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Abstract A composite intraspeciWc linkage map of chick-
pea was developed by integrating individual maps devel-
oped from two F8:9 RIL populations with one common
parent. DiVerent molecular markers viz. RAPD, ISSR,
RGA, SSR and ASAP were analyzed along with three yield
related traits: double podding, seeds per pod and seed
weight. A total of 273 markers and 186 RILs were used to
generate the map with eight linkage groups at a LOD score
of ¸3.0 and maximum recombination fraction of 0.4. The
map spanned 739.6 cM with 230 markers at an average dis-
tance of 3.2 cM between markers. The predominantly used
SSR markers facilitated identiWcation of homologous link-
age groups from the previously published interspeciWc link-
age map of chickpea and conWrmed conservation of the
SSR markers across the two maps as well as the variation in
terms of marker distance and order. The double podding
gene was tagged by the markers NCPGR33 and UBC249z

at 2.0 and 1.1 cM, respectively. Whereas, seeds per pod,
was tagged by the markers TA2x and UBC465 at 0.1 and
1.8 cM, respectively. Eight QTLs were identiWed that inXu-
ence seed weight. The joint map approach allowed mapping
a large number of markers with a moderate coverage of the
chickpea genome and few linkage gaps.

Introduction

Chickpea (Cicer arietinum L.) is a self-fertilizing diploid
(2n = 2x = 16) grain legume, grown in more than 30 coun-
tries of Central and South Asia, southern Europe, northern
and eastern Africa, Australia, South America and North
America. It is the second most important pulse crop world-
wide in terms of area under cultivation (11.2 Mha) after dry
beans, but ranks third in production (9.1 Mt) following dry
beans and peas (FAOSTAT Database http://www.fao-
stat.fao.org/, 2006). It is a traditional low-input and low
yielding crop in the farming systems of Indian subcontinent
and Near East, where it is an integral part of the daily diet
of majority of the population. The low yield of chickpea is
mostly due to its susceptibility to various biotic and abiotic
stresses. Molecular marker based linkage maps have been
useful in identifying and localizing important genes con-
trolling both qualitatively and quantitatively inherited traits
in a wide range of species (Tanksley et al. 1989). Marker
assisted selection (MAS) of agronomically desirable traits
such as yield, quality, biotic and abiotic stress resistance,
etc. requires an intraspeciWc linkage map saturated with co-
dominant and single-locus PCR based markers like SSRs.
The SSRs also enable transfer of linkage information
among maps developed from diVerent populations and can
be used as anchors to combine the maps to develop a highly
saturated consensus map.
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Mapping of the chickpea genome has been of interest to
identify genomic locations of disease resistance genes
(Winter et al. 2000) and other yield related traits (Cho et al.
2002; Rajesh et al. 2002a). However, due to very low poly-
morphism (Udupa et al. 1993; Labdi et al. 1996), progress
in chickpea genomic research has been relatively slow,
compared with legumes like soybean and Medicago. Nev-
ertheless, a few genetic maps have been initially reported in
chickpea based on morphological and isozyme markers
(Gaur and Slinkard 1990; Kazan et al. 1993; Simon and
Muehlbauer 1997) followed by DNA markers (Winter et al.
2000). Till date, Wve intraspeciWc linkage maps have been
reported in chickpea, by using mainly SSRs (Cho et al.
2002, 2004; Flandez-Galvez et al. 2003; Udupa and Baum
2003) and RAPDs (Cobos et al. 2005). Even though there
are common markers between these maps, integrating them
has not been done and their usage has become limited. To
further saturate the intraspeciWc linkage map of chickpea
and to locate the yield related traits, we developed an inte-
grated linkage map using SSRs as anchor markers from two
RIL populations.

Materials and methods

Plant material and DNA extraction

Two F8:9 recombinant inbred line (RIL) populations
advanced by single seed descent method were used in the
present study. The populations were derived from two
intraspeciWc crosses, JG62 £ Vijay (JV population) and
Vijay £ ICC4958 (VI population), and comprised 197 and
108 lines, respectively. Of the three Desi genotypes, JG62
is double podded and susceptible to fusarium wilt; Vijay is
wilt resistant, drought tolerant variety having high pod
number and wider adaptability, whereas ICC4958 is late
wilting, drought tolerant and bold seeded cultivar. The two
RIL populations were grown in the Weld at Pulses Research
Station, Mahatma Phule Krishi Vidyapeeth (MPKV), Rah-
uri, India in 2002–2003. Ninety-three RILs from each pop-
ulation were randomly chosen and used for marker
analysis. DNA was extracted from individual samples
according to the method described by Simon and
Muehlbauer (1997).

PCR analysis

The primers used in the present study included 800 RAPD
(UBC1-800), 100 ISSR (UBC801-900), 24 RGA, 1 ASAP
(CS27) and 510 chickpea SSR primers. Optimal PCR con-
ditions were established for each primer type and all the
marker loci were scored at least twice to minimize interpre-
tation errors.

RAPD and ISSR analyses

The RAPD and ISSR primers were obtained from the Uni-
versity of British Columbia (UBC), Canada, and analyzed
as described by Winter et al. (2000) and Ratnaparkhe et al.
(1998), respectively. The ampliWcation products were elec-
trophoretically separated on 2% agarose gels and the band-
ing patterns were visualized on a UV-transilluminator after
staining the gels with ethidium bromide. Only clear and
reproducible polymorphic bands were scored as loci.

RGA analysis

Twenty-four resistance gene analog (RGA) primers described
by Chen et al. (1998) were used. PCR ampliWcations were
performed according to Rajesh et al. (2002b) in 15 �L reac-
tion volumes with minor modiWcations. The ampliWcation
products were separated on either 6% denaturing polyacryl-
amide gels that were silver stained or 3% MetaPhor agarose
gels followed by staining with ethidium bromide.

SSR analysis

The SSR analysis included 28 primers reported by Huttel
et al. (1999), 174 primers by Winter et al. (1999), 95 prim-
ers by Sethy et al. (2003, 2006a, b), 200 primers by Lich-
tenzveig et al. (2005) and 13 primers by Choudhary et al.
(2006). Fifteen Medicago truncatula SSRs (Eujayl et al.
2004) were also used to check cross-species utility of the
primers. PCR ampliWcations were performed in 15 �L reac-
tion volumes as described by Winter et al. (1999) with
minor modiWcations. Majority of the PCR products were
resolved as stated in RGA analysis. However, the bands
with narrow allelic size variation were separated on 6%
denaturing polyacrylamide gels using �-32P or �-33P labeled
dATPs (BRIT, India).

Scoring of yield related traits

Data for three yield traits, seeds per pod (VI population),
double podding and seed weight (JV population) were col-
lected from two replications. For collecting data on seeds
per pod, one plant from each RIL was randomly selected
and Wve pods were randomly chosen. The lines were simi-
larly scored for double poddedness or single poddedness
after pod setting. The data on seed weight were recorded
from the JV population by taking the average weight of 100
seeds of each RIL for three consecutive years (2003–2005).

Linkage analysis

The �2 test was used to assess goodness-of-Wt to the
expected 1:1 segregation ratio for each marker. All mark-
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ers including those with distorted segregation were used
for linkage analysis performed using JoinMap Ver. 3.0
(van Ooijen and Voorrips 2001). The markers were classi-
Wed into linkage groups (LGs) using the minimum LOD
threshold of 3.0 and maximum recombination fraction of
0.4. Kosambi mapping function was used to estimate the
map distances (Kosambi 1944). Two separate maps were
initially developed for each population, which were inte-
grated later using the common markers. The heterogeneity
of recombination rate between these common markers in
the two maps was tested using the �2 test as implemented
in JoinMap Ver. 3.0. Comparison of the present map with
the interspeciWc map developed by Winter et al. (2000)
was performed using MapChart Ver. 2.2 (Voorrips 2002).
In the comparison, the LGs of the present map were desig-
nated with Arabic numerals, whereas the LGs of the map
of Winter et al. (2000) were designated with Roman
numerals.

QTL analysis

Windows QTL Cartographer Ver. 2.5 (Wang et al. 2006)
was used for QTL analysis. Model 6 was adapted, and the
control marker number and window size was 5 and 10 cM,
respectively. The walk speed was 1 cM and the forward
regression method was selected. LOD score peaks >2.0
indicated the existence of QTLs.

Results

Linkage maps for the two RIL populations

Marker analysis for both the populations was performed
separately. Of the 1,226 primers (800 RAPD, 100 ISSR,
310 chickpea SSRs, 15 Medicago truncatula SSRs and 1
ASAP) screened between the parents of JV (JG62 £ Vijay)
population, only 116 (9.5%) primers revealed clear and
consistent polymorphism generating 121 reproducible and
segregating markers for linkage analysis. The 15 Medicago
SSRs although produced ampliWcations, were not polymor-
phic with the parents. The linkage analysis revealed seven
linkage groups with 106 markers (95 SSRs, 9 RAPDs, 1
ASAP and double podding) (results not shown). This map
covered 509.3 cM at an average marker density of 4.8 cM.
Sixteen markers containing four RAPDs, one ISSR and
eleven SSRs were unlinked.

The parents of the VI population (Vijay and ICC4958)
were screened with 1,434 primers (800 RAPDs, 100 ISSRs,
510 SSRs and 24 RGAs), which produced 167 segregating
markers containing 113 SSRs, 35 RAPDs, 16 ISSR, two
RGAs and one yield related trait (seeds per pod, Spp) in seven
LGs (results not shown). Of the 24 RGAs screened, only one

primer (RGAPtokin1) was polymorphic and produced two
loci, which were mapped on LG-2. The map spanned
623.9 cM placing the markers at an average of 3.7 cM inter-
val. Eleven SSR, two RAPD and one ISSR markers remained
unlinked among the 181 markers analyzed.

Integrated map

JoinMap Ver. 3.0 (van Ooijen and Voorrips 2001) was used
for integrating the two individual maps using 43 common
markers on Wve LGs. The joint segregation analysis with a
total of 247 markers and 186 RILs produced an integrated
map with 230 markers (containing 44 RAPDs, 16 ISSRs,
165 SSRs, 2 RGAs, 1 ASAP and two yield related traits,
double podding gene (SX and Spp) in eight linkage groups
(Fig. 1). The integrated intraspeciWc map, which covered
739.6 cM, had an average marker density of 3.2 cM. Rela-
tive to the estimated physical size of the chickpea genome
(750 Mbp; Arumuganathan and Earle 1991), 1 cM distance
in the present map approximately equals 1 Mbp.

LG-1 was the longest linkage group with 63 markers
and spanned 132.4 cM at an average marker density of
2.1 cM. It shared 17 markers from three LGs (III, V and
XIII) of the interspeciWc map of Winter et al. (2000)
(Fig. 2). LG-2 was the densest linkage group with the aver-
age marker density of 1.8 cM and had 72 markers spanning
127.4 cM. The Spp trait and two RGA markers, RGA6x
(234 bp) and RGA6y (272 bp), were mapped on this LG.
This group corresponded to LGs I and IV of the interspe-
ciWc map. The LG-3 corresponded mainly to LG-II but
shared a single marker (TS12) from LG-VIII. Similar
observation was also made by Flandez-Galvez et al.
(2003). The LG-4 had 26 markers spanning 97.3 cM and
shared four markers from LG-VI. The SX was also mapped
on this LG and was Xanked by NCPGR33 and UBC249z
markers. LG-5 spanned 65.9 cM with 25 markers and cor-
responded to LG-VII of the interspeciWc map. However, it
also shared the marker STMS25 from LG-XV. LG-6 had
only seven markers and may correspond to LG-VIII of the
map of Winter et al. (2000) and chromosome H of Vlacil-
ova et al. (2002) as it contains the marker TS45. The LGs 7
and 8 were individual LGs from VI and JV populations,
respectively, and comprised only RAPD markers. These
LGs lacked common markers and could not be combined
or compared with the LGs of Winter et al. (2000) map.
Inversions were observed with respect to marker orders in
all linkage groups between the present and the interspeciWc
map of Winter et al. (2000).

The correlation between number of markers on each LG
and length of the respective LG gave an indication of distri-
bution of markers over the linkage groups. These correla-
tion coeYcients were 0.58, 0.72 and 0.70 (P < 0.001) for
the maps of JV, VI and integrated map, respectively (data
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not shown), which indicates more random distribution of
markers among the LGs in VI and integrated maps than the
JV map. Of the 106 and 167 markers mapped in the JV and
VI populations, respectively, 44 and 17 markers did not
segregate according to the expected Mendelian ratio
(P < 0.001). However, only two markers (TA127 and
TR29s) were distorted in both the populations. DiVerent
marker types exhibited diVerent levels of skewness, how-

ever, SSRs were the most distorted. The skewed markers
are indicated by asterisks on the integrated map (Fig. 1).

Location of yield related traits

Three yield related traits, double podding (SX), seeds per pod
(Spp) and seed weight (Sw) were mapped. The double pod-
ding locus (SX) on LG-4 was Xanked by NCPGR33 and

Fig. 1 Composite map of the chickpea genome obtained by integrat-
ing the linkage maps of JV (JG62 £ Vijay) and VI (Vijay £ ICC4958)
RIL populations. The markers common between the two maps have

been underlined and those showing distorted segregation are indicated
by asterisks. Corresponding LGs of Winter et al. (2000) reference map
have been indicated in Roman numerals in parentheses
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UBC249z markers at 2.0 and 1.1 cM, respectively. Spp seg-
regated in 1:1 ratio (P < 0.05) and was mapped on LG-2. It
was Xanked by TA2x and UBC465 at 0.1 and 1.8 cM,
respectively. For seed weight, two signiWcant QTLs
(LOD > 3.0) and six putative QTLs (2.0 < LOD < 3.0) were
identiWed on three LGs in the JV map (Table 1). Two QTLs
(Qncl.Sw1 on LG-1 and Qncl.Sw7 on LG-4) were consistent
across two environments, whereas other QTLs expressed in
only one environment. Qncl.Sw7 was also associated with SX
(data not shown) and is presumably the same QTL identiWed
by Abbo et al. (2005). These QTLs individually explained
between 6 and 13% of the total phenotypic variance.

Discussion

The main objective of this study was to construct a satu-
rated intraspeciWc linkage map of chickpea using the con-
sensus map approach. Such approach allows locating
markers or genes for important traits, which might not seg-
regate in one mapping population, but in the other. This is
particularly important for crops like chickpea, where very
low levels of polymorphism have initially been reported
(Udupa et al. 1993; Labdi et al. 1996). We used the 43
common markers from the two separate maps as anchors to
combine other markers from the maps into a composite

Fig. 2 Comparison between the 
interspeciWc map of Winter et al. 
(2000) and the present compos-
ite map. The LGs of Winter et al. 
(2000) map are designated with 
Roman numerals, whereas those 
of the present map are desig-
nated with Arabic numerals 

Table 1 QTLs for seed weight 
detected in the JG62 £ Vijay 
population

QTL name LG Indicative marker LOD score Additive value R2 (£100)

Qncl.Sw1* 1 TR56 2.56 1.05 7.4

Qncl.Sw2 1 UBC238y 3.19 1.27 11.4

Qncl.Sw3 1 TA116x 2.00 0.93 6.0

Qncl.Sw4 1 STMS13 2.07 ¡1.12 8.2

Qncl.Sw5 3 UBC17 2.87 ¡0.73 9.3

Qncl.Sw6 3 TA53 2.65 ¡1.33 12.4

Qncl.Sw7* 4 TR7s 3.35 1.77 13.0

Qncl.Sw8 4 STMS2 2.87 ¡1.31 8.8
* Indicates QTLs stable across 
two environments
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map. Such maps have been developed in pea, tomato, bar-
ley, etc. (Ellis et al. 1992; Tanksley et al. 1992; Kleinhofs
et al. 1993). Availability of a saturated linkage map facili-
tates marker-assisted breeding as well as mapping of quan-
titative trait loci (QTLs). In Vicia faba, previously reported
maps were used for identiWcation of QTLs associated with
seed weight and broomrape/ascochyta resistance (Vaz Patto
et al. 1999; Roman et al. 2003, 2004).

The composite map developed in this study consisted of
230 markers distributed over eight LGs and covered
739.6 cM. The parental genotypes used for developing the
mapping populations were diverse with respect to resis-
tance to fusarium wilt, yield related traits (SX, Spp, pod
number, seed weight) and drought tolerance. Integration of
the individual maps developed from the two mapping popu-
lations allowed us to map more markers to obtain improved
coverage of the chickpea genome and to Wll linkage gaps in
the individual maps. By integrating the two maps, the
length of the composite map increased by 18.5%, from
623.9 cM (VI map) to 739.6 cM, while the number of
mapped markers increased by 37.7%.

Marker distortion was evident in both the individual
maps. However, it was more pronounced in JV than in VI
population. The segregation distortion observed in JV pop-
ulation (41.5%) was comparable to that reported by Reiter
et al. (1992) in Arabidopsis and Xu et al. (1997) in rice.
While in the VI population, 10.2% of the loci deviated from
the expected Mendelian segregation. Most of the distorted
loci in the JV population were skewed in favor of the parent
Vijay. This might be due to accumulation of distorted alle-
les in the population with progressive cycles of selWng
undergone in the development of the RILs (Flandez-Galvez
et al. 2003). In tomato, Paran et al. (1995) reported a sig-
niWcant increase in the number of loci that deviated from
the expected Mendelian inheritance from F2 to F7. They
accounted this increase to the cumulative eVect of selection
against the alleles of one of the parents during propagation
of the RILs.

The highly signiWcant correlation (0.70, P < 0.001)
observed between the lengths of the LGs and the number of
markers in the respective LGs, indicated random distribu-
tion of the markers in the map. However, non-uniform dis-
tribution of markers was observed in some linkage groups
(Fig. 1). This might be due to non-random sampling of the
genome by the primers used, by uneven distribution of
recombination along the length of the LGs (Tanksley et al.
1992), or by clustering of some markers due to their prefer-
ential targeting of particular genomic regions (Castiglioni
et al. 1999).

The SX gene was Wrst tagged by Rajesh et al. (2002a)
with the marker TA80 at 4.84 cM. In the present study, the
gene has been tagged with two new markers NCPGR33
and UBC249z at 2.0 and 1.1 cM, respectively. The SX

gene has a positive yield stabilizing eVect and it is inde-
pendent of seed size (Rubio et al. 2004). It reportedly
increases seed yield by 10–18% under moisture-limiting
conditions (Sheldrake et al. 1979; Kumar et al. 2000). The
Spp trait was tagged by two Xanking markers TA2x and
UBC465 at 0.1 and 1.8 cM respectively. The seed size is
determined by seed weight and is an important component
of yield in chickpea (Upadhyaya et al. 2006). We identi-
Wed two signiWcant and six putative QTLs for seed weight
in the JV population (Table 1). Upadhyaya et al. (2006)
have reported seed weight to be controlled by at least two
major genes and the two signiWcant QTLs identiWed in the
present study might correspond to these genes. Alterna-
tively, the second signiWcant QTL (Qncl.Sw7) might be the
same QTL as identiWed by Abbo et al. (2005), which indi-
cates the stability of this QTL across populations as well
as across environments. The Qncl.Sw7 was also associated
with the SX gene, which would facilitate simultaneous
selection of these two traits to improve yield. The markers
associated with these traits would be useful to improve
chickpea yields using marker-assisted selection (MAS)
approach. The RGA markers have been used in diVerent
crops to identify disease resistance genes (Kanazin et al.
1996; Hays and Maroof 2000). As fusarium wilt is a major
disease in chickpea, an eVort was made to map the wilt
resistance gene(s) using the RGA markers. However, only
one of the 24 primers analyzed was polymorphic and pro-
duced two loci, none of which was linked to fusarium wilt
resistance.

Comparison of the present intraspeciWc map of chickpea
with the interspeciWc map developed by Winter et al.
(2000) revealed high linkage conservation in at least Wve
linkage groups. However, the map distances and marker
orders of the common SSR markers diVered, possibly due
to the intraspeciWc nature of our mapping populations. The
merging of more than one LGs of the interspeciWc map with
single LGs of the intraspeciWc map was observed. This
might be due to homology and subsequent resolution of the
sequences that joined the linkage groups in the intraspeciWc
mapping populations (Flandez-Galvez et al. 2003). By
developing separate intraspeciWc maps for C. arietinum and
C. reticulatum using common SSR markers and comparing
them might provide the molecular insight of the likely chro-
mosomal rearrangements that led to the evolution of C. ari-
etinum from C. reticulatum.

The composite intraspeciWc linkage map developed in
this study was an eVort towards developing a saturated map
of chickpea. As no single population would segregate for
all the economic traits of interest, genes for those traits
need to be mapped on linkage maps developed from diVer-
ent segregating populations. As the map becomes saturated
with more markers, complex traits could be dissected and
utilized eYciently in breeding programs. Further, establish-
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ment of gene-speciWc markers on the map could be useful
for marker-assisted selection and positional cloning of
agronomically important genes. More SSRs need to be
developed and mapped for developing a highly saturated
linkage map of chickpea. The present intraspeciWc map will
be helpful for mapping and tagging of the genes or QTLs
governing traits such as biotic and abiotic stress resistance,
agronomic characters and quality in chickpea breeding
programs. 
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