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The importance of sorghum for food and nutrition security 

Sorghum [Sorghum bicolor (L.) Moench] is cultivated in the drier areas of Africa, Asia, the 

Americas and Australia. It is the fifth most important cereal after rice, wheat, maize and 

barley, and is the dietary staple of more than 500 million people in more than 30 countries 

(Ashok Kumar et al. 2011). It is grown on 42 million hectares in 98 countries of Africa, Asia, 

Oceania and the Americas (Table 2.19.1). Nigeria, India, the USA, Mexico, Sudan, China and 

Argentina are the major producers. Other sorghum-producing countries include Burkina Faso, 

Chad, Ethiopia, Gambia, Ghana, Mali, Mauritania, Mozambique, Niger, Senegal, Somalia, 

Tanzania and Yemen. 

Sorghum is a staple cereal in sub-Saharan Africa, its primary center of genetic diversity. It is 

most extensively cultivated in zones of 600–1000 mm rainfall, although it is also important in 

the areas with higher rainfall (up to 1200 mm), where poor soil fertility, soil acidity and 

aluminum toxicity are common. Sorghum is extremely hardy and produces even under very 

poor soil fertility conditions (where maize fails). The crop is adapted to a wide range of 

temperatures, and is thus found even at high elevations in East Africa, overlapping with 

barley. It has good grain mold resistance and thus has a lower risk of contamination by 

mycotoxins. The cultivated species is diverse, with five major races identified, many of them 

with several subgroups. This reflects farmer selection pressure applied over millennia for 

adaptation to diverse production conditions, from sandy desert soils to waterlogged inland 

valleys, growing to maturity with only residual moisture, as well as in standing water. The 

grain is mostly used for food purposes, consumed in the form of flat breads and porridges 

(thick or thin, with or without fermentation). Sorghum grain has moderately high levels of 

iron (> 40 ppm) and zinc (> 30 ppm) with considerable variability in landraces (iron > 70 

ppm and zinc >50 ppm) and can complement the ongoing efforts on food fortification to 

reduce micronutrient malnutrition globally (Ashok Kumar et al. 2012). In addition to food and 

feed it is used for a wide range of industrial purposes, including starch for fermentation and 

bio-energy. Sorghum stover is a significant source of dry season fodder for livestock, 

construction material and fuel for cooking.  
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Sweet sorghum is emerging as a multi-purpose crop. It can provide food, feed, fodder and 

fuel (ethanol) without significant trade-offs among any of these uses in a production cycle. 

ICRISAT has pioneered the sweet sorghum ethanol production technology and its 

commercialization (Reddy et al. 2008, 2011; Ashok Kumar et al. 2010). 

Table 2.19.1. Sorghum statistics by region 

Region Average production 

per year ('000 Mt) 

Average area (1000 

ha) 

Average yield 

(t/ha) 

Year 2008 2008 2008 

Eastern Africa 4.59 4.29 1.07 

Middle Africa 1.24 1.48 0.83 

Northern Africa 4.73 6.79 0.70 

Southern Africa 0.32 0.17 1.85 

Western Africa 14.32 14.86 0.96 

Northern America 12.00 2.94 4.08 

Central America 7.02 2.09 3.36 

Caribbean 0.10 0.12 0.87 

South America 5.95 1.82 3.27 

Central Asia 0.02 0 4.07 

Eastern Asia 2.53 0.60 4.21 

Southern Asia 8.09 8.03 1.01 

South-Eastern Asia 0.06 0.03 1.70 

Western Asia 0.66 0.56 1.18 

Eastern Europe 0 0 0 

Northern Europe 0 0 0 

Southern Europe 0 0 0 

Western Europe 0 0 0 

Australia and New Zealand 0 0 0 

Melanesia 0 0 0 

Source: FAOSTAT 2008 

Globally, sorghum production has remained more or less stable over the past 30 years, 

although there are notable regional differences. Area of production has decreased overall, but 

has remained essentially constant during the past five years on a global basis. West Africa, 

which produces roughly 25% of the world’s sorghum, has seen a steady increase in total 

production over the past 25 years. Most of the increase up to 1995 is attributed to increases in 

area, although productivity increases also contributed; after 1995, yield increases explain 

most of the rise in sorghum production in the region. Recent global trends also show both 

grain yield and production increases. These gains may reflect increased use of improved 
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varieties and better crop management practices (such as fertilizer micro-dosing), as well as 

increased demand due to population growth and higher world prices for major cereals. The 

yields of post-rainy season sorghum have steadily increased in India, and are in demand for 

their superior grain and stover quality. 

Major constraints to sorghum production include shoot fly, stem borer, head bug and aphid 

insect pests; grain mold and charcoal rot diseases; weed competition and the parasitic plant 

Striga (in Africa); and abiotic stresses such as drought (especially terminal drought), high 

temperatures, acid soils (resulting in high levels of aluminium saturation) and low soil fertility 

(in terms of both macronutrients like nitrogen and phosphorus and micronutrients such as iron 

and zinc).  

Opportunities for the future include developing hybrids to increase yields for a wider range of 

production systems in Africa, building on successes in India, Mali and elsewhere; and 

exploiting photoperiod sensitivity and temperature insensitivity to adapt to variable climates 

and developing new, improved plant types for ‘dual purpose’ sorghums for grain, feed and 

fodder uses that would increase the value of the crop. These new sorghum types would 

strengthen the integration of animal husbandry with crop production, resulting in higher and 

more stable incomes while improving soil health through increased organic matter cycling. 

The availability of the full genome sequence and other genetic and genomic tools will enable 

efficient use of the crop’s rich genetic diversity for the improvement of sorghum and other 

cereals. 

Sorghum has been an important staple in the semi-arid tropics of Asia and Africa for 

centuries. It is still the principal sources of energy, protein, vitamins and minerals for millions 

of the poorest peoplein these regions. While total food consumption of all cereals has risen 

considerably during the past 35 years, world food consumption of sorghum has remained 

stagnant, mainly because, although nutritionally sorghum compares well with other grains, it 

is regarded in many countries as an inferior grain. Per caput consumption of sorghum is high 

in countries or areas where climate does not allow the economic production of other cereals 

and where per caput incomes are relatively low. These include especially the countries 

bordering the southern fringes of the Sahara, including Ethiopia and Somalia, where the 

national average per caput consumption of sorghum can reach up to 100 kg per year. Other 
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countries with significant per caput consumption include Botswana, Lesotho, Yemen and 

certain provinces in China and states in India (per caput consumption is up to 75 kg per year).  

Grain use for animal feed has been a dynamic element in the stimulation of global sorghum 

consumption. The demand for sorghum for feed purposes has been the main driving force in 

raising global production and international trade since the early 1960s. The demand is heavily 

concentrated in the developed countries, where animal feed accounts for about 97 percent of 

total use, and in some higher-income developing countries, especially in Latin America where 

80 percent of all sorghum is utilized as animal feed. The United States, Mexico and Japan are 

the main consuming countries, followed by Argentina, the former Soviet Union and 

Venezuela. These countries together account for over 80 percent of world use of sorghum as 

animal feed 

Biological vulnerability to climate change 

Sorghum is one of the major rainfed crops for food and fodder in tropics and subtropics of the 

world. These regions are already towards the higher side of the tolerant range of temperature. 

Thus, a small change in climate could reduce the production of the crop drastically. 

Optimum temperature for reproductive growth of sorghum plants is 25 to 28 °C (Maiti 1996). 

High temperature (HT) stress during reproductive processes can affect the crop substantially 

as the reproductive processes are more sensitive to HT stress compared to vegetative 

processes of development (Downes 1972, Craufurd et al. 1998, Hammer and Broad 2003, 

Prasad et al. 2006). Growth temperatures of 40/30 °C (day/night) delay panicle exsertion by 

about 30 days, while panicle exsertion is completely inhibited at growth temperature of 44/34 

°C (Prasad et al. 2006). As temperature increases from 32/22 to 36/26 °C, panicle length and 

panicle diameter decreases significantly. Beyond 36/26 °C, panicle length and panicle 

diameter decreases linearly. High temperatures (33/28 °C) at later stages of panicle 

development and at flowering induce floret and early embryo abortion, which result in lower 

grain yield compared to 27/22 °C (Downes 1972). Pollen viability decreases above 36/26 °C 

(Prasad et al. 2006). Increases in temperature from 32/22 to 36/26 °C decrease pollen 

germination by 26% at ambient CO2 (350µmol mol
-1

) and by 48% at elevated CO2 (700µmol 

mol
-1

) whereas, at elevated CO2 pollen germination decreases by 9% at 32/22 °C and 36% at 

36/26 °C (Prasad et al. 2006, see Figure 2.19.1). Prasad et al. (2008) suggested that the pre-
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flowering phase (10 d before flowering) is highly sensitive to HT stress (40/30 °C) as the 

phase coincides with microsporogenesis. The effect of temperature, CO2 and their interaction 

were found to be significant on pollen germination.  

Figure 2.19.1. Effect of temperature on seed-set in sorghum at two levels of CO2. The 

difference in tissue temperature between ambient and high CO2 is also shown.  

 

 
Redrawn from Prasad et al., 2006. 

Increase in temperature from 25 to 33.5 °C increases the rate of seed growth, which decreases 

both seed size and seed yield (Chaudhury and Wardlaw 1978). Similarly, Kiniry and Musser 

(1988) also reported increased grain growth rate and reduced grain filling duration from 22.5 

to 30 °C, which resulted in lower yields. 

A simulation study from India reported the sensitivity of increasing temperature and impact of 

the A2a emissions scenario and HADCM3 global climate model outputs for 2020, 2050 and 

2080 compared to the baseline conditions (1961–1990) (Srivastava et al. 2010). The study 

found that a 1 °C increase in average air temperature could decrease the yield of sorghum 

from 4 to 8% in the rainy season in sorghum-growing regions of India. Winter sorghum 

suffered yield losses of 8–15% with a 2 °C rise in temperature. Results of the simulations 

using the A2a scenario and the HADCM3 global climate model for 2020, 2050 and 2080 
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indicated yield decreases of 3–76% for the rainy season and 7–32% for the winter crop 

(Srivastava et al. 2010). 

Mastrorilli et al. (1995) observed the impact of water stress at critical stages of sorghum and 

reported that water stress at flowering reduces seed numbers significantly per paniculum and 

also reduces grain yield compared to the plants in well-watered conditions, while water stress 

at seed setting and seed ripening does not show any significant difference. Water stress at 

flowering reduces final biomass by 52%, number of seed per panicle by 58%, and grain yield 

by 61%. 

Simulated changes in yields of sorghum are presented in Table 2.19.2 where yields of the 

crop in 2000 are compared to 2050 with climate change and without climate change (without 

CO2 fertilization in both the conditions). Two climate change models, the CSIRO 

(Commonwealth Scientific and Industrial Research Organization, Australia) model and the 

NCAR (National Center for Atmospheric Research, US) model for 2050 were used to 

simulated yield impacts. Both the scenarios project increase in temperature and precipitation 

by 2050. Yields of sorghum are projected to increase by 106% by 2050 globally in the ‘no 

climate change’ situation. Sorghum showed a global decline in yield in both the climate 

change scenarios. Increases in yields of both model runs in some regions were not large 

enough to compensate for the global yield reduction. 

Table 2.19.2. Simulated impact of climate change on sorghum production  

Source: Nelson et al., 2009 
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2000 (mmt) 8.4 3.1 0.1 11.4 1.0 19.0 16.9 43.0 59.9 

2050 No CC 

(mmt) 

9.6 3.4 0.4 28.0 1.1 60.1 20.9 102.6 123.5 

2050 no CC (% 

change) 

13.9 11.6 180.9 145.3 12.2 216.9 23.6 138.7 106.2 

CSIRO (% change) -19.6 1.4 -2.7 2.3 0.3 -2.3 -3.1 -2.5 -2.6 

NCAR (% change) -12.2 6.7 -10.4 4.3 0.7 -3.0 -7.3 -1.5 -2.5 
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Socioeconomic vulnerability to climate change 

Sorghum, like millet, groundnut and pigeonpea, is typically part of mixed cropping systems in 

the Semi-Arid Tropics (SAT) and it is rarely grown as a monocrop over large areas. There is 

little information available as to how changes in the production and productivity of sorghum 

may affect households in the SAT.  

The SAT contains about 160 million rural poor, of whom 100 are in India. Poverty is 

declining in rural India, but not elsewhere. Rural households are predominantly net buyers of 

food, so any reduction in production and/or increases in price affect them proportionately 

more, women headed households especially (Walker 2010). In India the sorghum, millet, 

groundnut and pigeonpea area now accounts for about 30% of the cropped area and about 

20% of the value of production, so the net effects on vulnerability in India as a whole are less 

than 50 years ago (Walker 2010). In India agriculture still accounts for about 40% of per 

capita income in rural areas, and in the SAT of sub-Saharan Africa, it will account for 

considerably more than this. Most rural households are still substantially reliant on rainfed 

agriculture for their livelihoods, and their resilience is generally low. 
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