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Abstract

The paper describes a hydrological model for agricultural water intervention in a

community watershed at Kothapally in India, developed through integrated management

and a consortium approach. The impacts of various soil and water management

interventions in the watershed are compared to no-intervention during a 30-year

simulation period by application of the calibrated and validated ARCSWAT 2005

(Version 2.1.4a) modelling tool. Kothapally receives on average 800 mm rainfall in the

monsoon period. 72 per cent of total rainfall is converted as evaporation and transpiration

(ET), 20  per cent stored by groundwater aquifer and eight per cent exported as outflow

from the watershed boundary in current water interventions. ET, groundwater recharge

and outflow under no intervention conditions are found to be 64 per cent, nine per cent

and 19 per cent, respectively.  Check-dams helped in storing water for groundwater

recharge, which can be used for irrigation, as well minimizing soil loss. In-situ water

management practices improved the infiltration capacity and water holding capacity of

the soil, which resulted in increased water availability by 10-30  per cent and better crop

yields compared to no intervention. Water outflows from the developed watershed were

more than halved compared to no intervention, indicating potentially large negative

down-stream impacts if these systems were to be implemented on a larger scale. On the

other hand, in the watershed development program sediment loads to the streams were

less than one tenth. It can be concluded that the hydrological impacts of large scale
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implementation of agricultural water interventions are significant. They result in

improved rain-fed agriculture and improved productivity and livelihood of farmers in

upland areas while also addressing the issues of poverty, equity and gender in

watersheds. There is a need for case specific studies of such hydrological impacts along

with other impacts in terms of equity, gender, sustainability and development at the

meso-scale.

Keywords: Hydrological modeling, SWAT, resilience, watershed management, semi arid

tropics, rain-fed farming, hydrological impacts, water balance.

1. Introduction

Degradation of agro-ecosystems and declining sustainability are major concerns for

agricultural development in many poor regions of India where rural livelihoods depend

directly on management of land and water resources (Reddy et al., 2007). In recent years,

it has been realized that rain-fed agriculture, which was almost entirely neglected during

the green revolution in the 1970’s, also has remarkable scope for agricultural

development. The Indian collaborative initiative of watershed management programmes

has been on-going in various forms for the last 30 years (Wani et al., 2008). The main

aim is to enhance rural livelihoods and well being, recognizing the value of well managed

water and land resources. This concept ties together the biophysical notion of a watershed

as a hydrological unit with the social aspect of community and its institutions for building

resilience in agriculture by sustainable management of land, water and other resources

(Reddy et al., 2007). To date, in India, an estimated 88.5 million ha of land is assumed to

have been included in this initiative (Wani et al., 2008). The watershed management

initiative has not only transformed livelihoods and enhanced resource management, but

has also changed micro to small scale (0.1-10 km2) watershed hydrological

characteristics. As yet there is little systematic quantification of how much impact these

field to community scale soil and water conservation measures may have had on

watershed water balance, water quantity and quality.

Resilience is the capacity of a system to absorb disturbance and still retain its basic

function and structure (Walker and Salt, 2006). Agricultural systems, and in particular



3

rain-fed agriculture in the semi-arid tropics, are highly vulnerable to various types of

climatic and socio-economic shocks. In semi-arid and dry subhumid agroecosystems

rainfall variability generates dry spells (short periods of water stress during critical

growth stages) almost every rainy season (e.g., Barron et al., 2003; Rao et al., 2006;

Singh and Ranade, 2009). One purpose of the watershed development programmes is to

reduce the water related risks in rain-fed agriculture by improving local soil water

balance. This can be achieved by implementing both in-situ water harvesting practices

and structures for increased groundwater recharge that is subsequently used for

supplementary irrigation from dug and bore wells. The watershed development

programmes leverage and strengthen desirable development by improving capacity to

cope with inherent dry spells and reducing their negative impacts on crop yields, and

subsequently, livelihoods.

Soil erosion is one of the most serious problems in India (Sharda et al., 2010.).

Watershed development programmes in India in 1980 started primarily with aim to

reduce soil erosion in agricultural land and to control gully formation (Joshi et al., 2005,

2009). Soil erosion causes land degradation upstream and increases sediment loads in

downstream water bodies (Yang et al., 2003). It is estimated that the annual loss rate of

reservoir storage capacity due to sedimentation is about 0.5-1.0 per cent in most of the

river basins in India and elsewhere (Walling, 2007). Osman Sagar reservoir has had its

storage capacity reduced by about 12 per cent between 1973 and 1988 due to excessive

sediment loading (Hyderabad Metropolitan Water Supply and Sewerage Board). This

amount is equivalent to 15 ton soil/ha/year erosion from the entire catchment area, and

corresponds to the loss of approximately one cm soil every decade from the catchment

area.

In water-stressed areas concern has been raised about potential downstream implications

from large scale adoption of upstream water management techniques (e.g. Calder, 1999).

However, the downstream impacts on stream flow from small-scale water storage

systems have been shown to be very limited, even with large-scale implementation

(Evenari et al., 1971; Schreider et al., 2002; Sreedevi et al., 2006). In fact, investment in

soil and water management can result in reduced sedimentation which has a positive
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impact on the water quality downstream. Due to the non-linear relationship between

evapotranspiration and yield in low yielding systems (i.e. 2 t ha-1 for tropical grains -

Rockström, 2003), the yield increase from 1 t ha-1 to 2 t ha-1 does not necessarily have to

entail a large upstream water appropriation, as this may be achieved by so-called vapour

shift (from un-productive evaporation loss, to biomass productive transpiration). Thus the

downstream effects may be less significant than hitherto believed. On the other hand, in

closed and closing basins, more water is used than is renewably available, at least during

parts of the year, which constrains opportunities for agricultural water management

(Molden et al., 2001; Molle, 2003). India will continue to rely on careful water and land

management to further enhance agricultural production and rural livelihoods. The

management of water from farmers’ fields to basins levels will need to improve in the

future, to meet demands on water resources in various sectors, considering that rainfall

will continue to be unpredictable at best, and potentially reduced in worst case scenarios.

Here we present results from a study of the Kothapally watershed, in the Musi sub-basin

of the Krishna basin. This represents a typical Indian semi-arid micro-watershed in

transformation. The impacts of various soil and water management interventions carried

out through the watershed are compared to the no-intervention state during a 30-year

simulation period by application of the calibrated and validated ARCSWAT 2005

(Version 2.1.4a) modelling tool. The aim is to analyze the impact of in-situ and ex-situ

agricultural water management on 1) the partitioning of water balance components such

as soil moisture, groundwater recharge and outflows from the watershed; 2) yields; and 3)

soil loss and sedimentation loads to the river. The paper focuses especially on water

balance and flow impacts during extreme events, which may represent the future climate

change scenarios for the location.

2. Study area: Kothapally watershed

The Kothapally watershed, is located at 170 22' N latitude, 780 07' E longitude and about

550 meters AMSL altitude in the Ranga Reddy district, Andhra Pradesh, India. This

watershed is part of the Musi sub-basin of the Krishna river basin, and situated

approximately 25 km upstream of the Osman Sagar reservoir (Figure 1). Krishna is one

of the largest rivers in southern India and the basin lies within the states of Maharashtra,



5

Karnataka, and Andhra Pradesh (Immerzeel et al., 2008.). There are three major

reservoirs in the Musi sub-basin: Osman Sagar (OS), Himayat Sagar (HS), and Musi

Medium (MM). The geographical land area of the Kothapally village (political boundary)

is 465 ha. The hydrological delineated micro watershed of Kothapally used for this study

encompasses 293 ha.

Rainfall is highly erratic, both in terms of total amount and its distribution over time.

Mean annual rainfall at Kothapally is 860 mm with about 85  per cent falling from  June

to October. Rainfall data shows that a total of 446 mm to 1087 mm (average 741 mm)

precipitation was received during the monsoon period (Jun to Oct) from years 2000 to

2008. Maximum rainfall intensity varied from 39 mm/day (in year 2002) to 302 mm/day

(in year 2000), the latter representing an extreme event. The number of rainy days during

the monsoon period was 63 out of a total of 150 days on an average basis. Rainfall data

shows that dry spells longer than five to seven days are very common and occur several

times (three to eight times) per season, whereas 10 to 15 days or longer dry-spell also

may occur during the monsoon period.

Soils have been classified as Vertisols with shallow to medium soil depth between 10 and

90 cm. The water holding capacity is medium to low, and the soil organic carbon content

is between 0.40 and 2.27  per cent (Table 1a). In the Kothapally watershed 95 per cent of

the area is under continuous cultivation. About 30-40  per cent of this is under full or

supplemental irrigation during some part of the year if water is accessible. The total

population of the community is 1492 individuals belonging to about 270 cultivating and 4

non-cultivating families (Shiferaw et al., 2002), and the average landholding per

household is about 1.4 ha. There is no further potential for agricultural expansion, but

only for intensification on existing land.

The watershed development program in Kothapally started in 1999 onwards. A range of

agricultural water management initiatives have been adopted since it started, both at

community and individual farm levels. The most common in-situ interventions are

contour and graded bunds in the fields, which reduce travel distance and minimize the

velocity of generated runoff and allow more water to percolate into the fields. This
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practice created an opportunity to accumulate surface runoff along the contour line, and

also protect soils from erosion. Check dams on the rivers and other ex-situ practices

reduce peak discharge and harvest a substantial amount of runoff, which increases

groundwater recharge. At the same time, these dams trap sediments which protect the

river ecosystems further down-stream. The water in the check dams cannot be used

directly for irrigation and the stored water is allowed to recharge the groundwater aquifer

by percolation. Instead, groundwater from open wells is used to irrigate crops.

3. Methodology

3.1 Model description

The Soil and Water Assessment Tool (SWAT) is a well recognized model for predicting

water flows, sediment loss and nutrient balances in complex watershed, basin and even

continental scale assessments with varying soils, land use and management conditions

(Arnold et al., 1998; Srinivasan et al., 1998; Arnold and Fohrer, 2005; and Gassman et

al., 2007). The model integrates the principal hydrological processes, soil and nutrient

transport and vegetative growth on a spatial and temporal frame, using a daily to an

annual time scale. Regression-based functions describe the relationship of input and

output in SWAT, and a number of static and dynamic variables are created to represent

the system boundary and its function/process. Large watersheds are divided into smaller

units based on stream network, soil and land use information. Rainfall is divided into

different components, which include evaporation, surface runoff, infiltration, plant

uptake, lateral flow, and groundwater recharge. Water in each sub-watershed is stored as

(1) snow at soil surface (not relevant here), (2) moisture content at various soil layers (3)

shallow aquifer and (4) deep aquifer (King et al., 1999). Surface runoff from daily

rainfall is estimated with a modification of the soil conservation service (SCS) curve

number (CN) method from United States Department of Agriculture-Soil Conservation

Service (USDA SCS) (Arnold and Allen, 1996; Neitsch et al., 2005) and peak runoff

rates using a modified rational method (Neitsch et al., 2005). Water, soil and nutrient are

routed from sub-watershed outlet to stream channels.
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The Penman-Monteith (Monteith, 1965) method was chosen for calculating potential

evapotranspiration (PET) in the present study. SWAT simulates plant growth by using

the generic crop growth module from the EPIC (Erosion Productivity Impact Calculator)

model (Neitsch et al., 2005). The crop growth module first calculates the plant growth

under optimal conditions, and then computes the actual growth under stresses inferred by

water, temperature, nitrogen, and phosphorous deficiency (Luo, et al., 2008). Sediment

yield is estimated for each sub-watershed with the Modified Universal Soil Loss Equation

(MUSLE) (Williams, 1975). SWAT first estimates runoff volume and peak runoff rate,

which are used to calculate the runoff erosive energy and sediment load (Shen et

al.,2009). A detailed description of this model is given by Neitsch et al., 2005.

3.2 Input data and model setup

SWAT requires three basic files for delineating the watershed into sub-watersheds: a

Digital Elevation Model (DEM), a soil map and a land use/land cover (LULC) map. We

generated a detailed DEM (10 m x 10 m resolution) from a topographic survey using a

Nikon total station (DTM-851) survey instrument, by taking 4252 survey observations in

an area covering approximately 300 ha. Stream channels have been tracked using a GPS

for further verification of the flow network. The total watershed area has been divided

into 110 sub-units for study purpose. A soil map of Kothapally watershed was prepared

by collecting soil samples on every 250 m grid in the watershed (Figure-1). Undisturbed

soil cores (43 cores) were taken for measuring bulk density. Other physical properties

such as texture, gravel content, organic carbon, field capacity and permanent wilting

point were estimated in the laboratory. Soil depth information was also collected by

interviewing farmers at 60 different locations. Estimated soil parameters were derived for

all 110 sub-units by inverse distance weighing (IDW) interpolation technique in Arc-GIS.

Table 1a summarizes details of soil physical properties of the Kothapally watershed.

Agriculture covers almost 97 per cent area in the watershed, while the rest is classified as

residential area (Figure 1).

A meteorological station (shown in Figure 1) was installed in the Kothapally watershed

in the year 2000. Daily data of rainfall, wind speed, relative humidity, solar radiation and

air temperature were monitored and given as input to the model. Locations of check-dam
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storage structures were taken using GPS readings and their surface area and storage

volume were measured. Structures with a storage capacity equal to or greater than 350 m3

were represented as separate reservoirs in SWAT, while smaller structures were

represented as one single unit (reservoir) at every stream/channel in the model. All

together 14 reservoirs were created (shown in Figure 1) to represent existing reservoirs

and other ex-situ interventions; their year of construction and other salient features (i.e.,

surface area and total storage capacity) were provided as inputs into the model (Table

1a). A total number of 32 open wells are the source for irrigation in approximately one

third of the land of the Kothapally watershed, and are shown in Figure 1.

Crop management parameters in SWAT were based on farmers’ normal practice in

Kothapally. The crop pattern is dominated by cotton planted in June and harvested in

December. Tillage was in the last week of May and nitrogen and phosphorus fertilizers

(N and P, each 50 kg ha-1) were applied on the 15th of June at the time of crop planting. A

second doze of fertilizer (N, each 50 kg ha-1) was given to the plants in middle stage of

crop growth 120 days after crop planting. Those sub-watersheds with access to

groundwater for irrigation from open wells were identified in the model. These areas

received 100 mm of irrigation water on three occasions in the model: on 15 Oct, 15 Nov,

and 15 Dec, respectively. The amount of irrigation and frequency are decided based on

farmers’ practice in general. However, the exact date of water application may vary from

field to field in real situations.  The Arc SWAT was run on daily basis for the calibration

and validation period from 2000 to 2009. Thus the calibration was done for the time

period when Kothapally had already developed both in-situ and ex-situ agricultural water

management interventions.

3.3 Model parameterization and calibration

Table 1b summarizes various input data used during different time intervals for model

calibration, validation and scenario development. In the present study, the model was

calibrated for the Kothapally watershed based on (1) discharge at outlet, (2) reservoir -

volume data, (3) sediment flow at outlet and (4) crop yield. The model was validated

using groundwater (water table) data and comparing selected estimated outputs (water

productivity and specific yield) with literature values and farmers’ knowledge. Discharge
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and soil loss data was available for 53 runoff events monitored between 2002 and 2007 at

the watershed outlet (the outlet of check dam No 6 in Figure 1). The level in reservoirs

was monitored daily at six different locations between June and November 2009, and

later converted into dam water volumes. Check dam number 1, 2, 3, and 4 were located in

a series across the main channel; check dam No 5 existed at the outlet of a mini-

watershed; and check dam No 6 was located at the outlet of the Kothapally watershed.

Yield data for the cotton crop was available for eight farmers’ fields between year 2000

and 2006 and was used to parameterize the crop growth.

3.3.1 Parameterization and calibration of water flow

Initially, parameters responsible for surface runoff and base flow were identified by

doing a sensitivity analysis and from available literature (Lenhart et al., 2002; Holvoet et

al., 2005; Muleta and Nicklow, 2005; Abbaspour et al., 2007; Arabi et al., 2007; Barlund

et al., 2007; Kannan et al., 2007; Schuol et al., 2008). Four parameters GW_DELAY,

GW_REVAP, REVAP_MN, and GWQMN were found to be the most sensitive for

generating return flow (also called base flow); and the parameters CN and SOL_K

(saturated hydraulic conductivity of soil) for generating surface runoff. GW_DELAY

(groundwater delay time) is the travel time required for water to join a shallow aquifer,

moving across the vadose zone; GW_REVAP (Groundwater ‘revap’ coefficient) is a

factor which controls water movement from the shallow aquifer to the overlying

unsaturated layers; REVAP_MN is the threshold limit of shallow aquifer required to

move water for ‘revap’ or percolate to the deep aquifer recharge; and GWQMN is the

threshold depth of water in the shallow aquifer required for return flow to occur (Neitsch

et al., 2005). Thus, these parameters were manually changed to match time of

concentration, amount of reservoir inflow, and gauge discharge with measured data.

Table 1a shows the list of various parameters, their initial/default and final values before

and after calibration, respectively.

The CN varies non-linearly with the moisture content of the soil and drops as the soil

approaches the wilting point and increases to near 100 as the soil approaches saturation

(Kim and Lee, 2008). The parameter SOL_K (saturated hydraulic conductivity) is a

measure of ability of the water to move into the soil. CN values for the Kothapally
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watershed were taken from previous field studies made by Pathak et al., 2002 and

assigned directly into the model. Saturated hydraulic conductivity was derived from

measured soil physical properties using pedo-transfer function (Schaap et al., 2001).

After assigning CN and SOL_K values, parameters determining base flow were adjusted

by increasing the GWQMN and GW_REVAP value to 100 mm and 0.1, respectively, and

decreasing REVAP_MN value by 5 mm in every step, respectively or vice-versa. Further,

the parameter GW_DELAY was adjusted from its default value by matching the shape of

simulated hydrograph with measured data. Moreover, the hydraulic conductivity at the

reservoir bottom (RES_K) was adjusted by bringing the simulated percolation rate close

to measured percolation data at various reservoir locations. The calibration is first

performed at upstream locations and continued downwards in the watershed.

3.3.2 Parameterization and calibration of sediment load

During the calibration, the amount of soil loss from the watershed was compared with

measured data. Three parameters - USLE_P, CH_EROD, and CH_COV - were found to

be sensitive to sediment load, and have also been reported in other studies (Lenhart et al.,

2002; Abbaspour et al., 2007). USLE_P (support practice factor) is the measure of land

management (in-situ watershed management) practice; CH_EROD (channel erodibility

factor) is conceptually similar to the soil erodibility factor used in the USLE equation and

shows the erodibility of the stream channel (Neitsch et al., 2005); CH_COV (channel

cover factor) indicates stability (or degradation) of stream channel due to vegetative

cover (Neitsch et al., 2005). The parameters CH_EROD, and CH_COV were assumed to

be 0.5 (kept into middle range) and USLE_P was adjusted manually to match sediment

load with measured data (Table 1a).

3.3.3 Parameterization and calibration of crop yield

Average cotton yields obtained from different sub-units were compared with measured

yields. To parameterize cotton growth, the literature values of parameters HVSTI, BLAI,

and WSYF were assigned into model. HVSTI (potential harvest index) defines the

fraction of plant biomass harvested in ideal growing conditions; BLAI (maximum

potential leaf area index) is an important parameter that influences the photosynthesis and
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growth of the plant; WSYF (lower limit of harvest index) represents the lowest harvest

index expected due to water stress (Neitsch et al., 2005). Values for BLAI and HVSTI

were taken from the literature (Krieg, 2000; Heuer and Nadler, 2000), and WSYF was

adjusted by comparing measured and simulated cotton yield (Table 1a).

3.4 Parameterization of scenarios of agricultural water management interventions

As described before, in-situ and ex-situ interventions together have been implemented in

the Kothapally watershed since the beginning of watershed development programme.

Contour and graded bunding, broad bed and furrow practices were developed (in-situ

practices) into farmers’ fields; pits were excavated and check dams were constructed (ex-

situ practices) across the stream network. Implemented water management practices in

Kothapally (at present state) are called as maximum Intervention practices (Max Int.).

Different water management scenarios were developed using the calibrated model setup

to understand individual impacts of in-situ or ex-situ watershed intervention on watershed

hydrology. Thus four scenarios of agricultural water management interventions were

analyzed:

• Max Int: In-situ + ex-situ; i.e., current state with maximised agricultural water

management interventions

• In-situ: In-situ only

• Ex-situ: Ex-situ only

• No Int: No in-situ + no ex-situ; i.e., the ‘degraded’ state of the watershed, prior to

1999.

Meteorological data of Kothapally watershed originally used for model calibration and

validation is replaced by ICRISAT (Lat 17.53oN and Long 78.27oE; Figure-1)

meteorological data set during scenario development. ICRISAT meteorological data of

31 years from the period 1978 to 2008 (Table 1b) was used for assessing long term

impacts on water balance partitioning, as well as potential downstream impacts of water

flow and sediment flows. Prior to that, Kothapally and the ICRISAT rainfall data was

compared for a known period between year 2000 and 2009 and a good correlation was

found on the daily (r=.86) and monthly (r=0.94)  time scale.
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3.4.1 Parameterization without in-situ management

To represent conditions without in-situ practices (the No Int. and ex-situ scenarios), a

number of parameters were changed from their base line value and presented in Table 1c.

Parameters values changed related to surface runoff, water holding capacity, groundwater

recharge, and sediment loading. Surface runoff is sensitive to changes in the CN

parameter. Literature suggests that CN values should be changed by 5-6 units to represent

in-situ agricultural water management interventions such as contour and graded bunding

in agricultural fields (Arabi et al., 2007; Arabi et al., 2008; Ullrich and Volk, 2009).

Second, soil typically washes away and subsoil is exposed in unmanaged land (Lal,

1999). Such soils normally hold less organic carbon and have poor water holding

capacity (Lal, 1999; Murdock and Frye, 1983). For instance, a study of Kentucky Maury

and Crider soils showed that the  plant’s available water holding capacity decreased from

29 to 24  per cent in the Maury soil and from 24 to 20  per cent in the Crider soil because

of erosion (Murdock and Frye, 1983).

Long term experiments (1975-1998) of ICRISAT (in a small 2.5 to 16 ha Vertisol

watershed at Patancheru, Andhra Pradesh, India) showed that implementation of soil and

water conservation practices and integrated nutrient management made a favorable

impact on soil physical and chemical properties in watersheds. Bulk density in the top

layer was reduced from 1.4 to 1.2 gm cm-3; air filled porosity increased from 32 per cent

to 41 per cent, cumulative infiltration (in 1 hour) increased from 264 mm to 347 mm; and

organic C and total N content were also significantly higher in the soil (0-120 cm depth)

under improved management (broad-bed and furrow + nutrients) compared to a

traditionally managed field, respectively (Wani et al., 2003; Sahrawat et al., 2010). Thus,

the soil depth was kept constant but the AWC value was reduced to 25  per cent to

represent without in-situ management in the present modeling. Third, Manning’s

roughness coefficient was changed from 0.14 to 0.05 as suggested by Neitsch et al.

(2005) for unmanaged land. Fourth, the USLE support practice factor (USLE_P, for

sediment loading) was changed from 0.6 to 1.0 to represent the no in-situ condition.

USEL_P is defined as ratio of soil loss with a specific support practice to the

corresponding loss with up-and-down slope culture (i.e., un-managed land) (Neitsch et

al., 2005). A similar value (USLE_P =1) was used by Lu et al., 2001 to find out erosion
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potential under no soil conservation practices over the Australian continent. Fifth,

parameters affecting base flow and groundwater recharge (GW_REVAP, REVAP_MN,

and GWQMN) were modified so that their values should be in intermediate between the

present condition (fully developed stage) and the extremely degraded-poor stage (i.e., not

suitable for agriculture). First, parameters ranges were identified for both the extreme

boundary conditions. Groundwater parameters defined during model calibration

represented the current developed stage, whereas for the extremely degraded-poor stage,

parameter values are these: GW_REVAP= 0, where movement of water from shallow

aquifer and root zone does restricts, (ii) REVAP_MN =80, a maximum limit beyond that

parameter is found insensitive for revap or percolation to groundwater recharge; (iii)

GWQMN =0, where substantial amount of infiltrated water reaches into river stream by

return flow and very little amount left for groundwater recharge. Groundwater parameters

for representing In-Situ practices are defined in Table 1c.

3.4.2 Representation of No ex-situ management

SWAT requires details of time of construction of reservoirs at various locations and

accordingly simulates reservoir induced effects on different hydrological components.

We provided forth coming dates of construction to eliminate ex-situ management from

the watershed.

3.5 Model performance

Amount of discharge and soil loss measured at watershed outlet is compared with

simulated data on a daily time scale and shown by the scatter diagrams in Figure 2A and

Figure 2B, respectively. The performance of the model was assessed based on various

statistical measures: correlation coefficient (r), root mean square error (RMSE) and Nash-

Suttcliffe efficiency (NSE) coefficient. The range of r is 0 to 1; where 1 indicates perfect

match. RMSE measures the average magnitude of the error in model prediction and

varies from 0 to ∞. Simulation is considered good as it has minimum RMSE value.

Positive values of NSE indicate that the calibrated model is a better predictor than the

mean values of the observed discharge. The correlation coefficient (r) was found to be

0.86 and 0.77 for discharge and sediment loss, respectively. r values greater than 0.50 are

generally considered “satisfactory” and values greater than 0.70 are considered “good”
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(Chiew et al., 2002) on daily time scale, hence the model performance is considered

acceptable. Similarly NES coefficient for estimating flow and soil loss is found as 0.81

and 0.54 indicating good simulation capability, respectively.

A comparison of measured and simulated reservoir volume at four selected locations

(larger reservoirs) is presented in Figure 3 (A-D). Dotted and smooth lines in figure

represents measured and simulated data, respectively; whereas bars show total amount of

rainfall on daily time scale. Rapid rise in check dam volume immediately after a rainfall

event suggests high inflow due to generated runoff from agriculture fields. Volume in the

reservoir subsequently depleted as water gets percolated from the reservoir bottom and

evaporates from the reservoir surface. The filling of a reservoir after rainfall events and

its depletion is well captured at the beginning of the monsoon period (Figure 3). Some

discrepancy was found particularly after September at a few locations. For example,

simulated volume for reservoir-1 (Figure 3A) shows rapid declination compared to

measured data between October and November months. Measured data suggests that the

percolation rate in the beginning of the monsoon was relatively higher which might be

due to the unsaturated state of subsurface layers. Moreover the percolation rate reduced

after September due to increase in soil moisture content and water table rise (data not

shown). Such temporal changes in hydraulic behavior at the reservoir bottom could not

be captured by SWAT. As a result, the model generated an extra void space in its

simulation environment and consequently over captured runoff volume following rain

events. The performance of the model was assessed by estimating correlation coefficient

(r) and RMSE as shown in Figure 3 (A-D). Correlation coefficient (r) and RMSE value

at various locations were found to be in the range 0.72 to 0.87 and 218 to 984 m3,

respectively. These RMSE values are equivalent to maximum at 20 per cent storage

capacity of reservoir volume and thus model performance is considered acceptable.

A comparison of measured and simulated cotton yield is shown in Figure 4A for years

2005 to 2008. Results show that simulated yield is comparable to measured crop yield

(r=0.87). Further, simulated groundwater storage was compared with measured

groundwater table (average of different wells) on a monthly time scale and presented in

Figure 4B. These variables represent groundwater status but in different units and
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therefore each of the variables is shown as the primary and secondary Y axis,

respectively. Increasing trends of both variables shows groundwater recharge and decline

(negative recharge) or utilization during monsoon and post monsoon periods,

respectively. Comparison shows that both the variables follow similar pattern, suggesting

that the model is capable of estimating groundwater recharge appropriately.

3.6 Validation

3.6.1 Comparison with base line/reference data

We validated results in various ways. Drainable porosity (also called the “specific yield”)

of the groundwater aquifer was estimated by using (1) difference in water table before

and after the monsoon and (2) simulated amount of groundwater recharge. We found

specific yield to be 3.1  per cent. Poor specific yield in this region is due to a hard rock

(granite) aquifer. Similar results were also reported by Ahmed and Sreedevi, (2008) and

Massuel et al., (2007) at larger scale in the Musi catchment (Table 1d). The No Int. and

Max Int. scenario represents pre-development (before 1999) and the current state of the

Kothapally watershed, respectively. We calculated the change in groundwater availability

(water table) and cropping intensity before and after watershed development from

measured and simulated data and compared them (Table 1d). Moreover, water

productivity as estimated in the present study for the cotton crop was compared with

other studies (Bastiaanssen et al., 1996; and Zwart and Bastiaanssen, 2004; Jalota et al.,

2006) for similar rainfall regions. Crop water productivity is the amount of crop yield

obtained per unit of water used (Toung and Bouman, 2003). We calculated water

productivity from simulated ET and crop yield data. Table 1d shows that modeled values

are comparable with literature values (Bastiaanssen et al., 1996; Zwart and Bastiaanssen,

2004; Jalota et al., 2006).

3.6.2 Inflow at Osman Sagar reservoir

The results from the Kothapally watershed were scaled-up to represent the whole

catchment area (750 km2) of the Osman Sagar reservoir, and simulated inflows to the

dam were then compared with actual inflows for validation purpose. Land use

information for the Osman Sagar catchment shows that 21, 35 and 19  per cent of total

geographical area of catchment is under agriculture, fallow land and waste land category,
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respectively (Census data, 2001,  Government of Andhra Pradesh, India). Fallow and

waste lands remain uncultivated and were being used for grazing.  Agricultural land (80-

90 per cent of total area) in Kothapally was mostly under rainfed conditions before 1999.

As Kothapally is part of the Osman Sagar catchment; topographical features (vary from

0.20 to 0.50  per cent) and soils are similar. Both Kothapally watershed and Osman Sagar

catchment were dominated by degraded land areas prior to 2000 when the watershed

management interventions started.

Thus, the inflow at Osman Sagar is calculated by using the same annual rainfall-runoff

relationship as was simulated for the Kothapally watershed, by multiplying the outflow

from the catchment by a factor of 256 (area of Osman Sagar catchment / area of

Kothapally watershed) to estimate the inflow into the Osman Sagar reservoir under the

No Int. scenario. These estimates were compared with measured inflows from 1984 to

1999 on a monthly and yearly time scale which is presented in Figure 5A and Figure 5B,

respectively. Simulated inflows match quite well with measured data both for dry and wet

years on both monthly (correlation coefficient = 0.86; RMSE = 20.3 MCM; NSE

Coefficient = 0.86) and yearly time scale (correlation coefficient = 0.86; RMSE = 28

MCM; NSE Coefficient = 0.70). More specifically results compared for yearly time

scales show that simulated flow is found to be better for initial period (1984- 1994) than

later period (1995-1999) as simulated data is found to be over estimated after 1994.

Village level demographic data from the Osman Sagar catchment area (collected from

Government of Andhra Pradesh, India) shows that various kinds of watershed

development activities (constructions of check dams, gully control structures etc.) have

been implemented in various phases after 1994 under the national watershed

development program in Osman Sagar catchment area. This result supports the

creditability of modeled parameters for representing no in-situ land practice in model

setup during scenario development.

4. Results

4.1 Water balance components of different agricultural water management

intervention scenarios
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Different soil and water conservation interventions significantly changed the water

balance components in the watershed. Results are presented for dry, normal and wet

years according to the following classification (Indian Meteorological Department, Pune,

India, http://www.imdpune.gov.in): rainfall less than 25 per cent of the long term average

= dry; rainfall between -25 per cent to +25 per cent of the long term average = normal;

rainfall greater than 25 per cent of long term average = wet. Total number of dry, normal

and wet years in 31 year period was found as 8, 16 and 7 times, respectively.

The water balance is affected by management interventions (Figure 6). For the degraded

state (No Int.), approximately 64 per cent of the rainfall was partitioned into ET, whilst

approximately 9 per cent (70 mm) recharged the groundwater aquifer and 19 per cent

(151 mm) was lost from the watershed boundary as outflows during the cropping season.

When the watershed development programme was in place (Max Int.) the amount of

water partitioned as ET had increased to around 576 mm, equivalent to 72 per cent of

annual average rainfall. Groundwater recharge was also higher (174 mm), while outflow

from the watershed was less than 10 per cent of the total water balance, i.e. 70 mm or less

than half of what it was before the interventions. Constructing check-dams (ex-situ)

substantially increased groundwater recharge (ex-situ), while reducing outflows. In-situ

practices resulted in a higher ET, since more water was available as soil moisture in the

fields, higher groundwater recharge and lower outflow.

The water partitioning differs significantly between dry, normal and wet years (Figure

6). A large fraction of the total rainfall amount (85-90 per cent) is converted into

evapotranspiration (ET), while only a fraction generated outflow and groundwater

recharge in dry years. On the other hand, only about 50-60 per cent of the total rainfall

was converted into ET during wet years. In the degraded state of the watershed,

represented by the No Int. scenario, outflow is small (<5-8 per cent of the total rainfall) in

dry years, but with water interventions in place, outflow is almost negligible. During

normal and wet years, outflow is reduced by 30-60 per cent with water interventions

compared with the degraded state.

http://www.imdpune.gov.in
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Groundwater recharge varies between 50 mm and 300 mm for dry and wet years,

respectively (Figure 7a). Thus, the variation in groundwater recharge is larger between

years than between treatments. During dry years, water management interventions

became particularly important for groundwater recharge, which was more than twice as

high for both ex-situ and in-situ interventions compared with the degraded state.

Groundwater availability impacts the potential to grow a second, fully irrigated crop

during the dry season (Figure 7b). Again, the variation between years is larger than

between treatments. The irrigation potential is more than doubled with water

management interventions during dry and normal years.

In-situ water management resulted in higher soil moisture availability (Figure 7c). This

pattern was same for dry, normal and wet years. Ex-situ water management had a small

impact on soil moisture availability for all years, since the result is for the rainy cropping

season only.

Outflow varies significantly between years and with water management interventions

(Figure 7d). Outflow was more than ten times higher during wet years compared with

dry years. With water maximum management interventions, outflow from the watershed

was more than halved compared to the degraded state. A linear relationship was found

between rainfall amount and outflow of water from the watershed on a yearly time scale

(Figure 8), but varied with water management interventions on the field scale. The

lowest outflow was generated with both check-dams and in-situ water management in

place (Max Int.), while the no interventions scenario (No Int.) generated the highest

outflow, per rainfall event. Moreover, the results show that runoff losses were smaller for

in-situ management (In-situ) compared to ex-situ interventions (Ex-situ), indicating that

practicing in-situ management caused larger outflow reductions from the fields than

check-dams in this case.

4.2 Monthly water balance

To show a detail description of mass balance, the monthly water balance of Kothapally

watershed is presented for one year (June 2003 to May 2004), which is a normal year in

terms of total rainfall, for the maximum interventions scenario (Figure 9). About 80 per
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cent of the rainfall (689 mm) occurred during June to October, ET was generally large

during the cropping season, groundwater recharge occurred predominantly in July and

August, and outflow was measured only in August. The rainfall that occurred in June and

July was captured completely by the watershed by increasing the soil moisture content

and recharging the groundwater aquifer. Once the soil and water storage compartments

were filled the rainfall was sufficient to generate a surplus flow from the watershed

boundary which occurred in August. Rainfall during the non-monsoon period was small.

A second post-monsoon crop was grown on 30  per cent of the land area of the watershed

where irrigation facilities are available. Thus, for this crop, groundwater was the main

source of water, as depicted in Figure 9 as an increase in soil moisture content.

4.3 Impact of water interventions on crop yield

Comparison of crop yield among different water intervention scenarios are shown for

dry, normal and wet years (Figure 10).  This figure shows that approximately 15-35 per

cent improvement was found in crop yield by various water interventions compared to

No Int. condition. Some limited irrigation was provided in the crop area after the

monsoon period, otherwise this difference would have been much larger between

watershed intervention and No Int. scenarios.

4.4 Sediment transport and soil loss

The average soil loss from the watershed was less than 3.0 ton ha-1 in all years except in

year 2000, when Kothapally experienced a heavy downpour of 303 mm within 24 hours

in August, which created enormous amounts of runoff and soil loss from the watershed

boundary. Simulations suggest that on average 7 mm of soil was lost from the entire

watershed due to this extreme event. A soil loss map for year 2000 shows that soil was

lost from a large area of the watershed (Figure 11). The detached soils were deposited in

those sub-units where a check dam was built, since the check dams reduced the flow

velocity of the water and allowed silt particles to settle down.

Soil loss was strongly affected by rainfall intensity (Figure 12a). Rainfall intensities

below 20-30 mm/day did not generate much soil loss in any of the four intervention

scenarios. However, a clear difference in soil loss was observed between the maximum
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interventions scenario and the no interventions scenario. At rainfall intensities above 50

mm/day, 5-8 times more soil was lost from the system for the scenario without

agricultural water management interventions compared to maximum interventions. On an

average, 2-3 events with rainfall intensities greater than 50 mm day-1 generally occurred

every monsoon season in the Kothapally watershed, and once every three years the area

experienced rainfall intensities above 100 mm day-1, creating situation with large soil

losses without water management interventions in place.

Cumulative soil loss generated from the watershed outlet from the various water

management scenarios is presented in Figure 12b for the 31 year simulation period.

There were marked differences in sediment reduction due for scenarios with ex-situ

interventions (Ex-Situ and Max Int.) compared to in-situ or no interventions scenario (In-

situ and No Int.). The average soil loss from the watershed in different land management

scenarios was 2.5, 4.0, 15 and 22 tons/ha/year for Max Int., Ex-situ, In-situ and No Int.

scenarios, respectively.

5 Discussion

5.1 Water management interventions improved the resilience of small-scale tropical

agricultural systems

Because of the watershed development programmes, the livelihoods of the farmers in the

Kothapally village have improved (Sreedevi et al., 2004; Wani et al., 2006). Agricultural

yields are on the increase, and farmers are now able to save some of the incomes

generated by the farm and to re-invest in their business. Because of diversification of

sources of income due to more off-farm activities, their resilience to external shocks has

improved. More specifically, the water interventions have reduced the inherent risks in

agriculture in the semi-arid zone posed by high rainfall variability and frequent dry-

spells, thereby strengthening the resilience to drought in tropical agriculture. With a more

erratic rainfall under future climate change, water management interventions in tropical

agriculture are likely to be of even greater importance.

Watershed management programmes including in-situ water harvesting and check-dams

significantly changed the water resource availability in the watershed (Shiferaw and Rao,
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2006; Shiferaw et al., 2009). In-situ water management practices improved infiltration

capacity and the water holding capacity of the soil, which resulted in higher crop water

availability. This was particularly important during dry years when yields were low. The

construction of check-dams (ex-situ structures) led to higher groundwater recharge,

which enabled improved supplementary irrigation of the monsoon crop (in this case

cotton). With higher groundwater levels the areas used to grow a second, fully irrigated

cash crop (normally vegetables) during the dry season could be expanded, which makes

an important financial contribution to the house-hold budget. The ex-situ systems also

captured a large fraction of the sediments lost from the fields, which the farmers carried

back again during the dry season.

Sreedevi et al., 2004; Wani et al., 2006 reported that water availability and crop yield

have substantially improved after the watershed development program was implemented

in Kothapally watershed. Since 1999 several shallow wells that had low groundwater

levels have reverted into active wells for irrigation. The cropping pattern has changed in

recent years as a consequence of improved soil moisture availability and irrigation

access. Farmers who used to be cultivating cotton of traditional varieties, sorghum,

maize, paddy, onion, and chilies before the onset of the watershed development

programme, have switched to cultivating higher yielding cotton varieties (BT cotton).

Maize and paddy are now cultivated only in limited areas during the monsoon and

vegetables are being grown in the irrigated area during the summer. Along with in-situ

and ex-situ agricultural water management interventions, farmers have also adopted

better nutrient and pest management as well as more timely operations (Sreedevi et al,

2004), which further improves agricultural productivity.

High rainfall intensities are expected to become more frequent in the future as the climate

is predicted to become more extreme (IPCC, 2007). Soil loss increases exponentially with

rainfall intensity (Figure 12A). This results in a loss of fertile soil from the agricultural

land, as well as sedimentation of the river systems and the reservoir downstream. In

particular, the ex-situ structures result in significantly less soil loss from the watershed

(Figure 12B). Moreover, high rainfall intensities may cause flooding of downstream

systems, which may partly be counteracted by the better soil and water management
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practices carried out within the watershed development programmes. Thus, these

interventions might become even more important in the future to combat the effects of

high rainfall intensities.

5.2 The choice of water management intervention depends on hydro-ecological and

social settings

The strategy of the watershed development program should be based on hydro-ecological

zones and soil characteristics. In-situ management may be sufficient at higher rainfall

amounts, while ex-situ water management for supplementary irrigation may be needed to

complement the in-situ system at lower rainfall amounts (below 600 mm/yr) and to

bridge dry-spells. However, practicing both in-situ and ex-situ management in low

rainfall zones may not be economically viable because with in-situ management there

may not be enough local run-off to collect in the ex-situ storage systems. At rainfall

amounts above 600 mm/yr, both practices might be implemented without the risk of them

competing with each other for water. In-situ practices in such areas would improve

infiltration and at the same time check-dams can store surplus amounts of water and

sediment. A common strategy cannot be implemented everywhere: it depends on

topographic and soil characteristics, the location of the watershed and the objective of the

development (Joshi et al., 2005, 2009).

Ex-situ management is helpful for storing water but it may create an unequal distribution

if only some of the framers will benefit. In the Kothapally village, some farmers have

wells on their properties which they use for irrigation of their own fields first, and, if

there is water left after they have fulfilled their own irrigation requirements, they allow

neighbouring farmers to use their water for a proportion of the income from that farm.

Thus, in the Kothapally case, the farmers with wells on their properties will benefit more

through having the check-dams than the others.

5.3 Balancing water needs between upstream and downstream systems

Implementing agricultural watershed interventions, such as in-situ and ex-situ water

harvesting systems on a large scale can improve green water use efficiency and

groundwater recharge at onsite locations; and consequently have positive impact on crop
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water productivity and livelihood of small and marginal farmers in rain-fed areas at

upstream. On the other hand, such interventions may cause reductions in water

availability downstream. The outflow from the Kothapally watershed was reduced by

more than 50 per cent after the implementation of the watershed development

programme. Thus, if the current agricultural management practices were changed into

watershed development programme interventions on all agricultural land in the Osman

Sagar catchment, the inflow to the reservoir downstream could potentially be halved. On

the other hand, sediment loads to the river simulated at the outlet of the Kothapally

watershed after the implementation of the watershed programme was less than one tenth

of what it was before. Such large reductions of sediment loads to the rivers are likely to

have a large positive impact on the in-stream river ecology and the life-span of reservoirs.

Downstream negative impacts may be aggravated under a more extreme and drier

climate. During dry years, hardly any outflows were generated from the Kothapally

watershed during the monsoon cropping season, and since most of the rain falls during

this period, almost no water from this site reached the reservoir. Thus, from that

perspective, watershed development programmes may be crucial to build resilience in

upstream locations, while adversely affecting downstream systems. On the other hand,

higher rainfall intensities may cause large runoff amounts over a short period of time,

which certainly would create flood situations at downstream locations. Moreover, heavy

soil loss from the field is expected at high rainfall events, causing large sediment loads to

downstream systems and also degradation of lands in upstream areas. In both these latter

cases, water management programmes would reduce the negative impact on the

downstream systems resulting from high rainfall intensities.

It is therefore not evident whether watershed management programmes will have an

overall positive or negative impact on downstream systems, and region specific analysis

is needed to assess trade offs for downstream areas along with onsite impact.

Stakeholders’ interests in both upstream and downstream locations have to be considered

and weighed together, and impacts from different interventions need to be clearly

illustrated in different scenarios so that potential trade-offs can be understood by all

stakeholders. These scenarios have to take climate change impacts into account, and
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encompass all the ecosystem services provided by water in the system, as well as the risk

of systems crossing a threshold that puts them in an undesired state.

5.4 Comparison of results with other studies

A review of natural resource management in semi-arid tropics made by Sahrawat et al.,

2010 concluded that integrated use of soil and water conservation practices with

provision of balanced plant nutrients can not only sustain increased productivity but also

maintain soil quality in watershed or catchment level. Similar to Kothapally, other

benchmark studies of ICRISAT in India and Thailand also showed 50 to 70 per cent

reduction in surface runoff, considerable reduction in soil erosion and remarkable

improvement in crop productivity after land and water interventions compared to

previous conditions (Wani et al., 2007). Shemdoe, et al., 2009 reported increase in crop

yield in semi-arid areas of Tanzania by mulching their fields using locally available

material, in-situ practices and improved tillage.

5.5 Uncertainties in the analysis

Modeling natural systems is a challenging task. Natural systems are highly complex,

heterogeneous, and non-linear in nature. Eco-hydrological modeling includes various

assumptions, error in input and measured data, and limitation to capture complete

physical process of system; which turns up uncertainty in simulation outputs. We have

listed some of the assumptions made in present study and model limitations. We assumed

one kind of land use practice throughout the simulation period in the entire Kothapally

watershed area to simplify the process, which may generate some discrepancy,

particularly at micro scale or at shorter time interval (daily or monthly). Data availability

and its quality strengthen the calibration process. In the present study, volume-stage data

of various reservoirs is available for a one year period. The model was calibrated with

available data, but some important events are missing. For example, gauge and sediment

data is not available at one extreme event in the year 2000, and the model may therefore

simulate biased results for such rainfall events. An attempt was made to characterize soil

physical properties and to capture minor structural details but uncertainties remain due to

landscape heterogeneity. For example, soil hydraulic conductivity estimated from basic

textural data shows a wide parameter range with in watershed boundary (Table-1a).
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SWAT is a semi-process based model and therefore it has limited capacity to capture

physical processes completely and their temporal dynamics. For example, we found

variable hydraulic behavior of the reservoir bottom at the stream channel, but SWAT

does not capture such variability, which results in errors in the simulation. Moreover,

SWAT assumes unlimited water storage capacity of the groundwater aquifer system,

which is impractical, particularly for hard rock areas, which usually have poor specific

yield and limited storage space. All kinds of in-situ management (e.g. contour bunds,

graded bunds, field bunds, terraces formations etc.) in the model setup are parameterized

by the same variables, although the purpose of building these structures is different: some

land practices disposes runoff water safely from the field boundary (graded bunds) and

some of them completely entrap water into the field itself (like contour bunds and field

bunds). Therefore the impact of such interventions could not be identified individually

and the model produces results in an aggregate way rather than focusing on one factor.

6. Conclusions

Watershed interventions in agriculture in the forms of in-situ and ex-situ water harvesting

systems are important for strengthening the resilience to drought in tropical agriculture in

uplands which are hot spots of poverty, water scarcity and land degradation. Both

practices resulted in higher groundwater recharge from 9 per cent to 20 per cent of total

rainfall, which enabled supplementary irrigation of the monsoon crop to bridge dry-spells

and full irrigation of a second dry season crop on 30 per cent of the fields, on average.

Moreover, in-situ water interventions led to 10-30 per cent higher soil moisture

availability in the fields, resulting in enhanced green water use efficiency which is very

critical. The inter-annual variation in the results is large: the interventions were found to

be most important during dry years when groundwater recharge and ET were low without

interventions. At the same time, agricultural water interventions may cause trade offs in

terms of reduced water flows by 30-60 per cent to downstream systems. The outflow

from the Kothapally watershed was more than halved after the implementation of the

watershed management programme. On the other hand, soil loss decreased by a factor ten

because of the watershed development programme, which is expected to have positive



26

impacts on instream river ecology and runoff generation for other downstream water

uses.

Under a new climate with lower slightly reduced annual average rainfall amounts and

higher rainfall intensities, interventions such as those implemented under the watershed

development programmes in India may be increasingly important for securing

agricultural yields in upstream areas to achieve food security and improve livelihoods of

small and marginal farmers through increase in green water use efficiency. However, on

the other hand that may result in reduced water flows to downstream systems. High

rainfall intensities may cause flooding and large sediment loads to downstream systems,

which may partly be counteracted by the better soil and water management practices

carried out within the watershed development programmes. The conclusion is that it is

important to clearly illustrate impacts and trade-offs in both upstream and downstream

locations for different agricultural water interventions, accounting for changes in climate,

water related ecosystem services and the risk of ecosystems crossing thresholds into an

undesirable state as well as the important goal of achieving sustainable development and

reducing poverty in the developing tropical regions.
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List of Tables

Table 1a Model parameterization. Initial and final values given before and after

calibration.

Variable (unit)
Parameter in

SWAT
Initial value Final Value Source

Sand content (%) SAND - 47 (18-79)* Measured

Silt content (%) SILT - 22 (11-30) Measured

Clay content (%) CLAY - 31 (5-61) Measured

Gravel fraction (%) ROCK - 20 (5-48) Measured

Bulk Density (g cm-3) SOL_BD - 1.3 (1.1-1.6) Measured

Available Water Content
(mm H2O/mm soil)

SOL_AWC - 0.26 (0.17-0.33) Measured

Organic carbon (%) SOL_CBN - 1.04 (0.44-2.27) Measured

Soil Depth (mm) SOL_Z - 420 (50-930) Surveyed

Saturated Hydraulic conductivity
(mm/hr)

SOL_K - 2.2-10.8
Estimated by Pedo-transfer function

(Schaap et.al. 2001)

Curve number (-) CN 70 70-80
Based on previous study

(Pathak et al., 2002)
Hydraulic conductivity of the

reservoir bottom (mm/hr)
RES_K 8.0 4.0- 20.0 Calibrated

Groundwater revap coeff. (-) GW_REVAP 0.02 0.1-0.7 Calibrated

Threshold depth of water for revap
in shallow aquifer (mm H2O)

REVAP_MN 1 0.3-21.0 Calibrated

Threshold depth of water in the
shallow aquifer required to return

flow (mm H2O)
GWQMN 0 200-500 Calibrated

Groundwater delay time (days) GW_DELAY 31 2 Calibrated

Channel erodibility factor (-) CH_EROD 0.0 0.5 Assumed

Channel cover factor (-) CH_COV 0.0 0.5 Assumed

USLE equation support practice
factor (-)

USLE_P 1.0 0.6 Calibrated

Maximum potential leaf area index
(-)

BLAI 4.5 From Krieg, 2000

Lower limit of harvest index
((kg/ha)/(kg/ha))

WSYF 0.05 Calibrated

Harvest Index (-) HVSTI 0.5 From Heuer and Nadler, 2000

Ex-Situ interventions developed in
watershed since 1999 onwards (m3)

RES_VOL - 13150 Measured

Surface area of ex-situ int. (m2) RES_ESA - 13850 Measured

* Data in parenthesis show minimum to maximum range of parameter value
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Table 1b: Various inputs/data used with different time intervals during model calibration,

validation and scenarios development

Source of

Meteorological data

Time period Model performance assessed/Outputs

Model Calibration Kothapally

watershed data

2000-2009 (i) Flow and sediment loss at watershed outlet
between 2002 and 2007 on daily time interval
(total 53 runoff events);
(ii) Reservoir stage data of year 2009;
(iii) Crop yield data between year 2005 and
2008

Model validation Kothapally

watershed data

2000-2009 (i) Measured water table in Open wells
(ii) Literature values/ past studies/ secondary
information

Validation of No Int.

Scenario

ICRISAT data 1984-1999 Monthly and annual inflow at Osman Sagar
reservoir

Simulation/ Scenario

development

ICRISAT data 1978-2008 Results Analyzed
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Table 1c Changes made in base line parameters to represent No In-situ practice

Variables
Parameter in

SWAT

Parameter
value in base

line

Change made
to represent no
in-situ practice

Source

Curve number (-) CNOP CN CN+6
From Arabi et al., 2007; Ullrich
and Volk, 2009; Mazdak et al.,

2008

Available water capacity
(mm H2O/mm soil)

AWC AWC 0.75 AWC
Based on long term field
experiment at ICRISAT,

Sahrawat et al., 2010

Manning’s roughness coeff.
for overland  flow (-)

OV_N 0.14 0.05 From Neitsch et al., 2005

USLE support practice
factor (-)

USLE_P 0.6 1.0 From Neitsch et al., 2005

Groundwater revap
coefficient (-)

GW_REVAP X= 0.1-0.7 X’=X-0.5 X
Validated by comparing Osman

Sagar inflow

Threshold depth of water for
revap in shallow aquifer

(mm H2O)
REVAP_MN Y= 0.3-21 Y’=Y+30 Validated by comparing Osman

Sagar inflow

Threshold depth of water in
the shallow aquifer required

to return flow (mm H2O)
GWQMN Z=200-500 Z’=Z-100

Validated by comparing Osman
Sagar inflow
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Table 1d: Model validation

Parameter
Modeled values in

present study
Measured /

Literature values
Validation Source

Current stage of Kothapally

3.1 2.4
Massuel et al., 2007;
Ahmed and Sreedevi,

2008
Specific yield or drainage

porosity (%)
4.5 Pathak et al., 2002

0.27-0.31
Jalota et al., 2006

0.46
Bastiaanssen et al., 1996Cotton water productivity

(Kg m-3)
0.38-0.45

0.41-0.95
Zwart and Bastiaanssen,

2004

Changes made from pre development (before 1999) to post development (present stage) period

Average rise in groundwater
table (m)

3.1 m 2.5 m Measured data

Potential increase in irrigated
area during post monsoon crop
season (% of watershed area)

13 % to 31 % 10 % to 30 % Surveyed
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List of Figures

Figure 1: (A) Location of Kothapally watershed in Musi sub-basin of Krishna river basin,

including main reservoirs, ICRISAT and Hyderabad city; (B) Stream network, location of

storage structures, open wells, meteorological station, soil sampling locations and

residential area in Kothapally watershed
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NSE Coeff. (-)  = 0.81
Corellation Coeff. (-) = 0.86
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Figure 2A: Measured and simulated discharge at watershed outlet (reservoir No.6) on

daily time-step for n=53 events during year 2002 and 2007.
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Figure 2B: Measured and simulated soil loss at watershed outlet (reservoir No.6) on daily

time-step for n=53 events during year 2002 and 2007
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Figure 3 (A-D): Measured and simulated volume in different storage structures during

year 2009
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Figure 4A: Measured and simulated cotton yield during 2005-2008 in Kothapally

watershed.
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Figure 4B: Comparison of measured data of groundwater table with simulated data of

groundwater storage during 2000-2009 in Kothapally watershed.
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NSE Coeff.(-) = 0.56
Corellation Coeff. (-) = 0.86

RMSE (MCM) = 5.2
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Figure 5A: Measured and upscaled inflow at Osman Sagar reservoir for 1984-1999 at

monthly time step.
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Figure 5B: Measured  and simulated inflow at Osman Sagar reservoir for 1984 -1999 at

annual time step.



42

Figure 6: Water balance for the four different water management scenarios for the first

cropping season (from June to Dec) of different water years: dry (n=8), normal (n=16)

and wet years (n=7) years (data from 1978 to 2008). Max Int.: In-situ + Check-dams; In-

situ: In-situ + No check-dams; Ex-situ: No In-situ + Check-dams; No Int.: No in-situ +

No check-dams. GW recharge = groundwater recharge. ET = evapotranspiration. Change

in SMC = Change in soil moisture content.
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Figure 7: Comparison of groundwater recharge (a), developed irrigation potential (b),

average available soil water during crop period(c), and outflow amount in different land

management scenarios(d) during dry (n=8), normal (n=16) and wet years (n=7) (data

from 1978 to 2008).
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Figure 8: Rainfall-runoff relationship for the four different water management scenarios.

Results based on 31 years of simulation run from year 1978 to 2008. Max Int.: In-situ +

Check-dams; Insitu: In-situ + No check-dams; Ex-situ: No in-situ + Check-dams; No Int.:

No in-situ + No check-dams.
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Figure 9: Monthly water balances for year 2003-04 for the Kothapally watershed

management programme. The upper part of the graphs shows the source of the water, and

the lower part presents various sink components: ET, groundwater recharge, change in

soil moisture content, and outflow from the watershed.
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Figure 10: Comparison of cotton yield in different land management conditions during

dry (n=8), normal (n=16) and wet years (n=7) (data from 1978 to 2008).
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Figure 11: Soil loss in different sub-units of Kothapally village in year 2000. Gray colour

in map shows soil loss and crossed lines shows its deposition (also shown by negative

numbers).
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Figure 12A:
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Figure 12B:

Figure 12: a) Rainfall vs. soil loss, and b) Cumulative soil loss for different management

scenarios. Max Int.: In-situ + Check-dams; Insitu: In-situ + No check-dams; Exsitu: No

insitu + Check-dams; No Int.: No in-situ + No check-dams.


