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ABSTRACT

The potential of backcross breeding for improvement
of a pure line by addition of favorable alleles from
a donor line was investigated by computer simulation
coupled with quantitative genetics theory. Attention was
focused on the effects of heritability (among individual
F, plants) and of the number of genes of which the al-
lele present in the donor line is more favorable than
the one present in the recipient. The specific programs
investigated were ones involving a large amount of effort,
a minimum of 1,000 pollinations per backcross genera-
tion and selection among families in three or more gen-
erations. The criterion employed for effectiveness was
the probability of fixation in the product of the program
of favorable alleles derived from the donor line. Effec-
tiveness was found to be greater when heritability is great-
er but the effect of increased heritability was not as
great as might have been expected. Number of favorable
alleles available frem the donor line had greater im-
pact, particularly when success was defined in terms of
probability that all the available favorable alleles would
be transferred from donor to recipient. Success, so de-
fined, was limited to one allele in the case of the least
laborious of the three programs studied and no more
than five in the case oF the most costly. On the other
hand, when success was measured in terms of percent im-
provement in the selected trait, it appeared substantial
change is possible with heritability as low as 15 percent
and favorable alleles available in the range frem 1 to 16.
Additive effects and independent assortment were assumed
for genes simulated.

Additional index words: Selection, Genetic improve-

ment.
THE germplasm of a species exists in separate pop-

ulations, varieties or genotypes. The prime
problem of the breeder is to put together in one
reproducible genotype the favorable alleles that can
be drawn from different sources. It is obvious that
this is a difficult task and evident from reports by Bliss
and Gates (1968), Bailey (1972) and Bailey and Com-
stock (1976) that the difficulty is extreme in self-
fertilized organisms.

However, the backcross method enables further im-
provement of an already superior genotype by transfer
of one or more useful alleles from another source
without otherwise significant change in the recipient
genotypes unless unfortunate gene linkage is en-
countered. For examples of the effective use of this
procedure see Allard (1960), Briggs and Knowles
(1967), Briggle (1969) and Nagai et al. (1973). Rinke
(1960) argued that sequential applications of the
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backcross method is a preferred procedure for aggre-
gating the useful alleles of a species into a single geno-

type.

It is well known that this method works best and
requires the least effort when the alleles to be trans-
ferred have their effects on traits that are highly
heritable and that the transfer of one allele is much
easier than the simultaneous transfer of a larger num-
ber of alleles. However, successful applications for
the improvement of quantitative traits having im-
perfect heritability have been reported by Knott and
Talukdar (1971) and Duvick (1974).

This paper will report results from a computer
simulation exploration of the effects of heritability
(H) and gene number (n) on the efficiency of the
backcross method.

DETAILS OF THE INVESTIGATION

Backeross systems. In the case of all recurrent parent alleles
that have no effect on the selection criterion and are not linked
with segregating genes that do affect the selection criterion, ex-
pected frequency after ¢ backcrosses is [1 — (1/2)**]. When
t = 5 this is 0.984 which indicates that almost all of the desired
portion of the recurrent parent genotype would be automatically
retrieved during five backcrosses. With this in mind our study
was focused on programs involving a total of five backcrosses.

The several backcrosses of a program can be distributed in
various ways relative to the total of selection practiced. Let B
symbolize a series of backcrosses with no intervening selection
and S symbolize a selection scheme that may involve both selec-
tion among individual plants and selection among families pro-
duced by self-fertilization. We use subscripts to indicate posi-
tion in a sequence and superscripts to indicate number of back-
crosses in a series, Thus B?S,B%S, specifies a program involving
two successive backcrosses without intervening selection followed
by selection according to scheme 1 and then three further back-
crosses followed by selection according to scheme 2 (which may
or may not be the same as scheme 1).

This study considered three types of program: B?S, BZ%S,B3,S,
and BYS,B%S,B%S;, with S, — S, in the second type and $; =
S, = S, in the third. Our actual simularions were restricted
to the B%S, program and the B34S, and the B'S; segments of the
other two programs. These will be denoted as the B? B? and B!
systems, respectively.

The computer program simulated production of each back-
cross individual by single seed descent. For example, in the B?
system the program simulated production of each second back-
cross plant from a different first backcross parent.

The term, backcross population, will always refer to plants
produced by the final backcross of a series. Thus the backcross
population of the B® system consists of the plants produced by the
fifth backcross.

Selection scheme. A single scheme, involving four cycles of
selection and four plant generations, was employed. It began
with selection, based on phenotype of the individual, of 500 from
1,000 plants of the backcross population (first backcross plants
in the B! system, second backcross plants in the B? system or
fifth backcross plants in the B® system). This was followed by
threc cycles of sclection between and within families. Each
cycle involved production by self-fertilization of a family from
cach selection of the preceding cycle, selection among families
and then sclection of one plant from each sclected family. Ap-
proximately 12.6%, of the families were selected in each of the
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Table 1. Fractional increase in the genotypic mean resulting
from transfer of all n favorable alleles from a donor line
(assuming n/m — 1.0).%

n H=0.05 H=0.15 H=0.25
1 0.63Ct 1.10C 1.41C
4 1.26 C 2.19C 2.83C
8 1.79C 3.10C 4.00C
16 2.53C 4.38C 5.66 C

+ Multiply listed value by /n/m when n/m <1.0.
1 C = coefficient of variation among F, individuals divided by 100.

three cycles so that there was one selected family and from that
one selected plant at the end of the scheme. Our simulation
assumed that 100 individuals per family contributed to the
family phenotypic mean and that individual plant data were
obtained on 25 plants per family. Because of the selection among
individual plants, this scheme would not be applicable to all
traits of all economic species.

Genetic model. Genes of which the favorable allele is homozy-
gous in the donor line and the less favorable allele is homo-
zygous in the recipient line will be identified as class I genes.
Those for which the reverse is true will be referred to as class
II genes. With respect to class I genes we assumed equal and
additive effects and independent assortment. Assumptions that
applied to all genes were no mutation, no meiotic drive and
homozygosity in both the donor and the recipient line.

Heritability, gene number and gene effects. Let 2u be the
difference in genectic effect between the two homozygous geno-
types in the case of class I genes. Then, given the additivity
assumption of our model, the genetic variance contributed in
F. by each of these genes is u®/; and the total contributed by n
of them is nu?/,. If this is taken to be n/m times the total addi-
tive genetic variance in F,, the latter can be written

0%y = mu?/, (1]

Then, if the F, phenotypic variance (¢%) is visualized in terms
of the population mean and the coefficient of variation among
individuals, we have

0%, = CP ~ Civ® [2]
where P = the phenotypic mean,

Y = the genotypic mean, and
C = the coefficient of variation divided by 100.

It follows that the heritability (H) of individual phenotype in
the F, is

H = mu?/2C%* (3]
and u = CYy2H/ym [4]

Finally, if we define ¢ as the fraction by which the recipient line
would be improved by incorporation of the better allele of n
genes from the donor line, it is apparent that

p = 2un/Y = nCy8H/m = Cyn/m 8nH [5]

This expression enables us to identify combinations of H, n
and n/m that are worthy of attention. Some values of p are
shown in Table 1. They indicate that, in terms of p (potential
for improvement), even very low values of H deserve attention.
For example, given n = 4, n/m = 1/4 and H = 0.05 we
find that p = 0.63C which is 0.10 if C = 0.16. We concluded
that heritabilities as low as 0.05 deserved attention and actually
investigated the range from 0.05 to 0.45 and values of n from 1
to 16.

Details of the simulation program. Digital computer pro-
gramming for simulation of genetic events has been discussed
by Fraser and Burnell (1970) and various specifics of the com-
puter program employed in the work being reported were out-
lined by Reddy (1974). We will confine ourselves here to stating
that we tested our program in several ways and are confident
that it was doing what we intended and what herein it is de-
scribed as doing. There are, however, some aspects of what our
program was written to do that should be clarified.

A phenotypic value, or mean value in the case of families, pro-
vided the basis for selection. Each of these was the sum of
effects of genes simulated and a random value employed to
reflect the sum of all other effects on phenotype. Symbolically,

Table 2. Effects of gene number (n) and heritability on prob-
ability of fixation.

Heritability
Backcross
system n 0.05 0.15 0.25 0.35 0.45
BS 1 0.59(0.12)f 1.00 (0.00) 1.00 (0.00)
2 0.25(0.06) 0.58(0.04) 0.62(0.06) 0.75(0.06) 0.66 (0.06)
B? 2 0.92(0.04) 0.97(0.03) 1.00 (0.00)
3 0.61(0.07) 0.89(0.04) 0.95(0.03) 0.95(0.03) 1.00 (0.00)
4 0.65(0.05) 0.77(0.03) 0.86 (0.04) 0.87 (0.03) 0.92 (0.03)
6 0.40(0.04) 0.67(0.03) 0.68(0.03) 0.73(0.02) 0.79 (0.03)
B! 4 0.67(0.07) 0.92(0.03) 0.94 (0.03) 0.99(0.01) 1.00(0.00)
6 0.60(0.05) 0.84(0.04) 0.84(0.02) 0.87(0.03) 0.96(0.02)
8 0.54(0.03) 0.71(0.02) 0.78(0.03) 0.82(0.02) 0.84 (0.02)
12 0.51(0.04) 0.64(0.02) 0.68(0.02) 0.71(0.02) 0.79(0.02)
16  0.49(0.03) 0.59 (0.03) 0.62(0.02) 0.68(0.02) 0.69 (0.02)

+ Figures in parentheses are standard errors of the estimates. These were computed from
variation among frequencies observed in different replications.

P=y+r (6]
where P — phenotypic value (or mean phenotypic value),
y = total genetic effect of the simulated genes, and
r — a random quantity.

The variance of r is clearly critical. It should properly reflect
heritability, family size, variance of plot effects, variance of
genotype-environment interaction effects, etc.

Of the genes affecting the trait under selection, only those of
class I were simulated. Each favorable allele of each of these
genes was assigned unit value and the value, y, for each indi-
vidual was determined by counting the number of favorable
alleles. This means that we set u — 1.0. As an example, if we
use I and 0 to symbolize more favorable and less favorable
alleles, respectively, and if the number (n) of class I genes is
3.0, the y-value for the 101/000 genotype is 2.0.

Consider first the variance of 7 in the case of single plant
phenotypic values when n/m = 1.0; ie, when all segregating
genes that affect the selected trait belong to class 1. Then r is
completely nongenetic and its variance in F, must be

o’ = (1 — H)o% = [7]
(1 — Hyo%o%/0% = (1 — H)nu?’/2H

This variance was assumed the same in all backcross generations
as in the F,. Each value of r was obtained as the product of_ 0,
and a random value (R) drawn from a normal distribution
with mean equal to zero and variance equal to 1.0 so that the

phenotypic value for the i-th individual was
P, = y, + Ry — Hnu?/2H (8]

In the case of family means when n/m = 1, the variance

around the genotypic value of the parent was assumed to be
& = E 4 (6% + o%w)/a [A]
where E = the sum of family X macroenvironment inter-
action variance and variance due to plot effects,

a — number of individuals per family, and
0% = uMm’/2 = genetic variance among individuals
within families where n’ < n is number of class
I genes heterozygous in the parent.

The phenotypic means for families were obtained as follows:

P, = y: + Ryo, [10]

where y; = tbe value of y for the parent of the i-th family,
and R is used as described for equation [8].

In all work being reported E was set equal to 0.2¢°. The ra-
tionale for this value and effects of varying it will be discussed
later.

All parameter sets employed in computer simulation runs as-
sumed n/m = 1.0 but it will be shown later that the data ob-
tained can be interpreted with reference to other values of n/m.

RESULTS AND DISCUSSION

Data on the frequencies of favorable alleles are
summarized in Table 2. Each value shown is based
on 16 replicate simulation runs and is the average
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(Q) over replications and loci (class I) of the fre-
quencies of favorable alleles in final selections. Sym-
bolically,

— s

Q= 3 xi/2ns [11]

1=1

where x; = number of favorable alleles in the geno-
type of the selection in the i-th replication, s = num-
ber of replications, and n = number o" class I genes.
Q consitiutes an estimate of the probability, P(A), of
fixation of favorable alleles in genotypes obtained via
the backcross system in question. The general pattern
of the data shown in Table 2 is unambiguous, and
its implications can be summarized as follows:

1. P(A) is greater when H is greater,

2. Within backcross systems and at all values of H,
P(A) is smaller when n is greater.

3. When n and H are the same, P(A) is larger for
B2 than for B® and for B! than for B2

All of this was expected but quantitative relationships
were not so readily apparent in advance.

Given perfect heritability (H = 1), the individual
with the best genotype always has the best phenotype
and can therefore be identified for selection. As the
nongenetic standard deviation, ¢., becomes large rel-
ative to the positive effect of a single favorable allele
the correlation between phenotypic and genotypic
values decreases, and hence, the chance that the in-
dividuals with the best genotypes will be those selected
also decreases. It is apparent from equation [7]
that in our simulation the ratio of the plus effect of

a favorable allele to ¢. was \/2H/n(1 — H) which is
3.94 times as large when H = 0.45 as when H = 0.05,

The primary effect of n has to do with the proba-
bility of the required genotype in the backcross pop-
ulation. Successful transfer of n favorable alleles from
the donor to the recipient line requires occurrence of
the n-fold heterozygote in the backcross population
from which selection is practiced. Let q; be the prob-
ability of that genotype in a system involving ¢
backcrosses before selection is practiced. Then q, =
(1/2)* and the probability that there will be one or
more n-fold heterozygotes among k& individuals is
1 — (1 — qu*. Since k = 1,000 was used in our sim-
ulations, some values pertinent to the data of Table
2 are:

tn 5 8 10 12 16
1 — (1 —q)® 1.0 098 062 022 0.015

These make it readily apparent that complete success
is not to be expected, even with high heritability, with
B5 when n > 2, with B2 when n = 5 or with B! when
n > 10.

Interpretation for cases where n/m < 1.0. As noted
earlier, all of our data were obtained assuming n/m
= 1.0; i.e, that all genes of which different alleles
were present in the donor and recipient lines were
class I genes. We will now show that information
pertinent to other values of n/m are provided by the
data shown in Table 2.

In the case of selection among backcross individuals
we used

o = (1 — Hynu?/2H [7a)

which assumes that all genetic variance in the F,
generation would have been contributed by class I
genes. Given n/m < 1.0, the variance of 7 should
have been partly due to class II genes and, assuming
additive effects of those genes, should have been

(1 — H) mu?
S =TT H
I — (] — [12]

We may now ask what value of H used in (12) with
a value of n/m < 1.0 would yield the same value of
o’r as any specified value of H used in [7a]. Distin-
guish the value of heritability in [12] by H instead
of H. Then equating [7a] and [12] and solving
for H, we obtain

H. = H/[- + Hl — )

1 1
1 — (—-\t-1 —\2t-1 13
(= (G A+ (P 8]
The extremes of this expression occur when t = 1
and when t is large. When t = 1,
— 1 H n
Hi = H/[ -+ 50— )] [14]
and when t = 5,
- n n
0 ~ H/[ + H( — )] [15]

It is not difficult to show that these results apply
also in the case of within family selection among
individuals.

In the case of selection among families we used
equation [9]
where E = 0.2¢2, and ¢2, = (I — H)nu2/2H. The
value of o%, varies but could never exceed nu2/2.
Substituting this maximum and @ = 100 (used in all
simulation runs),

o% = 0.21(1 — Hynu?/2H 4 0.01(nu2/2) [16]

The second term (o%w/a) is trival relative to the first
and can be ignored. Assuming n/m < 1.0 and again
that E equals 0.2 of the nongenetic variance, it would
be approximate to employ

% = 021(1 — Hymu2/2H 4 o%,/a  [17]

where the second term would be slightly larger than
when n/m = 1.0 but still trivial relative to the first.
Proceeding roughly as before, we can distinguish the
heritability in [17] by H instead of H, equate the
significant portions of [16] and [17] and solve for
H to obtain the value of H which, used in [17]
with a value of n/m < 1.0, would yield the same
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value of ¢% as any specified value of H used in [16].
We obtain

H = H/[= + HI — )], [18]

the value given by [15] for selection among individ-

uals when ¢ is large. Values of H; and Hj obtained
using equations [14] and [15] are listed below for
n/m = 1/2 and 1/4.

n/m H —I‘-I.l T‘I—5

1/2 005 0.098 0.095
0.15 0.28 0.26
0.25 0.44 0.40
0.35 0.60 0.52
0.45 0.75 0.62

1/4 0.05 0.19 0.17
0.15 0.49 0.41
0.25 0.73 0.57
0.35 0.91 0.68
0.45 0.77

The following kind of information is provided. The
data (listed in Table 2) obtained for H = 0.05 and
n/m = 1.0 are also applicable to the situation in
which n/m = 1/2 and H = 0.095 and to the situation
where n/m = 1/4 and H = 0.17. As another ex-
ample, P(A) for n/m = 1/2 and H — 0.40 is approxi-
mately that for n/m ~ 1 and H = 0.25 but P(A) for
n/m = 1/4 and H = 0.40 is roughly that for n/m =
1 and H = 0.15.

The data in relation to complete programs. We must
now reemphasize that the B2 and B! systems cannot
be viewed as complete backcross programs. Neither
of them includes enough backcrosses to make the
probability of fixation of favorable alleles at class II
loci as large as required.

In contrast to the B? system, the 2 segment pro-
gram B2;S;B3,S,, includes five backcrosses so that the
probability of fixation of favorable alleles at class II
loci is 0.984. We have an estimate of P (A) for B2 but

A
require an estimate P (A), of the corresponding prob-
ability of fixation for the B%S,B3S, program. Con-
sider a single class I gene and let

P (A2) = probability of fixation of the favorable
allele at the end of the program given
that it was homozygous in the end prod-
uct of the first segment of the program,
and

P (Al) = probability of fixation of the favorable
allele at the end of the program given
that it was heterozygous in the end prod-
uct of the first segment of the program.

Then P (A), = £,P (A2) - £,P (Al) [19]

where f; and f, — probabilities that the favorable
allele will be homozygous and
heterozygous, respectively, in the
end product of the first segment
of the program, and

f; + /2 = P (A).

Rearranging, f, = P (A) — f1/2, and substituting in
[19] we obtain

P (A)p =P ()P (A2) + f; [P (A]) — o P(AZ)] [20]

The absolute bounds of the final term of (20) are
= f1/2 P (A2). Hence the magnitude of f;/2 P (A) =
fi/ (2f2 - f;) deserves attention. Because the individ-
uals in the final cycle of the selection scheme are pro-
duced by three successive self-fertilizations, this ratio
would be 1/8 in the absence of any selection but the
totality of selection practiced would make it much
smaller. Clearly the final term of [20] is trivial rela-
tive to P (A)P (2A) so that for practical purposes

P (A), = P (A)P (A2). [21]

Note now that if the favorable allele is homozygous
in the end product of the B?S; segment of the pro-
gram, the first backcross of the B3S, segment will
yield only heterozygous genotypes (as in the original
F;. Therefore the probability of heterozygous individ-
uals will be 1/4 in the backcross population of the sec-
ond segment as in the backcross population of the
first segment. For that reason, and given the same
nongenetic variance in all generations, it is clear that
P(A) and P (A2) will be equal if genetic variances
(from other loci) are equal and that P (A2) > P (A)
if genetic variance is less in the second segment of
the program. The latter will be so for genetic variance
from class II genes because, in the second segment,
there will always have been more backcrosses to the
recurrent parent (those of the first segment in addition
to those of the second). It will also be so for genetic
variance from other class I genes if P(A) < 1.0 and
n > 1.0. The importance of reduced genetic variance
from other class I genes is indicated in Table 2 by the

increases seen in Q as n decreases. In summary P (A2)
= P (A) when n/m = 1.0 and P (A) = 1.0 or n = 1.0.
Otherwise P (A2) > P(A). Thus

[PA)]P<SP(Ap<P(A) [22]

P (A), will of course be less than P (A) unless P (A2)
= 1.0

By arguments parallel to those detailed above it
can be shown that for the B!;S;B2S,B2;S, program

[P(A)]P <P (A< P(A) [23]

Potential of backcross program. The information
from this study can be interpreted in terms of (a) the
genetic situations in which the program should be
completely successful in the sense of transferring from
donor to recipient all of the favorable alleles available
in the donor but lacking in the recipient line or (b)
the amount of genetic improvement in the recipient
line whether all available favorable alleles are or are
not transferred.

The probability, P (n), that each of n favorable
alleles will be fixed in the product of a backcross pro-
gram will be [P (A),]" if the n genes segregate inde-
pendently. This, together with equations [22] and
[23] and the fact that in the case of the BS program
P (A)p = P (A), provides the basis for using the data
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A
Table 3. Lowest heritability (H) for which the estimate of
the probability of fixation of the favorable alleles of all
class I genes is equal to or greater than 0.50.}

Backcross program n/m n H
B%S 1 1 0.05
1/2 1 0.10

B?S,B3S 1 2 0.05
191P2V2 3 0-15
4 0.45

1/2 2 0.10
3 0.25

BlS,B3S;Bls 1 4 0.25
191P292D393 6 045
1/2 4 0.40

F Results when njm = 1/2 were obtained using information tabulated in the sec-
tion dealing with n/m <1.0.

in Table 2 to obtain estimates of P (n). Table 3 shows,
for various combinations of n/m and n, the lowest

A

heritability at which P (n) > 0.50. If p, given by equa-
tion [5], is multiplied by P (A),, the expected im-
provement of the recipient line, as a fraction of the
mean in the F, of the donor and recipient lines, is ap-
proximated. Values shown in Table 4 were obtained
using the estimates of P (A), provided by the lower
limits of equations [22] and [23].

Table 8 indicates that the B3 program is effective
for transfer of one good allele but not for simultaneous
transfer of two or more. Up to three favorable alleles
available in a donor line can be transferred simultan-
eously in the B28;B%S, program and up to four (or
five) using the B!;S;B%,8,B%S? program. Table 4 in-
dicates the potential for considerable improvement in
a quantitative trait even when a large proportion of
favorable alleles available cannot all be transferred
together. Both tables indicate that more can be ac-
complished with the three-segment program than with
the two-segment program and more with the latter
than with the B3 program. Of course the three-seg-
ment program requires the most effort and the BSS
program the least. Not to be lost sight of is the ob-
vious fact that if all favorable alleles available from
a donor line are not transferred, a closer approach to
complete success can be achieved in a following pro-
gram using the same donor but the product of the
first program as the recipient.

In all cases effectiveness is less when n/m is less.
This is primarily due to lower values of the ratio
(u/ge), given the same heritability and number of
class I genes, and only secondarily to presence of
genetic variance arising from class II genes.

It is well known that genetic linkage can reduce
the realized improvement in backcross programs from
the potential, given independent assortment of class I
genes from others affecting total value of genotype,
indicated by our data. For discussion of this matter
see, for example, Allard (1960). As noted by Allard,
linkage of favorable alleles in the donor with un-
favorable alleles of genes that affect total value but
not the trait that is the basis for selection in the back-
cross program can prevent complete reconstitution of
the valuable portion of the recipient parent. In such
cases the actual selection criterion employed becomes
critical. The value of evidence concerning genetic

Table 4. Estimates of improvement in genotypic mean of the
recipient line through use of the backcross programs when
H = 025

Program n n/fm=1 n/m=1/2
BSS 1 14Ct 10C
2 12C 0.8C
B3s,B3s, 2 20C 1.3C
3 22C 14C
4 21C 1.2C
6 16C 1.1C
B1S,B3s,Bls, 4 24C 16C
6 20C 15C
8 19C 10C
12 15C 09C
16 1.3C 0.8C

+ C = coefficient of variation among F individuals ~ 100.

covariances in the F, as a guide in this connection
could be investigated by the simulation procedure.

Magnitude of E. The choice of 0.2¢% as the value
substituted for E in the phenotypic variance of family
means can only be defended in a general way. E was
defined to include variance from plot effects and from
family X macroenvironment interaction effects and
will clearly be variable in relative magnitude depend-
ing on the trait or traits for which selection is prac-
ticed and the design of the field comparisons on which
selection among families is based. Our choice re-
flected recognition that E will always be substantially
lower than ¢% but that family X macroenvironment
interaction variance is known to be substantial in the
case of some of the quantitative traits important to the
breeder.

In retrospect we think that the interaction portion
of E should have been geared to the magnitude of
genetic variance rather than nongenetic variance; there
can be no interaction when there is no genetic variance,
and the greatest amount of interaction variance is
logically to be expected when genetic variance is great-
est.

Making E larger or smaller has an effect on out-
come; P (A) is inversely related to E but the impact
is minor except when H is very small. This issue will
be treated in greater detail in a later manuscript.

Variations in the selection scheme. It is readily ap-
parent that the selection exerted in a backcross pro-
gram can be varied in many ways. Some deviations
from the scheme employed in work here reported are
mandated in work with some traits in some species.
For example, in the case of crops( e.g., small grains)
where minimal spacing between plants is normal in
commercial practice, selection among individual plants
will be counter-productive if the trait is one for which
genotype X plant density interaction is important.

Data concerning selection scheme variations will
be reported subsequently.
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