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Abstract

Chickpea, Cicer arietinum, is the second most important food legume in Asia after
dry beans. Chickpea is an important source of protein, minerals, fiber, and vita-
mins in the diets of millions of people in Asia and Africa. Chickpea is also rich in
essential amino acid lysine and deficient in sulfur-containing amino acids, methio-
nine, and cysteine. Chickpea is mainly used for human consumption and only a
small proportion is used as feed. It meets 80% of its N requirement from symbiotic
nitrogen fixation and leaves substantial amount of residual nitrogen for the subse-
quent crops. It is a hardy crop well adapted to stress environments and a boon to
the resource-poor marginal farmers in the tropics and subtropics. Average yields of
chickpea are nearly 780 kg/ha, although farmers can harvest more than 2.5 tons/ha.
The crop potential is nearly 5 tons/ha. Abiotic (drought, heat, and cold stress) and
biotic (pod borers –Helicoverpa armigera and Spodoptera exigua, aphids – Aphis crac-
civora, leaf miner – Liriomyza cicerina, and bruchid – Callosobruchus chinensis) and
diseases (Fusarium wilt, Ascochyta blight, Botrytis gray mold, and root rots) are the
major stresses that constrain chickpea production in farmers fields. The major
challenge is to reduce the losses due to biotic and abiotic constraints, and close the
yield gap through crop improvement and crop management in future. A combina-
tion of productivity enhancement through varietal improvement, including bio-
technological interventions, and integrated crop management is needed to realize
the yield potential of this crop for improving food and nutritional security. Consid-
erable progress has been made in developing high-yielding chickpea varieties to
increase the productivity of this crop, while conventional breeding has been suc-
cessfully used to breed disease-resistant varieties, little progress has been made in
developing pod borer and drought-tolerant varieties, as the levels of resistance avail-
able in the cultivated germplasm are quite low. Wild relatives of chickpea have high
levels of resistance to pod borer. Marker-assisted selection and genetic engineering
of chickpea are being exploited to increase the levels of resistance/tolerance to
these constraints and in future.
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15.1
Introduction

Global warming and climate change present a major challenge to the human
beings as we heavily depend on natural resources, particularly agriculture, for food,
feed, fodder, timber, fuel wood, and so on. Changes in climate will affect crop pro-
ductivity and may degrade cultivable land [1, 2]. The natural calamities such as
droughts, storms, floods, and heat waves might occur more frequently. A steady
increase in temperature, decrease/increase in relative humidity, moisture stress,
and increase in atmospheric carbon dioxide (CO2) will also change the relative
activity and abundance of insect pests, natural enemies, and their interaction with
the host plants. Moreover, increased demand for biofuels will reduce the land avail-
able for cultivating food crops [3]. Therefore, there is need to enhance crop produc-
tion by adopting modern tools of biotechnology and crop management to mitigate
adverse effects of climate change.
Cereals, grain legumes, oilseeds, vegetables, and fruits are the major compo-

nents of food for human beings. Among these, grain legumes play an important
role in the dietary and nutritional needs of people, particularly in Asia, Africa, and
Latin America. Among the many grain legumes consumed by people, chickpea is
the most widely cultivated food legume in the world.
Chickpea (Cicer arietinum L.) is the second most important food legume in Asia

after dry beans in terms of area, production, and consumption. Average annual
chickpea area in the world is 10.7 million ha with a production of 8.2 million
tons – Asia accounts for 90% of the area and 88% of the production of chickpea in
the world. Chickpea is an important source of protein, minerals, fiber, and vitamins
in the diets of millions of people in Asia and Africa. Chickpea has 23% protein,
64% total carbohydrates, 47% starch, 5% fat, 6% crude fiber, 6% soluble sugar, and
3% ash [4]. Chickpea is rich in essential amino acid lysine and deficient in sulfur-
containing amino acids, methionine, and cysteine. Chickpea also contains high
amounts of carotenoids such as b-carotene, cryptoxanthin, lutein, and zeaxan-
thin [5]. Chickpea is mainly used for human consumption and only a small propor-
tion is used as feed. The kabuli type (white or cream seed coat) is generally used as
whole grains, while desi type (colored seed coat) is used as whole seeds, dehulled
splits, or flour. Chickpea is used in preparation of a wide variety of dishes, popular
snacks, soups sauces, enriched breads, and baby foods. Green chickpea leaves and
twigs are eaten as a cooked vegetable and contain 4–8% protein [6]. Chickpea is also
used as protein-rich animal feed and the vegetable biomass is highly valued as fod-
der in dry areas where grazing vegetation is scarce. Chickpea also plays an impor-
tant role in improving soil fertility. It meets 80% of its N requirement from
symbiotic nitrogen fixation and can fix up to 140 kgN/ha from air [7]. It leaves sub-
stantial amount of residual nitrogen behind for subsequent crops and adds much
needed organic matter to maintain and improve soil health, long-term fertility, and
sustainability of the ecosystems. Chickpea is a hardy crop well adapted to stress
environments and a boon to the resource-poor marginal farmers in the tropics and
subtropics.
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Chickpea is an annual, self-pollinating, diploid (2n¼ 2x¼ 16) pulse crop with a
genome size of 931Mb [8]. It is the third most important grain legume, which is
largely cultivated in Asia, Africa (East and North), and the Mediterranean
Europe [9]. In recent years, it is also being cultivated in Australia, Canada, and the
United States, largely for export to India. Annual chickpea production is 9.7 million
tons (mt), followed by cowpea (5.7mt), lentil (3.6mt), and pigeonpea (3.5mt). The
major constraints in chickpea production are biotic stresses such as pod borers,
Helicoverpa armigera, Spodoptera exigua, and Helicoverpa punctigera (in Australia),
cutworm, Agrotis spp., aphid, Aphis craccivora, leaf miner, Liriomyza cicerina, Fusar-
ium wilt, Ascochyta blight, Botrytis gray mold, and the abiotic stresses such as
drought, heat, cold, and high salinity [10]. The estimated yield losses due to abiotic
stresses (6.4mt) are significantly higher than that due to biotic stresses
(4.8mt) [11]. Among the abiotic stresses of chickpea, drought causes a 40–50%
reduction in yield globally [8]. The advanced biotechnological approaches suitable
to mitigate the major biotic and abiotic stresses are in the following sections.

15.2
Abiotic Constraints to Chickpea Production

Abiotic stresses such as drought, salinity, and high temperature affect crop growth
and productivity. The crop under adverse climatic condition shows morphological,
physiological, biochemical, and molecular alterations. Drought is one of the major
constraints to chickpea production throughout Asia, as the crop is largely grown
under rainfed conditions during the post-rainy season or residual soil moisture,
and experiences end-of-season drought (terminal drought). Areas prone to drought
stress are expanding quite fast [12]. With the prediction of increasing water scarcity,
terminal drought will continue to be the major constraint to chickpea production in
several parts of the world. Often high-temperature stress during the reproductive
phase occurs along with terminal drought stress, particularly in tropical short sea-
son-growing environments and during late sown conditions in most environments.
Thus, it is important to combine tolerance to both drought and heat stress.
Legumes, in general, are sensitive to salt [13], and increasing use of irrigation has

often converted the arable land into saline [14]. Approximately 22% of the agricultural
land is saline [15]. Salinity is also a major limiting constraint to chickpea production in
many parts of Asia. Saline soils contain sufficient neutral soluble salts (mainly sodium
chloride and sodium sulfate) that adversely affect plant growth and grain yield.
Chilling temperatures during early reproductive growth have been reported to

cause yield losses in chickpea in many parts of Asia. The plants continue to pro-
duce flowers, but fail to set pods when the mean daily temperature falls below
15 �C. Low temperatures also adversely affect size and viability of pollen and ovules,
anther dehiscence, pollen germination and pollen tube growth, and fertiliza-
tion [16]. In the Mediterranean region, the change from spring to winter sowing of
chickpea has enhanced yields, but tolerance to low temperature during flowering
requires further improvements [17].
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A steady rise in the atmospheric concentrations of carbon dioxide has been
observed, from 315 ppm in 1959 to 385 ppm at present [18]. The CO2 concentration
will continue to rise to as much as 500–1000 ppm by the year 2100 [19]. This will
have a profound effect on crop growth and development [20] and alter the CO2

metabolism in the plant. Under elevated atmospheric CO2 concentrations, the
nutritional quality of crops will be reduced due to less accumulation of proteins
and nitrogen content in the grain and the leaves [21, 22]. Much of the protein in
leaves is involved in assimilating carbon dioxide into sugars [23]. There is some
yield advantage in chickpea under elevated CO2, but a simultaneous reduction in
nitrogen concentration may decrease the protein content and negate the reduction
in protein [24].

15.3
Modern Crop Breeding Approaches for Abiotic Stress Tolerance

15.3.1
Drought, Salinity, and Low Temperature

Efforts are being made to exploit traits that are expected to play an important role in
drought avoidance under receding soil moisture conditions by improving water
availability to the plant through more efficient extraction of available soil moisture.
Drought tolerance is a complex phenomenon involving many known and unknown
pathways.
To improve drought tolerance, quantitative trait loci (QTLs) have been identified

for stomatal conductance [25–27], transpiration efficiency [28, 29], osmotic adjust-
ment [30–32], relative water content [30, 25], canopy temperature [31, 30], drought
sensitivity index [25], leaf ABA [29], chlorophyll content [33], water use effi-
ciency [34], root traits [35, 36] and some yield-related traits [28, 30, 31, 34, 37–40].
The most promising drought-tolerant line, ICC 4958, has 30% higher root bio-

mass than the popular variety Annigeri [41]. Chandra et al. [42] identified molecular
markers for a major QTL that accounts for 33% of the variation in root weight as
well as in root length. New mapping populations have been developed and are
being used to identify molecular markers for additional QTLs. Moreover, under-
standing physiological mechanisms that regulate drought tolerance, together with
the associated regulatory genes, will facilitate crop improvement for water use effi-
ciency and tolerance to drought. The possibility of investigating the response of
genes to drought and other stresses by profiling of transcriptome, proteome, and
metabolome will offer more information about this complex trait. Besides, studies
on functional genomics of chickpea will also help in chickpea improvement.
Earlier studies have indicated limited variability in salinity tolerance in chickpea.

However, a recent screening of over 250 germplasm accessions (including 211
accessions of minicore collection) and breeding lines/cultivars revealed wide varia-
tion in salinity tolerance [7]. Some accessions gave 10–20% higher yield under
salinity stress than the most tolerant variety CSG 8962 released in India. These
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results have renewed interest in breeding for enhanced salinity tolerance in
chickpea.
Several breeding lines (e.g., ICCV 88502, ICCV 88503, ICCV 88506, ICCV

88510, and ICCV 88516) have been developed, which are able to set pods at lower
temperatures (mean daily temperature between 12 �C and 15 �C). A pollen selection
method has been developed and successfully applied for transferring cold tolerance
from ICCV 88516 to the popular variety amethyst in Australia [43].

15.4
Genetic Engineering of Chickpea for Tolerance to Abiotic Stresses

15.4.1
Drought and Salinity

Abiotic stress is a complex trait that may involve many genes and, therefore, expres-
sion of more than one gene is essential to have reasonable tolerance to abiotic
stresses. Development of genetically modified (GM) plants by the introduction
and/or overexpression of selected gene(s) appear to be quite promising for chick-
pea improvement. For the development of abiotic stress-resistant transgenic plants,
several stress-induced genes with known or unknown enzymatic or structural func-
tions and regulatory proteins have been used. For genetic transformation, stress-
induced genes with known functions such as water channel proteins, key enzymes
for osmolyte biosynthesis (proline, betaine, sugars such as trehalose, and poly-
amines), detoxification enzymes, and transport proteins have also been used.
Enzymes involved in the metabolic pathways appear more amenable to manipula-
tions than the structural and developmental traits. Stress-induced regulatory pro-
teins that are involved in stress response can be used to enhance tolerance to
multiple stresses, including drought, salinity, and freezing [44].
A dehydration responsive element construct, where DREBIA gene from Arabi-

dopsis thaliana is attached to a drought-responsive promoter (rd 29A) is being used
to enhance drought tolerance in chickpea [45]. This construct is known to regulate a
number of genes involved in the response to drought and other stresses, such as
salinity and cold temperature. In the case of tobacco, wheat, and groundnut, over-
expression of DREB1A has been shown to improve the drought as well as low-tem-
perature stress tolerance [46–50].
The transgenic tobacco (Nicotiana tabacum) developed using CAP2 gene from

chickpea (C. arietinum) encoding a novel AP2 family transcription factor showed
increase in leaf surface area and number of lateral roots. Transgenic plants were
more tolerant to dehydration and salt stress than the wild-type plants, and
expressed high steady-state transcript levels of abiotic stress–response genes
NtERD10B and NtERD10C and auxin-response genes IAA4.2 and IAA2.5 [51].
Furthermore, introduction of an osmoregulatory gene P5CSF129A encoding the

mutagenized D1-pyrroline-5-carboxylate synthetase (P5CS) in chickpea showed
accumulation of high proline (two–sixfolds). The transgenic events showed a
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decline in transpiration at lower values of the fraction of transpirable soil water
(dryer soil), and extracted more water than their untransformed parents. However,
the overexpression of P5CSF129A gene caused less increase in transpiration effi-
ciency, thereby indicating that the enhanced proline had little bearing on the com-
ponents of yield architecture that are significant in overcoming the negative effects
of drought stress in chickpea [52].

15.4.2
Elevated CO2 Concentrations

Improving C3 carbon fixation under temperature and drought conditions can be
achieved by manipulation of Rubisco enzyme. The enzyme Rubisco dominates the
limitation of C3 fixation in conditions that restrict the supply of CO2 such as high
temperature or drought. The Rubisco enzyme is higher in plants comprised of
chloroplasts encoding eight large subunits (LSU), while the nuclear DNA encoded
eight small subunit (SSU) proteins. The large subunit (LSU) of Rubisco contains all
the structural information necessary for catalysis, while the function of the small
subunit (SSU) remains elusive. Genetic screening and site-directed mutagenesis
have focused on the LSU of Rubisco as the catalytic site of the enzyme is on this
subunit. Amino acid substitutions in several distinct areas of the Rubisco LSU that
influenced the catalytic properties of Rubisco and genetic engineering have
resulted in the production of an even less-efficient Rubisco [53–55]. Another alter-
native approach could be conversion of C3 pathways to C4 since C4 pathway evolved
in hot and arid regions in response to increasing O2 levels as a mechanism to
increase the CO2 concentration at the site of Rubisco [56]. The C4 system uses the
enzyme phosphoenol pyruvate carboxylase (PEPC) to fix CO2 from the atmosphere
into C4 in the mesophyll cells, which results in regeneration of phosphoenol pyru-
vate (PEP). Plants with C4 pathway have a number of advantages, including high
photosynthetic performance and high nitrogen and water-use efficiencies (WUE),
allowing this group of plants to be highly productive in subtropical regions. Con-
ventional plant breeding approaches have been used to try and transfer C4 traits
into C3 plants, but these were unsuccessful. In the past decade, genes encoding
enzymes in the C4 pathway have been transferred to C3 plants resulting in the pro-
duction of the introduced enzyme [57–59]. However, to achieve this objective, it is
necessary to use all the genes isolated from a C4 species such as maize [60].

15.5
Biotic Constraints in Chickpea Production

15.5.1
Insect Pests

Nearly 60 insect species are known to feed on chickpea. The important insect pests
damaging chickpea in different regions are cutworms (black cutworm –Agrotis
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ipsilon (Hfn.) and turnip moth – Agrotis segetum Schiff, termites (Microtermes obesi
(Holmgr.)), leaf feeding caterpillars (beet armyworm, S. exigua (Hub.) and hairy
caterpillars Spilarctia obliquaWalker), leaf miners (L. cicerina (Rondani)), aphids (A.
craccivora Koch), pod borers (cotton bollworm – H. armigera (Hub.), native
budworm – H. punctigera (Wallengren)), and bruchids (Chinese bruchid – Calloso-
bruchus chinensis L., bean bruchid – Acanthoscelides obtectus (Say.), pulse weevil –
Callosobruchus analis F., and pulse bruchid – Callosobruchus phaseoli (Gylh.)) [61, 62].
The pod borer H. armigera and the aphid A. craccivora are the major pests of
chickpea in the Indian Subcontinent. In the Mediterranean region, the most impor-
tant pest is the leaf miner L. cicerina. A. craccivora is important as a vector of the
chickpea stunt disease, while C. chinensis is the most dominant species in storage.
A continuous search is being made to identify resistant genotypes. More than

14000 chickpea germplasm accessions have been screened for resistance to
H. armigera at ICRISAT, India, under field conditions. Several germplasm acces-
sions (ICC 506EB, ICC 10667, ICC 10619, ICC 4935, ICC 10243, ICCV 95992, and
ICC 10817) with resistance to H. armigera have been identified, and varieties such
as ICCV 7, ICCV 10, and ICCL 86103 with moderate levels of resistance have been
released for cultivation [63]. Progress has also been made in understanding the
nature of gene action, and resistance to pod borer is largely controlled by additive
gene action. Good combiners for pod borer resistance have also been identified [64].
However, most of these lines are highly susceptible to Fusarium wilt. Therefore,
concerted efforts have been made to break the linkage by raising a large population
of crosses between the lines with resistance to H. armigera and the lines resistant
to wilt.
The extent of losses to chickpea in South Asia by this pest is estimated at over

US$ 400 million [11]. In the storage condition, bruchids (C. chinensis) cause nearly
20–30% damage.
Global warming and climate change resulting in increased temperatures and

reduced humidity will impact insect–host plant interactions in several complex
ways. The effects of climate change on H. armigera have been investigated since
the larvae of H. armigera have a wide host range [65]. Studies conducted on
H. armigera under various ambient CO2 concentrations (550–750 ppm) showed
that larvae developed normally under elevated CO2, and the adult moths lived lon-
ger, but laid fewer eggs [66]. However, when the larvae were reared on milky grains
of spring wheat for three generations at ambient CO2 concentration at 750 ppm,
they exhibited slow growth in the second and third instars. It has been suggested
that under elevated CO2 concentrations, net damage by the cotton bollworm will be
slow due to slow development [67]. Severity of the damage caused by H. armigera
and the population relationship between H. armigera and its parasitoid wasp,
Microplitis mediator, has also been also studied [68]. The results have suggested that
there are no significant changes in wheat consumptions by the larvae or in the
parasitism by the wasp under elevated CO2 at 750 ppm.
Bt cotton being resistant to H. armigera was also evaluated under elevated CO2

along with conventional cotton [69]. The results suggest that damage under ele-
vated CO2 might be higher, but there will be less pest population. Coll and
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Hughes [70] reported that the H. armigera reared on pea plants (Pisum sativum)
grown under elevated CO2 at 700 ppm were significantly smaller than those reared
on plants grown under ambient conditions. Furthermore, they also reported that
the omnivorous bug, which feeds on plants but also preys on the bollworm,
required prey to complete its development. The bugs performed best when the lar-
vae reared under elevated CO2, as the larvae were smaller and thus easily overcome
by the predator. Elevated CO2 may benefit generalist predators through increased
prey vulnerability, which would put pest species under higher risk of predation.
However, none of the above experiments were conducted under increased tempera-
tures, which might level off the adverse effects of elevated CO2 onH. armigera [71].

15.5.2
Diseases

The occurrence of pathogens is related to temperature, rainfall, humidity, radiation,
and dew [72]. The movement of pathogens to their host plants depends on several
factors, including its mode of dispersal and ability to survive on sources other than
its primary host [73]. As dispersal of some pathogens is influenced by rain and
winds [23], changes to these factors could also affect the spread of pathogens.
Fusarium wilt, Ascochyta blight, Botrytis gray mold, and root rot are the most

important chickpea diseases [74, 75]. Fusarium wilt caused by Fusarium oxysporum
Schl. f. sp. ciceri is the most important root disease of chickpea. The susceptible
varieties can have up to 100% plant mortality. Ascochyta blight caused by Ascochyta
rabiei is a highly devastating foliar disease of chickpea in northern India, Pakistan,
and Central Asia. Botrytis gray mold caused by Botrytis cinerea is another important
foliar disease of chickpea. It is a serious constraint to chickpea production in north-
ern India, Nepal, Bangladesh, and Pakistan. Collar rot caused by Sclerotium rolfsii is
becoming a serious problem in several parts of India, particularly central and
southern India. Dry root rot caused by Rhizoctonia bataticola is a serious disease
whenever the crop is exposed to moisture stress and temperature above 30 �C.
Resistance to Fusarium wilt is necessary for all chickpea-growing areas, and all
improved varieties have Fusarium wilt resistance. The foliar diseases, Ascochyta
blight and Botrytis gray mold, continue to be a big threat to chickpea production in
cooler and humid areas.
Muehlbauer and Kaiser [75] reported that the resistance to Ascochyta blight is

multigenic. The pathogen evolves continuously, which makes it difficult to develop
lines with stable resistance to this pathogen. The wild relatives of chickpea such as
Cicer ehinospermum, Cicer pinnatifidum, Cicer bijugum, and Cicer judacium possess
high levels of resistance to Ascochyta blight [76, 77].
The wilt caused by the soil borne fungi F. oxysporum f. sp. ciceri is an economi-

cally important disease of chickpea. Haware and Nene [77] identified seven distinct
races of Fusarium in India. Of these races, race 1 is common in central India, and
race 2 in northern India. However, race 3 and race 4 appear in various pockets of
Punjab and Haryana. Race, 0, 5, and 6 were identified in Spain by Jimenez-Daiz
et al. [78].
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15.5.3
Biological Nitrogen Fixation

Biological nitrogen fixation offers an alternative means to increase plant-available
nitrogen [7]. Nearly 20% of all N available to the crops is due to rhizobial N fixa-
tion [79]. Herridge et al. [80] estimated that 50% nitrogen fixed by a chickpea crop
remains underground and is available to the following crop. However, symbiotic
fixation of nitrogen is sensitive to even modest soil water deficits [81]. In the case of
chickpea, the high nodulating selection ICC 4948 fixed more N and yielded 31%
more than its low nodulating version [82]. Sufficient numbers of compatible rhizo-
bia are often not naturally occurring in most of the soils where grain legumes are
cultivated [83], and there is need for rhizobia application to seeds [84].

15.6
Modern Molecular Breeding Approaches for Biotic Stress Tolerance

15.6.1
Pod Borers

In the field, the pod borer H. armigera is a major threat to chickpea cultivation.
Yoshida et al. [85] investigated the mechanisms of resistance to pod borers and
found that oxalic acid and malic acid are the major components that govern resist-
ance toH. armigera. Genotypes resistant to pod borer accumulated more oxalic acid
on the leaves than the susceptible genotypes. Oxalic acid showed significant growth
inhibition of the pod borer larvae when included in a semiartificial diet, while malic
acid had no effect on larval growth.
Development of crop cultivars with resistance to pod borer is the most cost-

effective and eco-friendly option for the control of H. armigera, particularly under
subsistence farming conditions in the developing countries [86]. Availability of sta-
ble sources of resistance is a prerequisite to develop cultivars for resistance to
insect pests. Screening of more than 14 000 germplasm accessions and breeding
line has resulted in the identification of several genotypes with low to moderate
levels of resistance to H. armigera for use in breeding programs. Some of these
have also been found to be resistant in different agroclimatic zones under natural
infestation. Germplasm accessions of wild relatives of chickpea (C. bijugum,
C. judaicum, and C. pinnatifidum) have shown high levels of resistance to pod
borer [87].
The chickpea cultivars and wild Cicer species have been found to differ signifi-

cantly in their ability to inhibit H. armigera gut proteinases [88]. But none of the
species offered complete protection against the pod borer by inhibiting the gut pro-
teinases. The wild relatives of chickpea C. bijugum exhibited highest larval inhibi-
tion (36%), followed by C. echinospermum and C. arietinum (cv Vijay) (33%).
Stored chickpeas are highly susceptible to attack by the bruchids Callosobruchus

maculatus and C. chinensis. Germplasm with some degree of resistance to bruchids
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has been identified, but it appears to be correlated with undesirable physical char-
acteristics of the seed coat. Bruchids-resistant chickpeas are usually consist of thick,
dark color seed coat with altered chemical composition, but are less desirable for
human consumption.
The preliminary linkage map based on interspecific crosses of C. arietinum�Cicer

reticulatum and C. arietinum�Cicer echinospermum was made available by Gaur and
Slinkard [89]. The mapping population derived from a cross between a wilt-resistant
kabuli variety (ICCV 2) and a wilt-susceptible desi variety (JG 62) has been used to
develop the first molecular map of chickpea based on an intraspecific cross [90]. A
beginning has been made to identify molecular markers for resistance toHelicoverpa
in chickpea. Mapping genes associated with resistance to H. armigera has been
reported by Lawlor et al. [91]. High levels of resistance toH. armigera have been iden-
tified in wild relatives of chickpea (C. bijugum, C. judaicum, and C. reticulatum) [63],
of which C. reticulatum can be easily crossed with the cultivated species to develop
mapping populations to identify QTL associated with resistance toH. armigera.
A mapping population of 126 F13 RILs of ICCV 2� JG 62 has been evaluated for

resistance to H. armigera. The overall resistance score (1¼<10 leaf area and/or
pods damaged, and 9¼>80% leaf area and/or pods damaged) varied from 1.7 to
6.0 in the RIL population compared to 1.7 in the resistant check, ICC 506EB, and
5.0 in the susceptible check, ICCV 96029. The results indicated that there is consid-
erable variation in this mapping population for susceptibility to H. armigera.
Another RIL mapping population from the cross between Vijay (susceptible)� ICC
506EB (resistant) has also been evaluated for resistance to H. armigera. Inter-
specific mapping populations based on the crosses between ICC 3137 (C. arieti-
num)� IG 72933 (C. reticulatum) and ICC 3137� IG 72953 (C. reticulatum) have
also been developed, and putative QTLs linked to various components of resistance
toH. armigera have been identified [92].
Based on interspecific genetic linkage map of chickpea (ICC 4958�PI 489777)

and phenotyping for resistance to H. armigera and S. exigua under field and green-
house conditions, QTLs associated with resistance to pod borers have been identi-
fied [93] and can be used in conjunction with biochemical markers to develop
cultivars with resistance to this pest. In addition, oxalic and malic acids and prote-
ase inhibitors have been identified as biochemical markers for resistance to H.
armigera in cultivated chickpea and are being used to identify lines with resistance
to this insect [94].

15.6.2
Ascochyta and Fusarium

Ascochyta blight appears to be controlled by several genes [95]. It has also been
reported that there are two major complementary recessive genes for resistance to
Ascochyta blight [96, 97]. Tekeoglu et al. [97] identified two major QTLs and one
minor QTL from the interspecific crosses between C. arietinum and C. reticulum.
Morjane et al. [98] performed genetic characterization of various isolates of Asco-
chyta of single field using DNA fingerprinting method and 12 haplotypes were
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observed with varying frequencies. Santra et al. [99] developed a RAPD marker spe-
cific to Indian isolate. Coram and Pang [100] studied the molecular basis of the
Ascochyta blight resistance in a highly resistant chickpea accession (ICC3996) and
a susceptible cultivar (Lasseter) using microarrays. After inoculation with A. rabiei,
a time-series expression patterns of 20 defense-related ESTs were studied and
found upregulation or downregulation of 10 defense-related ESTs in ICC 3996
and/or Lasseter compared to the uninoculated control. Hierarchical clustering
grouped the ESTs into different clusters. Three defense-related ESTs showed differ-
ential upregulation in ICC 3996 compared to Lasseter – a leucine zipper protein,
SNAKIN2 antimicrobial peptide precursor, and elicitor-induced receptor protein.
Warkentin et al. [101] constructed a linkage map for resistance to Ascochyta

blight and identified one QTL on each of LG3, LG4, and LG6, which accounted for
13%, 29%, and 12% of the total variation, respectively. Of these, three QTLs on LG4
and LG6 were in common with the previously reported QTL for Ascochyta blight
resistance, whereas the QTL on LG3 was unique to this population.
The chickpea wilt caused by F. oxysporum f. sp. ciceris is one of the major factors

limiting production of this pulse crop. The affected plants exhibit drooping crown,
xylem, and stem discoloration and root rotting. Development of resistant varieties
is thought to be the most viable strategy to overcome this problem. Muehlbauer
and Kaiser [75] reported that resistance to different races of Fusarium is controlled
by a single gene. Evaluation of both desi- and kabuli-type chickpea accessions
revealed that almost 160 accessions were resistant to the fungus [102]. The wild
accessions of C. bijugum, C. judaicum, C. reticulatum, and C. ehinosperum were
resistant, while accessions belonging to C. yamashitae were susceptible. Breeding
varieties resistant to Fusarium wilt were quite successful. However, some of the
cultivars do not show resistance to all the races of the Fusarium wilt [103]. Mayer
et al. [104] identified RAPD markers, UBC-170 and CS-27, located on same side of
the locus, which were linked to resistance and susceptibility, respectively. Locus
specificity of the primer UBC-170 was confirmed by allele-specific associated
primer s (ASAPs). ISSR marker (UBC-855) linked to the gene conferring resistance
to race 4 of Fusarium has been identified and appears to cosegregate with
CS-27 [105]. Later, ISSR makers UBC 825 comprising dinucleotide repeats ([AC]8T)
was identified, which was 5.0 cM to the wilt resistant Foc-4 gene [106].

15.6.3
Wide Hybridization

Wild relatives of chickpea are an important source of resistance to leaf miner
L. cicerina and the bruchid C. chinensis [107]. Accessions belonging to C. bijugum
(ICC 17206, IG 70002, IG 70003, IG 70006, 70012, IG 70016, and IG 70016),
C. judaicum (IG 69980, IG 70032, and IG 70033), C. pinnatifidum (IG 69948), and
C. reticulatum (IG 70020, IG 72940, IG 72948, IG 72949, and IG 72964) [108] have
shown high levels of resistance to H. armigera. Some of the wild relatives of chick-
pea have different mechanisms than those in the cultivated types, which can be
used in crop improvement to diversify the bases of resistance to this pest. High
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levels of antibiosis were evident when H. armigera larvae were fed on leaves and
pods, and the mechanisms are different from those in C. arietinum [109].

15.7
Application of Gene Technology

15.7.1
Pod Borers

Bacteria Bacillus thuringiensis consists of genes that encode several insecticidal
proteins during sporulation (Cry or Cyt) and vegetative growth (Vips) proteins.
Crickmore et al. [110] described more than 140 genes that produce Cry proteins,
with specificities for Lepidoptera, Coleoptera, and Diptera. The Vips also possess
toxic effects toward insects [111]. Vip3 is highly toxic to Agrotis and Spodoptera [105]
andH. armigera [113].
Globally, insect-resistant crops have been one of the successful applications of

plant genetic engineering technology. The first successful genetic transformation
of chickpeas was reported in 1997 using the cry1Ac gene [114]. Later, transgenic
chickpea expressing Cry1Ac [115–117] and Cry2Aa [118] genes were also generated.
Recently, chickpea lines expressing pyramided Bt genes, cry1Ac and cry1Ab [117],
have also been developed; however, the previous reports have suggested that
Cry1Ac is more effective against H. armigera, and pyramiding two or more genes
with different mode of action is preferred for effective pest management.
Another strategy, known as plant-delivered RNAi or in-plant RNAi, appears to be

useful for the control of various insect pests, including the lepidopterans. A cyto-
chrome P450 gene (CYP6AE14), which expresses in the midgut of H armigera, is
proven to be a suitable candidate gene to control this pest. The H. armigera larvae
fed on transgenic tobacco (N. tabacum) and A. thaliana plants expressing dsRNA of
this gene have shown downregulation of cytochrome P450 gene and a significant
larval growth retardation [119]. However, silencing of lepidopteran genes by RNAi
has been found to be difficult. There may be several factors responsible for lower
efficacy of RNAi in lepidopterans such as absence of RdRP orthologues in most
insects [120], barriers to uptake of dsRNA, improper sorting of dsRNA during
endosome trafficking to dsRNA-processing machinery, and so on [121]. Till date,
the fate of the injected or ingested dsRNA in lepidopteran has not been understood.
Recently, a tobacco rattle virus vector was found to be efficient in silencing a lepi-
dopteran (Manduca sexta) gene CYP6AE14 [121].

15.8
Conclusion

Chickpea cultivars with resistance to abiotic and biotic factors will form the back-
bone of chickpea production in future. The development and deployment of
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chickpea plants with resistance to insects would offer the advantage of allowing
some degree of selection for specificity effects, so that pests, but not the beneficial
organisms, are targeted. Deployment of insect-resistant chickpeas will result in
decreased use of chemical pesticides and increased activity of natural enemies and
thus, higher yields. For pest management programs to be effective in future, there
is a need for the following:

� Utilization of wild relatives of chickpea to diversify the genetic basis and thus,
increase the levels of resistance to the target insect pests.

� Identification of quantitative trait loci associated with resistance to abiotic and
biotic stress factors.

� Development of insect-resistant varieties through genetic transformation using
genes with diverse modes of action.

� Combining resistance to insects with resistance to important diseases, drought,
and cold tolerance.

� Focusing attention on crop management and insecticide resistance
management.

References

1 Chrstensen, J.H. et al. (2007) Climate
Change 2007: The Physical Science Basis.
Contribution of Working Group I to the
Fourth Assessment Report of the
Intergovernmental Panel on Climate
Change (eds S. Solomon et al.),
Cambridge University Press, New York,
pp. 848–940.

2 Meehl, G.A. et al. (2007) in Climate
Change 2007: The Physical Science
Basis. Contribution of Working
Group I to the Fourth Assessment
Report of the Intergovernmental
Panel on Climate Change (eds
S. Solomon et al.), Cambridge
University Press, New York,
pp. 748–845.

3 Brown, M.E. and Funk, C.C. (2008) Food
security under climate change. Science,
319, 580–581.

4 William, P.C. and Singh, U. (1987) The
chickpea: nutritional quality and the
evaluation of quality in breeding
programmes, in The Chickpea (eds M.C.
Saxena and K.B. Singh), ICARDA,
Aleppo, Syria, pp. 329–356.

5 Abbo, S., Molina, C., Jungmann, R.,
Grusak, M.A., Berkovitch, Z., Reifen, R.,
Kahl, G., Winter, P., and Reifen, R.

(2005) Quantitative trait loci governing
carotenoid concentration and weight in
seeds of chickpea (Cicer arietinum L.).
Theor. Appl. Genet., 111, 185–195.

6 Duke, J.A. (1981)Handbook of Legumes of
World Economic Importance, Plenum
Press, New York, p. 345.

7 Serraj, R. (2004) Symbiotic Nitrogen
Fixation: Prospectus for Enhanced
Application in Tropical Agriculture,
Oxford, New Delhi.

8 Graham, P.H. and Vance, C.P. (2003)
Legumes: importance and constraints to
greater use. Plant Physiol., 131, 872–877.

9 Singh, K.B. et al. (1994) Current status
and future strategy in breeding chickpea
for resistance to biotic and abiotic
stresses. Euphytica, 73, 137–149.

10 Sharma, H.C. (2001) Crop protection
compendium:Helicoverpa armigera
(Hub.) in different agro-economical
conditions. Chickpea in Nineties:
Proceedings of the Second International
Workshop on Chickpea, ICRISAT,
pp. 181–189.

11 Ryan, J. (1997) A global perspective on
pigeon pea and chickpea sustainable
production systems: present status and
future potential, in Recent Advances in

References j373



Pulses Research (eds A. Asthana and M.
Ali), Indian Society for Pulses
Research and Development, Kanpur,
India, pp. 1–31.

12 Burke, E.J., Brown, S.J., Christidis, N.
(2006) Modeling the recent evolution of
global drought and projections for the
twenty-first century with the Hadley
centre climate model. J Hydrometeor,
7, 1113–1125.

13 Munns, R., Husain, S., Rivelli, A., James,
R., Condon, A., Lindsay, M., Lagudah, E.,
Schachtman, D., and Hare, R. (2002)
Avenues for increasing salt tolerance of
crops, and the role of physiologically
based selection traits. Plant Soil, 47,
93–105.

14 Wang, W., Vinocur, B., and Altman, A.
(2003) Plant responses to drought,
salinity and extreme temperatures:
towards genetic engineering for stress
tolerance. Planta, 218, 1–14.

15 FAO (2004) World Agricultural
Centre, FAOSTATAgricultural Statistics
DATA-Base Gateway.

16 Srinivasan, A., Saxena, N.P., and
Johansen, C. (1999) Cold tolerance
during early reproductive growth of
chickpea (Cicer arietinum L.): genetic
variation in gamete development and
function. Field Crop Res., 60, 209–222.

17 Millan, T., Clarke, H., Siddique, K.,
Buhariwalla, H., Gaur, P., Kumar, J., Gil,
J., Kahl, G., and Winter, P. (2006)
Chickpea molecular breeding: new tools
and concepts. Euphytica, 147, 81–103.

18 Keeling, R.F. Piper, S.C. et al. (2009)
Atmospheric CO2 records from sites in
the SIO air sampling network, in Trends:
A Compendium of Data on Global Change,
Carbon Dioxide Information Analysis
Center, Oak Ridge National,
Laboratory, U.S. Department of Energy,
Oak Ridge, TN.

19 IPCC (2007) Climate Change 2007: The
Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on
Climate Change, Cambridge University
Press, Cambridge, UK.

20 Ziska, L.H. (2008) Rising atmospheric
carbon dioxide and plant biology: the
overlooked paradigm, in Controversies in

Science and Technology, from Climate to
Chromosomes (eds D.L. KleinmanK.A.
Cloud-Hansen et al.), Liebert, Inc.,
New Rochele, pp. 379–400.

21 Amthor, J.S. (2001) Effects of
atmospheric CO2 concentration
on wheat yield: review of results from
experiments using various approaches to
control CO2 concentration. Field Crops
Res., 73, 1–34.

22 Pittock, B. (2003) Climate Change: An
Australian Guide to the Science and
Potential Impacts. The Australian
Greenhouse Office.

23 Pal, M., Talwar, S., Deshmukh, P.,
Viswanathan, C., Khetarpal, S., and
Kumar, P. (2008) Effect of elevated CO2

on growth and photosynthetic
characteristics of chickpea (Cicer
arietinum L.). Indian J. Plant Physiol., 13,
4–8.

24 Kimball, B.A., Kobayashi, K., and Bindi,
M. (2002) Responses of agricultural
crops to free air CO2 enrichment. Adv.
Agron., 77, 293–368.

25 Sanguineti, M.C., Tuberosa, R., Landi, P.,
Salvi, S., Macaferri, M., Casarini, E., and
Conti, S. (1999) QTL analysis of drought-
related traits and grain yield in relation to
genetic variation for leaf abscisic acid
concentration in field-grown maize.
J. Exp. Bot., 50, 1289–1297.

26 Price, A.H., Young, E.M., and Tomos,
A.D. (1997) Quantitative trait loci
associated with stomatal conductance,
leaf rolling and heading date mapped in
upland rice (Oryza sativa). New Phytol.,
137, 83–91.

27 Juenger, T.E., McKay, J., Hausmann, N.,
Keurenties, J., Sen, S., Stowe, K.,
Dawson, T., Simms, E., and Richards, J.
(2005) Identification and characterization
of QTL underlying whole-plant
physiology in Arabidopsis thaliana II.
QTL analysis of new mapping
population, Kas-1 � Tsu-1. Evolution, 62,
3014–3026.

28 Specht, J.E., Chase, K., Macrander, M.,
Graef, G.L., Chung, J., Markwell, J.P.,
Germann, M., Orf, J.H., and Lark, K.G.
(2001) Soybean response to water: a QTL
analysis of drought tolerance. Crop Sci.,
41, 493–509.

374j 15 Chickpea: Crop Improvement under Changing Environment Conditions



29 Kholova, J., Hash, C.T., Lava Kumar, P.,
Yadav, R.S., Kocova, M. and Vadez, V.
(2010). Terminal drought-tolerant pearl
millet [Pennisetum glaucum (L.) R. Br.]
have high leaf ABA and limit
transpiration at high vapour pressure
deficit. J. Exp. Bot., 611431–1440.

30 Diab, A.A., Teulat-Merah, B., This, D.,
Ozturk, N.Z., Benscher, D., and Sorrells,
M.E. (2004) Identification of drought-
inducible genes and differentially
expressed sequence tags in barley. Theor.
Appl. Genet., 109, 1417–1425.

31 Saranga, Y., Jiang, C-X, Wright, R.J.,
Yakir, D., and Paterson, A.H. (2004)
Genetic dissection of cotton physiological
responses to arid conditions and their
inter-relationships with
productivity. Plant Cell Environ.,
27, 263–277.

32 Robin, S., Pathan, M.S., Courtois, B.,
Lafitte, R., Carandang, S., Lnceraas, S.,
Amante, M., Nguyen, H.T., and Li, Z.
(2003) Mapping osmotic adjustment in
an advanced back-cross inbred
population of rice. Theor. Appl. Genet.,
107, 1288–1296.

33 Shen, B., Zhang, J.Y., Zhang, K.Q., Dai,
W.M., Lu, Y., Fu, L.Q., Ding, J.M., and
Zheng, K.L. (2007) QTL mapping of
chlorophyll contents in rice. Agric. Sci.
China, 6, 17–24.

34 Quarrie, S.A., Steed, A., Calestani, C.,
Semikhodskii, A., Lebreton, C., Chinoy,
C., Steele, N., Pljevljakusic, D.,
Waterman, E., Weyen, J., Schondelmaier,
J., Habash, D.Z., Farmer, P., Saker, L.,
Clarkson, D.T., Abugalieva, A.,
Yessimbekova, M., Turuspekov, Y.,
Abugalieva, S., Tubersosa, R., Sanguineti,
M.C., Hollington, P.A., Aragues, R.,
Royo, A., and Doding, D. (2005) A high-
density genetic map of hexaploid wheat
(Triticum aestivum L.) from the cross
Chinese Spring � SQ1 and its use to
compare QTLs for grain yield across a
range of environments. Theor. Appl.
Genet., 110865–880.

35 Chandra Babu, R., Nguyen, B.D.,
Chamarerk, V., Shanmugasundaram, P.,
Chezhian, P., Jeyaprakash, P., Ganesh,
S.K., Palchamy, A., Sadasivam, S.,
Sarkarung, S., Wade, L.J., and Nguyen,

H.T. (2003) Genetic analysis of drought
resistance in rice by molecular markers:
association between secondary
traits and field performance. Crop Sci.,
43, 1457–1469.

36 Li, Z., Mu, P., Li, C., Zhang, H., Li, Z.,
Gao, Y., and Wang, X. (2005) QTL
mapping of root traits in a doubled
haploid population from a cross between
upland and lowland japonica rice in three
environments. Theor. Appl. Genet., 110,
1244–1252.

37 Moreau, L., Charcosset, A., and Gallais,
A. (2004) Use of trial clustering to study
QTL � environment effects for grain
yield and related traits in maize. Theor.
Appl. Genet., 110, 92–105.

38 Xu, J.L., Lafitte, H.R., Gao, Y.M., Fu, B.Y.,
Torres, R., and Li, Z.K. (2005) QTLs for
drought escape and tolerance identified
in a set of random introgression lines of
rice. Theor. Appl. Genet., 111, 1642–1650.

39 Xiao, Y.N., Li, X.H., George, M.L., Li,
M.S., Zhang, S.H., and Zheng, Y.L.
(2005) Quantitative trait locus analysis
of drought tolerance and yield in
maize in China. Plant Mol. Biol. Rep.,
23, 155–165.

40 Dashti, H., Yazdi-Samadi, B.,
Ghannadha, M., Naghavi, M.R., and
Quarri, S. (2007) QTL analysis for
drought resistance in wheat using
doubled haploid lines. Int. J. Agric. Biol.,
9, 98–101.

41 Saxena, N.P., Krishnamurthy, L., and
Johansen, C. (1993) Registration of a
drought-resistant chickpea germplasm.
Crop Sci., 33, 1424.

42 Chandra, S., Buhariwalla, H.K.,
Kashiwagi, J., Harikrishna, S., Rupa
Sridevi, K., Krishnamurthy, L., Serraj, R.,
and Crouch, J.H. (2004) Identifying QTL-
linked markers in marker-deficient
crops. 4th International Crop Science
Congress, September 26–October 1,
2004, Brisbane, Australia.

43 Clarke, H., Khan, T.N., and Siddique,
K.H.M. (2004) Pollen selection for
chilling tolerance at hybridisation leads
to improved chickpea cultivars.
Euphytica, 139, 65–74.

44 Kasuga, M., Liu, Q., Miura, S.,
Yamaguchi-Shinozaki, K., and Shinozaki,

References j375



K. (1999) Improving plant drought, salt
and freezing tolerance by gene transfer
of a single stress-inducible transcription
factor. Nat. Biotechnol., 17, 287–291.

45 Liu, Q., Kasuga, M., Sakuma, Y., Abe, H.,
Miura, S., Yamaguchi-Shinozaki, K., and
Shinozaki, K. (1998) Two transcription
factors, DREB1 and DREB2, with an
EREBP/AP2 DNA binding domain
separate two cellular signal transduction
pathways in drought- and low
temperature-responsive gene expression,
respectively, in Arabidopsis. Plant Cell, 10,
1391–1406.

46 Kasuga, M., Miura, S., Shinozaki, K., and
Yamaguchi-Shinozaki, K. (2004) A
combination of the Arabidopsis DREB1A
gene and stress inducible rd29A
promoter improved drought- and low-
temperature stress tolerance in tobacco
by gene transfer. Plant Cell Physiol., 45,
346–350.

47 Pellegrineschi, A., Reynolds, M.,
Pacheco, M., Brito, R.M., Almeraya, R.,
Yamaguchi-Shinozaki, K., and
Hoisington, D. (2004) Stress-induced
expression in wheat of the Arabidopsis
thaliana DREB1A gene delays water
stress symptoms under greenhouse
conditions. Genome, 47, 493–500.

48 Behnam, B., Kikuchi, A., Celebi-Toprak,
F., Yamanaka, S., Kasuga, M.,
Yamaguchi-Shinozaki, K., and Watanabe,
K.N. (2006) The Arabidopsis DREB1A
gene driven by the stress-inducible
rd29A promoter increases salt-stress
tolerance in proportion to its copy
number in tetrasomic tetraploid potato
(Solanum tuberosum). Plant Biotechnol.,
23, 169–177.

49 Bhatnagar-Mathur, P., Devi, M.J., Serraj,
R., Yamaguchi-Shinozaki, K., Vadez, V.,
and Sharma, K.K. (2004) Evaluation of
transgenic groundnut lines under water
limited conditions. Int. Arch. Newsl., 24,
33–34.

50 Bhatnagar-Mathur, P., Devi, M.J., Reddy,
D.S., Vadez, V., Yamaguchi-Shinozaki,
K., and Sharma, K.K. (2006)
Overexpression of Arabidopsis thaliana
DREB1A in transgenic peanut (Arachis
hypogaea L.) for improving tolerance to
drought stress (poster presentation).

Arthur M. Sackler Colloquia on “From
Functional Genomics of Model
Organisms to Crop Plants for Global
Health,” April 3–5, 2006, National
Academy of Sciences, Washington.

51 Shukla, D.C., Raha, R.K., Tripathi, V.,
and Chattopadhyay, D. (2006) Expression
of Cap2 and APETALA2 family
transcription factor from chickpea,
enhances growth and tolerance to
dehydration and salt stress in
transgenic tobacco. Plant Physiol., 142,
113–123.

52 Bhatnagar-Mathur, P., Vadez, V., Jyostna
Devi, M., Lavanya, M., Vani, G., and
Sharma, K.K. (2009) Genetic engineering
of chickpea (Cicer arietinum L.) with the
P5CSF129A gene for osmoregulation
with implications on drought tolerance.
Mol. Breed., 23, 591–606.

53 Spreitzer, R.J. and Salvucci, M.E. (2002)
Rubisco: structure, regulatory
interactions, and possibilities for a
better enzyme. Annu. Rev. Plant Biol.,
53, 449–475.

54 Andersson, I. and Taylor, T.C. (2003)
Structural framework for catalysis and
regulation in ribulose-1,5-bisphosphate
carboxylase/oxygenase. Arch. Biochem.
Biophys., 414, 130–140.

55 Parry, M.A.J., Andralojc, P.J., Mitchell, R.
A.C., Madgwick, P.J., and Keys, A.J.
(2003) Manipulation of Rubisco:
the amount, activity, function and
regulation. J. Exp. Bot., 54,
1321–1333.

56 Sage, R.F. (2004) The evolution of
C-4 photosynthesis. New Phytol., 161,
341–370.

57 Hausler, R.E., Hirsch, H.J., Kreuzaler, F.,
and Peterhansel, C. (2002)
Overexpression of C-4-cycle enzymes in
transgenic C-3 plants: a biotechnological
approach to improve C-3-photosynthesis.
J. Exp. Bot., 53, 591–607.

58 Leegood, R.C. (2002) C-4 photosynthesis:
principles of CO2 concentration and
prospects for its introduction into C-3
plants. J. Exp. Bot., 53, 581–590.

59 Miyao, M. (2003) Molecular evolution
and genetic engineering of C-4
photosynthetic enzymes. J. Exp. Bot., 54,
179–189.

376j 15 Chickpea: Crop Improvement under Changing Environment Conditions



60 Matsuoka, M., Furbank, R.T., Fukayama,
H., and Miyao, M. (2001) Molecular
engineering of C-4 photosynthesis.
Annu. Rev. Plant Physiol. Plant Mol. Biol.,
52, 297–314.

61 Sharma, H.C., Srivastava, C.P.,
Durairaj, C., and Gowda, C.L.L. (2010)
Pest management in grain legumes
and climate change, in Climate Change
and Management of Cool Season Grain
Legume Crops (eds S.S. Yadav, D.L.
McNeil, R. Redden, and S.A. Patil),
Springer Science þ Business Media,
Dordrecht, The Netherlands, pp.
115–140.

62 Chen, W., Sharma, H.C., and
Muehlbauser, F.J. (2011) Crop Protection
Compendium for Chickpea and Lentil
Diseases and Pests, The American
Phytopathological Society, St Paul, MN,
pp. 166.

63 Sharma, H.C. (ed.) (2005)
Heliothis/Helicoverpa Management:
Emerging Trends and Strategies for
Future Research, Oxford, New Delhi,
India, p. 469.

64 Sreelatha, E., Gowda, C.L.L., Gour, T.B.,
Sharma, H.C., Ramesh, S., and
Upadhyaya, H.D. (2007) Genetic analysis
of pod borer (Helicoverpa armigera)
resistance and grain yield in desi and
kabuli chickpeas (Cicer arietinum) under
unprotected conditions. Indian J. Genet.
Plant Breed., 68, 406–413.

65 CPC (2007) Crop protection
compendium CAB.

66 Chen, F.J., Wu, G., Lu, J., and Ge, F.
(2005) Effects of elevated CO2 on the
foraging behaviour of cotton bollworm,
Helicoverpa armigera. Insect Sci., 12,
359–365.

67 Wu, G., Chen, F.J., and Ge, F. (2006)
Responses of multiple generation of
cotton bollwormHelicoverpa armigera
Hubner, feeding on spring wheat to
elevated CO2. J. Appl. Entomol.,
130, 2–9.

68 Yin, J., Sun, Y., Wu, G., Parajulee, M.N.,
and Ge, F. (2009) No effects on elated
CO2 on population relationship between
cotton bollworm,Helicoverpa armigera
Hubner (Lepidoptera: Noctuidae), and its
parasitoid,Microplitis mediatorHaliday

(Hymenoptera: Braconidae) Agric.
Ecosyst. Environ., 132, 267–275.

69 Chen, F.J., Wu, G., Parajulee, M.N., and
Ge, F. (2007) Long-term impacts of
elevated carbon dioxide and transgenic Bt
cotton on performance and feeding of
three generations of cotton bolloworm.
Entomol. Exp. Appl., 124, 27–35.

70 Coll, M. and Hughes, L. (2008) Effects of
elevated CO2 on an insect omnivore: a
test for nutritional effects mediated by
host plants and prey. Agric. Ecosyst.
Environ., 123, 271–279.

71 Zvereva, E.L. and Kozlov, M.V. (2006)
Consequences of simultaneous
elevation of carbon dioxide and
temperature for plant–herbivore
interactions: a metaanalysis. Glob.
Change Biol., 12, 27–41.

72 Patterson, D.T., Westbrook, J.K., Joyce,
R.J.V., and Rogasik, J. (1999) Weeds,
insects and diseases. Clim. Change, 43,
711–727.

73 Chakraborty, S., Murray, G., and White,
N. (2002) Impact of Climate Change on
Important Plant Diseases in Australia,
Rural Industries Research and
Development Corporation.

74 Nene, Y.L. and Reddy, M.V. (1987)
Chickpea diseases and their control, in
The Chickpea (eds M.C. Saxena and K.B.
Singh), CAB International, Wallingford,
pp. 99–125 (b)Nene, Y.L. and Reddy, M.V.
(1987) Chickpea breeding, in The
Chickpea (eds M. Saxena and K. Singh),
CAB International, Wallingford,
pp. 127–162.

75 Muehlbauer, F.J. and Kaiser, W.J. (1994)
Using host resistance to manage biotic
stresses in cool season food legumes.
Euphytica, 73, 1–10.

76 Singh, K.B. et al. (1998) Resistance to six
races of Ascochyta rabiei in the world
germplasm collection of chickpea. Crop
Sci., 33, 186–189.

77 Haware, M.P. and Nene, Y.L. (1982)
Races of Fusarium oxysporum f. sp. ciceri.
Plant Dis., 66, 809–810.

78 Jimenez-Daiz, R.M., Trapero – Crass, A.,
Carbera De, L.A., and Coina, J. (1989)
Races of Fusarium oxysporum f.sp. ciceri
infecting chickpeas in southern Spain, in
Vascular Wilt Diseases of Plants (eds E.C.

References j377



Tjamos and C.H. Beckman), NATO ASI
Series H, Springer, pp. 515–520.

79 Smil, V. (1999) Nitrogen in crop
production. Global Biogeochem. Cycles, 13,
647–662.

80 Herridge, D.F., Peoples, M.B., and
Boddey, R.M. (2008) Global inputs of
biological nitrogen fixation in
agricultural systems. Plant Soil,
311, 1–18.

81 Sinclair, T.R., Purcell, L.C., King, C.A.,
Sneller, C.H., Chen, P., and Vadez, V.
(2007) Drought tolerance and yield
increase of soybean resulting from
improved symbiotic N2 fixation. Field
Crops Res., 101, 68–71.

82 Fried, M., Danso, S.K.A., and Zapata, F.
(1983) The methodology of
measurement of N2 fixation by non-
legumes as inferred from field
experiments with legumes. Can. J.
Microbiol., 29, 1053–1062.

83 Marufu, L., Karanja, N., and Ryder, M.
(1995) Legume inoculants production
and use in east and southern Africa. Soil
Biol. Biochem., 27, 735–738.

84 Catroux, G. (1991) Inoculant quality
standards and controls in France, in
Expert Consultation on Legume
Inoculant Production and Quality Control
(ed. V.A. Thompson), FAO, Roma, Italy,
pp. 113–120.

85 Yoshida, M., Cogill, S.E., and
Wrightman, J.A. (1995) Mechanism of
resistance toHelicoverpa armigera
(Lepidoptera: Noctuidae) in chick pea
antibiotic factor. J. Ecol. Entomol., 88,
1783–1786.

86 Sharma, H.C., Gowda, C.L.L., Sharma,
K.K., Gaur, P.M., Mallikarjuna, N.,
Bouhariwalla, H.K., and Crouch, J.H.
(2003) Host plant resistance to pod borer,
Helicoverpa armigera in chickpea, in
Chickpea Research for the Millennium:
Proceedings of the International
Chickpea Conference, 20–22 January
2003 (eds R.N. Sharma, G.K. Shrivastava,
A.L. Rathore, M.L. Sharma, and M.A.
Khan), Indira Gandhi Agricultural
University, Raipur, Chhattisgarh, India,
pp. 118–137.

87 Sharma, H.C., Singh, B.U., Hariprasad,
K.V., and Bramel-Cox, P.J. (1999) Host-

plant resistance to insects in integrated
pest management for a safer
environment. Proc. Acad. Environ. Biol.,
8, 113–136.

88 Patankar, A.G., Harsulkar, A.M., Giri,
A.P., Gupta, V.S., Sainani, M.N.,
Ranjekar, P.K., and Deshpande, V.V.
(1999) Diversity in inhibitors of
trypsin and Helicoverpa armigera gut
proteinases in chickpea (Cicer
arietinum) and its wild relatives.
Theor. Appl. Genet., 99, 719–726.

89 Gaur, P.M. and Slinkard, A.E. (1990)
Genetic control and linkage relations of
additional isozyme markers in chickpea.
Theor Appl. Genet., 80, 648–656.

90 Cho, S., Kumar, J., Shultz, J.,
Anupama, K., Tefera, F., and
Muehlbauer, F.J. (2002) Mapping
genes for double podding and other
morphological traits in chickpea.
Euphytica, 128, 285–292.

91 Lawlor, H.J., Siddique, K.H.M., Sedgley,
R.H., and Thurling, N. (1998) Improving
cold tolerance and insect resistance in
chickpea and the use of AFLPs for
the identification of molecular markers
for these traits. Acta Hortic., 461,
185–192.

92 Sharma, H.C., Clement, S.L.,
Muehlbauer, F., Kumar, S., Mahender, T.,
Varshney, R., Gaur, P.M., and Gowda, C.
L.L. (2010) Potential for using
morphological, biochemical, and
molecular markers for resistance to
insect pests in grain legumes. Vth
International Congress on Legume
Genetics and Genomics, July 2–8,
Asilomar Conference Grounds,
California, p. 150.

93 Clement, S.L., Sharma, H.C.,
Muehlbauer, F.J., Elberson, L.R.,
Mattinson, D.S., and Fellman, J.K. (2010)
Resistance to beet armyworm in a
chickpea recombinant inbred line
population. J. Appl. Entomol.,
134, 1–8.

94 Sharma, H.C., Rajeev, V., Gaur, P.M., and
Gowda, C.L.L. (2008) Potential for using
morphological, biochemical, and
molecular markers for resistance to
insect pests in grain legumes. J. Food
Legumes, 21, 211–217.

378j 15 Chickpea: Crop Improvement under Changing Environment Conditions



95 Vir, S. and Grewal, J.S. (1974)
Physiologic specialization in Ascochyta
rabiei, the causal organism of gram
blight. Indian Phytopathol., 27, 355–360.

96 Santra, D.K., Tekeoglu, M., Ratnaparkhe,
M., Kaiser, W.J., and Muehlbauer, F.J.
(2000) Identification and mapping of
QTLs conferring resistance to
Ascochyta blight in chickpea. Crop Sci.,
40, 1606–1612.

97 Tekeoglu, M., Santra, D.K., Kaiser, W.J.,
and Muehlbauer, F.J. (2000) Ascochyta
blight resistance inheritance in three
chickpea recombinant inbred line
populations. Crop Sci., 40, 1251–1256.

98 Morjane, H., Geistlinger, J., Harrabi,
M., Weising, K., and Kahl, G. (1994)
Oligonucleotide fingerprinting detects
genetic diversity among Ascochyta
rabiei isolates from a single chickpea
field in Tunisia. Curr. Genet., 26,
191–197.

99 Santra, D.K., Singh, G., Kaiser, W.J., Gupta,
V.S., Ranjekar, P.K., andMuehlbauer, F.J.
(2001) Molecular analysis of Ascochyta
rabiei (Pass.) Labr., the pathogen of
Ascochyta blight in chickpea. Theor. Appl.
Genet., 102, 676–682.

100 Coram, T.E. and Pang, E.C.K. (2005)
Isolation and analysis of candidate
Ascochyta blight defence genes in
chickpea. Physiol. Mol. Plant Pathol., 66,
201–210.

101 Warkentin, T.B., Tullu, T.D., and
Vandenberg, A. (2007) Genetic mapping
of Ascochyta blight resistance in
chickpea (Cicer arietinum L.) using a
simple sequence repeat linkage map.
Genome, 50, 26–34.

102 Nene, Y.L. and Haware, M.P. (1980)
Screening chickpea for resistance to wilt.
Plant Dis., 64, 379–380.

103 Infantino, A., Porta-Puglia, A., and
Singh, K.B. (1996) Screening wild Cicer
species for resistance to Fusarium wilt.
Plant Dis., 80, 69–101.

104 Mayer, M.S., Tullu, A., Simon, C.J.,
Kumar, J., Kaiser, W.J., Kraft, J.M., and
Muelhlbauer, F.J. (1997) Development of
a DNA maker for Fusarium wilt in
chickpea. Crop Sci., 37, 1625–1629.

105 Ratnaparkhe, M.B., Tekeoglu, M., and
Muehlbauer, F.J. (1998) Intersimple-

sequence-repeat (ISSR) polymorphisms
are useful for finding markers associated
with disease resistance gene clusters.
Theor. Appl. Genet., 97, 515–519.

106 Ratnaparkhe, M.B., Santra, D.K., Tullu, A.,
andMuehlbauer, F.J. (1998) Inheritance of
inter-simple sequence-repeat
polymorphisms and linkage with a
Fusarium wilt resistance gene in chickpea.
Theor. Appl. Genet., 96, 348–353.

107 Singh, K.B., Ocampo, B., and Robetson,
L.D. (1998) Diversity for abiotic and biotic
stress resistance in the wild annual Cicer
species.Genet. Resour. Crop Evol., 45, 9–17.

108 Sharma, H.C., Pampapathy, G., Lanka,
S.K., and Ridsdill-Smith, T.J. (2005)
Potential for exploitation of wild relative of
chickpea, Cicer reticulatum for imparting
resistance toHelicoverpa armigera. J. Econ.
Entomol., 98, 2246–2253.

109 Sharma, H.C., Pampapathy, G., Lanka, S.
K., and Ridsdill-Smith, T.J. (2005)
Antibiosis mechanism of resistance to
legume pod borer,Helicoverpa armigera
in wild relatives of chickpea. Euphytica,
142, 107–117.

110 Crickmore, N., Zeigler, D.R., Feitelson,
J., Schnepf, E., Van Rie, J., Lereclus, D.,
Baum, J., and Dean, D.H. (1998)
Revision of the nomenclature for the
Bacillus thuringiensis pesticidal crystal
proteins.Microbiol. Mol. Biol. Rev., 62,
807–813.

111 Estruch, J.J., Carozzi, N.B., Desai, N.,
Duck, N.B., Warren, G.W., and Koziel,
M. (1997) Transgenic plants: an
emerging approach to pest control. Nat.
Biotechnol., 15, 137–141.

112 Estruch, J.J., Warren, G.W., Mullins, M.
A., Nye, G.J., Craig, J.A., and Koziel, M.
G. (1996) Vip3A, a novel Bacillus
thuringiensis vegetative insecticidal
protein with a wide spectrum of activities
against lepidopteran insects. Proc. Natl.
Acad. Sci. USA, 93, 5389–5394.

113 Zhu, C., Ruan, L., Peng, D., Yu, Z., and
Sun, M. (2006) Vegetative insecticidal
protein enhancing the toxicity of Bacillus
thuringiensis subsp kurstaki against
Spodoptera exigua Lett. Appl. Microbiol.,
42, 109–114.

114 Kar, S., Basu, D., Das, S.,
Ramkrishnan, N.A., Mukherjee, P.,

References j379



Nayak, P., and Sen, S.K. (1997)
Expression of cry1Ac gene of Bacillus
thuringiensis in transgenic chickpea
plants inhibits development of borer
(Heliothis armigera) larvae. Transgenic
Res., 15, 473–497.

115 Sanyal, I., Singh, A.K., Kaushik, M., and
Amla, D.V. (2005) Agrobacterium-
mediated transformation of chickpea
(Cicer arietinum L.) with Bacillus
thuringiensiscry1Ac gene for resistance
against pod borer insectHelicoverpa
armigera. Plant Sci., 168, 1135–1146.

116 Indurker, S., Misra, H.S., and Eapen, S.
(2007) Genetic transformation of
chickpea (Cicer arietinum L.) with
insecticidal crystal protein using particle
gun bombardment. Plant Cell Rep., 26,
755–763.

117 Mehrotra, M., Singh, A.K., Sanyal, I.,
Altosaar, I., and Amla, D.V. (2011)
Pyramiding of modified Cry1Ab and
Cry1Ac genes of Bacillus thuringiensis in
transgenic chickpea (Cicer arietinum L.)
for improved resistance to pod borer

insectHelicoverpa armigera. Euphytica,
182, 87–102.

118 Acharjee, S., Sarmah, B.K., Kumar, P.A.,
Olsen, K., Mahon, R., Moar, W.J., Moore,
A., and Higgins, T.J.V. (2010) Expression
of a sequence-modified cry2Aa gene for
resistance toHelicoverpa armigera in
chickpea (Cicer arietinum L.). Plant Sci.,
178, 333–339.

119 Mao, Y.B., Cai, W.J., Wang, J.W., Hong,
G.J., Tao, X.Y., Wang, L.J., Huang, Y.P.,
and Chen, X.Y. (2007) Silencing a cotton
bollworm P450 monooxygenase gene by
plant-mediated RNAi impairs larval
tolerance of gossypol. Nat. Biotechnol.,
25, 1307–1313.

120 Gordon, K.H.J. and Waterhouse, P.M.
(2007) RNAi for insect-proof plants. Nat.
Biotechnol., 25, 1231–1232.

121 Kumar, P., Pandit, S.S., and Baldwin, I.T.
(2012) Tobacco rattle virus vector: a rapid
and transient means of silencing
Manduca sexta genes by plant
mediated RNA interference. Plos One, 7,
e 31347.

380j 15 Chickpea: Crop Improvement under Changing Environment Conditions


