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Abstract 

The beneficial aspects of legumes in sustainable cropping systems have long been known 

and extensively documented. Although grain legumes generally contribute less fixed N 

than pasture legumes, due to removal from the field of grain and stover of grain legumes, 

there is increasing evidence of their positi"e contribution to N balances and increased yields 

�'of succeeding crops. However, meaningful contributions of fixed N by legumes to the 

cropping system require intervention to ensure a vigorous legume-Rhizobium symbiosis. 
/ 

. -Recent studies suggest that up to half of the N fixed by grain legumes may remain below 

ground, and is thus potentially available for subsequent crops. Furthermore, there is increasing 

evidence of substantial non-N beneficial effects of legumes in cropping systems, such as 

breaking of pest, disease and weed cycles, increasing availability of mineral nutrients (other 

than N), improvements of soil physical characteristics, and soil health in general. Rationale 

for increased use of legumes in cropping systems also comes from rising costs of fossil 

fuels, and hence of N fertilizer, and increasing realization of the positive role of legumes in 

human nutrition and health. However, some negative effects of frequent use of legumes in 

cropping systems have also recently become apparent, such as soil acidification, build-up 

of pathogens affecting legumes as well as other crop species, soil water depletion and 

exposure of farmers to the financial risks associated with legume production. Nevertheless, 

despite the well documented overall net biophysical benefits of cultivating legumes, there 
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has been stagnation in area sown and production of the major grain legumes, apart from 
lentil and cowpea, at the global level over the last decade. This can be attributed to various 
socio-economic factors, the principle one being the on-going risks associated with grain 
legume cultivation. Major risks result from the relative susceptibility of grain legume crops 
to several biotic stresses, unstable yields and fluctuating markets. There are some cropping 
systems with particular need and scope for infusion of grain legume cultivation. One such 
example is the rice-wheat systems of South Asia which face sustainability threats. 
Incorporation of crops like pigeonpea to substitute rice, chickpea and lentil to substitute 
wheat and mung bean between wheat and rice crops have beyn demonstrated to improve 
sustainability of rice-wheat systems. To increase the proportion of legumes in cropping 
systems world wide there is a need for focused research and development efforts, particularly 
to address the bottleneck biotic constraints, factoring in of overall economic benefits of 
legumes in cropping systems and better use of market information. Modeling tools are 
increasingly being used to assess the advantages and risks of incorporating legumes in 
cropping systems, and simple decision support systems to assist farmers in their choice of 
legumes in the cropping programs. 

Introduction 
The beneficial role of legumes in crop rotations has been lauded for millennia (White 1970; 

Karlen et al. 1994) but we seem to be no closer to optimizing legume benefits in cropping 
systems, to enhance the productivity, quality of produce and sustainability of those systems. 
Among the IFLRC focus legumes, only cowpea and lentil have registered noticeable increases 
in area over the previous 15 years (Fig. 1). Soybean and groundnut, although grain legumes 
but generally classified as oilseeds, have also increased in area since 1990 (Fig. 1), but the 
beneficial "legume effects" of these crops are relatively low. Modem soybean cultivars 
only fix reasonable quantities of nitrogen (N) if they are inoculated with specific rhizobia 
(Date 2000); mostly, soybean crops are fertilized with mineral N fertilizer in the manner of 
non-legumes. Groundnut also fixes limited quantities of N and little crop residue is left 
from the groundnut crop as plants are uprooted and removed from the field at harvest 
(Nambiar 1990). Values for grain legume production show similar trends as in Fig. 1 because 
yield increases for all depicted legumes since 1990 have been within the range 0-1 % per 
annum. The data of Fig. 1 suggest that grain legumes in general are not increasingly 
contributing to cropping system sustainability, despite their well-documented potential for 
doing so. 

Currently, there is increased urgency to promote the role of legumes in cropping systems, 
generated by the rapidly rising cost of fossil fuels with little prospect of this trend reversing. 
Nitrogenous fertilizer price is closely related to the price of fossil fuels so the value of N 
fixation to global agriculture will further increase. Nitrogen fixation benefits are n?t �aEtured 
if legume nodulation is sub-optimal, legume growth is not vigorous and use of legumes in 
cropping systems is not widespread. 

Initial concerns about cropping system sustainability were primarily directed to 
biophysical factors. A sustainable cropping system was considered to be one in which 
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Fig. 1. Changes in global area sown to the major grain legumes from 1990 to 2004. Beans refers to 
Phaseolus and Vigna species, except cowpea (Vigna unguiculata). Source: FAO_ (2005) 
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production was maintained or increased without damaging, and perhaps even enhancing, 

the resource base. Legumes were considered to have a major role to play in rendering 
cropping systems sustainable, priman1y due their additions of fixed N, but also due te other 

beneficial legume effects such as breaking of pest and disease cycles for non-legume crops. 

However, as concepts of cropping system sustainability evolved a greater socio-economic 
perspective has developed. Not only must production be maintained or increased without 

damaging the resource base but also the livelihoods of those dependent on cropping, and 

the community at large, need to be unequivocally improved as a result of the changed 

cropping system. If biophysical deterioration of farming systems is to be adequately 

addressed, then key socio-economic aspects need to be accounted for. This particularly 

applies to diversifying 1Pe cropping system by increasing legume components, due to the 
nsKy natUre of legume cultivation incomparison with that of staple cereal crops, for example. 

There have been several recent reviews examining the role of grain legumes in cropping 

system sustainability (e.g. Karlen et al., 1994; Peoples et al., 1995; Kumar Rao et al., 1998; 

Howieson et al., 2000; Johansen et al., 2000; Pala et al., 2000; Conner 2001; Evans et al., 
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2001; Go\Vda et al., 2001), discussing the beneficial effects of legumes but also alluding to 

some of the constraints to greater use of legumes in cropping systems to improve their 

sustainability. The purpose of this review is to update on recent knowledge in this area. 

Advances in our understanding over the previous decade of both beneficial and detrimental 

biophysical effects of food legume cultivation will be evaluated. In particular, the socio­

economic factors constraining expansion of cultivation of grain legumes will be examined. 

Aspects relating to human nutrition and health will also be discussed. Suggestions will be 

given for increasing the use of food legumes such that they may more substantially contribute 

to cropping systems sustainability and thereby to human well-being. Some recent examples 

of inclusion of legumes in cropping systems will be given. 

Beneficial Effects of legumes 

Overall Cropping System Productivity 
The major beneficial effect of including legumes in cropping systems is considered to be 

their residual effects on following, usually non-leguminous, crops. Of the residual effects, 

additions of fixed N are assumed to be most important but, as discussed below, there are 

several other positive benefits. However, there are benefits of including grain legumes in 

cropping systems additional to residual effects. One such benefit is, simply, increasing 

cropping intensity and thus the annual productivity of the cropping system. An example is 

the cultivation of chickpea after rice in traditional rainfed systems having only one crop of 

rice per year (Musa et al. , 2001). Addition of legumes to existing cropping systems increases 

the diversity of such systems. This can reduce risk, by reducing reliance on one or few 

crops in a year, even though legumes themselves may be risky crops. To increase cropping 

intensity, however, it is often necessary to adjust the growing period of existing crops. This 

is the case for post-rice rainfed crops where the traditional rice varieties are of the longest 

duration possible to make best use of available soil moisture and other environmental factors. 

Introduction of a shorter duration rice variety, without a reduction in its yield potential, can 

increase the possibility of being able to sow post-rice crops under optimum soil moisture 

and temperature conditions and thus maximize their yield. One such example is the 

introduction of shorter duration rice varieties in the High Barind Tract of Bangladesh which 

allows more timely sowing of chickpea (Witcombe et al., 2005). 

Overall beneficial effects of legumes can be measured by growing a non-legume after 

a legume crop, or range of legumes, and the non-legume with which legumes are to be 

compared. Table 1 gives some examples of overall legume beneficial effects, but without 

the information to ascertain the extent to which extent fixed N is contributing to the yield 

increase; the data show the total residual effect of the legumes whatever its mechanism. 

Beneficial effects of growing grain legumes on subsequently sown non-legumes can be 

several-fold, but are usually not as high as with a green manure crgp clue Jo !"etufrl of Illos! 

of the plant biomass to the soil in the case of the green manure crop (Table 1).< However, 

extent of legume benefit can vary enormously, depending on the location, soil type, sowing 

date, weather, stress factors affecting the various crops, etc. (e.g. Walton and Trent, 1988; 

Evans et al., 2003). 
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Table 1. Some examples of beneficial effects of growing legumes on subsequent cereal crops 

Reference Location 

Marcellos 
(1984) 

Tamworth, 
New South Wales, 
Australia 

Walton & Gibson, 
Trent Western Australia 
(1988) 

Evans 
et al. 
(2003) 

Wagga Wagga, 
New South Wales, 
Australia 

Shah NWFP, Pakistan 
et al. (2003) 

Crops compared 

Faba bean (Fiord) 
Lupin (lllyarrie) � 

Lupin (Ultra) 
Chickpea (CPI56288) 
Chickpea (CPI61277) 
Wheat (Kite) 

Faba bean 
Field pea 
Grasspea 
Lupin 
Wheat 

Pea 
Lupin 
Clover green manure 
Wheat 

Mungbean 
Sorghum 
Lentil 
Wheat 

*Yield estimated from Figure 2 of Evans et al. (2003) 

Following 
non-legume 

Grain yield of Beneficial 
following legume 

crop effect 

g ha-1 % 

Wheat 2.93 
3.20 
3.14 
3.19 
2.97 
1.57 

Wheat (var. Egret) 1.19 
1.46 
1.02 
1.50 
0.32 

Wheat 3.50* 
3.90 
5.80 
1.50 

Wheat 1.030 
0.760 

Maize/sorghum 5.70 
3.80 

186 
204 
200 
203 
189 

372 
456 
319 
469 

233 
269 
387 

136 

150 

The traditional way of interpreting crop response when mUltiple factors are involved 
is through the "law of limiting factors", whereby yield is responsive to only one, most 
limiting, factor (Kho, 2000). However, this paradigm has proved inadequate, due to such 
phenomena as sequential influence of factors at different time scales, different factors 
affecting different components of the system and pseudo-substitution of inputs (Sadras et 

al., 2004). An alternative paradigm is co-limitation, where the response of a biological 
system to two or more factors is greater than its response to each factor in isolation (Sadras 
et al., 2004). In interpreting the effects of prior crops of faba bean, and of pastures, on 
wheat yield, Sadras et al. (2004) showed that water and N stress acted in a manner consistent· 
with co-limitation. The APSIM (Agricultural Production Systems Simulator) model was 
used to calculate the individual and oVerall effects of the major stresses of water and N. It is 
suggested that this methodology is appropriate for unraveling reasons behind overall residual 
benefits-ef legumes-en-feliewing -Crops" 

Additions of Fixed Nitrogen 

The predominant mechanism by which legumes favour growth and yield of a subsequent 
crop is by increasing availability of N to the subsequent crop. This can be through additions 
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of fixed atmospheric N to the soil N pool or by a N sparing effect, whereby the legume 

largely relies on its own N fixation for its N requirements thereby not depleting soil N and 

leaving this � available for the subsequent crop. Peoples et al. (1995) summarized data to a 

decade ago on the proportion and amount of N in legumes that is fixed (Table 2). More 

specific crop x location data for these parameters are given in Table 3. More recent literature 

confirms the values reported in Tables 2 and 3 (e.g., Vnkovich and Pate, 2000). There is a 

wide range values for N fixed but it can be generalized that the optimal rate of N fixation in 

grain legumes is perhaps about I kg N ha-I day-I within a cropping season, and this should 

be considered as the potential of the grain legumes for N fixation within a given environment. 

From surveys of N fixed by legumes in eastern Australia, Peoples et al. (2001) concluded 

that 20-25 kg of shoot N was fixed for every tonne of legume shopt dry matter produced. 
This value was of the order found in other such studies done elsewhere in the world. 

Deviations from these values were attributable to drought stress or elevated soil nitrate 

levels which suppressed N fixation. The wide variations in N fixation within a given crop 

are found for a variety of reasons but basically depend on the amount of biomass produced 

by the legume and the effectiveness of the legume-Rhizobium symbiosis in fixing N. A 

range of biotic and abiotic factors determine each of biomass production and symbiotic 

effectiveness. There is a clear relationship between the N fixed by grain legumes and the N 

balance (Fig. 2). 

Table 2. Range of estimated proportion (P f",) and amount of N fIxed by major grain legumes, 

as reported by Peoples et al. (1995) 

Grain legume 

Cool season legumes 

Chickpea (Cicer arietinum) 

Lentil (Lens culinans) 

Pea (Pisum sativum) 

Fababean (Vicea faba) 

Lupin (Lupinus angustfolius) 

Warm season legumes 

Soybean (Glycine max) 

Groundnut (Arachis hypogaea) 

Common bean (Phaseolus vulgaris) 

Pigeonpea (Cajanus cajan) 

Mungbean (Vigna radiata) 

Blackgram (Vigna mungo) 

Cowpea (Vigna unguiculata) 

8-82 

39-87 

23-73 

64-92 

29-97 

0-95 

22-92 

0-73 

10-81 

15-63 

37-98 

32-89 

Amount N fixed 
kg N ha:'J 

3-141 

10-192 

17-244 

53-330 

32-288 

0-450 

37-206 

0-125 

7-235 

9�112 -

21-140 

9-201 
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Fig. 2. Effect of fixed N on the N balance of pea (0), lupin (e) and chickpea (+) grown in 

Australia. Source: Evans et al. (2001) 
-

For grain legumes to play an important role in- the maintenance of soil fertility for 

other crops in the rotation, they must leave behind more N from N fixation than the amount 

of soil N that is removed by the crop. The amounts of N added to the cropping system that 

have been measured are quite variable for different species (Table 4). There can also be 

large varietal differences in residual N, as found for a range of six lupin varieties (63-177 
kg/ha; Hamblin et al., 1993). In a survey of farmers' fields in north-west New South Wales, 

Australia, Schwenke et al. (1998) found that chickpea needs a Pfix of >35% and faba bean a 
I 

P fix of > 19% to balance soil N. The largest net additions of fIxed N Itend to be found with 

crops or varieties that have a smaller N harvest index, e.g. long-duration pigeonpea in India 

or cowpea in Ghana. Grain legumes can contribute large amounts of N to the soil in fallen 

leaves and stover that can provide N for subsequent crops. If the legume stover is removed 

from the field, however, there is often no observable benefit to the next crop and there is 

usually a net removal of N from the cropping system in the legume grain. Increases in the 

amount of legume N contributed through residual effects are generally possible only if the 

grain yield of the legume is decreased. This can rarely be justified in economic terms 

(Schwenke et al., 1998) but might be worthWhile for marginal farmers in remote areas who 

are unable to participate in a cash economy. 

Information on the residual effect of various summer, rainy season, cool season, green 

manure and forag�legmnes on su�_c_e�_ding ceTeal_CrQPs in South Asia is available (Kumar 

Rao et al., 1998). Increase in cereal yields following monocropped legumes was reported to 

range 0.5-3 t ha-l representing a 30-350% increase over yields in cereal-cereal cropping 

sequences (Peoples and Crasswell, 1992). In a long-term trial involving legume and non­

legume based systems, conducted at ICRISAT Center, Patancheru, Hyderabad, India, since 
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Table 3. Some estimates of N2-fIxation by important pulses and legume oilseeds grown as sole 
crops 

Legume N2fixed Country Methodt Reference 

ka N ha-J b % 

Groundnut 139-206 55-64 Australia NA Peoples et al. (1991) 
68-116 54-78 Brazil ID Boddey et al. (1990) 
152-189 61-85 India NA Nambiar et al. (1986) 

46* 62 T hailand ID Toomsan et al. (2000) 

Pigeonpea 68-88 88 India ID Kumar Rao et al. (1987) 
0-76 0-36 India NA Kumar Rao et al. (1996) , 

1-39 64-100 Zimbabwe NA Mapfumo et al. (1999) 

Chickpea 61-126 81-88 Bangladesh ID Sattar et al. (1998) 
4-61 23-68 Pakistan ID Hafeez et al. (1998) 
67-85 63-81 Australia NA Herridge et al. (1995) 
20-42 42-87 India ID Rupela and Saxena (1987) 

Soybean 15-170 12-100 Nepal NA Maskey et al. (1997) 
42-83 46-87 Nigeria ID Sanginga et al. (1997) 
149-176 69-74 Philippines ID George et at. (1995) 
108-152* 66-68 Thailand ID Toomsan et at. (1995) 

Grasspea 85�91 * Nepal NA Maskey et al. (1997) 

Lentil 19-83* 62-85 Nepal NA Maskey et al. (1997) 

Lupin 95-283 74-93 Australia NA Vukovich et al. (1995) 

Pea 54-165 60-91 Australia NA Vukovich et at: (1995) 
39-94* 36-65 Canada DB Soon and Arshad (2004) 

Common bean 4-45 12-53 Brazil ID Hardarson et al. (1993) 
8-26* 40-51 Tanzania ID Giller et al. (1998) 

Greengram 0-55 0-100 Pakistan NA Shah et al. (1997) 
10:': 25 Thailand ID Toomsan et al. (2000) 

Blackgram 0-55 0-100 Pakistan NA Shah et at. (1997) 
9-51 32-74 Brazil ID Boddey et al. (1990) 
63* 65 T hailand ID Toomsan et al. (1995) 

t NA = 15N natural abundance; ID = 15N isotope dilution; DB = difference or N balance method; * Measurements 
made in on-farm crops. 

1983, rainy season sorghum grain yield production was sustained at about 2.7 t ha-I over 12 

years within a continuous sorghum-pigeonpea intercrop system compared to about 1.3 t 

ha-I in a non-legume based system (Rego and Rao, 2000). With a cowpea-pigeonpea intercrop 

system, succeeding sorghum benefited each year by about 40 kg N ba-1--(iertilizer-'N 
equivalent). In the same study legume benefits were less marked in the chickpea-based 

rotation than in the pigeonpea system - a 12-year build-up of soil total N (about 125 /lg g-I) 

was observed in the pigeonpea system. Although sorghum benefited from this system, 
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Table 4. Net N-balance for grain legumes following seed harvest 

Legume 

Groundnut 

Pigeonpea 

Cowpea 

Lentil - residue 

Lentil + residue 

Mungbean 
- residue 

Mungbean 
+ residue 

�ungbean 

Fieldpea 

Chickpea 

Fababean 

lupin 

Albus lupin 

Narrow leaf lupin 

Fieldpea 
I 

Chickpea 

Location Seed 
Nt 

kgN 
ha-1 

Thailand 116 

India Ett 

India Mtt 

India V, 

Australia 

Ghana 

Pakistan 

Australia 

Australia 

39 

49 

28 

80 

65 

39 

40 

40 

48 

89 

28 

31 

63 

43 

Australia 266 

154 

148 

94 

Total 
crop 
kgN 
ha-1 

245 

72 

120 

134 

125 

226 

177 

199 

120 

235 

229 

317 

249 

163 

104 

NHI§ Nz fIxed'l NetN 
Pfix Amount balance# 
% kgN 

ha-1 

0.41 61 150 +34 

0.54 10 7 -32 

0.41 46 55 +6 
, 

0.21 51 69 +41 

0.64 69 87 +7 

0.29 89 201 +136 

73 68 +16 

73 68 +27 

70 74 +9 

79 112 +64 

0.50 63 112 +23 

0.14 75 142 +114 

/ 
I 

0.26 74 85 +54-

0.27 77 187 +124 

0.19 86 189 +146 

0.84 75 317 -6H 

0.62 82 249 +10** 

0.91 60 133 -80H 

0.91 75 104 -62** 
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Reference 

Suwanarit et al. 
(1986) 

Kumar Rao and 
Dart (1987) 

Ofori et al. 
(1987) 

Dakora et al. 
(1987) 

S hah et al. 
(2003) 

Chapman and 
Myers (1987) 

-McNeill et al. 
(2000) , 

Armstrong 
et al. (1997) 

t N removed in seed, SN; t T otal N at maturity, TN; § Nitrogen harvest index = SN!fN; err Quantity 
of Nz fIxed, Nf = TN x P (P=proportion); # Net contribution of legume residue N to soil = Nf-SN; tt 
E = early, M = medium, L = late duration pigeonpea; HNet N balance after harvest of a subsequent 

wheat crop and induding an estip:J.ate of below-ground N derived from the legume. 

pigeonpea yields declined over time due to soil-borne fungi and nematodes. Wider rotations 

of crops with pigeonpea may help to overcome these problems, while sustaining sorghum 
production. 
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The fertilizer N equivalent of the residual effect of different grain legumes on maize 
was reported to range from 7 kg ha-1 to 70 kg ha-1, on rice 12-67 kg ha-1, on wheat 23-78 kg 
ha-l, on sorghum 40-68 kg ha-l, and on pearl millet 40 kg ha-1 (Table 5). The green manure 
and forage legumes were reported to have fertilizer N equivalents of the residual effect on 
rice ranging between 50 and 100 kg ha-1• The residual effect of grain legumes as expressed 
in fertilizer N equivalent was less in intercropping compared to sole crops, due to the lower 
plant density of grain legumes in intercrops. The fertilizer N replacement value (FRV) or 
fertilizer N equivalent value refers to the amount of inorganic N required following a non­
legume crop to produce another non-legume crop with an equivalent yield to that obtaiiied 
following a legume. This comparison provides a quantitative estimate of the amount of N 
that the legume supplies to the non-legume crop. This does not, however, distinguish between 
biological nitrogen fixation and the "N sparing effect" which results from substitution by 
legumes of biologically fixed N for soil N. Therefore, FRV methodology over-estimates the 
N contribution of legumes in a crop rotation. The FRV methodology gives variable estimates 
depending on the test crop used (Blevins et aI., 1990). Recently, 15N methodology has been 
used to measure the residual effects of legumes to circumvent problems Witll non-isotopic 
methods (Senaratne and Hardarson, 1988; Danso and Papastylianou, 1992). The 
overestimation by FRV methodology is because it confounds the non-N rotation effect with 
the N contribution (through BNF or N sparing effect). 

The FV R methodology also assumes that use-efficiency of fertilizer and legume N is 
similar. In some situations the following cereal crops can better access N in legume residues 
than equivalent amounts of fertilizer N added to the soil surface. Armstrong et al. (1997) 

found that N uptake by sorghum was greater from plots where mung bean had grown 
previously rather than N fertilized plots, even though similar quantities of N were involved. 
This was because the legume-derived N was deeper in the soil while fertilizer N was in the 
soil surface, which rapidly dried out causing N from that soil layer to become una�ai1able. 

Recent studies using shoot or stem labeling with 15N have shown that the below­
ground N contribution of legumes is much greater than previously thought (McNeill eF�f:, 
1997). In the glasshouse experiments, below-ground N represented 30% of total N in ft\,ba 
bean and 48% in chickpea. Under field conditions these figures were 26% and 68% for faba 
bean and chickpea, respectively (Khan et aI., 2000). In pot studies, where thy entire plant 
biomass can be recovered, the shoot:root N ratio was in the range 1.4-2.2 for chickpea, 
lupin, faba bean, vetch and lentil (Unkovich and Pate, 2000). In field studies, below-ground 
N was estimated to be in the range 38-50% for field pea, chickpea, faba bean and. lupin 
(McNeill et aI., 2000). In a series of field and glasshouse studies, Peoples (2001) estimated 
below ground N in faba bean, chickpea, lentil and soybean to be in the range 26-68%. In 

view of these apparently high values, it appears that the value of legumes in contributing N 
to subsequent crops will need to be re-assessed. 

Growing legumes in rotation improves mineral N content in soil as compared with the 
cultivation of non-legume crops (Rao and Singh, 1991, Wani et aI., 1995; Ladha et aI., 

1996; Rego and Rao, 2000) (Table 6). However, it does not fully explain the beneficial 
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Table 5. Residual effect of legumes grown as sole and intercrop with a cereaJ on a following 
cereal yield in terms of fertilizer-N equivalents 

Preceding legume 

Pigeonpea (sole) 
Plgeonpea/sorghum 
Groundnut 
Groundnutlmaize 
Mllngbean 
Mtingbeanlmaize 
Cowpea 
Cowpea/maize 
Cowpea/pigeonpea 
Blackgram 
Soybean 
Chickpea 
Chickpea 
Chickpea 
Lentil 
Lentil 
Peas 
Peas 
Peas 
Berseem 
Sweet clover 
Grasspea 
Cowpea 
Mungbean 
Blackgram 
Guar 
CO!JUllon bean 
Blackgram 
Cluster bean 

Following 
cereal 

Maize 
Maize 
Wheat 
Wheat 
Wheat 
Wheat 
Wheat 
Wheat 
Sorghum 
Sorghum 
Maize 
Pearl millet 
Maize 
Wheat 
Maize 
Pearl millet 
Maize 
Pearl millet 
Wheat/flax 
Maize 
Maize 
Maize 
Rice 
Rice 
Rice 
Rice 
Rice 
Wheat 
Wheat 

Fertilizer-N 
equivalent kg ha I 

40 
20+ 

28 
12 
68 
16 
38 
13 
40 
68 

7 
40 

60-70 
40 

18-30 
40 

20-32 
40 

12-28 
123 
83 

36-48 
67 
48 
36 
14 
12 
30 
78 

Bl�ckcrram Wheat 65 - 0 

Pigeonpea Wheat 23 
Soybean Wheat 58 
Groundnut Wheat 49 
Mungbean stover Rice 80 
Green manure legumes RIce 50-100 
Forage legumes Rice 50-90 

Source: Derived from Kumar Rao et at. (1983), Singh and Verma (1985), Bandyopadhyay and De 
(1986), Carberry (1995), Wani et al. (1995), Beckie and Brandt (1997), Ahlawat et al. (1998), Kumar 
Rao et al. (1998), Lauren et al. (1998), Saraf et al. (1998), Rego and Rao (2000). 

effects of legumes on the following crop. Direct evidence of the benefits from N fixation 

was obtained where yields of sorghum grown after nodulating varieties of chickpea were 

higher than yields after non-nodulating varieties of chickpea (Kumar Rao and Rupela, 1998). 

The increased cereal yields following legume crops are usually attributed to the N contribution 
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Table 6. Some examples ofthe increased levels of soil nitrate detected following legume growth. 

Crop species 

Chickpea 

Chickpea 

Mungbean 

Blackgram 

Pigeonpea 

Crotalaria 

Siratro 

SorghunVpigeonpea 

CowpeaJpigeonpea 

Fieldpea 

Common vetch 

Fieldpea 

N arrow-leafed lupin 

Additional soil nitratet 

kg N ha-1 

14 

33 

26 

38 

15 

19 

26 

32* 

30* 

46-54 

6 

7 

8 

Reference 

Herridge et al. (1995) 

Marcellos et al. (1998) 

Doughton and MacKenzie (1984) 

Doughton and MacKenzie (1984) 

Ladha et al. (1996) 

Rego land Rao (2000) 

Soon and Arshad (2004) 

Walton and Trent (1988) 

tCalculated as the difference between the levels of soil nitrate after a legume and after a cereal crop or 

a period of fallow; *Includes mineral and mineralizable N 

from legumes in crop rotation (De et al., 1983; Kumar Rao et al., 1983), while others think 

that factors besides the N contribution may be of equal or perhaps greater in importance in 

enhancing cereal yields after legumes (Danso and Papastylianou, 1992; Fyson and Oaks, 

1990; Wani et al., 1991a, 1994; Stevenson and van Kessel, 1996). 
"' 

Intercropping of grain legumes with cereal crops is common in tropics. The crop 

combinations and sowing arrangements are very large and range from mixed cropping, in 

which many species are sown in a field, to an organized row or strip cropping (Francis, 

1986). The combination of crops is determined by the length of growing season and 

environmental adaptation, but usually early- and late-maturing crops are combined to ensure 

efficient utilization of the resources during the growing season. In tropical regions the legu,rnes 

such as cowpea, pigeonpea, groundnut and chickpea are usually intercropped with maize, 

sorghum, millet, safflower or rice. The quantity of N fixed by the legume in an intercrop 

depends on the species, plant morphology and legume density in the intercrop mixture and 

crop management practices (Table 7). Differences in the competitive abilities of the 

component crops for soil-N can result in stimulation of N fixation (Rerkasam et al., 1988). 

However, N fixation by climbing types of common bean was unaffected by intercropping 

with maize (Graham and Rosas, 1978), whereas shading by tall cereal crops can reduce 

both yield and N fixation of shorter stature legumes such as groundnut (Nambiar et al., 

1983). 

A dilemma arises when soil nitrate levels substantially increase after additions of 

fixed N through vigorous legume growth. As soil nitrate levels increase, N fixation capacity 

decreases, and chickpea is particularly sensitive in this regard (Doughton et al., 1993; 
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Schwenke et ai., 1998; Turpin et al., 2002). This relationship is so robust that Herridge et 

al. (1998) have been able to predict N fixation and N balance using soil nitrate at sowing 

and chickpea yield. To maximize contributions of fixed to the soil N balance, legume 

symbioses less sensitive to external nitrate concenn:ation are required. 

Table 7. Effect of intercropping grain legume with cereals on crop-N derived from Nz-rlXation 

Species Location Legume: cereal N2-fixed Reference 
ratio Pfix AmoUnt 

% kg N ha-1 

Rice bean Thailand 1 00:0 36 49 Rerkasem et al. (1988) 
25 :75 8 6  41 

Cowpea Australia 1 00:0 69 87 Ofori et al. (1 987) 
71 :29 66 59 

India 1 00:0 54 64 Patra et al. (1 986) 
66:33 58 48 

Hawaii 1 00:0 30 1 8  Van Kessel and Roskoski (1988 ) 
75:25 34 10  

Nigeria 1 00:0 79 1 1 8  Eaglesham et al. (1981 )  
62:38 59 72 

Pigeonpea India 100:0 88  8,8 Kumar Rao et al. (1987) 
1 00:1 00 96 75 

India 1 00:0 63 150 Tobita et al. (1994) 
100:1 00 8 6  1 65 

Pea Denmark 1 00:0 5 3  128 Jensen (1996) 

46:5 4 82 31 

Effects on Soil Organic Matter 

Legumes can play an important role in maintaining and improving levels of soil organic 

matter, which is essential for the physical, chemical and biological suitability of soil for 

agriculture, often now referred to as "soil health" (Johnston, 1991). Organic carbon (C) 

content has been shown to increase in legume-based cropping systems as compared to wheat­

maize or fallow-maize cropping sequences (Table 8). Among the legumes, grasspea as a 

preceding crop proved superior to lentil, pea and chickpea, which in tum significantly 

increased the organic C in soil over fallow and wheat treatments (Table 8). An increase in 

organic C content in soil through legumes has also been reported by Rixon (1966), Russell 

(1977), George and Prasad (1989), Schulz et al. (1999), and Aslarn et al. (2003). 

A major consequence of build-up of soil organic matter is improvement of soil structure, 

which improves tillage characteristics and soil water holding capacity. Improvements in 
SOIl structure, mamly SOIl aggregate ionnation, where observed after after three years of 

alfalfa, clover and hairy vetch (Vicia villosa) mixture (Latif et al., 1992; Karlen et al. , 

1994). Improvements in soil water-holding and buffering capacity have been attributed to 

incorporation of legume residues (Buresh and De Datta, 1991). Improvements in soil structure 
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Table 8. Fertility status of soil under winter legumes and rainy season maize sequence 

Preceding After harvest of winter crop After harvest of maize and 

crop and before sowing of following maizet before sowing of winter legumes 

OC N P OC N P 

% kg ha-1 kg ha-1 % kg ha-1 kg ha-1 

Grasspea 0. 553 1 66.8 1 3.8 0. 467 1 42.3 13. 4  

Lentil 0.45 4 153.5 1 3.0 0.421 128.8 12.1  

Pea 0.431 143. 4  12.5 0.399 119. 6 11.6 

Chickpea 0.502 1 61 . 3  1 3.6 0 .453 1 40 .5  12.0 

Fallow 0. 389 1 15. 4 1 1 . 4  0 .365 1 09.7 1 0.7 

Wheat 0.365 1 06. 4 1 1 .2 0.347 1 02.0 1 0.9 

LSD at 5% 0.041 11.2 0.8 0.084 8.9 0.8 

toe = organic carbon, N = nitrogen; and P = phosphorus; Source: Ahlawat et al. (1977) 

due to legume cultivation can also decrease soil erosivity (Bruce et aI., 1987). However, 
there are some reports where inclusion of a legume, e.g. mungbean in rice-wheat systems, 
resulted in decline in organic C content of soil (Meelu et aI., 1979; Ram Newaj and Yadav, 
1994). The reasons for this decline in organic C content of soil are not clear - perhaps a 
result of excess tillage. 

Soil organic matter levels in tum affect the level of soil microbial activity. Soil microbial 
biomass is known to be both a source and a sink for nutrients, that is, the soils with more 
biomass will be able to release nutrients more rapidly. In a rice-wheat system,jnclusion of 
summer mungbean with or without its residue incorporation resulted in a higher soil microbial 
population and biomass when compared to fallow (Table 9). The effects were, however, 
more pronounced with residue incorporation. Residue incorporation also resulted in more 
of CO2 evolution and dehydrogenase activity, indicating increased microbial activity. 
Increased microbial activity influences mineralization and immobilization of nutrients such 
as N and P depending on the composition of the residues and environment. These re�ults 
indicate that inclusion of a legume in the cereal (e.g. rice-wheat)-based system improves 
soil microbial biomass and activity that could be vital for long-term soil health and 
productivity. 

Significant enhancement of soil microbial populations through legume cultivation 
can also occur in cool temperate regions. In the Canadian Prairies, Biederbeck et al. (2005) 
showed that after 6 years of cultivating pea, lentil or Lathyrus spp. microbial activity had 
substantially increased compare to the traditional fallow treatment. On average across 
legumes, bacterial numbers had increased 385 %, fIlamentous fungi 210%, microbial biom3.$s 
C 170%, mjcrobial biomass N 191 %, cumulative C mineralization 205%�-aehyarogenase 
202%, phosphatase 171 % and arylsulfatase activity 287%. 

It is difficult to measure small changes in the total soil N pool or C pool on an anmiaJ. 
basis as the soil pools are large and'significant differences only become apparent overtime. 
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Table 9. Effect of a summer legume, mungbean, on microbial biomass and population in soil at 
0-15 em depth, New Delhi, India, 1993-94t 

Treatment* Microbial biomass Microbial population 

Wheat Rice Bacteria Actino- Fungi Azoto- Azospiri- PSB§ 
harvest harvest x lOs mycetes x 10' bacter llum x 102 

X 104 X 102 

f.lg g'! soil number g! soil 

Rice crop (1993) 

Fallow 1 8 5  219 55 0.5 0.2 25 1.2 

Mungbean (SR) 198 225 1 1 5  1 . 5  1 .0  92 18 .7 4.0 

Mungbean (SI) 244 31 5 195 6. 5 1 .8  210 41.7 6. 5 

Wheat crop (1993/94) 

Fallow 40 0.4 0.5 14 0. 01 5 1 .2 

Mungbean (SR) 42 38.0 0.6 35 0.250 2.5 

Mungbean (SI) 65 140.0 0.9 65 0.7 50 4.2 

tStatistical analysis of the data IS not available; tSR = Stover removal; and SI = Stover incorporatIOn; § PSB = 

Phosphate solubilizing bacteria; Source: Ahlawat et al. "(1998) 

Therefore, long term rotational studies are needed to determine whether grain legumes 
deplete or enrich soil N (Chalk, 1998) and soil organic matter (Christensen and Johnston, 
1997) and the number of such studies is limited. 

Wani et al. (2003) evaluated the impact of improved cropping systems involving 
legumes (and land and water management factors) versus a traditional farming practice 
(fallow-sorghum or chickpea) in central India on crop productivity,IDd soil qUality (Table 
10). The average grain yield of the improved system over 24 years was 4.7 t ha-I, nearly a 
five-fold increase over the traditional system (about 1 t ha-1 yrl). There was also evidence 
of increased organic C, total N and P, available N, P and K, microbial biomass C and N in 
the soil of the improved system. A positive relationship between soil available P and soil 
organic C suggested that application of P to vertisols increased carbon sequestration by 7.4 

t C ha-1 and, in turn, the productivity of the legume-based system, thus ultimately enhancing 
sOh qUality. 

Campbell et al. (2000) evaluated the impact of cropping systems on total soil N and C 
and the effect on net N mineralization over the period from 1976 to 1990. They reported 
that wheat-lentil rotations increased total soil N from 3.26 to 3.58 t ha-I, whereas total soil 

. C for fertilized wheat incr�ased Jro:Q1 �4.Llo_�Q�Q t ha-1 for the wheat-lentil rotation (Table 
10). Furthermore, net N mineralization increased significantly in the wheat-lentil rotation. 
Although this rotation received 13 kg N ha-1 less fertilizer per year than the continuous 

��heat treatment, lentil increased the total soil N pool at an annual rate of 23 kg N ha-1 

compared to 8 kg N ha-1 for the fertilized wheat. 
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Table 10. Changes in soil N, C and P with inclnsion of grain legumes in varions cropping systems 

Crop rotation t S tudy period* 

From Wani et al. (2003) 

Fertilizer N input 
kg N ha-l yearl 

T otal N 
ko- N ha-l '" 

N minerali- T otal C Olsen P 
zation 

kg N ha-1 
t C ha-l ko- P ha-l '" 

F - S G  or CP 1976-1998 10 t ha-l farmyard 2,276 32.6 21 .4 1 .5  
manure in alternate 
years 

S GIPP or MA - CP 60 kg N + 20 2,684 -3.3 27.4 6 .1  

kg P ha-1 
From Rego and Seeling (1996); WaDi et al. (1996); and Rego and �ao (2000) 
S G/S F, S G+S F 1 983-1994/ 0 508� I 6# 0.365tt ND;* 

1 999§ 
S +CP, S +S F  0 550 
S GIPP, S G+S F 0 610 
COIPP, S G+S F 0 638 
From Campbell et al. 2000; and Campbell and Zentner (1993) 
WH 1976-1990 31  3 370§§ , 
WH - LE 18  3,580 

11 
12 
19 

17'1l'1 
34 

0.371 
0.419 
0.435 

34.68## 
36.56 

ND 
ND 
ND 

ND 
ND 

t F = fallow SG = sorghum; CP = chickpea; PP = pigeonpea; MA = maize; SF = safflower; SB = soybean; CO 
= cowpea; WH = wheat; LE = lentil; :j: Year of initiation and final sampling of the study; § N measured in 1994 
and C in 1999.; <J[ Units are mg N kg-l soil and the initial value in 1983 was 550 mg N kg·l soil; # Units are mg N 
kg·l soil.; tt Organic carbon (%) in 0- 15 cm soil depth (T.J.Rego, personal communication); :J:t Not detennined; 
§§ kg N ha·l in 0-15 cm soil profile and the initial value in 1976 was 3,260 kg N ha-1; <J[Cj[ kg N ha·l in 0-90 cm 
soil profile; ## Initial value in 1976 was 30.47 t C ha·l. 

Another long-term study examined cowpea, pigeonpea and chickpea grown in rotation 
with sorghum and safflower from 1 983 to 1 994 (Table 1 0) (Rego and Seeling, 1 996; Rego 
and Rao, 2000; Wani et a!., 1 996). Unfertilized cowpea plus pigeonpea and sOEghumJ 
pigeonpea rotations increased total soil N content after 10 years (Table 1 0). Conversely, a 
slight decline in total soil N occurred in rotations of sorghum and chickpea or when grain 
legumes were not included. Furthermore, N uptake by sorghum increased when grain legumes 
were part of the rotation as the N supplying power of the soil increased when grain legumes 
were included. Although the grain and the above-ground residues were removed, the below­
ground N contribution was large enough to increase the total soil N content and enhance net 
N mineralization. Similarly, the organic C (%) of the soil (0- 1 5  cm) also increased in 
treatments having legumes (Table 10). 

From the above reports it is clear that grain legumes can increase total soil N and also 
soil C thus contributing to soil health and sustainable productivity. The value of grain 
legumes in cropping systems is predicated on the ability of the grain legumes to fIx the 
majority of its N and to leave substantial residues of C and N in the soiL 

Availability of Other Nutrients 

Recent studies have indicated an important role of legumes in increasing availability of P in 
cropping systems. One mechanism of achieving this is uptake of P by legume roots from 
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parts of the soil profile not normally accessed by non-legumes. This can be through more 

thorough exploitation of a given soil volume, as occurs with mycorrhlzal development (Harrier 

and Watson, 2003) or formation of proteoid roots (Gardner et at., 1981). It can also be 

through deeper rooting of legumes than cereals �n the rotation and thus recycling of P and 

other nutrients to the soil surface to be available for uptake by subsequent crops. However, 

these effects are difficult to quantify. 

Another mechanism is the mobilization of sparingly soluble P by legume root exudates; 

e.g. citric and malic acids and malonate in chickpea (Ae et al., 1991; Wouterlood et at., 

2004), citric and malic acid in lupin (Gerke et al., 1994), and piscidic acid in pigeonpea (Ae 
et aI., 1990). These exudates can act directly in solubilizing calcium, iron or aluminium 

phosphates or indirectly by stimulating growth of phosphate solubilizing bacteria (Gull et 

at. ,  2004). Pot studies have clearly shown that growth of a legume which exudes low 

molecular weight organic compounds from roots results in increased growth and P uptake 

of a cereal grown subsequently in the same pot; e.g. in maize following chickpea (Arihara 

et at., 1991), in wheat following either faba bean, field pea or white lupin «Nuruzzaman et 

al., 2005), and in sorghum and wheat following white lupin (Hocking and Randall, 2001). 

When chickpea was grown as an intercrop with wheat in pots, P uptake by wheat was 

enhanced, as compared with a sole wheat crop (Li et aI., 2003a). Some recent field studies 
have now demonstrated enhancement of growth anel P uptake by subsequent cereal crops. 

Amrani et aI. (2001) showed that residual P effects on wheat where greater in chickpea­

wheat rotations than in wheat-wheat rotations. Horst et aI. (2001) demonstrated a positive 
rotational effect of P-efficient leguminous crops on subsequent cereal crops. Faba bean 

enhanced P uptake of maize in the field when it was intercropped with maize (Li et at., 

2003b). 

It is proposed that legumes can also increase availability of nlltrients- additional to N 
I 

- and P, namely K, Ca, Mg, Zn, S and Fe, through increased soil microbial activity, deep 
rooting, and root exudates (Kucey et at., 1988; Ladha et al., 1989 and Wani et al., 1991b). 

Growth promoting substances have also been reported to emanate from legume residues 

(Fyson and Oaks, 1990; Ries et al., 1977). 

Effects on Biotic Stresses of the Cropping System 

It has long been reported that crop rotations, including those with legumes, are important in 

breaking pest and disease cycles of particular crops (Karlen et al., 1994). Recent studies 

have quantified further instances of this effect, which is important as such knowledge can 

reduce reliance on chemical means of control and thus associated environmental threats. 

Breaking of pest and disease cycles is more effective the greater the taxonomic separation 

of sequential crops, thus the value of cereal-legume rotations as compared to rotations of 
-crifferentgfami-neous-crop-s-;--Fbr example, crown rot of wheat (caused by Fusarium 

graminearum) in northern New South Wales, Australia, was worse when the crop followed 
wheat (mean 30%) than when it followed chickpea (mean 12%) (Felton et al., 1998). The 

severity of leaf spot diseases of wheat is less when wheat is grown after lentil than after 

wheat (Fernandez et al., 1998). In some situations, non-N beneficial effects can be substantial. 
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Stevenson and van Kessel (1996) explained only 8% of the rotational benefit of pea as 
being due to residual N. The remaining 92% benefit was attributed to pea reducing incidence 
of wheat diseases in this area of Saskatchewan, Canada, but the authors suggested that more 
work was required to clarify and quantify non-N effects. Nematodes are particularly difficult 
to control by chemical means and crop rotations, preferably including crops not preferred 
by the particular nematode, remain the major control method (Sasser and Uzzell, 1991). 

Crop rotation introduces conditions unfavorable for particular weed species, which 
disturbs their growth and reproduction patterns. For example, inclusion of soybean in rotation 
with maize and wheat reduces incidence of Setaria spp. weeds in the cereal crops (Schreiber, 
1 992). In tropical cropping systems, pigeonpea grown as an intercrop with cereals such as 
sorghum can effectively suppress weeds, as compared with sole cere'al crops (Rao and Shetty, 
1996). Liebman and Dyck (1993) concluded that the success of rotations for weed suppression 
depends on the use of crop sequences that create varying patterns of resource competition, 
allelopathic interference, soil disturbance and mechanical damage that provides an adverse 
and unstable environment for particular weed species. This also applies to parasitic weeds 
in that Carsky et al. (2000) reported reduced Striga hermonthica parasitism on maize 
following soybeans compared with a sorghum controL In weed management in conservation 
tillage systems, judicious combination of herbicide use and crop rotation is recommended 
(Worsham and White, 1987). 

Problems of including Legumes in Cropping Systems 

Although many benefits of including legumes in cropping systems can be documented, as 
above, there are also some detrimental effects of incorporating legumes. Due to the overall 
risks associated with growing legume crops, their inclusion in cropping systems can-increase 
overall risks of the system. Some specific problems of including legumes are as follows. 

Soil Acidification 

Soil acidification as a result of legume cultivation, both pasture and grain legumes, is an 
increasing problem in temperate Australia at least. This is attributed to leaching of nitrate, 
derived from biological N2 fixation, causing a net efflux of H+ from legume roots (Helyar 
and Porter, 1989). Increasing soil acidity reduces crop growth and yields through a range of 
mechanisms, such as decreasing availability of nutrients like Mo and P, increasing toxicities 
of Al and Mn, and direct adverse effects of H+ on root function. With lupin-wheat and 
clover-wheat rotations in south-eastern Australia, Heenan and Taylor (1995) observed soil 
pH to decline from around 4.9 to around 4.3 over a period of 8-9 years. There are large 
differences between pasture legumes in their ability to produce H+, with total ash alkalinity 
and total excess cations in shoots providing a good indicator of total proton production 
(Table 1 1 )  (McLay et al., 1 997). Chickpea and narrow-leafed lupin had the highest 
acidification level and fieldpea the least. Management options to minimize soil-acidification­
rates include early sowing of cereals to reduce nitrate leaching, strategic use of N fertilizers 
(matching dose and timing to plant demand), reduced tillage, stubble incorporation, liming, 
and restricted use of legume species/cultivars with high acidification potential. 
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Table 11. Specific H+ production by roots and excess cations in shoots in grain legumes grown 
for 36 days in solution culture (from McLay et al., 1997) 

Grain legume Specific H+ production Excess cationst 

crnoI kg-1 crnaI kg-1 

Pilosus 100 139 

Yellow lupin 102 119  

White lupin 8 1  121 

Narrow-leafed lupin 1 1 9  167 

Fababean 85 145 

Fieldpea 77 116  

Grasspea 106 122 

Chickpea 136 177 

Common vetch 105 126 

Lentil 89 ND* 

Least significant difference (P = 0.05) 1 6  

t Samples from three replicates were bulked; :j: Not determined due to insufficient sample. 

Soil Water Depletion 

When legumes replace fallow, to be followed by a cereal crop, one of the advantages of 
" 

fallow is compromised, namely the availability of stored soil moisture for the following 
cereal. For example, in the semi-arid northern Great Plains of the USA, Nielsen and Vigil 
(2005) found that when pea, lentil or vetch replaced the normal summer fallow, soil moisture 
levels were reduced in legume plots to the extent of causing yield reductions in the following 
winter wheat crop. Any positive effects of legume cultivation, such as N and soil organic 
matter accretion, were negated by their use of scarce stored soil moisture resources in this 
environment. On the other hand, when the legume replaces a crop that extracts more water 
than that legume then more residual moisture is left for the following crop. For example, in 
the semi-arid northern Great Plains of Canada, higher yields of canola or mustard when 
grown after pea or lentil, as compared with after mustard or wheat, were attributed to 
increased available water (Miller et at., 2003). There is considerable variation in the pattern 
of water use and water use efficiency among grain legumes crops (Zang et aI., 2000; Siddique 
et at., 2001) and correct choice of legume species in the cropping system can over come 
some of the above problems. 

Susceptibility, Pests, Diseases and Weeds 

Repeated cultivation of a particular legume may cause build-up of a certain pests and diseases 
of that legume. If such pests and diseases also affect other crop species grown in the rotation 
ilien cllitivation-of-thYlegllDIecan-b-e-detrim:ental to the overall cropping system. For example, 
the foliar disease Botrytis grey mould (caused by /3otrytis cinerea) and pod borer (Helicoverpa 

armigera) are severe constraints to chickpea but they can be propagated in the chickpea 
crop and affect subsequent and adjacent crops. It is abundantly evident that one of the major 
reasons why grain legume crops have limited adoption is that they are poorly competitive 
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against weed species especially in extensive agriculture (Walsh et al., 2004). For example 

in Australia due to the extensive development of herbicide resistance growers are reluctant 

to expand their precious herbicide resources (years that a herbicide is effective before 

resistance develops) on grain legume crops. In the short to medium term, it is unlikely that 

grain legume crops will realize their full potential in such farming systems until the industry 

has access to sustainable weed management packages (Walsh et al., 2004) . 

Socioeconomics of including Legumes 

Profitability 

Whether in commercialized or subsistence agriculture farmers' decisions to increase area 
j 

sown to grain legumes depend on the profitability of those legumes in relation to alternative 

crop options. As an example, inclusion of chickpea in a wheat cropping system (one year 

chickpea and two years wheat) in the northern cereal belt of New South Wales, Australia 

more than doubled gross margins over the traditional pattern of either continuous wheat or 

two years wheat and one year fallow (Peoples et al., 1995). In it rainfed rice-based system in 

Bangladesh, inclusion of chickpea after rice has been shown to be relatively profitable 

(Saha, 2002) . This is certainly the case in totally rainfed systems when chickpea replaces 

fallow but also when it replaces irrigated winter crops like rice, wheat and mustard. There 

are many examples of greater profitability of including grain legumes in existing cropping 

systems but the extent to which farmers exploit them depends on the degree of their 

knowledge of that potential profitability and optimum cultivation techniques; this knowledge 

is only sparingly available in subsistence agriCUltural systems. 

The above calculations on grain legume profitability only take account of income 

from grain, and in some cases stover. The examples referred to earlier in this paper indicate 

that there should be economic advantages resulting from inputs of fixed N and also non-N 

residual effects, but these are rarely calculated. In assessing the economics of N in faiming 

systems in eastern Australia, Brennan and Evans (2001) calculated that fixed N derived 

from either narrow-leaf lupins or field pea was generally cheaper than N derived from 

fertilizer, especially over the longer term (Table 12). However, as the amount of residual 

fixed N can vary markedly over space and time, such calculations are very site specific. 

Farmers need to make such calculations for specific situations before informed decisions 

about fertilizer requirements can be made (B rennan and Evans, 2001). With recent rapid 

increases in the cost of fossil fuels, and hence fertilizer N, these calculations would shift 

much more favorably towards fixed N as a cheaper source of N than fertilizer N. These 

calculations do not take account of the non-N benefits of these legumes, as these are even 

more difficult to quantify and subject to economic analysis than N benefits. 

Risk 

Crop diversification, which usually involves leguminous crops in the cropping sequence, is 

generally thought to reduce economic risks. There is evidence that this is the case in 

commercial agriculture. For example, Cutforth et al. (2001)  found greater crop diversity in 

--N-€braska, USA, on sloping than on flat land. Cropping is more risky on sloping land and 
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Table 12. Calculated real cost ofN derived from different sources in New South Wales, Australia, 
1999 (from Brennan and Evans, 2001) 

N source Following crop Longer term 
A$ kg N-l A$ kg N-l 

Fertilizers 
Urea 1 .85 1 . 1 0  

Di-ammonium phosphate (P required) 
, 

1 .87 1 . 1 6  

Mono-ammonium phosphate (P required) 2.59 1 .67 

Di-ammonium phosphate (p not required) 6.49 3 .73 

Mono-ammonium phosphate (P not required) 1 1 .65 6.71 

Ammonium sulphate 4.63 2 .81  

Ammonium nitrate 2 92 1 .64 

Legumes 

Narrow-leaf lupins (replacing canola) 3.63 0.92 

Narrow-leaf lupins (replacing wheat) 2.72 0.70 

Fieldpeas (replacing canoIa) 2.40 0.63 

Fieldpeas (replacing wheat) 0.92 0.27 

farmers there generally have lower farm incomes than those on the more fertile flat land. 
Similarly, in Montana, USA, crop diversification with grain legumes lowered production 
risks (Miller and Holmes, 2005). In Canada, Johnston et al. (2005) showed that rotations 
involving wheat and broadleaf crops, including pea, were less risky than continuous cropping. 
They attributed this primarily to disease effects when a crop is sown on its own stubble. 
Zentner et al. (2002) showed that inclusion of oil seeds and pulses in crop rotations with 
cereals contributed to higher and more stable farm income in most soil-climate regions, 
despite a requirement for increased expenditures on purchased inputs. This is in the context 
of summer-fallow replacement and a shift to conservation tillage practices. In Canada, the 
trend to less risky cropping by including oilseeds and pulses is greater on grey and black 
soils rather than brown soils where conservation tillage is not so effective. 

Medium term weather forecasting and availability of inputs for a range of crop options 
to permit decision making when the season breaks have been used to determine risk factors 
in growing grain legumes in the eastern wheatbelt area of Western Australia (Schilizzi and 
Kiugwell, 1999). The stochastic bioeconomic farming system model MUDAS (Model of 
an Uncertain Dryland Agricultural System) was then applied to the soil and climate risk 
information, including scenarios for price changes. For a typical farm, inclusion of chickpea 
in a primarily wheat based cropping system, under standard agronomic assumptions, 
increased farm profit by 7%. Net income variance, under a range of agroecological and 
price scenarios, was less for chickpea than the other grain legumes being compared, faba 

-bean�an(L-pea._The_A£SThLmodeLhas�also _been used to assess risk and profitability of 
rotations chickpea and mung bean with cereals in eastern Australia (Carberry, 1 995). Such 
analyses are recommended to unravel the mysteries of "risk" and thus allow farmers to 
make rational choices on crop allocation within their land in relation to profit maximization 
vs risk. 
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Crop diversification is a method of coping with risk, especially for low resource 

enterprises, as it would lower the variance of farm income should one crop give poor resUlts 

in a year. However, for a farmer to diversify beyond an existing cropping pattern, knowleqge 

of the agronomic requirements and likely profitability of a new crop, ready availability of 

the required inputs (especially quality seed but also fertilizers, pesticides, etc.) and market 

outlets, is needed. These requirements are more likely to be met in large scale developed 

agriculture, as evidenced by the rapid uptake of various, new grain legumes in Australia 

over the previous 25 years (Siddique and Sykes, 1997; Siddique et al., 1999). In resource:­

poor, predominantly subsistence situations, these conditions are invariably not in place and 

adoption of new cropping options generally proceeds at a slow pace. Thus, although it can 

be shown that crop diversification can increase farm income and lower the risk of income 
I 

variance, resource-poor farmers often face the risks caused by inadequate knowledge about, 

and infrastructure to support, alternative options. 

Input Supply and Markets 

For resource-poor farmers to adopt or increase cultivation of a grain legume, the major 

constraint is usually availability of quality seed of an improved variety. Infusion of such 

seed usually depends on implementation of a development project. Similarly, if agro-chemical 

inputs required for the legume are any different from those already being sold for existing 

crops, lack of timely availability of these would hinder adoption. Any venture into a new 

crop, or expansion of an existing one, would require the promise of stable and remunerative 

prices and existence of adequate market facilities. These conditions are often not available 

for resource-poor farmers, especially those at a distance from transport infrastructure. 

However, it often the information about availability of inputs and markets which, is the 

major discouragement to resource-poor farmers in diversifying their cropping with grain 

legumes. 

Possibilities for Poverty Alleviation 

Cultivation of grain legumes provides a good candidate for rural poverty alleviation. While 

there is a continuing requirement for ever-increasing production of staple cereals, the 
\ 

economics of these crops, particularly in the case of rice, allow little opportunity for 

cultivators to lift themselves from poverty through reliance on these crops. Global and local 

prices of crops such as rice and wheat are on a long term downward trend but cost of inputs 

for these crops are steadily increasing, especially with respect to N fertilizer. On the other 

hand, grain legume prices are mostly increasing, due to scarcity of production, and their 

input requirements are more modest than those of cereals (e.g. no requirement for irrigation 

or N fertilizer). Grain legumes also offer opportunities for on-fann value addition, such as 

seed drying and cleaning, dhal making and packaging, activities offering income generation 

opportunities for women in particular. 

Consequences for Human Nutrition 

There is increasing awareness of the role of cropping systems in supplying humans with 

their essential nutrients (Welch, 2004). Cereal dominated diets fall short in meeting the 
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requirements for many of these nutrients and, in many developing countries, traditional 

- sources of nutrients from animal or fish products are becoming more scarce and unaffordable. 

Many grain legumes contain high enough concentrations of some vitamins and essential 

elements, present only at low levels in cereals, to meet human needs. Per capita availability 

of grain legumes has also declined in most developing countries at least. Some nutrients in 

higher concentration in legume grain, as compared to cereal grain, include protein and 

some essential amino acids, calcium, phosphorus, zinc, iron and cobalt. There is an urgent 

need to increase grain legume cultivation generally (to firstly restore and then improve 

nutritional status and health of humans. 

Increasing Grain Legume Use in Cropping Systems 

Elements of Required Endeavors 

In large-scale commercialized agriculture in developed countries there are many recent 

examples of expansion of grain legume expansion in recent years, e.g. Australia, Canada. 

}Iere the constraints related to appropriate technology, information dissemination to farmers, 

'!-vailability of markets, etc. are much less than in developing countries and thus rapid adoption 

of new crops and technologies is possible. To expand grain legume cultivation among 

resource-poor farmers in developing countries however, systematic efforts are needed to 

overcome the major constraints involved. The key elements involved are: 

• Technology adaptation such that it is appropriate for resource-poor farmers, with 

low cost of inputs a major criterion. An example is the use of seed priming (soaking 

of seed overnight prior to sowing) of chickpea in the High Barind Tract of Bangladesh 

to enhance seedling establishment in rapidly drying seedbeds, and ultimately increase 

yield (Musa et al., 2001). 

• Development of village level seed produe.tion schemes to ensure adequate local 

supply of quality seed. 

• Ensure farmer (including the whole farm family) participation in technology 

development and evaluation and demonstration process, such that they feel 

ownership of the technology at an early stage. 

• Ensure sub-sector coordination for input availability and market access. A business 

development services (BDS) approach is recommended for this purpose, whereby 

bottleneck constraints of the sub-sector are identified and tackled (Lusby and 

Panlibuton, 2004) . Deficiencies in input availability are tackled by developing local 

entrepreneurship to profitably supply the required inputs, rather than expecting 

government intervention to provide them. 

• Ensure access to relatively stable markets with a means of rapidly informing growers 

of current prices and frenas. 

• Ensure information availability to prospective growers with respect to economic 

assessment of growing the crop, technology required, access to on-farm 

demonstrations, marketing, etc. 
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• Provide on-going technical monitoring and research back-up for problems arising. 
A particularly important consideration is to ensure adequate and ongoing 
performance of the legume-Rhizobium symbiosis and therefore reap the benefits of 
N fixation (Howieson et al., 2000). Also important is the ever-evolving suite of 
pests and diseases the grain legumes are exposed to. 

Examples of Successful Attempts 

Despite constraints faced by resource-poor farmers in expanding their grain legume 
production, there are some examples of recent crop diversification with grain legumes. 
Firstly, there is the rapid expansion of blackgram that has occurred in rice fallows of eastern 
India (Satyanarayana et al., 2001). Main reasons for this success were ability to manage 

I , 

foliar diseases, through both fungicide use and resistant varieties, and farmer involvement 
in the research to development process. The advent of short duration mungbean varieties 
has provided a niche for this crop between harvest of wheat and transplanting of rice in 
intensive, irrigated rice wheat cropping systems of the Indo-Gangetic Plain (Johansen et 

al., 2000). The development of short duration pigeonpea has also given respite to intensive 
rice-wheat rotations in India (Singh et al., 2005). Short duration pigeonpea can substitute 
rice in the rotation without any detriment to farmers' income and with rotational benefits to 
the following wheat crop, and subsequent cereal crops. 

\ 
In the late 1990s, a serious epidemic of Botrytis grey mould (BGM) devastated the 

chickpea crop in Nepal. The crop has since been rehabilitated through on-farm evaluation 
and demonstration of BGM management techniques, combined with other improved crop 
management procedures (e.g. pod borer control, alleviation of boron deficiency, etc.) (Pande 
et al. , 2003) .  Chickpea cultivation has expanded in the High Barind Tract of Bangladesh 
over the previous two decades, as a result of introduction of improved technologies (e.g. 
new varieties, seed priming, pod borer management), farmer-managed evaluatiop. and 
demonstration of these, and development of local seed production schemes (Musa et al., 

2001) .  

Conclusion 

There is now a formidable array of evidence quantifying the benefits of including grain 
legumes in cropping systems for increased cropping system productivity and environmental 
sustainability. A suite of technologies is also available to allow successful legume cultivation 
in a range of cropping systems, in developed and developing countries. However, there is a 
dearth of analyses quantifying the economic advantages involved in increasing grain legume 
cultivation. Lack of awareness of economic benefits is a maj or constraint to increased 
adoption. Cropping system models provide frameworks for such economic analyses but 
innovative means of presentation of outcomes to farmers are needed. Profitabilities and 
probabilities of success of a range of options need to be clearly presented to famJ.ers. 

There is a particular need to factor in the economic value of residual benefits. The 
value of fixed N is substantially increasing as fossil fuel prices increase, and this needs to 
be highlighted. Further, non-renewable energy requirements for agriculture need to be 
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considered; Zentner et ai. (2004) showed that use of pulses decreases non-renewable energy 
requirement under conservation tillage systems in Canada, due to both reduced tillage and 
reduced need of fertilizer N. However, reliable economic evaluation of non-N benefits will 
probably require further biophysical data. 

A major reason for stagnation or decline in plantings of most grain legumes is the 
build up of various biotic constraints after repeated cultivation at the same location. Research 
emphasis is therefore required in this area, in seek;ing host plant resistance and exploring 
agronomic management options. However, to hasten the adoption of seemingly worthwhile 
technology by resource-poor farmers in developing countries, on-farm, farmer-participatory 
adaptive research approaches are required, to a much greater extent than currently bein� 
implemented. Many potential solutions to biotic constraints of all of the target legumes 
have been researched but few find their way into the fields Qf resource-poor farmers. 
Widespread farmer evaluation of this information is required, with on-going interaction 
among extension personnel, researchers and farmers; into the indefinite future due to the . 
continued evolution of biotic stresses, now catalyzed by 'climate change. 
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