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Abstract Sorghum [Sorghum bicolor (L.) Moench] is

a very important crop in the arid and semi-arid tropics of

India and African subcontinent. In the process of release

of new cultivars using multi-location data major empha-

sis is being given on the superiority of the new cultivars

over the ruling cultivars, while very less importance is

being given on the genotype 9 environment interaction

(GEI). In the present study, performance of ten Indian

hybrids over 12 locations across the rainy seasons of

2008 and 2009 was investigated using GGE biplot

analysis. Location attributed higher proportion of the

variation in the data (59.3–89.9%), while genotype

contributed only 3.9–16.8% of total variation. Geno-

type 9 location interaction contributed 5.8–25.7% of

total variation. We could identify superior hybrids for

grain yield, fodder yield and for harvest index using

biplot graphical approach effectively. Majority of the

testing locations were highly correlated. ‘Which-won-

where’ study partitioned the testing locations into three

mega-environments: first with eight locations with SPH

1606/1609 as the winning genotypes; second mega-

environment encompassed three locations with SPH

1596 as the winning genotype, and last mega-environ-

ment represented by only one location with SPH 1603 as
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the winning genotype. This clearly indicates that though

the testing is being conducted in many locations, similar

conclusions can be drawn from one or two representa-

tives of each mega-environment. We did not observe

any correlation of these mega-environments to their

geographical locations. Existence of extensive cross-

over GEI clearly suggests that efforts are necessary to

identify location-specific genotypes over multi-year and

-location data for release of hybrids and varieties rather

focusing on overall performance of the entries.

Keywords Sorghum bicolor � Multi-location data �
GE interaction � GGE biplot � Stability �
Mega-environment

Introduction

Sorghum [Sorghum bicolor (L.) Moench] is the fifth

most important cereal crop across the world, which is

mostly cultivated in the arid and semi-arid tropics

(SAT) for its better adaptation to various stresses,

including drought, heat, salinity and flooding (Harris

et al. 2006; Ejeta and Knoll 2007). Globally sorghum

is cultivated in 40.51 mha with maximum area in India

(7.67 mha) followed by Sudan (5.61 mha), Nigeria

(4.74 mha), Niger (3.32 mha) and other courtiers in

SAT (http://faostat.fao.org). India ranks second to

USA in terms of sorghum production. However, the

productivity of sorghum in India and other SAT is

much lower than that in USA. To ensure food and

nutrition security to the large poor masses in this

region productivity of sorghum needs to be augmented

with breeding efforts. Multi-location testing of new

cultivars plays an important role in breeding pro-

gramme of any crop. However, in this process, major

emphasis is given on the agronomic superiority of the

new cultivars over the ruling cultivars in terms of grain

and/or fodder yield. However, little or no emphasis is

given on interaction of the cultivars with the target

environments, which is mostly unpredictable. In this

situation, a multi-location trial (MLT) can help to

understand the performance of genotypes over diverse

environments by studying the stability of the geno-

types across environments (Scapim et al. 2000).

Mostly the MLT data are rarely utilized to their full

potential, though data are collected on many traits. In

analyzing such data, mostly genotype evaluation is

limited on genotype main effects (G), while geno-

type 9 environment interactions (GEI) are ignored as

noise or confounding factor (Yan and Tinker 2006).

Since early twentieth century, GEI has been the

prime focus area of research among plant biologists.

Several authors have employed various statistical

models to understand this complex GEI (reviewed by

Yan and Kang 2003). Analysis of variance (ANOVA),

principal component analysis (PCA), and linear

regression (LR) are traditionally applied to treat

complex MLT data (Zobel et al. 1988). ANOVA can

only describe the main effects effectively as it is an

additive model (Snedecor and Cochran 1980). On the

contrary, PCA being a multiplicative model, does not

describe the additive main effects (Zobel et al. 1988).

LR models though combine both additive and multi-

plicative components, explaining both main effects

and the interaction, the interaction gets confounded

with the main effects compromising the power of

general significance test (Wright 1971). Zobel et al.

(1988) proposed additive main effects and multiplica-

tive interaction (AMMI) model by integrating additive

and multiplicative components into an integrated,

powerful least squares analysis, which can explain

GEI much effectively. Further advent and propagation

of biplot methodology has greatly addressed the

complex GEI in much simplistic graphical manner

(Gabriel 1971). A biplot is a scatter plot that graphi-

cally summarizes two factors in such a way that

relationships among the factors and underlying inter-

actions between them can be visualized simulta-

neously. To understand GEI, two types of biplots, the

AMMI biplot (Crossa 1990; Gauch 1992) and the GGE

biplot (Yan et al. 2000; Yan and Kang 2003) are the

most commonly used. In recent literature, utility of
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AMMI analysis and GGE biplot analysis to visualize

and interpret MLT data is being widely debated (Gauch

2006; Yan et al. 2007; Gauch et al. 2008; Yang et al.

2009). It may be kept in mind that the measured value

of each cultivar in a test environment is a cumulative

measure of genotype main effect (G), environment

main effect (E) and the GE interaction (Yan and Kang

2003). For evaluation of cultivar, both G and GE must

be considered simultaneously (Yan and Tinker 2006;

Sabaghnia et al. 2008). The G ? GE (GGE) biplot

removes the E and integrates the G with GE interaction

effect of a G 9 E dataset (Yan et al. 2000). Effectively

it detects the GE interaction pattern in the data and can

identify ‘which-won-where’ besides identifying dif-

ferent mega-environments (Yan et al. 2007). GGE

biplot is almost close to the best AMMI models when

different AMMI family models (AMMI0 to AMMIk)

are compared (Dias et al. 2003; Ma et al. 2004).

Moreover, AMMI is misleading in identifying ‘which-

won-where’ (Yan et al. 2007). Thus GGE biplot is

more logical and biological as compared to AMMI in

explaining PC1 score, which represents genotypic

effect rather than additive main effect (Yan 2002).

GGE biplot analysis has been carried out in

understanding GEI in many crop species including

soybean (Yan and Rajcan 2002), rice (Samonte et al.

2005), wheat (Kaya et al. 2006; Roozeboom et al.

2008), barley (Dehghani et al. 2006; Mohammadi

et al. 2009), peanut (Putto et al. 2008), Lentil

(Sabaghnia et al. 2008), oat (Yan et al. 2010), sorghum

(Rao et al. 2011) and others. In spite of reports on

utility of GE analysis in deciding superior genotypes

and/or test environments in many crops, application of

such techniques in grain sorghum MLTs is scanty.

Recently, DeLacy et al. (2010a, b) have characterized

the GEI across sorghum growing regions of India by

analyzing ten years’ multi-environment (MET) AIC-

SIP data from 1986/87 to 1996/97. However, these

studies have focused on post-rainy sorghum MLT

data. Rao et al. (2011) have applied GGE biplot and

AMMI analysis in identifying best performing sweet

sorghum hybrids. In this the analysis is limited to

sweet sorghum genotypes only. Till date to the best of

our knowledge GEI in grain sorghum MLT data has

not been analyzed effectively. In India new sorghum

cultivars are tested across vast climatic and geo-

graphical conditions under the aegis of All India

Coordinated Sorghum Improvement Project (AIC-

SIP). These testing locations are distributed across

latitude and altitude with varied macro-climatic con-

ditions, representing major sorghum growing situa-

tions in SAT. Hence, as a case study we analyzed the

performance of ten rainy season grain sorghum

hybrids across 12 locations for 2 years (rainy seasons

of 2008 and 2009) using GGE biplot to demonstrate

the utility of biplot graphical approach in analyzing

and interpreting the complex GEI in MLT data.

Materials and methods

Plant materials and testing locations

Data used for this study was a sub-set of the AICSIP

rainy season grain sorghum database, in which eight

hybrids were evaluated along with two commercial

checks, CSH 16 and CSH 23 in three replications

across 12 locations (environments) during the rainy

seasons of 2008 and 2009. Information on the hybrids

used in the study are presented in Table 1. Detail

features of the testing locations and dates of sowing are

given in Fig. 1 and Table 2. The testing locations were

distributed among seven states of the country, with four

locations in Maharashtra, two each in Tamil Nadu and

Karnataka, and one each in Andhra Pradesh, Uttar

Pradesh, Rajasthan and Gujarat. During both the years,

the crops were sown during June-July depending on the

onset of monsoon at the particular location (Table 2).

In each location, the experiment was conducted in

randomized block design with six rows each of 6 m

length with 45 9 15 cm2 crop geometry. Crop man-

agement practices were standard across all locations.

Data from internal four rows were considered for plot

Table 1 Information on the genotypes used in the study

Hybrid code Pedigree/original name Developing sector

SPH 1596 MDSH 297 Private

SPH 1603 GK 4032 Private

SPH 1604 GK 4033 Private

SPH 1606 KDSH 1179 Private

SPH 1609 HTJH 3201 (GTSH 06016) Private

SPH 1611 Dhanarassi-909 Private

SPH 1615 KSH 6363 Private

SPH 1616 MLSH 60 Private

CSH 16 27A 9 C43 Public

CSH 23 MS 7A 9 RS 627 Public
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yield (grain and fodder) and days to 50% flowering

calculation. Yield data were recorded at physiological

maturity. Plot yield data were converted to kg ha-1

using the plot size as factor. Another statistic, harvest

index (HI) was calculated as the ratio of grain mass to

total above ground biomass and was used for analysis.

Data analysis

The statistical theory of GGE methodology has been

explained in detail by Yan and Kang (2003). For

environment centered matrix, the data were subjected to

singular value decomposition (SVD) by estimating each

element of the matrix using the following equation:

Yij¼lþbj þ
Xk

k¼1

kkcikdjk

where Yij is the performance of ith genotype in jth

environment, l is the general mean, bi is the environ-

ment main effect, k is the number of principal

components (PC) required for appropriate depiction

of GGE, kk is the singular value of the kth PC (PCk);

and cik and djk are the scores of ith genotype and jth

environment, respectively for PCk. The SVD was

achieved through a scaling factor, f to derive alternate

genotype (nik ¼ kf
kkik) and environment (mjk¼k

f�1

k kik)

scores, respectively (Sabaghnia et al. 2008). Thus the

G 9 E table was presented in a plot having m envi-

ronment and n genotype points, respectively. We used

the software GGEbiplot ver. 6.3 (Yan 2001) in the

analysis. The MLT data was analyzed without scaling

(‘Scaling 0’ option) to generate a tester centered

(centering 2) GGE biplot as suggested by Yan and

Tinker (2006). HI data was subjected to square root

transformation before analysis. For genotype evalua-

tion, genotype-focused singular value partitioning

(SVP = 1) was used using the ‘Mean versus stability’

option of GGE biplot software, while for location

evaluation, environment-focused singular value parti-

tioning (SVP = 2) was employed (Yan 2001) using

‘Relation among testers’ option. ‘Which-won-where’

option was used to identify which genotype was the

winner in a given set of environment and to identify

mega-environments. Analysis of variance (ANOVA)

Fig. 1 Geographical

location of the testing

environments
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and heritability estimates generated in the biplot

software were used for interpretation.

Results

Analysis of variance

Overall picture of relative magnitude of the G, L and GL

is presented in Table 3 in the form of ANOVA. Analysis

of variance clearly showed that genotype and location

effects were significant for all the traits in both the

seasons. GL effects were also significant for majority of

cases except for HI in combined analysis. Table 3 also

depicts the relative contribution of each source to the

total variation (G ? L ? GL). It was observed that

location was the most important source of variation for

all the traits. In 2009, the influence of locations was

relatively lower in comparison to 2008 for all the traits.

For grain yield, location accounted for 82.8% of the

variation in 2008 and 68.6% in 2009, while 76.3% of the

variation was explained in combined analysis (Table 3).

Contributions of genotype (G) were 3.9 and 5.8% in

2008 and 2009, respectively, while it explained 7.6% of

the yield variation in combined analysis. Proportions of

variation explained by GL were 13.3, 25.6 and 16.1%

during 2008, 2009 and combined analysis, respectively.

For fodder yield, location attributed to 81.5 and 68.3%

of variation in 2008 and 2009, respectively, whereas

genotype explained only 9.0 and 16.1% of variation

during the seasons. Contribution of GL was near to

genotypic contribution for fodder yield. Among various

traits studied, location contributed minimum of 59.3%

for days to 50% flowering in 2009, where contribution of

GL was high (25.7%). However, in 2008 location

attributed more than 88% of the variation for flowering

date. Similar trend was observed for HI as well.

Mean performance and stability of the genotypes

across locations

Performance and stability of genotypes were visualized

graphically through GGE biplot (Fig. 2). This can be

evaluated by average environment coordination (AEC)

method (Yan 2001, 2002). For this, environment

centered (centering = 2) genotype-metric (SVP = 1)

biplots for grain yield, fodder yield, days to 50%

flowering and HI are presented in Fig. 2a–d, respec-

tively. The first two PC explained 71.4% variation for

grain yield, 87.0% for fodder yield, 78.4% of days for

50% flowering and 85.1% for HI. In Fig. 2a–d the line

with single arrow head is the AEC abscissa. AEC

abscissa passes through the biplot origin and marker for

average environment and points towards higher mean

values. The average environment has average PC1 and

PC2 scores over all environments (Yan 2001). The

perpendicular lines to the AEC passing through the

biplot origin are referred to as AEC ordinate. These

ordinates are depicted as double-arrowed lines in

Fig. 2a–d. The greater the absolute length of the

projection of a cultivar, the less stable it is. Furthermore,

the average yield of genotypes is approximated by the

projections of their markers to the AEC abscissa (Kaya

et al. 2006). Accordingly, SPH 1606 and SPH 1609 were

the best performing genotypes in terms of grain yield

followed by SPH 1596 (Fig. 2a). On the other hand,

SPH 1604 and CSH 23 were poorest yielders. It may be

observed that SPH 1603, SPH 1604, SPH 1615 and SPH

1616 were least stable for grain yield with higher

projection from the AEC abscissa. On the contrary, CSH

23 and CSH 16 were relatively stable though not higher

grain yielders. SPH 1606 and SPH 1609 were highest

grain yielder in both 2008 and 2009, however they were

not stable (data not shown). For fodder yield, all the

genotypes showed relative stability, with SPH 1603 and

SPH 1604 as best fodder yielders (Fig. 2b). Similar

trend was observed in individual years as well. CSH 23

was earliest among all the entries, while SPH 1609 took

maximum duration to flower (Fig. 2c). Interestingly,

though SPH 1606 was the best yielder along with SPH

Table 2 Information on the trial environments

Site (code) Elevation

(msl)

Average

rainfall

(mm)

Date of sowing

2008 2009

Akola (Ak) 282 780 June 1 July 2

Bailhongal (Ba) 680 660 June 26 June 13

Bhavanisagar (Bh) 256 685 July 8 June 10

Buldana (Bul) 200 820 June 3 July 3

Coimbatore (Co) 412 730 June 16 June 10

Deesa (Dee) 136 350 July 7 July 14

Dharwad (Dh) 678 750 June 19 June 17

Karad (Kar) 597 703 June 30 July 6

Mauranipur (Ma) 271 954 July 8 July 23

Palem (Pal) 642 650 June 28 June 18

Parbhani (Pr) 357 750 June 25 June 29

Udaipur (Ud) 598 601 July 1 June 29

Euphytica (2012) 185:465–479 469

123



1609, it was relatively early than others (Fig. 2c). This

was the case in both the years. CSH 16, CSH 23, SPH

1606, SPH 1615 and SPH 1616 were relatively stable for

days to 50% flowering. SPH 1596, though ranked third

for grain yield it was best for HI, followed by CSH 16

and SPH 1606. The hybrids SPH 1604, SPH 1615 and

SPH 1616 were not stable for HI.

Since all the entries are mainly for grain purpose,

more focus was made on grain yield for further analysis.

In addition Fig. 3 depicts the ranking of the genotypes

for grain yield in terms of ‘ideal genotype’. An ‘ideal

genotype’ is high performer with high stability across

environments (Yan and Tinker 2006). From our study it

may be stated that SPH 1606 and 1609 followed by SPH

1596 were close to ideal genotypes. These genotypes

had high grain yield performance among all genotypes

(Table 4). To study specific adaptation of best grain

yielding genotype SPH 1606, test environments were

ranked based on the relative grain yield of the genotype

in given environment (Fig. 4). It may be observed that

SPH 1606 had below average yield at Deesa, while near

average yield at Mauranipur and Bhavanisagar. In the

remaining locations it performed much above average

with highest yielding at Buldhana. Same was the trend

with SPH 1609. This is attributed to the fact that these

two hybrids are highly correlated with near zero angle

between their vectors.

Environment evaluation

Like in the previous section, the relationships among

the test environments were studied by environment

centered preserving of data (SPV = 2) without scaling.

Combined analysis over 2 years for grain yield (Fig. 2e),

Table 3 ANOVA and proportion of variation (G ? L ? GL) explained by genotype (G), location (L) and GL interaction for

various traits

Trait/year Source

G L GL

Grain yield 2008 MS 2.5E 9 106** 4.3E 9 107** 7.7E 9 105**

Proportion of G ? L ? GL (%) 3.9 82.8 13.3

Grain yield 2009 MS 3.6E 9 106** 3.5E 9 107** 1.4E 9 106**

Proportion of G ? L ? GL (%) 5.8 68.6 25.6

Grain yield combined MS 5.5E 9 106** 4.5E 9 107** 1.1E 9 106**

Proportion of G ? L ? GL (%) 7.6 76.3 16.1

Fodder yield 2008 MS 8.5E 9 107** 6.3E 9 108** 8.2E 9 106**

Proportion of G ? L ? GL (%) 9.0 81.5 9.5

Fodder yield 2009 MS 1.1E 9 108** 3.9E 9 108** 9.8E 9 106**

Proportion of G ? L ? GL (%) 16.1 68.3 15.6

Fodder yield combined MS 1.9E 9 108** 6.7E 9 108** 1.1E 9 107**

Proportion of G ? L ? GL (%) 16.8 72.8 10.4

Days to 50% flowering 2008 MS 126** 1554** 11*

Proportion of G ? L ? GL (%) 5.9 88.3 5.9

Days to 50% flowering 2009 MS 148** 527** 25**

Proportion of G ? L ? GL (%) 15.0 59.3 25.7

Days to 50% flowering combined MS 266** 1352** 22**

Proportion of G ? L ? GL (%) 12.3 76.6 11.1

Harvest index 2008 MS 0.02** 0.36** 0.00*

Proportion of G ? L ? GL (%) 4.3 89.9 5.8

Harvest index 2009 MS 0.02** 0.09** 0.004**

Proportion of G ? L ? GL (%) 12.3 63.0 24.7

Harvest index combined MS 0.04** 0.29** 0.003

Proportion of G ? L ? GL (%) 9.3 82.2 8.5

* P \ 0.05, ** P \ 0.01
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fodder yield (Fig. 2f), days to 50% flowering (Fig. 2g)

and HI (Fig. 2h) showed that the majority of the angles

between their vectors are acute. Acute vector angles

are indicative of closer relationship among the envi-

ronments (Yan and Tinker 2006). Thus majority of the

locations were highly correlated with an exception

Fig. 2 GGE biplots of the combined analysis for grain yield, fodder yield, days to flowering and harvest index. a–d Mean versus

stability of the genotypes. e–h Relation among the test locations. i–l Which-won-where analysis of the genotypes
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Fig. 2 continued
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Fig. 3 Ranking of

genotypes relative to an

ideal genotype (the small
circle on average

environment coordinate,

AEC)

Table 4 Year-wise character means of sorghum hybrids and locations under testing over 2 years

Location/

genotype

Grain yield Fodder yield Days to 50% flowering Harvest index

2008 2009 Combined 2008 2009 Combined 2008 2009 Combined 2008 2009 Combined

Genotypea

SPH 1596 4,238 4,133 4,186 11,635 12,342 11,989 68 65 67 0.29 0.26 0.27

SPH 1603 3,815 3,753 3,784 15,326 17,103 16,214 70 65 68 0.22 0.19 0.20

SPH 1604 3,533 3,442 3,487 14,722 16,471 15,597 70 66 69 0.22 0.18 0.20

SPH 1606 4,369 4,154 4,261 12,420 13,725 13,073 69 65 68 0.28 0.24 0.26

SPH 1609 4,185 4,226 4,205 12,592 13,834 13,213 73 69 71 0.27 0.23 0.25

SPH 1611 3,972 3,819 3,895 11,030 13,076 12,053 70 66 68 0.29 0.23 0.26

SPH 1615 4,134 3,931 4,033 13,020 13,752 13,386 71 67 70 0.27 0.23 0.25

SPH 1616 3,906 4,122 4,014 11,862 14,013 12,937 71 68 70 0.27 0.23 0.25

CSH 16 3,925 3,513 3,719 12,010 12,501 12,255 68 64 66 0.27 0.22 0.25

CSH 23 3,661 3,392 3,526 10,404 11,477 10,941 66 61 64 0.29 0.23 0.26

Locationb

AK 4,751 3,718 4,234 11,742 9,640 10,691 70 72 71 0.29 0.28 0.29

BA 5,061 2,572 3,816 7,508 14,630 11,069 77 NA 77 0.40 0.16 0.28

BH 5,821 3,119 4,470 10,490 10,357 10,423 65 63 64 0.36 0.23 0.29

BUL 3,934 4,720 4,327 11,036 10,009 10,523 74 62 68 0.26 0.32 0.29

CO 3,504 5,050 4,277 6,222 12,588 9,405 61 58 59 0.36 0.29 0.33

DEE 2,305 2,857 2,581 18,327 14,982 16,655 76 68 72 0.12 0.16 0.14

DH 4,367 5,473 4,920 18,270 18,345 18,308 70 67 68 0.20 0.23 0.22

KAR 5,349 4,101 4,725 13,453 18,514 15,983 64 70 67 0.29 0.19 0.24

MA 2,335 3,991 3,163 18,123 19,174 18,649 85 66 75 0.12 0.17 0.14

PAL 3,647 3,614 3,630 11,862 13,739 12,800 67 65 66 0.25 0.21 0.23

PR 2,360 1,999 2,180 16,852 9,110 12,981 65 69 67 0.13 0.19 0.16

UD 4,252 4,967 4,610 6,140 14,866 10,503 62 62 62 0.42 0.25 0.34

Grand mean 3,974 3,848 3,911 12,502 13,829 13,166 70 66 68 0.27 0.22 0.24

hbs
2 0.69 0.60 0.81 0.90 0.91 0.94 0.91 0.82 0.92 0.88 0.82 0.92

NA not available
a Genotype means are based on 12 location data over 2 years
b Location means are based on ten genotype data over 2 years

Euphytica (2012) 185:465–479 473

123



between Udaipur and Deesa for grain yield (Fig. 2e) or

between Buldhana and Deesa for HI (Fig. 2h). The

situation was much more apparent for fodder yield

(Fig. 2f) and days to 50% flowering (Fig. 2g). Deesa

consistently showed inverse relationship (negative

correlation) to that of Udaipur or Buldhana for grain

yield and HI as their vectors showed obtuse angles.

Individual year data also supported the observation

with some additional differences between the loca-

tions. For instance, in 2008 Akola showed opposite

relation to Udaipur or Mauranipur with Dharwad and

Bailhongal, while in 2009 Palem with Deesa and

Parbhani, or Dharwad with Parbhani or Karad (data not

shown). However, these relationships were not con-

sistent over years, except that of Deesa with Udaipur

and Buldhana as mentioned earlier. Mauranipur and

Bhavanisagar were not correlated with Buldhana,

Parbhani, Karad and Coimbatore with near right angles

between them (Fig. 2e). Distance between two envi-

ronments measures their ability in discriminating the

genotypes. Thus 12 locations could be divided into four

groups for grain yield; one with Udaipur, Buldhana,

Parbhani, Karad and Coimbatore, while, second with

Palem, Bailhongal and Akola. Third group was repre-

sented by Dharwad, Mauranipur and Bhavanisagar,

while fourth was represented solely by Deesa.

Representativeness of the test environments is

presented in Fig. 5 with projection of the environments

to the Average environment axis (AEA). In the figure,

the ‘average environment’ is represented by a small

circle on the AEA. Environments with smaller angles

with the AEA are most representative of the average

test environments. Thus Palem was closest to the

average environment followed by Bailhongal, Akola

and others. While ranking the genotypes in the near

average environment, Palem showed that CSH 16,

CSH 23, SPH 1603 and SPH 1604 had lower than

average grain yield, while SPH 1611 and SPH 1615

performed near average yield. SPH 1606 and SPH

1609 yielded maximum at this location (Fig. 6).

Which-won-where and mega-environment

identification

Which-won-where graph is constructed first by joining

the farthest genotypes forming a polygon. Subsequently

perpendicular lines are drawn from the origin of the

biplot to each side of the polygon, separating the biplot

into several sectors with one genotype at the vertex of

the polygon. These lines are referred to as equality lines

(Yan 2001). Genotypes at the vertices of the polygon are

either the best or poorest in one or more environments.

The genotype at the vertex of the polygon performs best

in the environment falling within the sectors (Yan 2002;

Yan and Tinker 2006). Which-won-where biplots for

grain yield, fodder yield, days to 50% flowering and HI

over 2 years are presented in Fig. 2i–l, respectively. The

biplots indicated existence of crossover GE and exis-

tence of mega-environments, particularly for grain

yield. Out of the four which-won-where biplots, it

may be observed that grain yield biplot (Fig. 2i) is the

most informative, as it could discriminate environments

more effectively and the polygon (hexagon) is well

distributed. The polygons for fodder yield (Fig. 2j) and

days to flowering (Fig. 2k) had fewer vertices and the

locations were not well separated. HI also could not

segregate the locations much effectively (Fig. 2l). Thus

being less informative they were not considered further.

Fig. 4 Ranking of

environments based on the

performance of highest

yielding genotype,

SPH 1606
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For grain yield, the hexagon has six genotypes, viz., SPH

1606/1609, SPH 1615, CSH 23, SPH 1604, SPH 1604

and SPH 1596 at the vertices (Fig. 2i). The hybrids SPH

1606/1609 performed best in Buldhana, Udaipur, Par-

bhani, Karad, Coimbatore, Palem, Bailhongal and

Akola, while SPH 1595 being the best in Dharwad,

Mauranipur and Bhavanisagar. SPH 1603 performed

best in Deesa. The equality lines divided the biplot into

six sectors effectively, of which three retained all the 12

locations. Thus the testing locations may be partitioned

into three mega-environments: one with Udaipur,

Buldhana, Parbhani, Karad, Coimbatore, Palem, Bail-

hongal and Akola with SPH 1606/1609 as the winning

genotypes. Second mega-environment encompassed

Dharwad, Mauranipur and Bhavanisagar with SPH

1596 as the winning genotype, while last mega-

environment was represented by Deesa with SPH

1603 as the winning genotype. We did not observe

any correlation between the locations in one mega-

environment in terms of its geographical location,

rainfall pattern and altitude (Table 2; Figs. 1, 2i).

Discussion

India is a vast country with diverse agro-climatic

conditions. The growing conditions of the multi-loca-

tion testing sites of AICSIP represent diverse sorghum

production ecosystems across the world in terms of

their latitude, altitude and macro-climatic conditions.

Fig. 5 Ranking of

environments based on

discriminating ability and

representativeness

Fig. 6 Ranking of

genotypes based on their

performance in near ideal

location, Palem
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GGE biplot is a very potential tool to analyze MET data

to interpret complex GEI interaction (Yan 2001; Yan

and Tinker 2006). It can effectively detect the interac-

tion pattern graphically besides identifying ‘which-

won-where’ and delineation of mega-environments

among the testing locations (Yan et al. 2007). However,

this potential tool has not yet been employed to analyze

the multi-location data of grain sorghum trials. We have

studied the GEI among ten rainy season grain sorghum

hybrids across 12 locations over 2 years using GGE

biplot analysis. In our study, environment or location

contributed 59.3–89.9% of the variation in the data,

while contribution of genotype and their interaction with

location was less (Table 3). Gauch and Zobel (1997)

reported that normally in MET data, environment

accounts for about 80% of the total variation. In bread

wheat MET data, Kaya et al. (2006) reported as high as

81% of variation being explained by environment.

Similar trend was reported by Dehghani et al. (2006) for

barley yield trials in Iran. However, Sabaghnia et al.

(2008) reported little lesser (52.1–68.8%) contribution

of location to the total variation in lentil yield trial data

from Iran. Putto et al. (2008) reported 50–80% of the

total variation attributed due to location, while genotype

main effect contributed 15–46% of the total variation.

They observed only 4–5% contribution of GL interac-

tion to the total variation in analyzing peanut yield of 17

diverse lines over 30 years, covering 130 locations. In

our study, GL explained higher proportion of the

variation than G alone. Higher proportion of GL as

compared to G is indicative for possible existence of

different mega-environments in testing locations (Yan

and Hunt 2002; Mohammadi et al. 2009). This may not

be true only under Indian situation but in other sorghum

growing regions as well. Thus, the sorghum breeders

need to take into consideration this point while breeding

in their respective situations.

In GGE biplot analysis, the complex GEI are

simplified in different PC and the data are presented

graphically against various PC (Yan and Tinker 2006).

If the first two PC explain more than 60% of the

(G ? GL) variability in the data, and the combined

(G ? GL) effect account for more than 10% of the

total variability, then the biplot adequately approxi-

mates the variability in G 9 E data (Yang et al. 2009;

Yan et al. 2010). In our study the first two PC

explained more than 70% of the variability for all the

four traits studied. In addition Table 3 indicates that G

and GL together accounted for more than 10% of total

variability. Thus the biplots may safely be interpreted

as effective graphical representation of the variability

in the MLT data. The graphical presentation of PC1

and PC2 (Fig. 2) has clearly brought out the complex-

ity in the data set. The AEC ordinates point greater GE

interaction effect (poor stability) in either direction

(Yan and Tinker 2006), while the projections of

markers of a genotype to the AEC abscissa approx-

imates the average yield (Kaya et al. 2006). Thus it is

evident from Fig. 1a that the highest grain yielders

(SPH 1606 and SPH 1609) were not stable, while the

most stable one, CSH 23 was among poorest yielders.

However, this was not the trend for fodder yield. Wide

variability in terms of stability was recorded for

flowering date. Thus it was observed that a genotype

showing stability for one trait may not necessarily be

stable for other traits as well. This may be explained by

the fact that each trait is governed by different set of

genes and influence of environment on the cumulative

expression of different set of genes will vary consid-

erably, which is observed in variation in stability of

genotypes for grain yield (Fig. 1a), fodder yield

(Fig. 1b), flowering time (Fig. 1c) and HI (Fig 1d).

Since HI is a derived factor of grain and fodder yield, it

will have some resemblances with either of the traits

individually. According to Lin and Binns (1988), soil

and weather are the two main elements of an environ-

ment or location influencing the performance of a

genotype. Out of these, soil element is generally

persistent and may be regarded as fixed. On the other

hand weather element has a predictable component

represented by the general climatic zone, and unpre-

dictable component contributed by year-to-year var-

iation. Similarly, the GE interaction may also be sub-

divided (Allard and Bradshaw 1964). Lin and Binns

(1988) extended this idea into estimating cultivar 9

predictable variation by averaging the cultivar 9

location mean over years, and cultivar 9 unpredict-

able variation by taking years within location. Thus

Lin and Butler (1988) estimated fixed components by

averaging a set of cultivar 9 location means over

years with the assumption that GEI structure over

years may be improved substantially if locations are

grouped based on fixed component. So use of GGE

biplot is justifiable since cultivar 9 predictable vari-

ation is controllable (Dehghani et al. 2006). Following

similar strategies, several authors have identified high

performing and stable genotypes in different crop

species including barley (Dehghani et al. 2006), wheat
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(Kaya et al. 2006), lentil (Sabaghnia et al. 2008),

rapeseed (Dehghani et al. 2008) and others.

One advantage of graphical presentation of GEI is

that genotypes closest to ideal genotype can be

identified conveniently. Similar is the case with ideal

environment as well. Ideal genotype (higher yielding

and greater stability) is defined by having greatest

vector length of highest yielding genotype with zero

GEI as located at the center of the concentric circles in

Fig. 3. Genotypes located closer to the ‘ideal geno-

type’ are more desirable than others. Thus SPH 1606

and 1609 were closest to ideal genotype followed by

SPH 1596 (Fig. 3). This would be difficult to conceive

from mean table alone (Table 4). The (most ideal

genotype), SPH 1606, performed best at Buldana,

while near average yielded at Mauranipur and Bha-

vanisagar, and lower than average yield at Deesa

(Fig. 4). The above result suggests high crossover GE

interaction, i.e. order of genotypes based on their

performance varied depending on the testing environ-

ment. Similar observation was made by other authors

in different crops (Dehghani et al. 2006; Kaya et al.

2006; Sabaghnia et al. 2008; Dehghani et al. 2008).

Saeed and Francis (1984) reported significant effect of

cropping season rainfall and temperature on grain

yield, contributing to the GEI. Dehghani et al. (2006)

also suggested pre-seasonal and cropping season

rainfall, temperature regime and relative humidity to

contribute to GEI sum of squares. Soil types, light

intensity etc. also influence GEI.

Using biplots, relationship between the testing

environments can be understood easily considering

the angle between their vectors. Vector of an environ-

ment is the line connecting its marker to the origin of

the biplot. Cosine of the angle between two vectors is

indicative of their correlation (Yan and Tinker 2006).

Thus our study clearly indicated that except Deesa with

Udaipur or Buldana all testing locations were closely

related (Fig. 2e–h) and most locations were close to the

average environment, i.e. Palem (Fig. 5). Using graph-

ical presentation, discrimination ability and represen-

tativeness of the test environments can be detected

conveniently. Projections of the environments with

respect to the concentric circles are indicative of their

discrimination ability (Yan 2001). Thus, Udaipur,

Buldhana, Akola, Dharwad and Deesa with higher

vector lengths were more discriminating than Maura-

nipur and Bhavanisagar. Thus, near average locations,

like Palem, Bailhongal and Akola are most representative

location and good test environments for selecting

generally adapted genotypes. On the other hand,

Udaipur, Buldhana and Deesa, being discriminating

and non-representative are useful for selecting specif-

ically adapted genotypes. Here comes the advantage of

such graphical representation, where generally adapted

environment and specific environment can be identi-

fied conveniently. Closer relationships between the test

environments indicated that same information could be

obtained from fewer environments. Thus similar

environments may be removed in future multi-location

testing of sorghum hybrids. This point assumes much

importance in order to optimally allocate the scarce

resources while allocation MLTs.

Presence of wide obtuse angles between environ-

ment vectors (Fig. 5), which indicates strong negative

correlations among the test environments suggests

existence of strong crossover GE across some loca-

tions for grain yield (Yan and Tinker 2006). This

indicated that genotypes performing better in one

environment would be performing poor in another

environment. At the same time, closer relationships

among other locations are indicative of non-existence

of crossover GE, suggesting ranking of genotype does

not change from location to location. Mixture of

crossover and non-crossover types of GEI in MET data

is of very common occurrence (Kaya et al. 2006; Fan

et al. 2007; Sabaghnia et al. 2008; Rao et al. 2011).

This may be possible because some genotypes are

highly responsive to change in the growing environ-

ment, while others may be stable as response to

environment is purely a combined properties of their

gene combinations. ‘Which-won-where’ is the most

attractive feature of GGE biplot, which graphically

addresses crossover GE, mega-environment differen-

tiation, specific adaptation etc. (Gauch and Zobel

1997; Yan et al. 2000; Yan and Tinker 2006; Putto

et al. 2008, Rao et al. 2011). Such biplot is the succinct

summary of the GEI pattern of a MET data. Based on

this analysis, the testing locations were partitioned into

three mega-environments. ME 1 was represented by

Udaipur, Buldhana, Parbhani, Karad, Coimbatore,

Palem, Bailhongal and Akola with SPH 1606/1609

as the winning genotypes. ME 2 consisted of Dharwad,

Mauranipur and Bhavanisagar with SPH 1596 as the

winning genotype, and ME 3 was represented by

Deesa along with SPH 1603 as the winning genotype.

This clearly suggested that though the testing is

being conducted in many locations, almost similar
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conclusion may be drawn from one or two represen-

tatives of each mega-environment. Thus the cost of

testing may be reduced significantly. However, this

mega-environment pattern needs to be verified

through multi-year and -environment trials as con-

ducted in wheat (Yan et al. 2000) and peanut

(Casanoves et al. 2005; Putto et al. 2008). In the

given situation smaller zonation of testing locations

and focusing breeding efforts in a location-specific

manner holds more importance, which is relevant to

other crops as well.

Conclusion

The study has clearly and conveniently aided in

identification of stable and superior hybrids in a

graphical manner. It has also brought out that geno-

type showing stability for one trait not necessarily is

stable for other. Thus breeders need to prioritize the

trait they need to focus during breeding programme.

Easy detection of mixed crossover effects using GGE

biplot is added advantage of the procedure. Sorghum

breeders across world need to consider this while

breeding cultivars for varied geographical and agro-

climatic regions. Location-specific adaptation of cul-

tivars as detected in the present study clearly suggests

that location-specific breeding needs more emphasis

than focusing on wider adaptability. In this regard,

participatory plant breeding assumes more importance

than present research station oriented breeding

programme. ‘Which-won-where’ analysis has dem-

onstrated existence of mega-environments and many

of the locations though geographically located far

apart may generate similar information. Hence, to

conduct the MET effectively with limited resources,

discriminative locations encompassing representative

locations may be included, rather than extending the

trials extensively over related locations. Following

similar analysis the sorghum breeders in other region

need to identify mega-environments and then allocate

testing sites accordingly. Another point that needs to

be focused is that, in the existing procedure of varietal

release, average of a given genotype over years and/or

locations, and its superiority over the checks is only

considered, while stability of genotypes is overlooked.

Existence of extensive crossover GEI clearly suggests

that the existing procedure does not realistically depict

the actual situation. Rather, efforts are necessary to

identify location-specific genotypes over multi-year

and -location data to consider them for their release,

since this will take into consideration the stability

parameter of the genotypes. This is pertinent not only

to sorghum alone but in other crops as well.
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