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Abstract Genetic diversity among 42 sorghum accessions
representing landraces (19), advanced breeding lines (16),
local cultivars (2) and release varieties (5) with 30 simple
sequence repeat (SSR) markers revealed 7.6 mean number
of alleles per locus showing 93.3% polymorphism and an
average polymorphism information content of 0.78 which
range from 0.22 (Xtxp12) and 0.91(Xtxp321). The average
heterozygosity and effective number of alleles per locus
were 0.8 and 6.65 respectively. Cluster analysis based on
microsatellite allelic diversity clearly demarcated the
accessions into ten clusters. A total of 24 unique alleles
were obtained from seven SSR loci in 23 accessions in a
size range of 110–380 bp; these unique alleles may serve as
diagnostic tools for particular region of the genome of
respective genotypes. Selected SSR markers from different
linkage groups provided an accurate way of determining
genetic diversity at the molecular level.

Keywords Polymorphism information content . Simple
Sequence Repeats (SSR) . Fingerprint . Heterozygosity .
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Abbreviations
MDS multidimensional scaling
PIC polymorphism information content
CTAB cetyl trimethyl ammonium bromide
UPGMA unweighted pair-group method with arithmetic

average
SSR simple sequence repeats

Introduction

Sorghum [Sorghum bicolor (L.) Moench] is fifth most
important C4 cereal species next only to wheat, rice, maize
and barley. It is predominantly a self-pollinating member of
gramineae, with a basic chromosome number ten (2n=2x=
20) and with a nuclear DNA content of 1.6 pg and genome
size of 735 Mbp (Dillon et al. 2007). It is cultivated on
44 mha in 99 countries and is it a staple food crop for over
500 million people in Africa, Asia, Oceania, and the
Americas. About 21% (9.2 mha) of world’s sorghum area
is in India. It is cultivated on 5.0 mha during kharif (rainy)
season and 4.2 mha during rabi (winter) season (FAOSTAT
2006). The rabi belt in India extends through the states of
Karnataka, Maharashtra, and Andhra Pradesh. Generally
rabi sorghum in these regions is grown on typical deep
black soils and the crop experience terminal drought stress
due to receding soil moisture. Most of these regions
experience either long or short term moisture stress or high
temperature stress. Further, there is a drastic decline in the
cultivated area and production of sorghum from 6.8 mha
(4.0 mt) during 1964–65 to 5.0 mha (2.9 mt) in 2002–03
(http://icrtest:8080/sorghum/sorghum.htm). Such a drastic
decline in area and production can be attributed to low soil
fertility, rain-fed farming characterized by erratic and
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inadequate rainfall, negligible external inputs, continued
use of mostly unimproved cultivars with a low harvest
index (<20%), and prevalence of diseases and insect pests.
Therefore, improvement of rabi sorghum productivity has a
great impact on socio-economic status of the sorghum
growing regions in India.

Effective plant breeding and crop improvement program
depend on the availability of diverse genetic resources.
Evaluation of germplasm diversity could help to identify
genotypes with great novelty and thus be useful in crop
improvement program in achieving both short and long-
term goals. There have been several reports of assessing
patterns of genetic variation mainly based on morpho-
logy (Appa-Rao et al. 1996; Dje et al. 1998), pedigree
(Jordan et al. 1998) or combination of agronomic and
morphological traits in sorghum (Harlan and Dewet
1972). The utility of isozymes (Aldrich et al. 1992),
restriction fragment length polymorphism (RFLP)
(Aldrich and Doebley 1992), random amplified poly-
morphic DNA (RAPD) (Ayana et al. 2000) and simple
sequence repeat (SSR) (Abu-Assar et al. 2005) markers
have been attempted in kharif types of sorghum germ-
plasm. However, application of such approaches in rabi
type of germplasm are scanty to our knowledge. SSR
markers have been found to be more reliable and useful
over others owing to their inherent merits and abundance
(Varshney et al. 2005). In sorghum and maize, compared
to RAPD (Vierling et al. 1994) and RFLP (Tao et al.
1993), SSRs markers have been shown to be highly useful
to study genetic diversity (Uptmoor et al. 2003; Dillon et
al. 2005).

A comprehensive genetic diversity analysis of local
cultivars and landraces of rabi types is highly desired in
India which would in turn help in deploying the genetic
variation in plant breeding programmes. The current
investigation was aimed at unraveling the extent of
diversity among a set of selected 42 rabi germplasm
lines comprising of local cultivars, advanced breeding
lines and landraces of Karnataka and Maharashtra
regions of Southern India using SSR markers and to
integrate the results in developing mapping populations
and selection of parents in deriving segregating material
for rabi sorghum improvement.

Materials and methods

Plant material

A set of 42 rabi sorghum germplasm that represents five
released varieties, 16 advanced breeding lines, two local
cultivars and 19 selected landraces were examined for the
extent of existing genetic diversity. The pedigree informa-

tion and salient features of these accessions are presented in
the Table 1.

DNA extraction and normalization

The total genomic DNA was isolated from bulk of five
individual plants from each entry. Three to four week old
seedlings were taken from field, lyophilized and tissues
were stored at −80°C till use. Genomic DNA was extracted
following CTAB mini preparation (Mace et al. 2003).

PCR amplification and microsatellite assay

A set of 30 microsatellite loci that span all the ten linkage
groups (Table 2) of sorghum were chosen for genotyping
42 sorghum germplasm accessions that include 41 rabi
sorghum genotypes and one parental line (C-43) used in
developing sorghum hybrid (CSH 16) which is predomi-
nantly grown in kharif season. The sequence information of
these markers was obtained from Bhattramakki et al.
(2000). The PCR amplification reactions for all 30 micro-
satellite loci on the selected genotypes set was performed in
25 μl reaction volume: 2 μl (25 ng/μl) DNA template, 1 μl of
2.5 mM dNTP mix (Bangalore Genei Pvt Ltd), 2.5 μl 10X
PCR assay buffer (Bangalore Genei Pvt Ltd), 1 μl each of
forward and reverse primer (4 pM/μl Bangalore Genei Pvt
Ltd), 0.1U of Taq polymerase (Bangalore Genei Pvt Ltd) and
made up to 25 μl with MilliQ water. Amplifications were
performed in 96 well thin wall polycarbonate microtitre
plates (Corning Inc.) in a Master Cycler gradient (5331-
eppendorf versions 2.30. 31-09, Germany) with initial
denaturation at 94°C for 5 min followed 34 cycles of
denaturation at 94°C for 1 min, primer annealing at 50–60°C
depending on the primer (Table 2) for 1 min and primer
extension at for 2 min. A final extension at 72°C for 10 min
was given at the end of the cycles and samples were held at
4°C until retrieval.

Separation and visualization of PCR amplicons

Initially the PCR products of all markers were tested for
amplification on 2% agarose gel. Further, the amplified
products of all 30 markers were resolved on 6%
polyacrylamide gels using Sequi-Gen® GT nucleic acid
electrophoresis cell (Bio-rad Pvt. Ltd, India). The
amplicons were visualized by silver staining procedure
(Tegelstrom 1992).

Data analysis

The clear and unambiguous alleles produced by all the
micosatellite loci were scored for the presence as ‘1’ and
absence as ‘0’, for each corresponding allele among the
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Table 1 Information on pedigree, source and distinguishing characters of the rabi sorghum germplasm

Genotypes Pedigree or source Distinguishing character

Hybrids

SPV-570 5-4-1 × SB40, Parbhani Hybrid variety has good fodder quality, creamy and
lustrous seed, and high yielding lines with 120 days
maturity.
Promising restorer line on Milo cytoplasm

SSV-74 Released from UAS, Dharwad Hybrid variety, has good fodder quality, semi-compact
elliptic panicle

SPV-1359 Land race selection made from rabi genotype
Dhulia Released from Rahuri Agri’l University,
Maharashtra

High yielding hybrid variety, susceptible to drought

SPV-86 R24 × R16; released from National Research
Center For Sorghum

High yielding hybrid variety, charcoal rot susceptible

DSV-4 SPV 86 × E 36-1, released from UAS, Dharwad Charcoal rot tolerant and high yielding genotype

Mugthi M 35-1 × Viramgaon local High yielding released variety

A and B lines

A-1 M 35-1 × GS-56-1-1, Annigeri Male sterile line

M31-2A Raichur mutant from M35-1 Male sterile line

SB401-A SB 1066 × Pulgar White, UAS, Dharwad Male sterile line

104-A 296B × Swati, ARS, Mohol Cytoplasm male sterile line, shoot fly resistant, high
seed protein

104-B Milo Longer panicle and shoot fly tolerant

SB 401-B Milo cytoplasm Promising B line on Milo cytoplasm

M31-2B Maldandi cytoplasm High yielding, bold seed matures at 130 days

Landraces and local collections

Doodmogra CRS, Solapur Landrace

Barsizoot Barshi local, Maharashtra Landrace, high iron content in the grain

Yangir local Gadag, Karnataka Landrace

Harnidagad CRS, Solapur Landrace

Basavanapada Dharwad, Karnataka Extra early, landrace, high number of trichomes

Pop sorghum NA Landrace, small, pearly, completely covered grain

Sakkari jola Bijapur, Karnataka Landrace, very small lustrous grain

Kadabin jola Bijapur, Karnataka Landrace, yellow colored grain

Kagimothi Bijapur, Karnataka Landrace, red colored grain

Kodamuthy NA Landrace, susceptible to head smut

Belagrinda Bagalkot, Karnataka Landrace, shoot fly resistant, compact oval panicle

Y-4 Annegari, Karnataka Landrace, tall growing (255 cm)

Chittapur local Gulbarga, Karnataka Landrace, high grain yield

Bidar local Bidar, Karnataka Landrace compact elliptical ear head

Hegari-1 Bellari district, Hegari, Karnataka Landrace, resistant to shoot fly

Kandakur NA Landrace, susceptible to head smut

Muddihalijola Bijapur, Karnataka Landrace, shoot fly resistant with semi-compact
elliptic panicle

Tandur local Tandur, Karnataka Local collection, compact elliptic inflorescence

Dagadisolapur Dharwad, Karnataka Landrace grown in Maharashtra region of India,
susceptible to grain smut

Dagadi local Dharwad, Karnataka Landrace, grown in some parts of Deccan plateau

Drought tolerant/susceptible

M35-1 Selection from Maldandi bulk A long standing variety, good quality grain,
tolerant to drought

RSLG-262 Rahuri, landrace selection, Mahatma Phule Agri’l University Exhibits terminal drought tolerance

E36-1 Ethiopan landrace Resistance to drought and charcoal rot, striga susceptible
and staygreen
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genotypes. Estimates of inter individual genetic similarity
were obtained according to (Nei and Li 1979) as Sij ¼ 2aij=
ð2aij þ bi þ cjÞ, where Sij is the similarity between two
individuals i and j, aij is the number of bands present in
both individuals i and j, bi is the number of bands present in
individual “i” but absent in individual “j”, and cj is the
number of bands present in individual “j” but absent in
individual “i”. The resulting 42×42 similarity matrix was
subjected to multi-dimensional scaling (MDS) (Kruskal and
Wish 1978) to assess whether the observed molecular
variation indicated any evidence of clustering among
accessions. The UPGMA-based dendrogram was con-
structed using the NTSYS 2.1 software, version 2.1. The
unweighted pair-group method with arithmetic average
(UPGMA) was used to independently confirm the cluster-
ing indicated by the two-dimensional MDS plot. MDS scatter
plot was prepared using the pair-wise Dice similarity co-
efficient values among the 42 genotypes (Rohlf 2002). Boot-
strapping over loci with 100 replications was carried out to
assess the strength of evidence for the branching patterns in
the resulting UPGMA dendrograms using PAUP 4.0b10
(http://www.lms.si.edu/PAUP; developed by Swofford 2003).

Expected heterozygosity was computed according to
Belaj et al. (2003) as He ¼ 1�P

Pi2

Where Pi is the frequency of the ith allele
For each SSR marker, polymorphism information

content (PIC) values were calculated according to (Botstein
et al. 1980), which provide an estimation of the discrimi-
natory power of a locus as follows:

PIC ¼ 1�
Xn

i¼1

Pi2
" #

�
Xn�1

i¼1

Xn

j¼iþ1

2Pi2Pj2
" #

Effective number of alleles per locus (ne) according to
(Morgante and Oliveri 1993): ne ¼ 1=

P
Pi2; Where Pi is

the frequency of the ith allele

Total number of effective alleles Ne as defined by (Pejic
et al. 1998): Ne ¼

P
ne

Results

Allelic diversity

All 30 microsatellite loci successfully produced at least one
allele per accession that was used to characterize and evaluate
genetic diversity. A total of 228 alleles were generated by 30
SSR loci in the germplasm analyzed The allele sizes across all
microsatellite loci were in the range of 100–750 bp. The total
number of alleles ranged from 2 (Xtxp21) to 16 (Xtxp318)
with an average of 7.6 alleles per locus (Table 2). A wide
range of heterozygosity (0.25 to 0.91) among the accessions
was detected for the SSR loci examined. The average
heterozygosity was 0.80. The PIC values, derived from
allelic diversity and frequency among the genotypes, were
not uniform for all of the SSR loci tested. The PIC values for
the markers ranged from 0.22 to 0.91 with an average of
0.78. The number of effective alleles per marker ranged from
1.33 to 11.73 with an average of 6.65. The total number of
effective alleles produced by the 30 SSR loci was 199.72.
Among amplicon, a few primer pairs amplified orthologous
loci among the tested sorghum accessions.

Genetic relationships among the selected rabi genotypes

The average genetic similarity among the accessions studied
was 0.56 with a range of 0.41 to 0.74. The accession C-43
recorded least genetic similarity with all other accessions
studied (0.41). Similarly the landraces have shown lower
genetic similarity with advanced breeding lines, local
cultivars and release varieties that were examined in the
current study. The genetic similarity between the landraces

Table 1 (continued)

Genotypes Pedigree or source Distinguishing character

RS-29 NA Stay-green, promising restorer donor for increased
grain number

IS 22380 NA Drought susceptible

Biotic stress resistant/susceptible

C-43 It can grow both in kharif and rabi seasons, source
of grain mould resistance

DSV-5 Selection from Natte maldandi of Gulbarga district Dual purpose, charcoal rot resistant rabi sorghum variety

JP1-5 Selection from Chittapur local, Gulbarga Bold, pearly white grain, susceptible to grain smut

Giddamaladandi Dharwad, Karnataka Dwarf genotype, resemble M35-1 in morphology, compact
elliptic inflorescence, susceptible to smut, grown in some
places of Karnataka and Maharashtra states of India

NA information not available
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and advanced breeding lines ranged between 0.41 and 0.47;
for instance, it was 0.44 between kodamuthy and SSV-74;
0.43 between SB 401-A and popsorghum.

The dendrogram constructed using Dice similarity coeffi-
cient and UPGMA clustering grouped all the 42 sorghum
germplasm accessions into ten clusters (Fig. 1). Cluster III (Cl
III) was largest cluster with 10 genotypes followed by Cl I
and Cl II with 7 accessions; Cl VI and Cl VII with three
accessions each. However, Cl VIII and Cl X comprised of
only one accession SB401-A and C-43 respectively while Cl
IX comprised of two accessions (SB401-B and Harinidagad).
All the examined landraces were distributed among all the
clusters except Cl VIII and Cl X. However, among the 19

examined landraces, a total of 9 (47%) landraces were
grouped into Cl III. The accession C-43, cultivated both
during kharief and rabi seems to be distinct in its genotypic
composition is being grouped separately (Cl X)

Unique alleles for accessions

Unique alleles were detected that can be used to distinguish
genotypes among themselves; several primer pairs pro-
duced specific (at least one unique allele per accession) to
distinguish any two accessions at a time. Unique alleles for
different genotypes, sizes of the fingerprint are provided in
the Table 3. The markers Xtxp354 amplified eight different

Table 2 Microsatellite loci, number of alleles, heterozygosity, polymorphism information content and effective number of alleles estimated based
on analysis of 42 sorghum germplasm accessions

Locus ID Repeat motif Annealing temp.
(°C)

Amplicon
size (bp)

No. of alleles Heterozygosity PIC Value ne
* LGΔ

Xtxp326 (GT)12 55 440–450 3 0.66 0.59 2.94 –

Xtxp63 (GA)24 55 100–115 9 0.90 0.89 9.64 B

Xtxp205 (AG)12 55 200–215 4 0.71 0.66 3.44 C

Xtxp343 (AGT)21 55 250–320 8 0.88 0.86 8.05 D

Xtxp235 (TC)19 55 220–245 7 0.87 0.85 7.59 –

Xtxp230 (GA)28 55 170–205 10 0.89 0.88 9.44 F

Xtxp141 (GA)23 55 200–208 4 0.75 0.70 3.98 G

Xtxp321 (GT)4 (AT)6 (CT)21 55 100–130 5 0.75 0.71 3.93 H

Xtxp265 (GAA)19 55 150–380 5 0.76 0.71 4.12 I

Xtxp9 (TG) 12TT(TG) 14(AG) 13 55 162–285 8 0.82 0.79 5.62 C

Xtxp86 (AG)13(GA)16 55 265–320 4 0.68 0.61 3.14 B

Xtxp88 (AG) 31 53 145–750 13 0.90 0.89 10.10 A

Xtxp318 (AGA) 12 55 400–600 16 0.90 0.89 10.15 –

Xtxp8 (TG) 31 60 120–145 6 0.79 0.76 4.65 B

Xtxp211 (CT) 23 55 150–200 7 0.86 0.84 7.02 B

Xtxp283 (TTC) 12 55 110–170 10 0.89 0.88 8.87 B

Xtxp286 (CTT)11 CTC (CTT) 16 55 100–125 7 0.88 0.87 8.40 B

Xtxp12 (CT) 22 55 105–190 13 0.90 0.90 10.31 D

Xtxp21 (AG) 16 60 100–120 2 0.25 0.22 1.33 D

Xtxp158 (AC) 10 55 110–130 3 0.56 0.49 2.26 –

Xtxp278 (TTG) 12 50 180–210 4 0.70 0.65 3.34 E

Xtxp67 (GA) 28 55 140–253 6 0.81 0.78 5.22 F

Xtxp258 (AAC) 19 55 555–700 8 0.87 0.86 7.68 F

Xtxp295 (CTT)16 (AGG)6 55 180–190 6 0.76 0.73 4.21 E

Xtxp276 (GAA)12 (GAAA)6 (GAAA)21
(GTA)3 (GTA)3

55 215–225 9 0.87 0.86 8.00 –

Xtxp354 (GA)21 (AAG)3 55 200–205 9 0.88 0.87 8.13 H

Xtxp6 (CT)33 50 100–130 15 0.91 0.91 11.73 F

Xtxp274 (TTC)19 55 235–250 11 0.89 0.88 8.93 I

Xtxp65 (ACC)4 (CCA)3 CG(CT)6 55 120–150 8 0.88 0.87 8.58 J

Xtxp229 (CT) (CA)6 CCC (CA)6 55 200–208 8 0.89 0.88 8.92 A

Average 7.6 0.80 0.78 6.65

Δ Linkage information obtained from Bhattramakki et al. (2000)

78 J. Plant Biochem. Biotechnol. (Jan–June 2011) 20(1):74–83



amplicons of varying size (290 to 380 bases) in IS 22380,
E36-1, Yangir landrace, Kadabinjola, Hagari, Dagadi
landrace, SPV-86 and SSV-74 genotypes. The markers
Xtxp343 and Xtxp276 amplified 4 specific amplicons each,
in eight different genotypes.

Discussion

The characterization and quantification of genetic diversity
within closely related crop germplasm has long been a
major goal, as it is essential for a rational use of genetic

resources. Furthermore, the analysis of genetic variation
among breeding materials is of fundamental interest to plant
breeders, as it contributes immensely to selection, monitor-
ing of germplasm, and also to prediction of potential
genetic gains (Chakravarthy and Rambabu 2006). Limita-
tions on morphological characterization, including difficul-
ties concerning the definition and validation of neutral traits,
experimental costs, and evaluation time and genotype ×
environment interaction are widely discussed in germplasm
characterization studies (Marita et al. 2000; Chandra et al.
2002). Considering these, DNA-based molecular markers
have proven to be powerful tools in the assessment of

Fig. 1 UPGMA dendrogram constructed using allelic data obtained for 30 SSR markers depicts genetic relationships among 42 sorghum
accessions
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genetic variation and in the elucidation of genetic relation-
ships within and among species, characterized by abundance
and untouched by environmental influence. Nevertheless,
microsatellite or SSR markers have become the preferred
molecular markers for studying genetic diversity in many
crops owing to their co-dominance, multi-allelic nature, and
ease of use and repeatability of assays.

In the present investigation, 30 SSR marker loci distributed
across the ten linkage groups of sorghum genome were used
to assess the genetic diversity among 42 sorghum genotypes.
The advantage of using markers with known map positions
instead of a random sample is that there is control over the
coverage of the genome. Thus, it is possible to avoid over
representation of certain regions of the genetic map that can
produce inaccurate estimates of genetic similarities among
individuals (Menz et al. 2002). In general, the level of allelic
diversity among the germplasm included in this study was
high. The 30 SSR markers evaluated in this study consisted
of 14 di-nucleotide, seven tri-nucleotide, six-compound type
repeat units. The allele sizes across all microsatellite loci
were in the range of 100–750 bp. Maximum number of
alleles were observed in case of SSRs with trinucleotide
repeat motifs, similar results were report by Jayashree et al.
(2006). Mutations in SSR markers resulting in allele size

differences are often caused by deletions or insertions of
single or multiple repeat units due to unequal crossing over
followed by concerted evolution. Possibly, insertion of DNA
segments or unusual high rate of multiplication of certain
repeats be responsible for observed orthology of amplicons
in some accessions. However, homology of primer pairs to
orthologous regions within genome might also yield ampli-
cons of too high or low in molecular weight (Li and Gill
2002; Kumar et al. 2009). The average number of alleles per
locus was 7.6, indicating a greater magnitude of diversity
among the plant materials included in this investigation.
Though the marker, Xtxp318 revealed highest number of
alleles, the linkage group of this marker is not known.
Similarly, the marker Xtxp6 on chromosome 6 (LG F)
generated a maximum of 15 alleles, while marker Xtxp21 in
chromosome 4 (LG D) had a minimum of 2 alleles (Table 2).
Many studies have also reported significant differences in
allelic diversity among various microsatellite loci (Uptmoor
et al. 2003). The alleles revealed by markers showed a high
degree of polymorphism, with as many as 28 markers
producing 100% of bands polymorphic. This amply sug-
gested that the genotypes selected for this study harbor
enough genetic divergence. Nevertheless, the average
expected heterozygosity was very high (0.8), expected
heterozygosity is a more accurate measure of polymorphism,
as it further measures the distribution of those alleles across
the germplasm being examined. Although the number of
alleles and expected heterozygosity are dependent on the
specific markers selected and the diversity of germplasm
used, values were similar to those found in previous studies.
The average number of SSR alleles reported has ranged from
4.4 to 6.8 (Uptmoor et al. 2003; Dillon et al. 2005; Menz et
al. 2002; Agrama and Tunistra 2003) and expected hetero-
zygosity values have ranged from 0.58 to 0.81 (Uptmoor et
al. 2003; Dillon et al. 2005; Chandra et al. 2002). The higher
heterozygosity observed in the present study might be due to
the higher number of landraces being sampled for the
experiment. Markers with PIC values of 0.5 or higher are
highly informative for genetic studies and are extremely
useful in distinguishing the polymorphism rate of a marker at
a specific locus (DeWoody et al. 1995).The SSR markers
used in this study were highly informative, because PIC
values higher than 0.5 indicate high polymorphism. The
observed number of alleles across the loci was more than the
effective number of alleles (1.699 to 7.251) as expected.
Similarity coefficients ranged from 0.41 to 0.75 for all
accessions; the minimum genetic relatedness was 41 per cent
between restorer line C-43, and with all the other accessions
under study. C-43, a restorer line, included in the study, placed
itself in a separate cluster with least indicative similarity with
others, whereas highest similarity (0.75) was observed
between SPV-570 and M35-1 and 0.72 was observed between
M35-1 and Mugthi. SSR markers detect finer levels of

Table 3 Unique alleles for selected accessions of rabi sorghum

Sl. No. Locus ID Genotype Fingerprint (bp)

1 Xtxp326 Kandakur 185

2 Xtxp343 E36-1 227

3 Xtxp343 C-43 250

4 Xtxp343 Doodmogra 245

5 Xtxp343 Barsizoot 240

6 Xtxp321 DSV-4 260

7 Xtxp321 RS-29 125

8 Xtxp21 A-1 120

9 Xtxp354 IS 22380 110

10 Xtxp354 SSV-74 290

11 Xtxp354 E36-1 300

12 Xtxp354 Dagadi landrace 320

13 Xtxp354 SPV-86 350

14 Xtxp354 Yangir landrace 355

15 Xtxp354 Kadabinjola 380

16 Xtxp354 Hagari 110

17 Xtxp63 SSV-74 125

18 Xtxp63 Dagadi landrace 135

19 Xtxp63 Harinigad 130

20 Xtxp276 Sakkarajola 135

21 Xtxp276 Dagadi sholapur 128

22 Xtxp276 104-A 100

23 Xtxp276 Yangir landrace 130

24 Xtxp276 SB401-B 132
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variation among closely related lines. Nevertheless, 30 micro-
satellite markers were able to discriminate between the
landraces/cultivars/release varieties/advanced breeding lines
and demonstrated a maximum genetic similarity value of
0.66 between the landraces Basavanapada, Belagrinda and
Y-4. These landraces were originated from Karnataka and had
similar morphological features, such as a taller and erect plant
type, short bold and awnless grains.

The genotypes studied in this work, represent germplasm
with important agronomic characteristics for potential
commercial exploitation. The genus sorghum possesses
enormous wealth of genetic diversity. Several factors could
contribute to high level of genetic variation present in
cultivated sorghum (DeWoody et al. 1995). Multiple origins
of domesticated sorghums, cross-pollination between se-
lected races and out crossing between domestic cultivars
and highly variable wild species are considered to be major
factors contributing to the extensive genetic diversity
observed in sorghum (Doggett 1988). In addition, part of
diversity is attributed to domestication of sorghum from
several wild species; the high rate of naturally occurring
hybridization between landraces and their wild relatives can
lead to highly polymorphic genotypes. Overtime, several
genetic changes must have happened in ecotypes for their
adaptation to a specific situations and quality, which made
them to prevail even today. A number of unwanted
nucleotide sequences might have been eroded during this
process of adaptation in the agriculture system. Sorghum
SSR markers revealed higher levels of genetic polymor-

phism in present study. The high level of polymorphism
associated with SSR markers may be a function of the unique
replication slippage mechanism, loss or gain of specific
nucleotide/s during evolution responsible for generating SSR
allelic diversity (Morgante et al. 2002). Based on the simple
matching coefficients a genetic similarity matrix was
constructed using the SSR data to assess the genetic
relatedness among the 42 selected accessions. All the
selected accessions were grouped into ten clusters. Cluster
III is the largest cluster with ten accessions; followed by
followed by Cl I and Cl II with seven accessions; Cl VI and
Cl VII with three accessions each. However, Cl VIII and Cl
X comprised of only one accession SB401-A and C-43
respectively while Cl IX comprised of two accessions
(SB401-B, Harinidagad). Similarity matrices constructed
based on shared allele frequencies revealed that the
average genetic similarity between genotypes was lowest
(0.41). The polyallelic nature of SSR markers has the
advantage of discriminating the individuals more pre-
cisely. Nine out of nineteen landraces were grouped in
cluster III, depicting considerable similarity between
them. Cl I comprise of four landraces, one maintainer
line 104-B and two advanced breeding lines (SPV-86 and
DSV-5). Male sterile line, SB401-A and male fertile line,
SB401-B were grouped into separate clusters indicating the
divergence between them. Similarly, male sterile line 104-A
and corresponding male fertile lines, 104-B were grouped into
separate clusters, indicating high degree of diversity among
the male sterile and male fertile lines. This justifies, perhaps,

Fig. 2 Multidimensional scatter plot showing genetic relations among 42 sorghum accessions
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the reason why they are included as parental lines in breeding
programmes. DSV-5 and DSV-4, developed at Main Research
Station, Dharwad got grouped into Cl I and Cl VI respectively,
with a similarity coefficient of 0.52. The accessions M35-1,
Mugthi, SPV-570 with Milo cytoplasm were grouped into
cluster II as expected. However, SB401-B, a promising B line
on Milo cytoplasm grouped along with a landrace Harinida-
gad (Cl IX). The very low bootstrap value (35%) observed in
the clad that comprised cultivars and landraces indicate that
the relative position of each accession may vary within the
cluster if the dendrogram is rebuilt (Fig. 1). Although
examined set of germplasm was grouped into four clusters
through multi-dimensional scatter plot (MDS) the grouping
pattern were in accordance with the dendrogram constructed
(Fig. 2).

A total of 24 unique alleles were obtained on screening
the 42 selected accessions with 30 SSR markers. Seven
SSR markers amplified 24 unique alleles in 23 genotypes.
The size of specific amplicons ranged from 80 to 355 bases.
E36-1 recorded two specific amplicons of size 227 bases
and 300 bases with Xtxp354 and Xtxp343 markers
respectively. The Xtxp354 marker amplified eight unique
alleles of varying size (290 to 380 bases) in IS 22380, E36-
1, Yangir landrace, Kadabinjola, Hagari, Dagadi landrace,
SPV-86 and SSV-74 genotypes, this indicates Xtxp354
marker is a highly informative SSR marker that differenti-
ate these genotypes every effectively. The primers Xtxp343
and Xtxp276 amplified 4 unique alleles each, in eight
different genotypes. From this it can be said that the primer
Xtxp354 has higher capacity to distinguish between geno-
types. Such unique alleles are important in diagnostic for
particular regions of the genome specific to a particular type
of sorghum and their utility in registration and breeding.

Thus, the molecular characterization based on 30 micro-
satellite markers allowed for an in-depth look at the genetic
information and organization of the germplasm collection
evaluated. The results of this study indicated that there was
substantial genetic variation and polymorphism across the
loci studied. Furthermore, the study provided a first detailed
analysis and quantification of genetic diversity present in
the selected accessions of rabi core collection. The data
also reaffirms the power of SSR markers to distinctly group
closely related landraces. Several earlier studies have
indicated that SSR technology is highly cost-effective
(Smith et al. 2000) and could be easily employed in
resource poor countries. Our data demonstrated accessions
studied contain a great deal of genetic diversity as indicated
by the observed number of alleles, far beyond that observed
in any other sorghum germplasm source of comparable
sample number. The utility of PCR-based markers such as
SSRs for measuring diversity, for assigning genotypes to
heterotic groups and for genetic fingerprinting should prove
valuable for sorghum breeding programs.
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