INHERITANCE IN INTER-GENERIC CROSSES BETWEEN CAJANUS AND atylosia species

R.P.S. PUNDIR ${ }^{1}$ and R.B. SINGH ${ }^{2}$
Department of Genetics and Plant Breeding, Banaras Hindu University, Varanasi 221005

Abstract

Inheritance of six oligogenic traits, namely, leaflet shape, twining nature, pod hairiness, growth habit, seed strophiole and seed colour, were studied in four intergeneric crosses involving two cultivars of C. cajan and three species of Atylosia. The genes responsible for leaflet shape, growth habit and seed colour showed incomplete dominance. For the remaining characters, dominant gene expression was recorded. The F_{z} segregation revealed that leafiet thape, pod hairiness and seed colour were governed by a single gene. The twining nature, seed strophiole, and growth habit were governed by two genes.

Index words: Cajanus cajan, Atylosia spp, pigeonpea, intergeneric crosses, inheritance.

Pigeonpea or redgram (Cajanus cajan (L.) Millsp.) is a predominant pulse crop of the Indian subcontinent and constitutes a very important source of protein in vegetarian diets. The grain yield of pigeonpea, in general, is low and unstable due to reasons such as flower drop, disease and insect susceptibility and photosensitivity, and could be overcome through transfer of specific genes or gene combinations from related wild Atylosia species. To organise a systematic breeding programme, an understanding of the inheritance pattern of botanical characters is necessary so that the segregating populations can be handled effectively.

Materials and Methods

Seeds were obtained from the Genetic Resources Unit, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). The passport information of the test materials is given in Table 1. The experiment was carried out between 1977 and 1980 at the Agricultural Experimentation Farm of the Banaras Hindu University, Varanasi, India. Cross pollinations were made during the winter season of 1977-78. The F_{18} and $F_{2} s$ and the parental

[^0]species were grown in subsequent years. For examining the inheritance of botanical traits namely leaflet shape, twining nature, pod hairiness, growth habit, seed atrophiole and seed colour, observations were recorded in the following four intergeneric crosses.
(i) C. cajan cv. Pant A2 \times A. albicans
(ii) C. cajan cv. Pant A2 \times A. scarabaeoides
(iii) A. cajanifolia \times C. cajan cv. Pant A 2
(iv) A, cajanifolia \times C. cajan cv. UPAS 120

The parental species and the F_{1} hybrids were examined for meiosis, pollen and ovule fertility. The parental species, F_{1} hybrids and the segregating F_{1} populations were also scored for botanical characteristics. Statistical fitness for the inheritance of botanical characters was calculated by Chi-square test. The Chi-square value obtained for each ratio was compared with the table value for the appropriate number ($\mathbf{n}-1$) of degrees of freedom and the probability limits.

Table 1: Passport information of the material used in the study

Species	Accession No.* at ICRISAT	Source	Collected from
C. cajan cv. Pant A2	ICP 6973	GBPUAT, Pantnagar	-
C. cajan cv. UPAS 120	ICP 6971	"	-
A. albicans	JM 2356	ICRISAT	Tirumala Hill, Chittoor Dist., A.P., India
A. cajanifolia	JM 2739	"	Bailadila Hill top, Bastar Dist., M.P., India
A. scarabaeoides	ICP 7464	IIT, Kharagpur	Western Ghats, India

*ICP $=1$ CRISAT Pigeonpea Accessions, JM $=$ L.J.G. van der Maesen

Results and Discussion

Observations on meiosis, pollen and ovlue fortility and pod set were made on F_{1} hybrids and the parental species, which will be discussed in a separate publication. The expression of the botanical characters in the parents and the F_{1} 's and the segregation patterns in the F_{2} 's have been given in Table 2 and will be discussed here one by one.

Leaflet shape:- In the two intergeneric hybrids between Plant A 2 and A. albicans and A. scarabaeoides, Fi plants were intermediate with respect to leaflet shape expression. In F_{2} three phenotypic classes were exhibited meaning that the character is governed by a single partially dominant gene (\mathbf{L}_{1}). Reddy (1973) working on cross of C. cajan and A. lineata found a ratio of 3 lanceolate: 1 ovate whereas his observations on the other cross (C. cajan \times A. scarabaeoides) were in line with our findings.

Twining nature: The inheritance of twining nature has been studied for the first time. The F_{1} of cv. Pant A2 \times A. scarabaeoides was non-twining, hence twining nature is recessive: The segregation of F_{2} plants into a ratio of 13 nontwining : 3 twining indicated that two genes govern this character, one inhibits the expression of the other when dominant. The genes involved in the expression of this character have been designated as IITT where II is an inhibitor.

Pod hairiness: F_{1} plants between Pant A 2 and A. scarabaeoides had this trait. F_{2} plants segregated into 3 hairy: 1 non-hairy ratio. Similar ratio of $3: 1$ was reported by Reddy (1973) from the Cajanus \times Atylosia crosses. However, Reddy et al. (1980) observed two phenotypic ratios $3: 1$ and 13:3 in crosses of A. scarabaeoides with two different pigeonpea accessions. The gene symbols suggested are $\mathrm{HpHp}_{\mathrm{p}}$ and hphp for hairy and non-hairy podded characters, respectively.

Growth habit : Reddy (1973) obtained a ratio 13 erect: 3 spreading in intergeneric cross of C. cajan and A. scarabaeoides. However, in the present investigation which also involved similar species the growth habit of the F_{1} was almost intermediate to the parents. The large variation in F_{2} plants could be grouped into 3 classes, 1 erect : 1 spreading : 14 intermediate, which suggested that two genes with partial dominance are responsible for this trait. This ratio is being reported for the first time. The gene symbol assigned to the erect parent is $\mathbf{E g}_{1} \mathrm{Eg}_{1} \mathrm{Eg}_{2} \mathrm{Eg}_{9}$ and to the creeping parent is $\mathbf{~}_{1} \mathbf{e g}_{1} \mathbf{~}_{\mathbf{g}}^{2} \mathrm{Eg}_{2}$. The other gene combinations represented the various grades of semi-spreading/semi-erect habits (intermediate), observed in the F_{2} populations.

Seed strophiole: Seed strophiole inheritance was examined in three crosses, Pant"A $2 \times$ A. scarabaeoides, A. cajanifolia \times Pant A2 and A. cajanifolia \times UPAS 120. The strophiole presence was expressed in F_{1}, and 15: 1 ratio in F_{2} generation was obtained suggesting that two genes with duplicate gene action are involved in expression of this character, unlike the earlier reports of Reddy (1973) and Reddy et al. (1980) who reported 9:7 and 13:3 F2 ratios, respectively. The genes proposed are $\mathbf{S S}_{\mathbf{1}} \mathbf{S S}_{\mathbf{2}}$ for strophiolated seeds and $\mathbf{s s}_{1} \mathbf{s s}_{\mathbf{2}}$ for non-strophiolated seeds.
TABLE 2 : Inheritance of certain qualitative traits in wide crosses of Cajanus and Atylosia species

Character	¢ Parent	${ }^{\text {o }}$ Parent	F_{1}	$\mathrm{F}_{\mathbf{4}}$ Segregation			$\mathbf{X}^{\mathbf{2 *}}$
				Observed (No.)		Expected ratio	
Leafiet shape	Lanceolate (cv. Pant A2)	Obovate (A. albi.)	Intermediate	Lanceolate Intermediate Obovate	$\begin{array}{r} 11 \\ 15 \\ 9 \end{array}$	1:2:1	$\begin{gathered} 0.325 \\ (0.90-0.75) \end{gathered}$
	Lanceolate (cv. Pant A2)	Obovate (A. scar.)	Intermediate	Lanceolate Intermediate Obovate .	$\begin{array}{r} 80 \\ 138 \\ 52 \end{array}$	1:2:1	$\begin{gathered} 1.500 \\ (0.50-0.25) \end{gathered}$
Twining nature	Non-twining (cv. Pant A2)	Twining (A, scar.)	Non-twining	Non-twining Twining	$\begin{array}{r} 230 \\ 40 \end{array}$	13:3	$\begin{gathered} 0.836 \\ (0.50-0.25) \end{gathered}$
Pod hairiness	Non-hairy (cv. Pant A2)	Hairy (A. scar.)	Hairy	Non-hairy Hairy	$\begin{array}{r} 200 \\ 70 \end{array}$	3:1	$\begin{gathered} 0.046 \\ (0.90-0.75) \end{gathered}$
Growth habit	Erect (cv. Pant A2)	Spreading (A. scar.)	Semi-spreading	$\begin{array}{lr}\text { Erect } & 18 \\ \text { Semi-spreading } 243\end{array}$		1:14:1	$\begin{gathered} 0.407 \\ (0.90-0.75) \end{gathered}$
Seed strophiole	Absent (cv. Pant A) Present (A. cajif.)	Present (A. scar.)	Present	Present Absent	247 6	15:1	$\begin{gathered} 0.759 \\ (0.50-0.25) \end{gathered}$
		Absent (cv. Pant A2)	Present	Present Absent	$\begin{gathered} 145 \\ 16 \end{gathered}$	15:1	$\begin{gathered} 0.447 \\ (0.75-0.50) \end{gathered}$
	Present (A. cajif.) Orange (cv. Pant A2)	Absent Present(cv. UPAS120)		Present Absent	155 10	15:1	$\begin{aligned} & 0.001 \\ & (<0.90) \end{aligned}$
Seed colour		Black (A. scar.)	Grey	Orange Grey Black	67 143 43	1:2:1	$\begin{gathered} 2.752 \\ (0.50-0.25) \end{gathered}$
	Black (A. cajff.)	Orange (cv. Pant A2)	Grey	Orange Grey Black	30 98 33	1:2:1	$\begin{gathered} 2.881 \\ (0.25-0.10) \end{gathered}$
	Black (A. cajif.)	Orange (cv. UPAS 120	Grey 0)	Orange Grey Black	62 71 32	1:2:1	$\begin{gathered} 3.929 \\ (0.25-0.10) \end{gathered}$

[^1]Seed colour : Genetics of seed colour was studied in three crosses (Table 2.) The seeds from the F_{1} plants showed intermediate colour (Grey) with respect to the parents. In F_{2}, three phenotypic classes in 1:2:1 ratio suggested that the characteristic is governed by single partially dominant gene. In the intergeneric crosses, this trait has been examined for the first time and the gene symblols assigned are Ose Osc for orange seed colour, and osc ose for black colour.

Acknowledgements

We gratefully acknowledge the award of Senior Research Fellowship and leave granted to R.P.S. Pundir by the ICAR, New Delhi and ICRISAT, respectively during this investigation. The help and encouragement of several colleagues at B.H.U. and ICRISAT is sincerely appreciated.

References

Reddy, L.J. (1973). Inter-relationships of Cajanus and Atylosia species as revealed by hybridization and pachytene analysis. Ph. D. thesis, IIT, Kharagpur, India.
Reddy, L.J., J.M. Green and D. Sharma (1980). Genetics of Cajanus cajan (L.) Millsp. \times Atylosia species. Proc. Intl. Workshop on Pigeonpea, Patanchera, A.P., 2 : 39-50.

[^0]: ${ }^{1}$ Present Address : GRU, ICRISAT, Patancheru 502 324, A.P., India.
 ${ }^{2}$ FAO, RAPA, Bangkok-2, Thailand.

[^1]: * Figure in parenthesis indicates the range of probability.

