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Abstract Previous research, mostly in temperate agricul-
tural systems, has shown that management practices such as
fallow period, tillage, crop rotation, and phosphorus (P)
fertilizer applications can influence the abundance of
arbuscular mycorrhizal fungi (AMF), but relatively little is
known about their effect in smallholder farmers’ fields in
sub-Saharan Africa. In this study, we evaluated the effect of
four subsistence crops that form associations with AMF,
moderate P fertilization, tillage, and fallow period on the
subsequent AMF abundance on three contrasting low
fertility soils in south-western Zimbabwe. Arbuscular
mycorrhizal fungal abundance was estimated based on
early mycorrhizal colonization of maize (Zea mays L.) or
lablab (Lablab purpureus L.) following the various treat-
ments. The previously grown crop significantly affected
AMF abundance (p<0.001). It was highest after lablab
followed by pigeonpea (Cajanus cajan L.), maize, and
groundnut (Arachis hypogaea L.), and there were signif-
icant positive correlations between AMF abundance and
aboveground biomass of pigeonpea, lablab, and maize.
Contrary to much previous research, P fertilization,

fallowing, and tillage did not significantly decrease
AMF abundance. In smallholder farmers’ fields in the
semi-arid tropics of sub-Saharan Africa, therefore, grow-
ing vigorous mycorrhizal plants prior to the dry season
could be more important than minimizing P fertilizer
applications, fallow periods, and tillage to maintain or
increase AMF abundance.
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Introduction

Arbuscular mycorrhizal fungi (AMF) are present in most
agroecosystems and colonize roots of a majority of
agricultural crops (Smith and Read 1997). These fungi
have the potential to increase the uptake of phosphorus (P)
to the plant (Sanders and Tinker 1971) and may be more
important than the roots themselves as organs of P uptake
(Smith et al. 2003). A recent meta-analysis showed that
significant increases in mycorrhizal colonization resulted in
yield promotions averaging 23% (Lekberg and Koide
2005), which could be of particular importance for
smallholder farmers in sub-Saharan Africa who often farm
on low fertility soils and have little or no access to mineral
fertilizers (Twomlow et al. 1999).

Studies undertaken over the past 30 years have shown
that common management practices such as cultivation of
non-mycorrhizal crops (Harinikumar and Bagyaraj 1988;
Gavito and Miller 1998), P fertilizer applications (Black and
Tinker 1979; Lu et al. 1994), fallow periods (Harinikumar
and Bagyaraj 1988; Kabir and Koide 2002), and intensive
tillage (Kabir et al. 1997 Kabir 2005) may have negative
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effects of varying degrees on AMF abundance (Lekberg and
Koide 2005). Whereas a majority of these studies have been
undertaken in high-input, temperate agroecosystems, less is
known about effects of management practices commonly
employed by smallholder farmers in low-input tropical
agroecosystems.

We report on results from two experiments conducted in
collaboration with farmers in south-western Zimbabwe.
These farmers grow a number of mycorrhizal crops such as
maize (Zea mays L.), sorghum (Sorghum bicolor L.),
groundnut (Arachis hypogaea L.), and cowpea (Vigna
unguiculata L. Walp.; Howeler et al. 1987; Dodd et al.
1990). Fields are typically tilled to a depth of 10 to 15 cm
using animal-drawn moldboard plows to control weeds and
prepare a seed bed prior to planting. Farmers are also
encouraged to till their fields at end of the cropping season
(so-called winter tillage) to reduce weed densities and
conserve water prior to the 6-month dry season (Twomlow
et al. 1999). While this practice may be important to
combat weeds and reduce water loss, it could reduce AMF
abundance due to a combined effect of disturbance and
reduction of potential hosts between cropping cycles. Based
on these common practices, the objective with Experiment
1 was to determine the effect of different mycorrhizal crops
and moderate P fertilizations on AMF abundance. Exper-
iment 2 was conducted to determine the impact of dry-
season fallow period and winter tillage on subsequent AMF
abundance and weed density.

Materials and methods

Experimental sites

Experiments were conducted in three contrasting soils of
low fertility, typical of the low-input smallholder farming
systems of southern Zimbabwe: A fine sandy soil formed
over deposits of Kalahari Sands, corresponding to either a
Oxyaquic Haplustalf (USDA) or a Stagni-Vertic Luvisol
(FAO), a black clay with shrink and swell properties that
corresponds to either a Vertic Haplustoll (USDA) or a
Vertic Phaeozem (FAO), and a coarse-grained granitic sand
corresponding to either a Typic Ustochrept (USDA) or a
Eutric Arenosol (FAO), hereafter referred to as the fine
sand, black clay, and granitic sand, respectively (Moyo
2001). The fine sand and black clay were located on
smallholder farmers fields in the Tsholotsho communal area
(27° 49.73′ E; 19° 51.07′ S, 1,120 masl), and the granitic
sand was located on the International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT) research
fields in Lucydale (28° 24.46′ E; 20° 25.64′ S, 1,378 masl).
Selected soil characteristics are summarized in Table 1. The
mean annual rainfall for both Tsholotsho and Lucydale is

540 mm (ICRISAT, unpublished data) and is concentrated
during the growing season between the months of Novem-
ber and April. The average yearly maximum and minimum
temperatures are 26°C and 11°C.

Experiment 1—effect of crop rotation and P fertilization

Year 1 The fine sand and black clay were tilled using the
host farmers’ animal-drawn moldboard plows to a depth of
15 cm on 17 December 2000, and the granitic sand at the
on-station site was tilled using a tractor-drawn disc plow to
a depth of 20 cm on 20 December 2000, the normal
practice at this site. Groundnut (var. Natal Common), lablab
bean (Lablab purpureus var. Rongai), pigeonpea (Cajanus
cajan var. ICPL 87091), and maize (hybrid SC 513) were
all planted at a depth of between 2 and 5 cm according to
local practices for each variety in the fine sand, black clay,
and granitic sand on 19, 21, and 28 December, respectively.
Although lablab and pigeonpea are not commonly grown
by smallholder farmers in Zimbabwe today, they were
included in the study due to their potential as high-quality
animal feed (lablab) and drought resistance (pigeonpea).
The in-row distance between seeds was 10 cm for
groundnut, 15 cm for lablab bean, and 20 cm for pigeon-
pea, with a distance between rows of 45 cm. Maize seeds
were planted 30 cm apart, with a distance between rows of
75 cm. To ensure uniform plant stands, two to three seeds
were planted per hole and then thinned to one seedling
10 days after emergence. Due to poor emergence of lablab
beans, those plots were reseeded between 10 and 16
January 2001. All plants were grown with or without P (0
or 20 kg P ha−1 as triple super phosphate containing 21% P)
in a randomized complete block design with four repli-
cations. Each plot (containing a single plant species) was
4×5 m in size, and there was a 0.5-m separation between

Table 1 Characteristics of soils used in Experiments 1 and 2

Soil property Soil

Black
clay

Fine
sand

Granitic
sand

pH (in water 1:1, w/v) 7.9 6.2 4.2
Organic C (%) 1.1 0.4 0.4
Available N (mg NO�

3 kg−1) 5.9 1.1 5.3
Total N (%) 0.09 0.03 0.01
Available P (Olsen, mg kg−1) 1.8 2.1 1.8
Total P (%) 0.04 0.03 0.04
Sand (%) 48 90 92
Silt (%) 11 7 4
Clay (%) 41 3 4

Soil for all analyses was collected from the upper 15 cm prior to
planting of Experiment 1
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plots. Plots were clean weeded by hand at the beginning of
January and again in February 2001. A small (4×5 m)
adjacent area per block was left unattended during the
growing season to determine the effect of natural fallows on
the subsequent AMF abundance.

Final harvests were conducted in May 2001, 5 months
after planting. All plants were cut at the soil surface, and
the fresh shoot weight for the plot was recorded (excluding
the border rows). Shoots of four randomly selected plants
were chosen from each plot and oven dried at 65°C to
constant weight. The root systems of these four plants were
excavated carefully, and percent mycorrhizal colonization
on fine roots (<2-mm diameter) collected from the upper
15 cm was determined from a pooled sample from each plot
using the gridline intersect method on cleared roots stained
in trypan blue (Brundrett et al. 1996). Even though
pigeonpea and maize can develop deep roots in these soils,
the majority of fine roots that harbor AM fungi was found
in the upper 15 cm (personal observation).

Year 2 Following a 6-month fallow, the soil was manually
hoed to a depth of about 15 cm to prepare a seed bed on 11,
20, and 23 November 2001 in the granitic sand, fine sand,
and black clay, respectively. Due to the small size of the
plots, the common tillage practice of animal draft plowing
was not employed due to the risk of cross contamination of
AMF between plots. Maize seeds (var. SC 513) were
planted 40 cm apart within a row and 75 cm between rows
immediately after preparing the seed bed. Ten days after
emergence, four maize seedlings were randomly selected
from each plot. Seedling roots were carefully excavated
from the upper 15 cm and pooled within plots, and early
mycorrhizal colonization (measuring primary colonization
units) on these roots was used as a proxy for AMF
abundance.

Percent mycorrhizal colonization was analyzed in Mini-
tab Release 11 (Minitab Inc., State College, PA, USA) as a
four-factor analysis of variance with soil, crop species, P
fertilization, and block as the four factors. Correlations
were conducted in Minitab Release 11.

Experiment 2—effect of winter tillage and dry-season
fallow period

Year 1 Areas within the black clay, fine sand, and granitic
sand where no fertilizers had been applied the previous year
were plowed to a depth of approximately 15 cm using
animal-drawn moldboard plows between 27 November and
1 December 2001 to prepare a seed bed. We opted to use
animal-drawn plows on the granitic sand in favor of a
tractor-drawn disc plow, the normal practice at this site, as

tillage was a treatment in this experiment, and we wanted to
simulate small-scale farmer practices. The experiment
utilized a split-plot design (with four replications) with
winter tillage as the main plot and dry-season fallow period
as the sub-plot. Main plots were 6×26 m, and sub-plots
were 6×8 m in size, with 1 m between sub-plots to
facilitate animal-drawn tillage and reduce the possibility of
cross contamination between plots during the second phase
of the experiment.

Twomaize varieties that mature in either 4 (var. ZS 257) or
5 months (var. C2H99044) or a perennial pigeonpea variety
(ICRISAT var. ICEAP 0004) were utilized to generate a
fallow period between growing seasons Year 1 and Year 2 of
8.5 months (for the 4-month-duration maize, termed 8.5F),
7.5 months (for the 5-month-duration maize, 7.5F), and
1 month (for the long-duration pigeonpea, 1F). All plots were
seeded between 27 November and 4 December 2001, with a
between-row distance of 90 cm and a within-row distance of
40 cm and clean weeded by hand twice during the growing
season. Unexpected events (discussed below) prevented us
harvesting and measuring the biomass of the maize and
pigeonpea grown on the black clay and fine sand. In the
granitic sand, however, the 4-month-duration maize was
harvested on 3 April, the 5-month-duration on 5 May, and
the pigeonpea on 13 November 2002. At harvest, all the
shoots were cut at the soil surface, and the fresh weight was
recorded (net plot size of 36 m2 excluding the guard rows). A
sub-sample was taken from each plot, brought to the
ICRISAT research station, dried in 65°C until constant
weight, and dry weight recorded. All remaining biomass
was removed from the plots. Winter tillage was conducted
on half of all plots (TILL) at the end of the rainy season
between 10 and 17 May 2002 on all three sites. The
remaining main plots were left undisturbed (NO-TILL).
Thus, the experiment consisted of five treatment combina-
tions: 8.5F:TILL, 8.5F:NO-TILL, 7.5F:TILL, 7.5F:NO-
TILL, and 1F:NO-TILL. The treatment combination 1F:
TILL was not possible because the winter tillage would have
destroyed the long-duration pigeonpea crop, and thus, the
experiment was unbalanced.

Unexpected events at the black clay and fine sand
changed the experimental set-up slightly. Farm animals
entered these fields and consumed all the aboveground
biomass of the two maize varieties in February 2002. By
August 2002, farm animals had eaten or trampled 50% of
the pigeonpea stands in both fields, and by November
2002, only about 10% of pigeonpea plants remained. Due
to this, the planned 7.5- and 8.5-month fallow treatment
from the two maize varieties became a 10-month fallow
treatment, and no data regarding shoot weight was
recorded. Furthermore, the previously designated 1-month
fallow with the pigeonpea became a 4-month fallow. Thus,
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we were left with only three treatment combinations in
the black clay and fine sand; 10F:TILL, 10F:NO-TILL, and
4F:NO-TILL.

Year 2 Weed samples were collected from three randomly
selected 1-m2 quadrats per plot between 13 and 14
November 2002 from all three sites. Biomass measure-
ments, weed identification, and estimation of mycorrhizal
colonization were conducted on pooled weed samples from
each plot. All plots, including NO-TILL plots, were then
tilled using animal-drawn moldboard plows between 15 and
19 November in the fine sand and black clay and on 13
December in the granitic sand. Early mycorrhizal coloniza-
tion of lablab (var Rongai) was used to evaluate the effects
of winter tillage and fallow period on AMF abundance.
Planting was conducted on 12 and 13 December in the fine
sand and black clay and on 19 December 2002 in the
granitic sand. Only fifty lablab plants were planted per plot
in the black clay and fine sand, and the remaining plot was
seeded with maize (var. SC 401) due to the strong wish
expressed by the farmers to have the staple crop grown on
their fields. The same row and seed distance was used as in
Year 1 for both crops. Five lablab seedlings per plot were
harvested 20 days after emergence in the black clay and
granitic sand, but five maize seedlings were harvested per
plot in the fine sand due to poor emergence of lablab bean
in that soil. For clarity, the timing of the various treatments
in this experiment is outlined in Fig. 1.

Treatment effects on mycorrhizal colonization were
analyzed as a split-plot design, with winter tillage as the
main plot and fallow period as the sub-plot in SAS (SAS
Institute Inc., Cary, NC, USA). The error term for the
winter tillage effect was the block × tillage treatment
interaction, whereas the error mean square was used to test
the effect of fallow period as is appropriate for split-plot
designs (Zar 1999). Mean separations were accomplished
using the least significant difference method and were
considered significant if p≤0.05.

Results

Experiment 1—effect of crop species and P fertilization
on subsequent AMF abundance

Overall AMF abundance, as represented by mycorrhizal
colonization of maize 10 days after emergence, differed
significantly between sites (p<0.001). It was higher in
the two subsistence farmers’ fields (fine sand: 47.6%±2.2,
mean ± SE; black clay: 42.8%±2.5), compared with the
ICRISAT research fields at Lucydale (granitic sand:
23.1%±1.6), which may, at least partly, be due to the
more intense disturbance during seed preparation Year 1 in
the granitic sand. Application of P in Year 1 resulted in a
slight but non-significant (p=0.079; no significant site × P
application interaction) decrease in AM colonization in
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all three sites ranging from 1.3% in the granitic sand to
7.8% in the black clay. When controlling for differences
between sites and P applications, crops grown in Year 1
differentially affected the AMF abundance in Year 2
(p<0.001, with no significant site × crop interaction).
Overall, subsequent AMF abundance was significantly
higher after lablab (45.3±3.0, means ± SE, pooled over
the three sites and two P treatments), pigeonpea (39.5±
4.1), and maize (37.0±2.8) compared with groundnut
(29.5±2.5). Mycorrhizal colonization of plants in Year 1
was not correlated with mycorrhizal colonization in Year 2
(r=0.20, p=0.11). However, there were significant posi-
tive correlations between aboveground dry weight in
Year 1 and AMF abundance in Year 2 for lablab,
pigeonpea, and maize but not for groundnut (Fig. 2).
Mycorrhizal colonization Year 2 in adjacent plots that
were under a natural fallow and covered in weeds Year 1
did not differ statistically from maize, lablab, and pigeon-
pea but was significantly higher than groundnut (data not
shown). There were no other significant two- and three-
way interactions.

Experiment 2—effect of winter tillage and dry-season
fallow period on AMF abundance and weed biomass

Both maize and pigeonpea roots were heavily colonized
(>50%) at all three sites at the end of the growing season in
May Year 1. Thus, both crops appeared to be good host
plants for AMF. Contrary to expectation, neither winter
tillage nor fallow period significantly affected AMF
abundance at any site Year 2 (Table 2). Winter tillage did,
however, significantly reduce weed densities in the 8.5F
and 7.5F treatments in the granitic sand (p=0.014) from
909.1 g plot−1 (±147, SE) to 147.2 g plot−1 (±57.1). The

dominant weeds at this site included three forbs [Conyza
sumatrensis (Retz.)E. Walker, Schkuhria pinnata (Lam.)
Kuntze ex Thell, and Tagetes minuta (L.)] and two grasses
[Eleusine indica (L.) Gaertn and Eragrostis viscosa (Retz.)
Trin.], but mycorrhizal colonization was low in all samples
(<10%), and thus, these weeds may not be important for
maintaining AMF abundances between growing seasons.
Winter tillage reduced weed biomass by more than half in
the fine sand as well, but this difference was not statistically
significant (p=0.28), most likely due to the low number of
replicates and the great variability between replicates. At
this site, a perennial, rhizomonous grass (Cynodon dactylon
(L.) Pers.) was the dominant weed with a mycorrhizal
colonization of about 30%. In the black clay, all weeds
consisted of less than 2-week-old broad leaf annuals. Due
to their young age, they were not considered important for
maintaining AMF abundance and thus, mycorrhizal colo-
nization and shoot dry weight were not determined at this
site.

Discussion

This work demonstrates that agricultural management
practices differentially affect AMF abundance in these low-
input cropping systems in the semi-arid tropics of Zim-
babwe. In accordance with previous research in West Africa
(Bagayoko et al. 2000), South America (Dodd et al. 1990;
Sieverding and Leihner 1984), and India (Harinikumar and
Bagyaraj 1988), subsistence crops differed in their effect on
the subsequent AMF abundance. However, the underlying
mechanisms remain uncertain. In the current study, there
was no correlation between mycorrhizal colonization Year 1
and AMF abundance in Year 2, suggesting that a high

Fig. 2 Correlation between shoot dry weight of groundnut (a), lablab
(b), maize (c), and pigeonpea (d) in Year 1 and AMF abundance Year
2 as assessed by mycorrhizal colonization of maize 10 days after
emergence from the granitic sand, fine sand, and black clay in
Experiment 1

Table 2 Effect of fallow period and winter tillage on subsequent
AMF abundance as assessed by percent mycorrhizal colonization
20 days after emergence on lablab in the granite sand and black clay
and maize in the fine sand in Experiment 2

Site Fallow period
(months)

AM (%; mean ± SE)

No tillage Tillage

Granitic sand 1 40.5 (3.1)
7.5 42.0 (3.5) 39.0 (2.4)
8.5 43.3 (3.6) 36.0 (3.7)

Fine sand 4 64.7 (2.2)
10 66.2 (2.8) 62.7 (2.6)

Black clay 4 60.6 (6.1)
10 53.7 (4.6) 58.8 (4.5)

There were no significant main plot (tillage treatment) or sub-plot
(fallow period) treatment effects or interactions at any of the 3 sites,
n=4. Not all treatment combinations were possible due to the nature
of the experiment and unexpected events (see “Materials and
methods” section)
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mycorrhizal colonization by itself is not sufficient to
increase AMF abundance. Instead, AMF abundance in
Year 2 was positively correlated with plant biomass in Year
1 for three out of the four crops (Fig. 2). This positive
relationship has been recorded previously by Osunde et al.
(2003) working with promiscuous soybean (Glycine max
(L.) Merrill) in West Africa. Thus, mycorrhizal crops that
produce high biomass, and therefore in most cases possess
a large root system that harbors AMF, could be important in
building or maintaining a high AMF abundance in these
cropping systems. In all three sites, the subsequent AMF
abundance of the adjacent natural fallow Year 1 did not
differ from AMF abundance observed after maize, pigeon-
pea, and lablab but was higher than the low-biomass-
producing groundnut (data not shown). Contrary to some
previous research (e.g. Howeler et al. 1987), natural fallows
in these systems may not negatively impact AMF abun-
dance as long as they are good hosts for AMF and produce
a substantial amount of biomass.

Moderate P applications to these low-P soils tended to
decrease AMF abundance slightly but not significantly.
Unfortunately, available soil P levels were never measured
after fertilization Year 1, but it is possible that they were
still below inhibitory levels for mycorrhizal formation. In
fact, Sieverding and Howeler (1985) showed that P
applications up to 50 kg per ha actually increased root
colonization in a Colombian agroecosystem, presumably
due to an improved plant vigor.

Contrary to expectations, fallow period and winter tillage
had no apparent effect on AMF abundance. Previous research
in North America has shown that fallow periods and tillage
can have substantial negative effects on AMF abundance
(Kabir and Koide 2002; Kabir et al. 1997; McGonigle and
Miller 1993). For example, growing a winter cover crop in
Pennsylvania, USA increased the subsequent mycorrhizal
colonization fourfold of the following crop compared with
fallow (Boswell et al. 1998). The obligate nature of AMF
makes it intuitive that fallow periods and disturbance would
be harmful to the fungi irrespective of climate. Indeed, a
40% decline in viable AMF propagules was observed after a
3-month-long fallow period under warm and moist con-
ditions (Harinikumar and Bagyaraj 1988). Nonetheless, a
difference in fallow by up to 7.5 months in the current study
did not result in any significant difference in subsequent
AMF abundance (Table 2). There are several possible
explanations for the lack of treatment effects seen here.
First, higher soil water contents during fallows in mesic
climates could be more harmful to AMF survival than the
dry conditions in the semi-arid tropics. Indeed, results from
pot studies have shown that AMF viability remains high for
long periods under dry conditions (Tommertup and Abbott
1981; Brundrett et al. 1987; Pattison and McGee 1997; but
see Jasper et al. 1989), possibly due to both lower fungal

respiration and reduced activity of hyphal and spore grazing
soil biota (Bakhtiar et al. 2001). However, the existence of
the so-called long fallow disorder reported in Australia
(Thompson 1987) indicates that fungal viability can decline
during long fallow periods (exceeding 1 year) even in the
semi-arid tropics. Second, spores can provide an important
source of inoculum in the semi-arid tropics (Veenendaal et
al. 1992), and they are less likely to be negatively affected
by fallow periods and disturbance than external mycelia
(Evans and Miller 1990) due to their large carbon reserve.
The source of inoculum in the current study is unknown.
However, the high early mycorrhizal colonization in both
experiments is unlikely to be generated from spores alone
because spore germination usually result in delayed coloni-
zation compared with colonization from root and hyphal
fragments (Klironomos and Hart 2002). Third, it is possible
that low-input systems support a higher overall abundance of
AMF (Mäder et al. 2000), which could mask any treatment
effects because root colonization is maximized in all treat-
ments (McGonigle and Miller 2000). It is unlikely that this is
the sole explanation for the result from this study, however,
because no significant treatment effects were detected in the
granitic sand in spite of overall lower mycorrhizal coloniza-
tion. Furthermore, significant effects were detected when
different crops were grown, indicating that AMF abundances
can indeed be altered in these systems. Unfortunately, there
was no way to alter fallow periods using the same crop in
Experiment 2. It is possible, therefore, that the results from
the fallow experiment were confounded by the different crop
species used. However, maize and pigeonpea did not
generate significantly different AMF abundances in Exper-
iment 1 (Table 2) and were therefore viewed as essentially
equivalent hosts here. Finally, we cannot exclude that the
lack of tillage effect seen here is due to the lesser disturbance
resulting from the animal-drawn plow compared to the
tractor, which has been used in most previous studies where
tillage effects have been documented.

Weeds can have both positive and negative effects in
these cropping systems. On the one hand, they can maintain
AMF activity if they themselves are good hosts and produce
sufficient biomass as shown by Sieverding and Leihner
(1984). On the other hand, they consume water (Twomlow
and Bruneau 2000), which is often a limiting resource in
these cropping systems. Winter tillage did significantly
reduce weed biomass in the granitic sand, but this did not
result in any reduction of subsequent AMF abundance, most
likely due to a combined effect of low weed biomass
production during the dry season and low mycorrhizal
colonization (<10%). Weed-mediated survival of AMF
between growing seasons, therefore, did not appear to be
important at this site. However, weed production during the
growing season appeared to be beneficial to AMF abun-
dance because natural fallows resulted in higher AMF
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abundance than that observed from groundnut plots. Gen-
eralizations regarding the impact of weeds, therefore, appear
to be difficult as they are both site and seasonal specific.
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