crop models to practical production situations. Although crop models were not originally developed for use in climate change research, they have been widely used for this purpose (e.g., Rosenzweig et al. 1995). They are well suited for these studies because they incorporate the effects of daily weather conditions on crop growth processes, predicting daily growth and development and ultimately crop yield. By simulating a crop grown in a particular soil, under specified management practices, and using a number of years of daily historical weather data at a site, one obtains an estimate of how a particular management system would perform under current and changed climate conditions.

The basic concept of crop modeling is that simulating crop growth and yield using dynamic crop models will produce results that represent how a real crop growing under specific environment and management conditions would perform. However, there are practical limitations that must be considered before making use of this approach in any study. One main limitation is that crop models do not account for all of the factors in the field that may influence crop yield. For example, crop diseases, weeds, and spatial variability of soils and management implementation can cause large differences in yield, and these factors are seldom included in crop simulation analyses. Another limitation is that inputs must be accurate or else simulated outputs are unlikely to match observations from the field. Attempts to evaluate the predictability of a crop model thus require that weather, management and soil inputs are measured in the field where the evaluation experiments are conducted. Furthermore, model evaluation experiments would ideally be designed to eliminate yield-reducing factors that are not included in the model. And finally, parameters that are used to model the dynamics of soil and crop processes need to be accurate for comparison with observed field data. For example, if one uses a crop model to simulate crop yield responses to water or N management using incorrect soil water parameters, results will show that the model fails to mimic results from field experiments or, more problematically, provide results that may mislead researchers or other model users.

# **Capacity Building**

The use of models in decision support by African scientists is limited. Although most research on land productivity has traditionally focused on plot level approach, there has been low extrapolation of the findings to wider scales. The main problem is the limited availability of agricultural scientists (both soil scientists and agronomists) due to low resource allocation to training and capacity building in African countries (Bationo et al. 2004). Secondly, the training approach employed in most training institutions especially those of higher learning in Africa is disciplinary. Modeling for extrapolation requires integration of various disciplines in what is now called systems approach and is based on the practical impossibility to do research everywhere.

In order to build capacity of African scientists in use of decision support systems, a provision was made for training within two main projects, Water Challenge Project (WCP) and Desert Margins Programme (DMP), undertaken jointly by TSBF-CIAT and ICRISAT among other partners. WCP aimed to enhance water productivity through the integration of water efficient and high yielding germplasm, water and soil conservation options, and nutrient management technologies coupled with strategies for empowering farmers to identify market opportunities, and scaling up appropriate technologies, methodologies and approaches. The project was implemented in Burkina Faso, Niger and Ghana. The specific objectives were to:

- 1. Develop, evaluate and adapt, in partnership with farmers, integrated technology options that improve water and nutrient use efficiency and increase crop yields in the Volta Basin.
- 2. Develop and evaluate methodologies, approaches and modern tools (GIS, models, farmer participatory approaches) for evaluating and promoting promising water, nutrient and crop management technology options.
- 3. Improve market opportunities for small holder farmers and pastoralists, identify and assess market institutional innovations that provide incentives for the adoption of improved water, nutrient and crop management technologies that benefit different categories of farmers, especially women and other marginalized groups of farmers.
- 4. Build the capacities of farmers and rural communities to make effective demands to research and development organizations, and influence policies that promote the adoption of sustainable water and nutrient use technologies.
- 5. Promote and scale up and out 'best bet' crop, water, and nutrient management strategies in the Volta Basin through more efficient information and methodology dissemination mechanisms.

Desert Margins Program (DMP) initiated in 2003 under the funding of UNEP-GEF operated in nine African countries namely: Burkina Faso, Botswana, Mali, Namibia, Niger, Senegal, Kenya, South Africa, and Zimbabwe. The overall objective of the DMP was to arrest land degradation in Africa's desert margins through demonstration and capacity building activities developed through unravelling the complex causative factors of desertification, both climatic (internal) and human-induced (external), and the formulation and piloting of appropriate holistic solutions. The project addressed issues of global environmental importance, in addition to the issues of national economic and environmental importance, and in particular the loss of biological diversity, reduced sequestration of carbon, and increased soil erosion and sedimentation. Key sites harbouring globally significant ecosystems and threatened biodiversity serve as field laboratories for demonstration activities related

to monitoring and evaluation of biodiversity status, testing of most promising natural resources options, developing sustainable alternative livelihoods and policy guidelines and replicating successful models. In this project, models serve as decision guides for extrapolation of field results to wider recommendation domains. The broader objectives of the overall DMP were to:

- 1. Develop a better understanding of the causes, extent, severity and physical processes of land degradation in traditional crop, tree, and livestock production systems in the desert margins, and the impact, relative importance, and relationship between natural and human factors.
- 2. Document and evaluate, with the participation of farmers, NGO's, and NARS, current indigenous soil, water, nutrient, vegetation, and livestock management practices for arresting land degradation and to identify socio-economic constraints to the adoption of improved management practices.
- 3. Develop and foster improved and integrated soil, water, nutrient, vegetation, and livestock management technologies and policies to achieve greater productivity of crops, trees, and animals to enhance food security, income generation, and ecosystem resilience in the desert margins.
- 4. Evaluate the impact and assist in designing policies, programs, and institutional options that influence the incentives for farmers and communities to adopt improved resource management practices.
- 5. Promote more efficient drought-management policies and strategies.
- 6. Enhance the institutional capacity of countries participating in the DMP to undertake land degradation research and the extension of improved technologies, with particular regard to multidisciplinary and participative socio-economic research.
- 7. Facilitate the exchange of technologies and information among farmers, communities, scientists, development practitioners, and policymakers.
- 8. Use climate change scenarios to predict shifts in resource base and incorporate these into land use planning strategies.

Within the framework of these two main projects, we identified the need for new scientific and technical training on the use of DSSAT models in order to hasten implementation and fulfillment of all the proposed outputs.

# A New Approach

We developed a unique approach to modeling training based on four main pillars: (1) learning by doing, (2) integrated follow-up, (3) continuous backstopping support and (4) multi-level training. Our learning by doing strategy required that scientists being trained not only work on individual computers for hands-on-experience but also collect their own data that was used to run the models. Data collection by the scientists was done within the framework of the two main projects (WCP and DMP) as well as in the African Network for soil biology and fertility (AfNet of TSBF-CIAT) supported sites. The arrangement attracted self-sponsored scientists working in Africa in addition

to those financed through the two projects. Follow-up was achieved through continuous communication of the organizers who were also the lead investigators within WCP and DMP and the scientists using data from these projects. A minimum dataset for DSSAT was developed for use by scientists as a checklist during field data collection. A concise summary of data requirements for modelling is presented in Hoogenboom et al. (2012, this volume). Professional and technical backstopping support was given by scientists associated with the International Consortium for Agricultural Systems Applications (ICASA) and progressive DSSAT modelers working in Africa mainly ICRISAT and IFDC. Scientists and organizers were continuously in contact with the trainers during and after a training workshop. Modeling is quite complex and one training session often does not lead to sufficient understanding and know-how for use of models. TSBF-CIAT and ICRISAT-Niamey in conjunction with ICASA therefore organized a series of three workshops. The training workshops focused on both biophysical and socio-economic issues to allow the screening and identification of scenarios that will lead to best bet management practices and policies for rebuilding biodiversity and restoring degraded and collapsed ecosystems.

The first workshop, held in Arusha Tanzania in 2004, was to expose people to the theory and familiarize with DSSAT software and its operations as well as on general modeling concepts. The second workshop, held in Accra Ghana in 2005, aimed at enabling trainees to input and use their own datasets in DSSAT as well as familiarize them with the minimum dataset concept for modeling. The scientists then used the period 2005–2007 to collect the required minimum dataset and or fill in gaps in the data they already held. Thus, the third training and last in the series was held in Mombasa Kenya in 2007 to have the trainees model different scenarios using their own datasets and write a scientific manuscript for publication. The training workshops provided participants, mainly young scientists with an opportunity to learn from model developers, to peer review and positive criticism and information sharing between sub-regions and countries.

The themes addressed by scientists include: tillage and nitrogen applications, soil and water conservation practices including effects of zai technology, phosphorus and maize productivity, generation of genetic coefficients, long-term soil fertility management technologies in the drylands, microdosing, manure and nitrogen interactions in drylands, optimization of nitrogen x germplasms x water, spatial analysis of water and nutrient use efficiencies, and tradeoff analysis.

### Conclusions

Crop models are useful for simulating crop and soil processes in response to variations in climate and management. Building a critical mass of African modelers requires an integrated approach to learning at the start of a scientific career. Training of scientists in crop modeling should be step-wise and systematic to ensure the scientists gain the minimum ability to start using models. A minimum dataset of good quality is required to ensure accurate comparison with observed field data. Attempts to evaluate the predictability of a crop model require that whenever possible, weather, management and soil inputs are measured in the field where the evaluation experiments are conducted. Crop models should be evaluated with caution as they seldomly contain all of the factors in the field that may influence crop yield, e.g., crop diseases, weeds, and spatial variability of soils and management implementation that can cause large differences in yield.

#### References

- Arkin GF, Vanderlip RL, Ritchie JT (1976) A dynamic grain sorghum growth model. Trans ASAE 19:622–630
- Bationo A, Kimetu J, Ikerra S, Kimani S, Mugendi D, Odendo M, Silver M, Swift MJ, Sanginga N (2004) The African network for soil biology and fertility: new challenges and opportunities.
  In: Bationo A (ed) Managing nutrient cycles to sustain soil fertility in Sub-Saharan Africa. Academy Science, Nairobi
- de Wit CT, Goudriaan J (1978) Simulation of ecological processes. A Halsted Press Book, Wiley, New York, 175 pp
- de Wit CT, Penning de Vries FWT (1985) Predictive models in agricultural production. Philos Trans R Soc Lond B 310:309-315
- Hoogenboom G, White JW, Jones JW, Boote KJ (1994) BEANGRO: a process-oriented drybean model with a versatile user-interface. Agron J 86:182–190
- Hoogenboom G, Jones JW, Wilkens PW, Porter CH, Batchelor WD, Hunt LA, Boote KJ, Singh U, Uryasev O, Bowen WT, Gijsman AJ, du Toit A, White JW, Tsuji GY (2004) Decision support system for agrotechnology transfer version 4.0 [CD-ROM]. University of Hawaii, Honolulu
- IBSNAT (1989) Decision support system for agrotechnology transfer v 2.1 (DSSAT v2.1). Department of Agronomy and Soil Science, University of Hawaii, Honolulu
- Jones JW (1993) Decision support systems for agricultural development. In: Penning de Vries F, Teng P, Metselaar K (eds.) Systems approaches for agricultural development. Kluwer Academic, Boston, pp 459–471
- Jones JW, Hesketh JD, Kamprath EJ, Bowen HD (1974) Development of a nitrogen balance for cotton growth models – a first approximation. Crop Sci 14:541–546
- Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18:235–265
- Nix HA (1984) Minimum data sets for agrotechnology transfer. In: Proceedings of the international symposium on minimum data sets for agrotechnology transfer, ICRISAT, Patancheru, Andhra Pradesh, India, 1984, pp 181–188
- Ritchie JR (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8:1204–1213
- Rosenzweig C, Allen LH Jr, JW Jones, Tsuji GY, Hildebrand P (eds) (1995). Climate change and agriculture: analysis of potential international impacts. ASA Special Publication No. 59, Amer Soc Agron, Madison, 382 pp
- Tsuji GY, Hoogenboom G, Thornton PK (eds) (1998) Understanding options for agricultural production, Systems approaches for sustainable agricultural development. Kluwer, Dordrecht, 400 pp. ISBN 07923-4833-8
- Uehara G, Tsuji GY (1991) Progress in crop modeling in the IBSNAT project. In: Muchow RC, Bellamy JA (eds) Climatic risk in crop production: models and management for the semiarid tropics and subtropics. CAB International, Wallingford, pp 143–156
- Wilkerson GG, Jones JW, Boote KJ, Ingram KT, Mishoe JW (1983) Modeling soybean growth for crop management. Trans ASAE 26:63–73
- Williams JR, Jones CA, Dyke PT (1983) A modeling approach to determining the relationship between erosion and productivity. Trans ASAE 27:129–144