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Abstract  

 

Sorghum has been proposed as a potential energy crop. However, it has been traditionally bred for grain 

yield and forage quality, not traits related to bioenergy production. To develop tools for genetic 

improvement of bioenergy-related traits such as height, genetic markers associated with these traits have 

to be identified first. Association mapping has been extensively used in humans and in some crop plants 

for this purpose. However, genome-wide association mapping using the whole association panel is costly 

and time-consuming. A variation of this method called pool-based genome-wide association mapping has 

been extensively used in humans. In this variation, pools of individuals with contrasting phenotypes, 

instead of the whole panel, are screened with genetic markers and polymorphic markers are confirmed by 

screening the individuals in the pools. Here we identified several new simple sequence repeats (SSR) 

markers associated with height using this pool-based genome-wide association mapping in sorghum. 

After screening the tall and short pools of sorghum accessions from the sorghum mini core collection 

developed at the International Crops Research Institute for the Semi-Arid Tropics with 703 SSR markers, 

we have identified four markers that are closely associated with sorghum height on chromosomes 2, 6, 

and 9. Comparison with published maps indicates that all four markers are clustered with markers 

previously mapped to height or height-related traits and with candidate genes involved in regulating plant 

height such as FtsZ, Ugt, and GA 2-oxidase. The mapping method can be applied to other crop plants for 

which a high throughput genome-wide association mapping platform is not yet available. 

 

Keywords: sorghum, pool-based genome-wide association mapping, SSR markers, molecular breeding, 

height 
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Introduction 

 

Sorghum (Sorghum bicolor (L.) Moench) has been proposed as a model crop to study C4 grasses and as a 

potential energy crop. It is a recognized biomass crop suitable for biofuel production because of two 

critical factors: high biomass production and efficient water use (Rooney et al. 2007; Saballos 2008). 

Sorghum biomass productivity is positively correlated with stem height and thickness (Murray et al. 

2008; Zhao et al. 2009). In fact, stem is the most important organ for cellulose production and is a strong 

sink for soluble sugars in sorghum (Zhao et al. 2009); both can be used for bioethanol production. In 

addition to producing more biomass, taller varieties have other advantages despite the fact that they may 

mature late and some may be prone to lodging (not always; see Murray et al. 2009 and Rooney 2004): 

they tend to have a thicker stem with higher sugar content (Ritter et al. 2008). In addition, they may 

produce a better ratoon crop because height is significantly correlated with regrowth of fresh biomass 

with a coefficient of 0.71 (Murray et al. 2008). Height is also independent of stem structural composition, 

i.e., cellulose, hemicellulose and lignin content (Murray et al. 2008). This means that a variety with tall 

stem can be bred to contain more cellulose and less lignin. Because height of the stem defines biomass 

productivity of sorghum, a QTL for total dry biomass has been found to colocalize with height QTLs on 

chromosomes 7 and 9 (Brown et al. 2008; Murray et al. 2008). The first step to genetically improve 

sorghum as an energy crop is to increase its biomass yield (Murray et al. 2008). To achieve this goal, it is 

imperative to identify all the genes underlying the stem height and markers that can be used to select for 

height through marker-assisted selection.  

 

The work has long begun: genetic studies have shown that height in sorghum is controlled only 

by a few major QTLs (reviewed by Salas Fernandez et al. 2009). Because of this, numerous studies have 

focused on height as an indirect way to identify genes related to biomass yield. Earlier genetic study has 

identified four loci affecting sorghum stem height: Dw1, Dw2, Dw3 and Dw4 (Quinby and Karper 1954). 

Only Dw3 has been cloned to date. It encodes a P-glycoprotein that regulates polar auxin transport and is 

orthologous to the maize br2 (Multani et al. 2003). Dw3 also co-localizes with a height QTL on 

chromosome 7 (Brown et al. 2006) and Dw2 is associated with a QTL on chromosome 6 (Feltus et al. 

2006; Klein et al. 2008). Although Dw1 and Dw4 have not been mapped conclusively to a linkage group, 

another QTL for height has been genetically mapped on chromosome 9 (Brown et al. 2008).  

 

Mapping of sorghum stem height was also conducted using association mapping technique which 

maps QTLs based on linkage disequilibrium defined as the non-random association of alleles between 

genetic loci (Yu and Buckler 2006). Using this method, a height QTL (Sb-HT9.1) was mapped on 

chromosome 9 using a panel of 377 sorghum genotypes and 49 SSR markers (Brown et al. 2008). Three 

significant associations for height were also found in a panel of 125 genotypes using 47 SSR and 322 
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SNP markers and two of them are on chromosomes 6 and 9 (Murray et al. 2009), which supports 

published QTL studies (Brown et al. 2006; Feltus et al. 2006; Lin et al. 1995; Pereira and Lee 1995).  

 

A variation of the above association mapping uses a pool-based two-stage design (Sham et al. 

2002). In the first stage, individuals with contrasting phenotypes (e.g., tall/short) will form two pools. 

Individuals in the tall pool will all be tall; individuals in the short pool will all be short. This is similar in 

concept to bulked segregant analysis (Giovannoni et al. 1991; Michelmore et al. 1991) except that 

individuals in a pool are not descendents from the same parents. DNA is then isolated from each 

individual, quantified, and bulked into tall or short pools. Both pools of DNA are screened with markers 

that cover the whole genome. Any difference in marker pattern between the two pools will be recognized 

as polymorphism and such markers are repeated in all individuals in both pools to ensure that it is 

polymorphic between individuals from both pools. This confirmatory individual genotyping is the second 

stage of this technique which may also be extended to other individuals not in the initial pools. 

 

The method has been used in mapping complex and heritable human conditions which are also 

strongly influenced by the environment. One example is cocaine addiction in twin studies. When one pool 

of control (normal population) and one pool of case (consists of people with addiction) were screened 

with markers, three chromosome regions were identified as associated with the addiction. These regions 

contain a number of genes that encode potential targets for anti-addiction pharmacotherapeutics (Drgon et 

al. 2010). Using essentially the same technique, Lind et al. (2010) identified the ARHGAP10 gene that is 

associated with nicotine dependence. Addiction to heroin shows even more environmental influence 

because of its low heritability. But this method identified one strong association in Caucasians with 

rs10494334, a marker in an unannotated region of the human genome. In African Americans, the marker 

most significantly associated with the heroin addiction vulnerability was found in the cytosolic dual 

specificity phosphatase 27 gene DUSP27 (Nielsen et al. 2010). These results indicate that markers 

associated with quantitative traits can be identified in genomewide screening using the pool-based 

association mapping and these markers can be a powerful tool in identifying these genes and in marker-

assisted breeding to genetically improve sorghum as a bioenergy crop. 

 

The most commonly used marker system for association mapping in sorghum is simple sequence 

repeats (SSR) (Brown et al. 2008; Casa et al. 2008; Murray et al. 2009; Shehzad 2009a). Although the 

more abundant single nucleotide polymorphism (SNP) markers have been developed for a number of 

model crop plants such as rice and maize, due to SNP’s high development/detection cost, SSR remain an 

attractive marker system for sorghum (Wang et al. 2009a). Compared to SNP marker system, SSR 

markers requires just the primer sequences which are usually available once published. This is the 

primary reason why so much effort has been devoted to developing SSR markers (Kong et al. 2000; Li et 
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al 2009; Ramu et al. 2009; Srinivas et al. 2009; Yonemaru et al. 2009) and to using SSR markers in 

genetic mapping (Bhattramakki et al. 2000; Haussmann et al. 2002; Wu and Huang 2006), diversity 

studies (Abu Assar et al. 2005; Agrama and Tuinstra 2003; Ali et al. 2008; Anas and Yoshida 2004; 

Barnaud et al. 2007; Caniato et al. 2007; Casa et al. 2005; Deu et al. 2008; Dillon et al. 2005; Folkertsma 

et al. 2005; Ghebru et al. 2002; Menz et al. 2004; Pei et al. 2010; Shehzad et al. 2009b; Smith et al. 2000; 

Wang et al. 2009b) and molecular breeding (Knoll and Ejeta 2008) in sorghum. The objective of this 

study was to identify SSR markers associated with sorghum stem height using the aforementioned pool-

based genome-wide association mapping technique. This mapping method has one important advantage: 

since only part of the population (association panel) is used for genotyping, cost is significantly reduced, a 

boon for resource-limited investigators. Related to this, time is also saved because not all individuals are 

genotyped by all markers.  

 

Materials and methods 

 

Plant materials and phenotyping 

 

The ICRISAT (International Crops Research Institute for the Semi-Arid Tropics) height data was from 

Upadhyaya et al. (2009) and this will be referred to as the ICRISAT dataset. The mini core collection 

(10% of core, 1% of entire collection representing diversity) of sorghum was developed from over 37,000 

germplasms curated at ICRISAT in India by Upadhyaya et al. (2009) following Upadhyaya and Ortiz 

(2001). The collection was introduced and grown in greenhouse at UL Lafayette and this will be referred 

to as the UL Lafayette dataset. Height of four plants was measured at harvest for each accession in the 

collection and the average for each accession constitutes the UL Lafayette height data. Due to variable 

flowering time, plants were harvested when the grain became mature. Among 216 accessions planted, 78 

did not flower within five months and did not produce seeds. These plants were harvested and measured 

at the end of five months. 

 

DNA isolation and construction of pools 

 

After two months’ growth, top two leaves from one plant for each accession were harvested and dried at 

room temperature. Total genomic DNA was isolated based on Klein et al. (2000) and Williams and 

Ronald (1994) with slight modifications. Briefly, dried leaf tissues was cut into small pieces (about 2 

mm
2
) and filled into a 1.5 ml microcentrifuge tube. Extraction buffer (2x700 µl) containing 100 mM Tris 

pH 8.0, 10 mM EDTA pH 8.0, 700 mM NaCl, 12.5 mM potassium ethyl xanthogenate (PEX) was added. 

Samples were incubated at 65° C for 30 min with occasional mixing in a dry heat block. After incubation, 

samples were centrifuged at 15000 g for 5 min and 700 µl supernatant was transferred to a new 1.5-ml 

microcentrifuge tube containing 700 µl isopropanol and 70 µl of 3 M sodium acetate pH 5.2, mixed and 
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centrifuged again at 15000 g for 5 min. The precipitated DNA was washed twice with 70% ethanol, air 

dried and resuspended in 70 µl water containing 100 ng RNase A for at least 30 min at room temperature 

before centrifugation at 15000 g for 5 min. The supernatant containing DNA was transferred to a new 

tube and quantified in NanoDrop 2000 (Thermo Scientific, Waltham, MA). For PCR reaction, DNA 

concentration was adjusted to 40 ng/µl. DNA quality from four random samples were checked on 1% 

agarose gel. 

 

To construct pools, accessions from the Mini Core collection were ranked based on height in both 

environments. In order for a plant to be included in a pool, that plant has to be tall or short in both 

environments. Based on this criterion, eight tall and eight short accessions were selected. DNA from each 

accession was quantified and equal amount of DNA was bulked for both tall and short pools. The final 

bulked DNA concentration in each pool was 80 ng/µl and these were used for SSR screening.  

 

SSR marker screening of pools 

 

To select the SSR markers for genome-wide mapping of genes underlying stem height, the 15,194 SSR 

markers identified in the genome sequence by Paterson et al. (2009) were screened for suitable primers 

for PCR amplification using Primer3 (Rozen and Skaletsky 2000). The settings to Primer3 were all 

default except the optimal length of the primer was set to 24 and the product size range was set to 

between 100 to 500 bp. In total, 13,397 were found to have suitable primers and can be used for marker 

amplification with product range between 100-500 bp. From this number, 703 SSRs were randomly 

selected for this study and primers were synthesized by Eurofins MWG Operon (Huntsville, AL). SSR 

markers are named with two numbers separated by a dash. The first number is the plate number and the 

second number is the sequence number. Primer sequences are available in Supplementary Table 1. 

Genome-wide distribution of these markers relative to genes is presented in Fig. 1. 
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Fig. 1 Distribution of 703 SSR markers relative to genes in the sorghum genome. For each chromosome 

numbered on top, Column 1 (black) represents genes; Column 2 (red) represents 703 SSR markers used in 

this study 

 

The tall and short pools were screened with the 703 SSR markers which translates to 1,406 PCR 

reactions for the screening alone. PCR was performed in a 10 μl reaction volume that contains 5 μl 2x 360 

AmpliTaq Master Mix from Applied Biosystems (ABI, Carlsbad, CA), 10 ng each of the two primers and 

80 ng DNA. Thermocycling was initiated with 95°C/5 min followed by 30 cycles of 95°C/20 s, 56°C/20 

s, 72°C/1 min and final extension of 72°C/7 min in either an ABI 2720 or Veriti® thermocycler. The PCR 

samples were separated in LabChip Microfluidic Gel Electrophoresis System (LabChip 90) from Caliper 

Life Sciences (Hopkinton, MA) with 1 K DNA Assay Kit according the manufacturer’s protocol. Before 

loading into LabChip 90, total PCR reaction volume was adjusted to 15 μl with sterile water for all 

samples. The default setting for LabChip 90 was used except the sipper height was adjusted to 1 mm. 

PCR product size and virtual gel image were generated automatically using LabChip GX 2.3 software 

from Caliper. Markers polymorphic between the pools were further confirmed in all 16 accessions that 

make up the two pools according to Sham et al. (2002). Genotyping of all 216 accessions with selected 

SSR markers was performed following the same protocols. 

 

Association mapping 

 

Only SSRs identified as polymorphic between the two tall and short accessions were used in association 

testing. Marker-trait associations were calculated using general linear models (GLM; Yu et al. 2006) as 

implemented in TASSEL (Bradbury et al. 2007; http://www.maizegenetics.net/) 3.0 controlled for 

population structure generated from STRUCTURE (Pritchard et al. 2000; 
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http://pritch.bsd.uchicago.edu/structure.html) 2.3. GLM was applied with the number of 

groups/subpopulations (k) set to five when running STRUCTURE, as this number maximizes the Δk, a 

parameter used to detect real number of groups (Evanno et al. 2005). When ∆k = 5 it still allows the 

detection of the real number of groups with just five SSRs or 50 AFLPs as demonstrated in the simulation 

study (Evanno et al. 2005), in tomato association mapping (Mazzucato et al. 2008) and soybean 

population structure study (Lam et al. 2010). STRUCTURE was run with the admixture model, a burn-in 

period of 10,000 and 1000 Markov Chain Monte Carlo repetitions, and the data from 10 unlinked 

polymorphic SSR markers. The following equation was used for GLM analysis: 

 

y = Xα + Qk=5 + e 

 

where y represents phenotype, X represents genotype, Xα represents fixed effects, Q is population 

structure cofactor, and e represents random effects (Bradbury et al. 2007; TASSEL 3.0 User Guide). 

GLM method controlled for population structure showed smallest possibility of false negatives among 

single trait-marker association models tested and comparable number of false positives as MLM 

controlled for both population structure and kinship in sorghum (Shehzad et al. 2009a). Significance of 

associations between loci and traits was based on an F-test with p values calculated by TASSEL. 

 

Marker localization 

 

Identified SSR markers potentially associated with height were localized to the genome based on Paterson 

et al. (2009). Markers previously identified as linked to height in sorghum were localized to the genome 

based sequence information of relevant markers provided in Map Viewer in the NCBI website 

(http://www.ncbi.nlm.nih.gov/mapview/). Marker sequences were searched against the sorghum genome 

presented in the following websites: http://www.plantgdb.org/SbGDB/, 

http://www.phytozome.net/sorghum, or http://genome.jgi-psf.org/. Maps that also identified markers 

linked to height but for which sequencing information of these markers were not available were not used 

in this study. Maps used were those from Chittenden et al. (1994), Bhattramakki et al. (2000), and Bowers 

et al. (2003). 

 

 

 

 

 

 

Results and discussion 

 

Phenotyping and screening of the pools 

 

Only 216 of the original 242 accessions were grown at UL Lafayette due to quarantine reasons. Since 

heritability for height is high, ranging from 0.83 (Murray et al. 2008) to 0.95 (Ritter et al. 2008), we 
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measured height of plants grown in an enclosed environment for the UL Lafayette dataset. When this 

dataset was compared to the ICRISAT dataset (Upadhyaya et al. 2009), Pearson’s correlation coefficient 

between the two datasets is 0.3328 (p = 0.0000001), statistically significant yet not very high. Despite this 

relatively low correlation, we were able to select accessions that were relatively tall or short in both 

environments (Table 1 and Supplementary Table 2). Interestingly, the average stem height of the panel of 

216 accessions was 2.37 meters at ICRISAT and 3.02 meters at UL Lafayette. This is because 78 of the 

216 accessions from the Mini Core collection did not flower at UL Lafayette, therefore, they grew taller 

while all accessions flowered and produced seed at ICRISAT. 

 

 To construct the tall and short pools, the accessions were ranked based on their height in each 

environment. Eight tall and eight short accessions were each chosen because their heights were relatively 

consistent in both environments (Table 1). To show the difference in average height between the selected 

accessions and the whole panel, the average height in the tall/short pools was also calculated. The average 

height among all accessions in the panel was 3.02 m while the average height among the eight accessions 

in the tall pool was 4.40 m and that of short pool was only 1.44 m for the UL Lafayette dataset. For the 

ICRISAT dataset, the panel average height was 2.37 m while the averages for tall and short pools were 

3.05 m and 1.50 m, respectively. 

 

Table 1 Sorghum accessions with tall/short phenotypes (in meters) based on evaluations at UL Lafayette 

and ICRISAT. 
Tall Short 

Accession 

No. 

UL 

Lafayette 

ICRISAT Accession 

No. 

UL 

Lafayette 

ICRISAT 

IS-31706 5.16 2.91 IS-3158 1.11 1.29 

IS-11026 4.85 3.02 IS-19262 1.24 1.19 

IS-21083 4.84 2.86 IS-24462 1.37 1.18 

IS-23891 4.27 2.78 IS-26749 1.40 1.49 

IS-24175 4.06 3.00 IS-27697 1.52 2.10 

IS-26025 4.05 2.78 IS-14090 1.53 1.42 

IS-24953 3.99 3.08 IS-2397 1.68 1.76 

IS-25301 3.98 3.93 IS-29582 1.72 1.60 

Pool average
a
 4.4 3.05 Pool average 1.44 1.50 

Panel 

average
a
 

3.02 2.37    

a
 Pool average was the average height of the eight tall/short accessions. Panel average was the average height of all 

216 accessions. 
 

The tall and short pools (Table 1) were screened with 703 SSR markers covering the whole 

genome (Fig. 1). Approximately 97% of the markers produced scorable band. Among these, 67 showed 

potential polymorphisms between the pools. But when all the 67 markers were used to genotype all the 16 

accessions in the pools individually, only six of them were truly polymorphic and two of the six were not 

completely polymorphic between the tall and short accessions. The high false positive rate was due to the 
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high sensitivity of LabChip 90 in detecting SSR markers. Only these four SSR markers, 37-1740, 40-

1897, 23-1062, and 44-2080, were analyzed further. These SSRs contain 2-5 alleles polymorphic between 

the pools. Initial and confirmatory screening of 40-1897 is shown in Fig. 2 which identified accession IS-

24953 as heterozygous in this locus while the other 15 accessions were homozygous. Although self-

pollinated, sorghum does have relatively high out-crossing rate (Saballos 2008). Similarly, Murray et al. 

(2009) found 77 of 125 sorghum genotypes tested were heterozygous in one or more marker loci. This is 

probably the reason that oftentimes a single plant, which represents most of the plants within an accession 

morphologically, is sampled for analysis (Wang et al. 2009b). 

 

Fig. 2 Screening of tall and short sorghum pools with SSR markers and confirmation of a polymorphic 

marker using a LabChip 90. a. A partial gel image of the initial marker screening showing an SSR 

polymorphism between tall (first lane inside the circle) and short (second lane inside the circle) pools as 

circled. b. Confirmation of the polymorphic marker in all the accessions in the pools. The product size for 

short accessions is about 200 bp and that of tall accessions is 233 bp. One tall accession (Lane 7-IS-

24953) is heterozygous as reflected by the pool result as circled. Accessions: Lane 1-IS-31706; Lane 2-

IS-11026; Lane 3- IS-21083; Lane 4-IS-23891; Lane 5-IS-24175; Lane 6-IS-26025; Lane 7-IS-24953; 

Lane 8-IS-25301; Lane 9-IS-3158; Lane 10-IS-19262; Lane 11-IS-24462; Lane 12-IS-26749; Lane 13-IS-

27697; Lane 14-IS-14090; Lane 15-IS-2397; Lane 16-IS-29582 

 

 

 

 

Association mapping 

 

Association of the four SSR markers was tested using TASSEL 3.0 to show markers identified using the 

pools were truly associated with height. The strength of association was much stronger at ICRISAT than 

at UL Lafayette (Table 2) probably due to the fact that the environment (photoperiod) at UL Lafayette 

was not conducive to reproductive growth for some accessions. For example, one third of the plants just 

grew vegetatively and did not produce any seeds. Despite this, association of 40-1897 and 44-2080 with 

height was significant at 5% level and marker effect of 40-1897 explains 13.9% of the variance in height. 

But at ICRISAT, association of all four markers was significant at 1% level (Table 2). Common to both 

environments, 40-1897 and 23-1062 both had stronger effect on height than the other two markers (Table 

2). 

 

Table 2 Association between identified SSR markers and sorghum height in two environments. 

Marker ICRISAT UL Lafayette 

 p value % variance 

explained 

p value % variance 

explained 

37-1740 7 x 10
-11 

19.4 0.075   1.5 

40-1897 6 x 10
-7 

26.5 0.022 13.9 

23-1062 9 x 10
-12 

34.6 0.062 10.7 

44-2080 2 x 10
-8 

14.8 0.003   4.3 

  

 Marker alleles with strong effect on height are presented in Fig. 3. In most cases, presence of a 

marker allele reduced the height and the trend was similar in both environments, except the alleles 228 
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and 200 of 40-1897. The 232 allele of 40-1897 increased height in both environments while alleles of 228 

and 200 both reduced height at ICRISAT compared to an accession homozygous for the 224 allele. For 

marker 23-1062, presence of allele 244 in 29 accessions or allele 237 in 38 accessions reduced height by 

over 2 meters (Fig. 3) compared to an accession homozygous for the allele 264. The stronger marker 

effect on height explains at least partially the more significant association for the ICRISAT dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Phenotypic effect of marker alleles (in the top) at loci associated with sorghum height in two 

environments. Numbers in the bottom are the number of accessions with the marker allele listed on the 

top. The “A” alleles for 37-1740 and 44-2080 represent the presence of a marker fragment/band. All other 

alleles in the figure are fragment sizes in bp 

 

 

Marker localization 

 

To further demonstrate that markers identified in pool-based genome-wide association mapping were 

physically close to markers previous found to be genetically linked to height and height-related traits, we 

localized the four markers relative to the position of the linked markers on the sorghum chromosomes. 

The results are presented in Fig. 4. The four SSR markers were localized to three chromosomes: 2, 6 and 

9. The two markers that display more significant effect on height, 23-1062 and 40-1897, were on 

chromosomes 2 and 6, respectively. Chromosome 2 was not as extensively mapped as chromosomes 6 

and 9. But we found that 23-1062 was 385 kb from Ugt (UDP-glycosyltransferase/indole-3-acetate beta-

glucosyltransferase). It has been shown that suppression of this gene by the constitutive expression of 

antisense mRNA greatly reduced the height of alfalfa and pea plants due to a twofold delay in cell cycle 

progression and inhibition of border cell production (Woo et al. 1999). 

 

Two other homologous genes linked to plant height were also close to markers identified in this 

study. On chromosome 9, 44-2080 was about 47 kb from a gene encoding GA 2-oxidase which has been 

shown to regulate plant height in poplar (Busov et al. 2003) and tobacco (Biemelt et al. 2004). In tobacco, 

overexpression of GA 2-oxidase reduced height by 86% (Biemelt et al. 2004) and in poplar the reduction 

caused by GA 2-oxidase overexpression was 4-fold (Busov et al. 2003). An RFLP marker (pSB0945) 

identified by Murray et al. (2009) as tightly associated with sorghum height was 382 kb from GA 2-

oxidase and another RFLP marker pSB416 mapped by Feltus et al. (2006) was 255 kb away (Fig. 4). On 
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chromosome 6, 37-1740 was 1.78 Mb from pSB520b, an RFLP marker found to be linked to sorghum 

height by Lin et al. (1995). Toward the other end of chromosome 6, 40-1897 was flanked by 

Floricaula/leafy-like 2 and FtsZ (Fig. 4). Floricaula/leafy-like 2 was mapped by Brown et al. (2006) as a 

candidate gene for reproductive transition/inflorescence branching. The maize homologs of this gene 

direct flower development, inflorescence architecture and the vegetative to reproductive phase transition 

(Bomblies et al. 2003). The latter could determine plant height if a transition phase is delayed. Despite the 

overall similar trend in the marker effect on height in the two environments, two of the three alleles (228 

and 200) of 40-1897 display a slightly different pattern. While the alleles reduced height at ICRISAT, the 

effect of 228 was actually positive and that of 200 was close to neutral (Fig. 3). There is a possibility that 

Floricaula/leafy-like 2 was involved in delaying flowering at UL Lafayette although this remains to be 

determined. The other flanking gene, FtsZ, was homologous to bacterial cell division protein. 

Overexpression of its homolog in tobacco reduced height by 50% to 2-fold under high or low light due to 

decreased chloroplast production (Jeong et al. 2002).  

 

 Physical distance in Fig. 4 can also be translated to genetic distance based on data from 

chromosome 6. Markers Xgap72 and Xtxp265 were identified as tightly associated with height on 

chromosome 6 by Murray et al. (2009). In Li’s (2009) map, Xtxp265 was 10 cM from Xgap72 and 0.4 

cM from Xtxp317 (used as reference point here); the respective physical distance was 10 Mb and 0.4 Mb 

which translate to about 1 Mb/cM. Using this estimate, 23-1062 is 0.39 cM from Ugt and is 2.4cM from 

pSB500, a marker linked to days-to-flowering QTL in chromosome 2 by Lin et al. (1995). On 

chromosome 6, 40-1897 was 0.44 cM from FtsZ and 4.89 cM from Floricaula/leafy-like 2 and 37-1740 

was 1.78 cM from pSB520b, a marker linked to height by Lin et al. (1995). And lastly on chromosome 9, 

44-2080 was 0.04 cM from GA2-oxidase and was flanked by pSB416 at 0.21 cM and pSB0945 at 0.42 

cM. pSB416 was linked to maturity (Feltus et al. 2006) and pSB0945 was associated with height by 

association mapping (Murray et al. 2009). Overall, it shows that markers identified in this study were 

genetically and physically clustered with markers previously identified as linked to height and height-

related traits. 

 

Although the function of the aforementioned genes is related to plant height, it remains to be 

determined whether they were the genes underlying height in sorghum. Increasing the genome coverage 

with more markers may help. For example, with 703 SSR markers, there is only one marker for every Mb 

on average. Using 4000 markers, the resolution will increase to one marker for every 160 kb of the 

genome. This is clearly doable using a high-throughput marker detection system. The LabChip 90 can 

process 400 PCR samples a day. Assuming screening two pools with 4000 markers, this means 8000 PCR 

samples to separate which will take the machine 20 days for this initial screening. This increased 
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coverage will provide a high-resolution physical mapping and will facilitate the ultimate identification of 

the candidate gene. 

 

Concluding remarks 

 

 We have identified four SSR markers associated with sorghum stem height using the pool-based 

genome-wide association mapping. The identified markers were clustered with those previously identified 

as linked to height or height-related traits using genetic mapping. Using pools of individuals with 

contrasting phenotypes instead of the whole association panel significantly reduced genotyping cost and 

time. Furthermore, raising the number of markers for the initial screening will increase mapping 

resolution and this will help to pin down causal candidate genes. The increased workload can be 

accommodated using a high-throughput SSR marker detection system. Markers identified through this 

method can be effectively used in marker-assisted selection in molecular breeding, as SSR markers are 

already used in marker-assisted selection for early-season cold tolerance in sorghum (Knoll and Ejeta 

2008). And the method may be applied to other crop plants for which a high throughput genome-wide 

association mapping platform is not yet available.  

 

 Genomics and genome-wide study in crop plants have progressed rather rapidly in the last two 

years. The technological power of the so called next generation sequencing is being harnessed to identify 

all genes/markers associated with major traits of interest in crop plants. By resequencing 517 rice 

landraces, Huang et al. (2010) identified 80 strong associations in 14 agronomic traits of rice. In soybean, 

Lam et al. (2010) resequenced 17 wild and 14 cultivated soybeans and found that marker-assisted 

breeding of soybean will be less challenging than map-based cloning. Both soybean and sorghum are self-

pollinated crops although sorghum has a higher out-crossing rate. Because of this, the result will apply 

also to sorghum that if the right markers are identified, molecular breeding using these markers will be 

efficient in genetic improvement of sorghum. A method for efficient identification of markers associated 

with important traits in sorghum is what this study has demonstrated.   
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Fig. 4 Physical localization of markers identified in this study (in italics) and markers previous mapped as 

linked to sorghum height and height-related traits. Source of markers is in parenthesis after each marker. 

For published markers, those prefixed with “pSB”, “Xcdo”, “Xrz” and “SHO” were RFLP markers while 

all others were SSR markers. Homologous genes previously shown to affect plant heights are also 

included (see text for details). Physical location was determined using the sorghum genome sequence 

from the following websites: http://www.plantgdb.org/SbGDB/, http://www.phytozome.net/sorghum, or 

http://genome.jgi-psf.org/. Not drawn to scale 
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