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Abstract Advances in high-throughput SNP genotyping

and genome sequencing technologies have enabled gen-

ome-wide association mapping in dissecting the genetic

basis of complex quantitative traits. In this study, 82 SSRs

and 884 SNPs with minor allele frequencies (MAF) over

0.20 were used to compare their ability to assess population

structure, principal component analysis (PCA) and relative

kinship in a maize association panel consisting of 154

inbred lines. Compared to SNPs, SSRs provided more

information on genetic diversity. The expected heterozy-

gosity (He) of SSRs and SNPs averaged 0.65 and 0.44, and

the polymorphic information content of these two markers

was 0.61 and 0.34 in this panel, respectively. Additionally,

SSRs performed better at clustering all lines into groups

using STRUCTURE and PCA approaches, and estimating

relative kinship. For both marker systems, the same clus-

ters were observed based on PCA and the first two eigen-

vectors accounted for similar percentage of genetic

variations in this panel. The correlation coefficients of each

eigenvector from SSRs and SNPs decreased sharply when

the eigenvector varied from 1 to 3, but kept around 0 when

the eigenvector were over 3. The kinship estimates based

on SSRs and SNPs were moderately correlated (r2 = 0.69).

All these results suggest that SSR markers with moderate

density are more informative than SNPs for assessing

genetic relatedness in maize association mapping panels.

Keywords SSR � SNP � Population structure �
Kinship � PCA

Introduction

Genome-wide association studies (GWAS) have been

widely applied in identifying the causal variants affecting

complex disease in humans (Altshuler et al. 2008). The

availability of complete genome sequences in some model

species, the advances in rapid and cost-effective genotyp-

ing technologies and the development of statistical meth-

ods have allowed association mapping (AM) to be a

powerful tool to dissect the genetic basis of quantitative

traits in plants (Yu and Buckler 2006; Buckler and Gore

2007). Two types of strategies are used in association

studies: candidate-gene association (CGA) and GWA

(Yang et al. 2007; Zhu et al. 2008). CGA is a hypothesis-

driven approach that surveys the polymorphisms in
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selected candidate genes associated with phenotypic vari-

ation (Mackay 2001). Candidate genes are selected based

on the knowledge of metabolic pathways, linkage analysis,

expression profile and biochemistry. This approach has

recently been widely applied to identify the functional

variations in plants (Zhu et al. 2008). Due to the lack of

genomic data and the high cost of genotyping, only a few

GWAS were conducted in plants regardless of its wide

application in humans. Recently, the GWAS have been

performed using medium level-density markers in Ara-

bidopsis (Aranzana et al. 2005; Zhao et al. 2007) and maize

(Beló et al. 2008). However, the rapid development of

genomic technologies made the large-scale GWAS avail-

able in marker-trait associations. Up to now, more than 30

commercial single nucleotide polymorphisms (SNPs)

detection platforms were developed (Gupta et al. 2008). In

addition, several high-density platforms are now available

that can simultaneously genotype up to 384 DNA samples

across 96–1 M SNPs (Gupta et al. 2008). One million

SNPs were developed in Arabidopsis by resequencing 20

wide diverse accessions, among which 250,000 nonre-

dundant SNPs were used to genotype 1,000 accessions for

GWAS (Clark et al. 2007), and more recently, a real

GWAS was conducted in Arabidopsis (Chan et al. 2009).

In maize, 27 foundation lines of nested AM were geno-

typed using next-generation sequencing technology and

over one million SNPs were developed (Gore et al. 2009).

During the past two decades, linkage analysis has been

well-developed and a number of friendly softwares were

available, such as WinQTLCart (Wang et al. 2005).

However, the methods for AM are still at exploration

stages due to its recent application in plants. The presence

of genetic relatedness in an association panel, often gen-

erating spurious associations (Yu and Buckler 2006; Yu

et al. 2006; Yang et al. 2007), is one of the key factors

affecting the application of this statistical analysis. Cur-

rently, most statistical methods focus on how to exclude

the effects of genetic relatedness for AM, and the first

generation of methods are genome control (GA) and

structure association (SA). GA method uses random

markers to estimate and adjust the effects of population

structure, assuming that such a population structure has

similar effects at all loci (Zheng et al. 2005; Devlin and

Roeder 1999). SA analysis uses random markers to esti-

mate population structure (Q matrix) by the program

STRUCTURE (Pritchard et al. 2000; Falush et al. 2003)

and then incorporates it into further statistical analysis.

However, STRUCTURE assumes the individuals in a

population are unrelated and all loci within a population

are at Hardy–Weinberg equilibrium. In real situations, few

data agree well with this assumption. Furthermore, esti-

mating population structure using STRUCTURE is com-

putationally intense. Recently, principal component

analysis (PCA) has been suggested to infer population

structure as it is fast, makes no assumptions of populations

and loci (Price et al. 2006; Zhu and Yu 2009). The PCA

method infers the observed variations across all markers

into a few variables, which were used to analyze the

relationships among individuals in association panels.

However, both STRUCTURE and PCA approaches may

not well capture the differences between individuals as

most individuals have complex relatedness that cannot be

described by a few axes of differentiation (Myles et al.

2009). An alternative is to use random molecular makers to

estimate pairwise relatedness between all individuals

(K matrix) in a population that can be incorporated into the

mixed-liner model (MLM) to correct for relatedness in AM

(Yu et al. 2006). The MLM method including Q and K or

PCA and K was successfully applied in AM in plants, such

as maize (Yu et al. 2006; Harjes et al. 2008), wheat

(Breseghello and Sorrells 2006), sorghum (Murray et al.

2009), Arabidopsis (Zhao et al. 2007) and potato (Malosetti

et al. 2007).

For all statistical methods mentioned above, random

markers, typically including SSRs and SNPs, were used to

assess genetic relatedness. Because SSR markers are

reproducible, PCR-based and informative (Smith et al.

1997), they play a predominant role in evaluating genetic

diversity and relatedness in plants (Liu et al. 2003; Reif

et al. 2006; Thomson et al. 2007). However, the detection

of SSR genotypes is often conducted using agarose gel or

polyacrylamide gel or sequencers, which is time consum-

ing or costly. Furthermore, SNPs have a lower error rate

compared with SSRs (Jones et al. 2007). SNPs have now

become an ideal marker system that can be used in the

same manner as other genetic markers for a variety of

functions in crop improvement, including linkage map

construction, genetic diversity analysis, marker-trait asso-

ciation and marker-assisted selection. Yan et al. (2010)

compared the two marker systems in constructing linkage

maps and found that an array-based SNP detection method

was 100 of times faster than gel-based SSR detection

method and cost was 4–5 times lower. Hamblin et al.

(2007) compared the ability of SSRs and SNPs in assess-

ment of population structure using 89 SSRs and 847 SNPs,

and found that SSRs performed better at clustering indi-

viduals into populations than SNPs, but that the population

structure assessed by both marker systems was consistent.

Recently, we have developed a maize association panel

consisting of 155 inbred lines, which was genotyped using

82 random SSRs and 1,536 SNPs throughout the genome

(Yang et al. 2010). In this study, the ability of SSRs and

SNPs in assessment of population structure (Q), relative

kinship (K) and PCA was compared to provide information

for choosing the marker systems in evaluating genetic

relatedness to correct spurious associations.
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Materials and methods

Maize association panel

A set of 155 diverse maize inbred lines was used in this

study: 35 high-oil lines mainly selected from American

and Chinese high-oil populations (Song and Chen 2004),

91 inbred lines from the parents of commercial hybrids

used widely in China in the past two decades (Teng et al.

2004), 25 inbred lines developed from landraces in China

and four high provitamin A lines introduced from Illinois

University in the United States. Only 154 lines were used

for subsequent analysis as the SNP data of one line was

missing. The detailed list and pedigree information can be

found in previous studies (Yan et al. 2010; Yang et al.

2010).

SSR genotyping

A set of 82 SSRs evenly distributed throughout the maize

genome was used to genotype all 155 lines. The details of

SSR list and genotyping were described by Yang et al.

(2010). Most of these markers were in previous studies of

genetic diversity and population structure in maize (Liu

et al. 2003). Among 82 SSRs, 43.9% makers were di-

nucleotide repeats, 22.0% tri-nucleotide repeats and the

remaining over tetra-nucleotide repeats.

SNP genotyping

The details of SNP genotyping were described in previous

study (Yan et al. 2010). Briefly, GoldenGate assay

(Illumina, San Diego, CA) containing 1,536 SNPs

(http://www.panzea.org) was applied to genotype 154

lines. The SNP genotyping was performed on Illumina

BeadStation 500G (Illumina, San Diego, CA) at Cornell

University Life Sciences Core Laboratories Center with

the protocol supported by Illumina company (Fan et al.

2006). Eight hundred and eighty-four SNPs with MAF

over 0.20 and of good quality were used for further

analysis.

Summary statistics analysis

PowerMarker Version 3.25 (Liu and Muse 2005) was used

to calculate allele number, expected He, observed He, PIC,

genetic distance based on allele sharing using different

marker classes: 82 SSRs; 884 SNPs; 82 SSRs ? 884 SNPs.

The same marker classes were used for subsequent

analysis.

Population structure analysis

A model-based program STRUCTURE 2.2 (Pritchard et al.

2000; Falush et al. 2003) was used to infer genetic rela-

tionship among individual genotypes from 154 lines. This

model assumed that the number of populations was k, and

the loci were independent and at Hardy–Weinberg equi-

librium. Three independent runs were done by setting the

number of populations (k) from 1 to 10, burn in time and

Markov chain Monte Carlo (MCMC) replication number

both to 500,000, and a model for admixture and correlated

allele frequencies. Both LnP(D) in STRUCTURE output

and its derived Dk (Evanno et al. 2005) were used to

determine the k value. Lines with membership probabilities

C0.75 were assigned to given clusters; lines with mem-

bership probabilities \0.75 were assigned to a mixed

group.

To further investigate the appropriate number of SSR

and SNP markers for estimating population structure, a

random re-sampling approach was used to generate marker

sets with ten repetitions. The number of SSR markers

randomly re-sampled was 10, 20, 30, 40, 50, 60, 70 and 80,

while that of SNP markers was 100, 200, 300, 400, 500,

600, 700 and 800. Three independent runs were performed

for each marker sets by using STRUCTURE software. The

PROC CORR in SAS Version 8.02 was used to calculate

the correlation coefficients of membership probabilities for

all marker sets.

Principal component analysis

PowerMarker Version 3.25 (Liu and Muse 2005) was used

to create Nei’s genetic matrices (Nei 1972). Distance

matrices were double-centered, and used to obtain eigen-

vectors by the modules DCENTER and EIGEN imple-

mented in NTSYSpc Version 2.1 (Rohlf 2000). Combining

the population structure from STRUCTURE using SSR

markers (Yang et al. 2010), the 2-D plots were obtained

using the first two eigenvectors. To compare the ability of

three marker types in performance of PCA, correlation

coefficients were calculated for marker type pair at each

eigenvector using PROC CORR in SAS Version 8.02.

Kinship analysis

The relative kinship was calculated by SPAGeDi software

(Hardy and Vekemans 2002) with the option (Loiselle et al.

1995). All negative values between individuals were set to

0, which indicated that they were little related to each

other; and the kinship matrix was multiplied by two to be

integrated into the mixed model for AM (Yu et al. 2006).

PROC CORR in SAS Version 8.02 was performed to
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calculate the correlation coefficients of relative kinship for

marker type pairs.

All the population structure (Q), principal components

(PC) and kinship (K) were analyzed by SSRs and SNPs

alone and combining both marker types.

Results

Statistics of SSRs and SNPs

The set of 154 maize inbred lines was genotyped using 82

SSRs and 1,536 SNPs. For SNPs, the minor allele fre-

quencies (MAF) of 1,394 polymorphic SNPs with good

quality averaged 0.26 with a range from 0.01 to 0.50. The

expected He of these SNPs varied from 0.01 to 0.67 with

an average of 0.36, and the PIC ranged from 0.01 to 0.59

with an average of 0.29. All 82 SSRs and the 884 SNPs

with MAF over 0.20 were used to compare the perfor-

mance of different marker systems on estimating genetic

diversity and relatedness in the maize panel. The summary

statistics of SSRs and SNPs in 154 maize inbred lines were

illustrated in Table 1. Among all lines, a total number of

675 and 1,768 alleles were detected with 82 SSRs and 884

SNPs, respectively. Compared with diallelic SNPs, an

average of 8.2 alleles/locus for SSRs was observed with a

range from 2 to 26. The expected He of SSRs averaged

0.65 and varied from 0.27 to 0.91, and SNPs averaged 0.44

and varied from 0.32 to 0.50. The PIC of SSRs ranged from

0.25 to 0.91 with an average of 0.61, and SNPs ranged

from 0.27 to 0.38 with an average of 0.34. Between any

two lines, the polymorphic ratio of SSRs averaged 0.66

with a range from 0.06 to 0.86, and SNPs averaged 0.46

with a range from 0.01 to 0.68. The allele frequencies of

SSRs in all lines ranged from 0.01 to 0.85, and 64.9% of

SSR alleles were rare with allele frequencies lower than 0.1

(Fig. 1a). For the SNPs, all allele frequencies were lower

than 0.50 and distributed evenly (Fig. 1b).

Estimation of Q matrix

The population structure of this association panel was

assessed using 82 SSRs, 884 SNPs and 82 SSRs ? 884

SNPs. For all marker sets, the log-likelihood value

[LnP(D)] for each given k kept on increasing with the

increase of k and the most significant change was observed

when k was increased from one to two (Fig. 2). However,

the increase rate of LnP(D) from SNP ? SSR data set was

the greatest, followed by SNP data set and SSR data set.

(Fig. 2). For the Dk values, there was a sharp peak at k = 2

for both SSR and SNP data sets; but the sharp peak

occurred at k = 3 for SSR ? SNP data set (Fig. 2).

According to LnP(D) and Dk values, all 154 lines were best

inferred into two population groups (k = 2) although the

Dk value at k = 3 was the highest. For SSR markers, the

maize panel was clearly classified into non-flint (P1, 78

lines) and flint (P2, 44 lines) grain texture (Yang et al.

2010). However, only 14 lines clustered into non-flint

population separated from the whole panel for SNP

markers and SSR ? SNP marker sets, The correlation

coefficients of membership probabilities between SSRs and

SNPs or SSR ? SNP were mediate while the correlation

Table 1 Summary statistics of SSRs and SNPs

Markers Loci Alleles Alleles/locus He PIC Polymorphisms between

any two lines

SSR 82 675 8.2 (2–26) 0.65 (0.27–0.91) 0.61 (0.25–0.91) 0.66 (0.06–0.85)

SNP 884 1,768 2.0 (2) 0.44 (0.32–0.50) 0.34 (0.27–0.38) 0.46 (0.01–0.68)
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coefficient is extremely high between SNPs and SNP ?

SSR (Table 3). Contrary to LnP(D), the assignment per-

centage with membership probabilities C0.75 for all

marker sets declined from k = 2 to 4 and were similar from

k = 4 to 8 (Table 2). At k = 3–8, the percentage of indi-

viduals assigned to populations for SSR sets was lower

than that for the other two marker sets while the percentage

for the SSR sets was higher than that for SNPs but slightly

lower than that for SSR ? SNP (Table 2).

To address the performance of various marker numbers

on estimating population structure, the marker sets with

eight classes were used for both SSR and SNP markers. For

each pair of marker sets with various marker number of the

same marker system, the correlation coefficients of mem-

bership probabilities at k = 2 were high while relatively

lower between SSR and SNP markers (Table 3). The cor-

relation coefficients averaged 0.91 ranging from 0.63 to

1.00 for SSR pairs with various numbers, 0.99 ranging

from 0.94 to 1.00 for SNP pairs, and 0.56 ranging from

0.36 to 0.74 between SSR and SNP. For SSR markers, the

percentage of individuals assigned to populations increased

when the marker number increased from 10 to 70 and was

similar when the marker number was 70, 80 and 82; Most

of the lines assigned to given population were identity with

those inferred using 82 SSRs (Table 4). For SNP markers,

the percentage of individuals assigned to populations

increased when the marker number increased from 100 to

300 and was similar when the marker number ranged from

300 to 884; All of the lines assigned to P1 population were

identity with those inferred using 82 SSRs but over half of

lines assigned to P2 population were the lines clustered in

P1 population inferred using 82 SSRs when the marker

number was over 300 (Table 4).

Estimation of principal components

To further investigate the population differentiation, PCA

was performed using these three data sets. The first 10

eigenvectors from SSR data set accounted for 15.6, 10.6,

8.9, 8.0, 7.7, 7.0, 6.0, 5.6, 5.1 and 4.8% of the genetic

variations, totaling 79.2%. For SNP or SSR ? SNP data

sets, the cumulative genetic variations were more than 60%

when the eigenvectors reached 10, and they were similar to

that for SSR when the eigenvector was 1 and 2 (Fig. 3). For

all eigenvectors C3, the genetic variation explained by

each eigenvector was the greatest for SSRs, followed by

SNPs and SSR ? SNP (Fig. 3).
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Fig. 2 Estimated LnP(D) and its derived statistics Dk for k from 1 to

8. Values of LnP(D) are from STRUCTURE run 3 times at each

value of k using 82 SSRs (a), 884 SNPs (b) and 82 SSRs ? 884 SNPs

(c). The values of Dk were calculated by the equation Dk =

M L k þ 1ð Þ � 2L kð Þ þ L k � 1ð Þj j½ �=S L kð Þ½ �, where L(k) represents

the kth LnP(D), M is the mean of three runs, and S is the standard

deviation of L(k). The diamonds are LnP(D) and the triangles is Dk

Table 2 Percent population assignment (membership probabilities C0.75) based on different marker sets

Markers k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

SSRs 79.4 60.2 58.9 59.6 57.8 58.7 60.9

SNPs 73.6 43.5 34.8 27.3 26.6 34.6 31.8

SSR ? SNP 82.5 46.8 45.5 37.9 40.3 41.1 41.1
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Referring to the population structure from STRUCTURE

analysis, two separate groups with a mixed group were

observed by plotting the first two eigenvectors generated

with SSR data set (Fig. 4a). The first eigenvector from SSR

data set easily differentiate the P1 and P2 groups. The same

three groups were seen when using only SNP data set or the

full SSR ? SNP data set (Fig. 4b, c). Neither of the first

two eigenvectors delineated the three groups in this panel.

Additionally, the distributions of all individuals were con-

sistent in PCA eigenvector plots from SNP data set and

SSR ? SNP data set, but had some difference from that in

PCA eigenvector plot from SSR data set. This can be further

proved by the eigenvector correlation coefficients between

marker type pair (Fig. 5). When the eigenvector was 1, the

correlation coefficients were 0.67 (P \ 0.001), 0.72

(P \ 0.001), 1.00 (P \ 0.001) for correlations between

SSRs and SNPs, SSRs and SSR ? SNP, and SNPs and

SSR ? SNP, respectively. With the increase of eigenvector

numbers, the correlation coefficients between SSR and SNP

or SSR ? SNP decreased sharply from eigenvector 1 to 4

but kept around 0 for the remaining eigenvectors. For the

first 10 eigenvectors, the correlation coefficients between

SNP and SSR ? SNP were significantly high and positive

(r2 [ 0.87).

Estimation of K matrix

The 82 SSRs, 884 SNPs and 82 SSR ? 884 SNP data sets

were also used to evaluate kinship in this association panel.

For all marker sets, the percentage of individual pairs

falling in certain kinship categories showed a similar trend

with the increase of kinship coefficient (Fig. 6). The kin-

ship estimated by SNPs greatly agreed with that estimated

by SNP ? SSR, and the kinship estimated by SSRs and

SNPs was moderately correlated (r2 = 0.69, P \ 0.001).

However, the percentages of individual pairs falling in

certain kinship categories were slightly different among

three marker sets. Furthermore, SSRs had a higher reso-

lution to estimate kinship than SNPs as more individual

pairs were classed into kinship categories with high values.

Discussion

The features of SSR and SNP markers are associated with

their mutational processes. Due to neutrality, the muta-

tional rates of SSRs (1 9 10-5) (Kruglyak et al. 1998) are

much higher than that of SNPs (1 9 10-9) (Li et al. 1981;

Martinez-Arias et al. 2001). The number of alleles per

locus, PIC, polymorphisms between any two lines and the

distributions of allelic frequencies in this association panel,

estimated by both marker systems, are consistent with

previous studies (Vignal et al. 2002; Hamblin et al. 2007).

However, the differences between the results from these

two markers differed from previous studies. For example,

the number of alleles per loci for SSR was 4.1 times of that

for SNPs in this association panel while 10.9 times in

Table 4 Assignment of individuals to given populations at K = 2 for

different marker sets with various marker number and marker system

Marker sets Percentage of

individualsa
Individual

numbers in P1b
Individual

numbers in P2c

SSR10 29.9 26 (26) 20 (20)

SSR20 59.7 60 (58) 32 (30)

SSR30 59.7 53 (53) 39 (36)

SSR40 66.2 68 (66) 34 (33)

SSR50 72.1 70 (68) 41 (40)

SSR60 64.3 71 (70) 28 (28)

SSR70 78.6 76 (76) 45 (44)

SSR80 77.9 75 (75) 45 (44)

SSR82 79.2 78 (78) 44 (44)

SNP100 31.8 12 (12) 37 (33)

SNP200 46.8 14 (14) 58 (39)

SNP300 79.2 14 (14) 108 (41)

SNP400 82.5 14 (14) 113 (41)

SNP500 76.0 14 (14) 103 (41)

SNP600 77.3 14 (14) 105 (40)

SNP700 70.8 14 (14) 95 (40)

SNP800 76.0 14 (14) 103 (40)

SNP884 73.4 14 (14) 99 (40)

SSR ? SNP 82.5 14 (14) 113 (41)

a The total percent of individual assignments to given populations at

k = 2
b The number in the bracket indicates the number of common indi-

viduals assigned to P1 population using 82 SSRs
c The number in the bracket indicates the number of common indi-

viduals assigned to P2 population using 82 SSRs
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another association panel consisting of 260 inbred lines

(Liu et al. 2003; Hamblin et al. 2007). This main reason for

this deviation can be attributed to the composition of

germplasm present in these two maize association panels

(Yang et al. 2010).

All 154 lines were inferred into two groups using 82

SSRs based on both LnP(D) and Dk values (Yang et al.

2010). The same number of groups (k = 2) were obtained

using 884 SNPs and SSR ? SNP although the Dk value

was not the highest for SSR ? SNP at the true k. The lower

Dk value at the true k may be due to mixed marker system

as the Dk value is sensitive to marker type (Evanno et al.

2005). When k was set to 2, 20.6, 26.4 and 17.5% lines

were assigned into mixed groups using SSRs, SNPs and

SSR ? SNP, respectively. Furthermore, only a few lines

clustered in P1 population inferred using 82 SSRs sepa-

rated from the whole maize panel using SNP markers and

SSR ? SNP markers. This was different from the previous

studies presented by Hamblin et al. (2007), Inghelandt

et al. (2010). The possible reasons may be due to the

complex relationship of present maize lines and/or the

ascertainment bias of SNP markers in this study though we

have deleted the SNPs with serious bias by cutting off the

SNPs with MAF less than 0.20. SSRs performed better at

assessing the genetic similarity among lines due to infor-

mativeness as multiallelic markers, which can explain why

there were relatively fewer lines classified into mixed

groups using SSRs (Table 2) and more lines clustered into

P1 population separated from the maize panel (Table 3).

The classifications of population structure in maize

association panel based on PCA were consistent with those

based on STRUCTURE for all marker systems. However,

some differences were observed among three marker data

sets. In sorghum, the same clusters were observed when

using only SSRs or only SNPs or both SSRs and SNPs, but

some individuals shifted the given groups (Murray et al.

2009). In this study, fewer eigenvectors from SSRs inferred
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the population differentiation and explained 80% of genetic

variation in this association panel, which may be explained

by SSRs having more number of alleles at a given locus

than SNPs . This result demonstrated that the performance

of SSRs with PCA was better than that of SNPs and

SSR ? SNP.

The ability of marker systems in evaluating relative

kinship was similar to that in population structure inferred

by both STRUCTURE and PCA approaches. 57.2, 61.9 and

61.9% pairwise kinship were detected to be zero using

SSRs, SNPs and SSR ? SNP, respectively. Yu et al.

(2009) found that kinship estimation was more sensitive to

the number of markers used than population structure

estimation, and the kinship estimated using 1,000 SNPs

was consistent with that estimated using 100 SSRs. In

agreement with Yu et al (2009), in this present study using

154 inbred lines, we found that the ability of 82 SSRs to

estimate kinship was similar to that of 884 SNPs. This

might be the major reason for attaining the similar distri-

butions of kinship with three marker systems.

In summary, Q, PC and K were the main parameters in

estimating the genetic relatedness. They can be estimated

by random markers and then be used as covariances in

models to control false positives in association studies (Yu

et al. 2006; Price et al. 2006). All these three parameters

inferred by either SSRs or SNPs were similar, although

SSRs performed better than SNPs. It could be improved by

increasing SNP marker density, which is easily conducted

as SNP detection methods are high-throughput, cost

effective, and a great number of SNPs in maize are avail-

able although the limited increasing number of SNPs in our

study did not improve the inference of population structure.

However, Yu et al. (2009) suggested over 10 times more

SNPs than SSRs should be used to estimated relative kin-

ship and Inghelandt et al. (2010) proposed between 7 and

11 times should be used to infer population structure in

maize association analysis. Therefore, SNPs will be widely

applied in maize and other species including genetic

diversity analysis that will provide useful information for

crop improvement in the future.
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