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ABSTRACT 

The current study was conducted to investigate the genetics of Striga resistance 

in 72 'sorghum (Sorghum bicolor L. Moench) hybrids and their 17 parents. The 

experiments were carried out in India during the 1995 rainy season at two locations, 

ICRISAT Asia Center (IAC), Patancheru, and Akola, Maharashtra State, in randomized 

complete block designs. The traits measured were Striga incidence, days to 50% 

flowering, plant height, and grain yield plant-'. The traits showed significant differences 

at both locations. Both additive and non-additive gene action was found important for 

the different traits. 'i'he non-additive gene action was found important for Striga 

resistance though the levels of infestation in the two locations were low. 

The male-sterile lines L2 (SPST 9401 1 B) and L3 (SPST 94001 B) as well as the 

restorers, T4 (SAR 35) and T6 (SAR 42) were found to be also resistant. These were 

bred earlier for resistance to Striga, and these results confirmed that. These lines and 

testers could be further used in hybrid development for Striga resistance. Among the 

hybrids, entries 42 (SPST 94008A x SAR 42) and entry 49 (SPST 94026A x SAR 35) 

were resistant in individual locations and in combined analysis. 

Among the lines. L3 (SPST 94001 B) and L6 (SPST 94026B) were best combiners 

for Str~ga resistance as well as for earliness. Among the restorers, T6 (SAR 42) and T2 

(SAR 16) were good combiners for Str~ga low incidence as well as for most of the other 

traits across locations. As regard plant height, the male-sterile lines L8 (ICSB 93) and 

L7 (ICSB 89) were found to be :he tallest lines across the locations and in combined 

analysis. Among the restorers, T I  (SAR 1) and T3 (SAR 34) were the tallest. 



Examination of SCA effects for transformed Striga incidence (SI0/0) at IAC 

revealed that entry 72 (ICSA 93 x ICSR 93004) had maximum negative SCA effects and 

high per se performance, followed by entry 37 (SPST 94008A x SAR I), while at Akola, 

entry 52 (SPST 94026A x ICSR 92001) exhibited the highest negative SCA effects 

followed by entry 63 (ICSA 89 x ICSR 93004). 

The highest contribution to total variances was observed by lines and lines x 

testers interaction at Akola for Striga incidence, whereas at IAC L x T interaction and 

testers showed the highest contribution to this trait, suggesting that both lines and testers 

were highly diverse. For yield plant" high contributions were shown by L x T interaction 

and lines which confirmed the diversity of the lines used. At IAC, high negative heteros~s 

for Striga incidence (transformed) (TSI%) were shown by nine entries, the highest three 

were entry 45 (SPST 94008A x ICSR 93004), followed by entry 37 (SPST 94008A x 

SAR I), and entry 64 (ICSA 93 x SAR 1). At Akola, 28 entries expressed high negative 

heterosis. The highest negative heterosis percentage was shown by entry 67 (ICSA 93 

x SAR 35) and entry 9 (SPST 94009A x ICSP. 93004) for Striga incidence. 

The entries showing highly positive heterosis and heterobeltiosis for grain yield 

were entry 18 (SPST 9401 1A x ICSR 92003) at IAC and entry 34 (SPST 9401 1A x ICSR 

92001) at Akola. Across both locations entry 37 (SPST 94008A x SAR 1 )  showed the 

highest heterosis. The highest positive heterobeltios~s at IAC was expressed by entry 

60 (ICSA 89 x SAR 42), followed by entry 54 (SPST 94026A x ICSR 93004), whereas 

at Akola, the highest heterobeltiosis was shown by entry 37, followed by entry 40 (SPST 

94008A x SAR 35). Most of these entries had high grain yield plant-'. Low heritability 



values were observed for Striga incidence, 10% at IAC and 2% at Akola, which resulted 

from the low and non-uniform infestation of Str~ga at the two locations. Therefore, for 

further reflection of the actual potential of these genotypes, the continuation of this study 

with added genetic material, locations across countries (perhaps India and Sudan), and 

Striga sp. (S. asiatica and S. hermonthica) is suggested. 
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Sorghum (Sorghum bicolor) is the fifth most important cereal crop world wide. 

following wheat, rice, corn, and barley in terms of area, gram yield, and production. It 

is grown in approximately 45 million ha on a global scale with a production of 60-70 

million t. In many developing countries, particularly in Africa and Asia, yields range from 

0.5 to 0.7 t ha" while in developed countries of Latin America y~elds range from 3 to 5 

t ha-'. The average world level was 2 t ha.' (FA0 1992). The area under sorghum 

production has declined substantially in Africa, Latin America, and Asia during the last 

decade. Production, however, remained stable because farmers grow improved cultivars 

associated with proper farming systems. 

In Sudan, sorghum is the main staple food. In many parts, the crop is wholly 

utilized. The grain is used for making kisra (unleavened bread from fermented dough), 

a significant portion is also used as thick porridge, "Aseeda", and as a popular beverage 

"Abreh". The stalks are used as building material and straw as animal feed or as fuel. 

Total area under sorghum in Sudan is estimated at 4.68 million ha, with yield of 509 kg 

ha.', and total production of 2.39 million t in 1993 (FA0 1993). In India the crop is 

known as jowar in the North, and jonna, cholan in the South. It ranks second with 

respect to area and third after wheat and rice with respect to production. Total area 

under this crop is estimated to be 13.3 million ha, with average yield of 940 kg ha.', and 

a total production of 12.5 million t in 1993 (FA0 1993). 



Although sorghum is an important food and feed crop, especially for subsistence 

farmers in the semi-arid tropics, grain yields are generally low (600 - 800 kg ha.'). 

Several factors are held responsible for this low productivity, one of which is noxious 

weeds. 

Sfriga spp. (witchweeds) are widely recognized as being among the most noxious 

weeds of crops and they affect crop production significantly in dry, semi-arid, and harsh 

environments of tropical and subtropical Africa, the Arabian peninsula, India and a small 

part of USA. Cereal crops seem to suffer the most, although some legumes are also 

known to be devastated by Striga attack (Nelson 1958). Striga asiatica (L.) Kuntze and 

S. hermonthica (Del.) Benth. are the major species on cereals, while 

S. gesnerioides (Willd.) Vatke is important on legumes (Reid and Parker '1979). Striga 

hermonthica. causes loss of yield reaching up to 7O0/0 in sorghum (Doggett 1988), and 

other cereals such as pearl millet and maize, which are staple food in the diets of 

millions of people in Africa, while S. asiatica is recognized as a major problem on 

sorghum in parts of Africa and Asia (Barber 1904, Butt-Davy 1905). According to Mboob 

(1989) Striga is distributed in more than 40°/0 of the arable land in South Sahara (in 

countries of West and East Africa as well as Asia), with a mean of 48% of the grain 

sorghum fields being infested with Sfriga. The yield loss sums up to an average of 24%, 

with a loss of total grain production amounting to 12%. Striga infested area of Africa 

was estimated to be 21 million ha and the loss in grain yield was about 4.1 million t 

(Sauerborn 1991). Recently, Lagoke et al. (1991) estimated an annual cereal grain loss 

associated with Striga damage as about 40% when averaged across Africa. In Sudar;, 



Striga caused sorghum yield reductions up to 70% in fertile, heavy soils (Basinski 1955). 

It has been estimated that Striga causes an annual yield loss of 53 000 tonnes in hybrid 

production in India, and at ICRISAT Center yield losses of up to 49% have been 

recorded (Vaidya et al. 1991). 

Severity of Striga infestation increases as land becomes progressively exhausted 

by continuous sorghum cultivation (Thomas 1943). The degree of damage is influenced 

by the susceptibility of the cultivar itself, the Striga species, the level of infestation, and 

additional stresses imposed by the environment. Considering the economic proportions 

of losses to several important food clops in the semi-arid tropics, breeding resistant 

varieties offers an economically viable option to control this problem for two reasons: 

1. A resistant variety is a non-cost input in any improved technology. 

2 .  No other control method than genetic resistance is able to lessen the 

subterranean damage by Striga (Vasudeva Rao et al. 1982). 

The information on the genetics of Striga resistance is limited. Available data 

suggest that Striga resistance is controlled by relatively few genes with additive effects. 

Only two types of inheritance studies have been carried out, the inheritance of low 

stimulant production, and the inheritance of field resistance as measured by the number 

of emerged Striga plants. 

Studies at ICRISAT Center revealed that inheritance of low stimulant production 

is controlled by a single recessive gene (ICRISAT 1978, Vasudeva Rao et al. 1983). 

While Shinde and Kulkarni (1982) reported that field resistance was controlled by both 

additive and non-additive gene actions, with a preponderance of additive gene action. 



The cytoplasmic-genic male sterility systems in sorghum allowed sorghum 

breeders to develop sorghum hybrids for commercial cultivation. The superiority of 

hybrids in productivity, greater stability, and better adaptation to stress over open 

pollinated varieties is widely appreciated (Ejeta 1988). However, hybr~ds developed and 

released for cultivation in lndia and Africa do not have much tolerance or resistance to 

Striga. CSHl  and Hageen Dura 1, the first commercial sorghum hybrids released in lndia 

and Sudan, respectively, are both highly susceptible to Striga. The viability of Striga 

seeds may be 20 years (Doggett 1988) and the continual growing of susceptible 

varieties andlor hybrids will increase the quantity of Striga seeds in the soil and over the 

years the fields will become unfit for sorghum cultivation. Ejeta et al. (1991) directed 

efforts towards developing parental lines with genes for resistance with the goal of 

developing Striga resistant grain sorghum hybrids. They initiated transfer of low 

stimulant production gene in SRN 39 into agronomically elite B-lines (potential female) 

parents, then they tested the combining ability and heterotic performance of SRN 39 in 

combination with established A-line (male-sterile female) parents. The results were 

found to be encouraging. 

The present study is an attempt along the same lines with the following 

objectives. 

1 .  To evaluate hybrids and their parents for Striga resistance, and estimate the 

differences in performance among the hybrids which reflect differences in the 

general combining ability of the male-sterile lines and restorers. 



2. To understand the nature of gene action involved in the expression of Striga 

resistance. 

3. To estimate heterosis for resistance to Striga, and to identify parents with elite 

combining ability for Striga resistance and yield and to develop breeding strategy 

for developing high yielding Striga resistant cultivars. 



2. REVIEW OF LITERATURE 

2.1. Botanical Classification, Host Range, and Distribution 

The genus Striga, with more than 25 species, belongs to the family 

Scrophulariaceae, only a few of which are economically important, for instance S. 

t~ermonthica, S. asiatica. S. gesnerioides, S. densiflora, S. euphrasioides. S. aspera and 

S. forbesii (in order of importance). Species range from almost completely parasitic to 

almost totally autotrophic. They attack several food crops, mainly cereals, but also some 

broad-leaved crops such as cowpea. The following botanical classification is quoted from 

Ramaiah et al. 1983. 

2.1 . I .  Striga asiatica (L.) Kuntze (= S. Lutea Lours.= S. hirsuta Benth.) 

It is a self-pollinated species with established morphological differences among strains 

(morphotypes). It is the most widespread among the important species centered on the 

Indian subcontinent, where it has a white flower, and in China and South East Asia 

where it more commonly has a yellow flower. 7 he species commonly parasitizes 

members of Poaceae including sorghum, pearl millet, maize, rice and sugar cane. The 

main distinguishing features include slender, usually branched habit, up to 30 cm high, 

and the large number of ribs on the calyx (at least 10). 

2.1.2. S. hermonthica (Del.) Benth. (= S. senegalensis Benth.) 

It is a cross-pollinated species. The cross pollination results in a continuous variation 

in this species, whereas in S. asiatica, the spontaneous mutations may be fixed by self- 

pollination. It is the main species of Africa extending across a northern belt from 



Senegal to Sudan, extending eastward into South Western Arabia and south into 

Tanzania, Malawi, and Zimbabwe. It has pink flowers, branching habit and grows up to 

50 cm height. The host range is almost the same as S. asiatica. 

2.1.3. Striga densiflora Benth. 

It is almost restricted to the Indian subcontinent attacking sorghum but it does also 

occur in South East Arabia. It has a white flower, but less branched and with more 

dense inflorescence than S. asiatica, calyx ribs are only five. 

2.1.4. Striga euphrasioides Benth. (= S, angustifolia (Don) Saldhana) 

Striga euphrasioides is less parasitic than the previously described species. It attacks 

sorghum, maize, sugarcane, upland rice, and grass weeds. It is small erect herb 

reaching a maximum he~ght of 0.45 m; white flowers in long lax terminal spikes , calyx 

15-1 7 ribbed. 

2.1.5.  Striga aspera (Willd.) Benth. (= Euphrasia aspera Willd.) 

It distributed throughout West Africa and Sudan. It attacks upland rice. and wild 

grasses, but it is rarely an economic problem. It is similar to Striga hermonthica except 

that it is smaller, the only difference is that the corolla tube has gland hairs extending 

beyond the tip of the calyx before it bends. 

2.1.6.  Striga gesnerioides (Willd.) Vatke (= S. orobanchoides Benth.) 

Striga gesnerioides is almost completely parasitic, and contain less chlorophyll 

than other species. It attacks cowpea, tobaccc, Euphorbia, hairy indigo (Indigofera 

hirsuta). It extends from Cape Verde Islands through tropical and southern Africa and 

through the Arabian Peninsula and western and southern India, also found in Florida in 



USA. It is distinctly different from other species. A large number of short branches arise 

from the ground level, the species shows variation in flower size and color: flowers 

usually bluish, pink, purple, or creamy white. 

5.1.7. Striga forbesii Benth. 

It rarely an economic problem. It extends throughout West and East Africa, South 

Africa and Madagascar. It attacks maize, sorghum, rice. It is an erect, simple or little 

branched herb growing to height of about 0.5 m, flowers pink, scarlet, or yellow, 10-20 

mm diameter, corolla tube 20-25 mm long. 

2.2. Biology of Striga 

2.2.1 Germination 

Due to successful adaptation to the parasitic habit, Striga spp. produce tiny, !ong- 

lived seeds that generally do not germinate unless aged (after-ripening), conditioned 

(imbibition) and stimulated by exogenous germination stimulant (Worsham and Egley 

1990). Seeds are numerous, up to 0.5 million plant", and can remain viable for as long 

as 20 years (Doggett 1988). 

2.2.2. Germination requirements 

2.2.2.1. After-ripening period 

Striga seeds require a period of after-ripening or post-harvest ripening before they 

are able to germinate. Saunders (1933) found that the minimal period for S. asiatica to 

germinate is about 6 months. Vallance (1950) found similar behavior in S. hermonthica. 

Kust (1963) working with S. asiatica noticed the necessity for after-ripening and found 

that the higher the temperature of the seed storage the shorter the period of after- 



ripening. 

2.2.2.2. Dormancy and viability 

Striga seeds are known to remain dormant but viable for many years provided 

they are stored under dry conditions. Saunders (1933) recorded high degree of 

germinability for S. asiatica stored for 7 years. Kust (1963) reported that storage at high 

relative humidity and high temperature rapidly reduced viability of S. asiatica seeds, but 

at low relative humidity and at low temperature, the seed remain viable longer. Bebawi 

et al. (1984) reported that S. asiatica seeds remain viable for 6 years under open shelf 

laboratory conditions, and after 14 years of burial in soil at a depth of 152 cm there was 

still 10% germination. 

2.2.2.3 Preconditioning 

Brown and Edwards (1944) reported that Striga seeds require to be soaked in 

water for a period of 10 to 21 days prior to exposure to germination stimulant for 

germination to occur. 

2.2.2.4. Exposure of seeds to a chemical stimulant that triggers germination 

Stimulants are exuded by the roots of host and non-host plants (Doggett 1988). 

Germination of Striga seed is stimulated by other compounds which may occur widely 

in nature (Visser 1989, Dale and Egley 1971). Cook et al. (1 966 and 1972) reported the 

first natural molecule (strigol) to stimulate germination. This compound was isolated 

from the root exudate of cotton, which is not a host for Striga. 

Sorgoleone is the first Striga seed-germination stimulant to be isolated and 

identified from a natural host plant (Chang et al. 1986, Netzly and Butler 1986. Netzly 



et al. 1988). 

2.3. Attachment to the Host Plant 

Successful Striga infestation entails seed germination, radicle elongation, 

haustorium initiation, contact and penetration of a suitable host root (Visser and Dorr 

1987, Riopel et al. 1990). Upon germination, Striga rootlets close to a host root develop 

an organ of attachment, the haustorium, which forms a morphological and physiological 

bridge between the host and parasite Lynn and Chang (1990) reported that germination 

and haustorium initiation are two separate developmental events which are coordinated 

in time and space. They involve an orderly series of successive changes which are 

controlled by signal molecules exuded from roots of host and non-host plants. The 

chemical signals for germination and haustorial initiation are different from each other 

(Lynn and Chang 1990). The chemical, 2,6-dimethoxybenzoquinone acts as a haustorial 

initiation factor in S. asiatica, but the natural signal produced by host roots has not been 

identified. Musselman (1980) reported that Striga spp. produced adventitious roots 

which penetrated the host root along with the primary haustorium. 

2.4. Effect on the Host 

Absorption of water, minerals, and photosynthetically fixed carbon from the host 

is only a minor component of the Striga-induced reduction in host crop productivity. The 

productivity of the host is affected mainly through decreased photosynthetic efficiency 

(Press et al. 1990). The damage to the host caused by Striga (stunting, bleaching, and 



wilting) is usually obvious even before emergence of the parasite. Ejeta et al. (1992) 

found that crude extracts of Striga leaves and stems can induce loss of chlorophyll and 

wilting of susceptible host plants suggesting that Striga produces toxic compounds which 

are transported to host photosynthetic tissue and produce the observed inhibitory effects. 

They also reported that SRN 39 seems to have multiple mechanisms of resistance (low 

stimulant production and insensitivity to Striga toxins). 

2.5. Factors Influencing Severity of Attack 

The cultivation of Striga host crops in subsequent seasons without rotation w~ l l  

lead to building up of Striga seed in the soil (Vierich and Stoop 1990). It has also been 

suggested that unreliable rainfall and drought may favor the spread of Striga (Thomas 

1943, Andrews 1945, Ayensu et al. 1984. Porteres, 1984, Ogborn 1984, Bebawi 1987). 

2.5.1. Relationship between Striga infestation and soil structure and moisture 

Saunders (1933) and Hattingh (1954) reported that in South Africa, S. asiatica 

occurs most commonly on light, sandy soils. ICRISAT (1982) and Stoop et al. (1983) 

showed that in Burkina Faso and in North Ghana, S, hermonthica is most abundant on 

shallow, drought-sensitive soils with a coarse structure and a low organlc matter content. 

On the other hand, in East Africa, S. hermonthica appeared to be very troublesome on 

heavy soils (Basinski 1955, Doggett 1965, Bebawi 1984, Ogborn 1987), whereas S. 

asiatica seem to prefer light soils (Doggett 1965). 

Ogborn (1 972) stated that soil moisture is the main environmental factor causing 



variations in the emergence of Striga. Andrews (1945) reported that at Gezira, Sudan, 

lightly irrigated soils were more severely infested with S. hermonthica than heavily 

irrigated soils. In pot experiments in India medium soil moisture levels turned out to be 

optimal for S. asiatica development (Solomon 1952). It appeared that in soaked soils 

oxygen depletion might inhibit germination. Another influence of excessive moisture 

could be that the effectiveness of the germination stimulant might decrease because of 

a dilution of the root exudate of the host plant (Saunders 1933). Nelson (1957) reported 

that in pot experiments excessive watering also negatively affected the development of 

Striga shoots, indicating that the moisture effect was not limited to seed germination 

and/or early attachment. 

2.5.2. Fertilizer application 

Raju et al. (1990) reported that Striga is active in low fertility soils. The effect of 

nitrogen on Striga seed germmation via reduction of stimulant exudation was reported 

by Teferedegn (1 973). Low fertility encourages Striga, particularly low nitrogen status. 

In contrast, high N helps to suppress the weed. The mechanism responsible for this 

effect is not clearly known, but the possibilities include: A reduction in stimulant 

exudation (Teferedegn 1973), a change of host physiology resulting in reduced 

susceptibility to attachment, reduced vigor of the Striga radicle, a reduced rootlshoot 

ratio accompanied by reduced flow of photosynthates to the root, or increased leafiness 

of the crop resulting in greater shade and lower soil temperature. 



2.5.3. Crop rotation 

A succession of susceptible sorghum crops under soil and climatic conditions 

conducive to Striga results in a buildup of infestation. Any rotation with resistant crops 

will interrupt this buildup and crops exuding stimulant may act as trap crops to accelerate 

the natural depletion of seed in the soil. 

2.5.4. Trap crops 

The use of trap crops for stimulating Striga is a very effective method in reduc~ng the 

problem. There are many crops known to stimulate the Striga seed to germinate without 

themselves being parasitized. Trap crops proved to be effective include: cotton, 

sunflower, millet, cowpeas, groundnut, castor bean, lablab bean, velvet bean, field peas, 

but different strains of S. hermonthica may differ in their response to some of these trap 

crops. In USA, Robinson and Dowler (1966) found millet the most effective trap crop for 

S. asiatica. 

Sorghum genotypes vary in amount of stimulant production (Ramaiah and Parker 

1982, Hess et al. 1992). The depletion of the Striga seed population in the soii by 

promoting suicidal germination was identified in some maize genotypes (Reda et at. 

1993) but these have not yet been field-tested for Striga resistance. 

2.6. Striga Control Measures 

Striga control measures include hand pulling or hoeing, irrigation, nitrogen 

application, early planting date, crop rotation, biological control, chemical control (soil 

fumigation, herbicides, and germination stimulants), and crop seed treatment. 



specific to a host cultivar exist (Bebawi 1981, Ramaiah and Parker 1982). Striga has an 

extraordinary elasticity and capacity to adapt to new host species. 

2.8. Mechanisms of Resistance 

Olivier et al. (1991) have demonstrated from their pot experiment that Striga seed 

avoidance by means of reduced root growth is unlikely to be an important factor involved 

in the resistance of IS 7777 to S. hermonthica. They said that the production of 

sorgoleone could explain at least partly the low susceptibility of IS 14825, IS 14975 and 

Framida, but resistance of IS 7777 appears to be largely the result of defence reactions 

involved at the very beginning of baustorium development. 

2.8.1. Stimulant production 

Host cultivars which do not produce or produce very low quantity of the stimulant 

substance in their root exudate can avoid Striga attack. Sorghum with resistance based 

on a low stimulant mechanism have been reported by several workers (Kumar 1940, Rao 

1948, Williams 1959, ICRISAT 1978). Root growth of host plants is also reported as an 

avoidance mechanism (Dixon and Parker 1984, Cherif-Ari et al. 1990). 

Saunders (1933) working in South Africa and Doggett (1965) in East Africa and 

ICRISAT (1978) described host plant resistance based on mechanical antihaustorial 

barriers, which impede invasion of cortical cells by hailstoria they observed thickened 

cells, and hardened vascular cylinders of host roots. Lignified pericycle cells and 

endodermal cells thickened with silica deposits physically obstruct attachment of 

haustoria roots of sorghum genotypes known to have good field resistance (Maiti et al. 

1 984). 



Another suggested resistance mechanism is antibiosis (Ramaiah 1987, Doggett 

1988) where germination and haustorial initiation are normal, but subsequent 

development of the parasite is impeded. 

2.9. Resistant Sorghum Cultivars and Yield 

It was reported that Striga resistance is mainly associated with very poor 

agronomic performance (Ramaiah and Parker 1982). This association between 

resistance and low yield and poor grain quality makes it difficult to improve the cultivars 

for resistance and grain yield. N 13 is the best resistance source available followed by 

SPV 103 and SRN 4341. 

2.10. Inheritance of Resistance 

Among three crosses in sorghum, Saunders (1933) reported that field resistance 

to S. asiatica was recessive in two , and in the third it was partially dominant. But 

Chandrasekharan and Parthasarathy (1953) reported that resistance was dominant over 

susceptibility, while Narsimha Murty and Sivaramakrishnaiah (1963) concluded that 

susceptibility may be dominant in some crosses and resistance may be inherited as a 

partial dominant in some other crosses of sorghum. 

Tarr (1962) demonstrated the complex nature of inheritance it may be partial 

dominance of susceptibility, and incomplete dominance of resistance. Studies at 

ICRISAT Center revealed that inheritance of low stimulant production is controlled by a 

single recessive gene (ICRISAT 1978). 



Kulkarni and Shiride (1983) found from the comparison of all susceptible and 

resistant parents for Striga incidence that group means of susceptible parents for Striga 

populations were double those of the resistant parents. They also found the group 

means of Striga dry weight and Striga height were 4 to 6 times greater than resistant 

parents. So it was suggested that all these three parameters should be considered while 

grading genotypes for Striga resistance. 

Rao et al. (1983) tested hybrids for resistance and reported that all were 

susceptible. They indicated the importance of getting Striga-resistant A-lines for the 

production of resistant hybrids since the Striga resistance of the male parents is being 

suppressed in the hybrids. 

Shinde et al. (1983a) reported from an experiment consisting of a set of 42 F, 

populations along with their parents planted in a Striga-infested field the importance of 

selection In crosses which involve resistant parents. They suggested selection in 

crosses involving resistant parents for the development of resistant varieties. 

Shinde and Kulkarni (1983) measured res~stance to Striga in terms of percentage 

Striga incidence, dry weight and Striga height. Also, they found that both additive and 

non additive gene action were important in the inheritance of resistance parameters with 

predominance of additive gene action. Reciprocal differences were considered important 

in the inheritance of Striga weight. 

Kulkarni and Shinde (1984) stated that GCA and SCA mean squares determine 

the importance of additive and non additive gene action in the inheritance of stimulant 



production. Low stimulant lines must be used as female parents in crossing programs 

for developing low stimulant production lines with other desirable agronomic characters. 

N 13, a stimulant positive line, has shown considerable field resistance which was 

confirmed to be due to mechanical barriers, as reported by Maiti et al. (1 977). They also 

reported that in other crosses the expression of low stimulant production is due to non- 

additive gene action limiting its use in conventional selection methods. 

Dangi (1 989) reported that resistance is controlled predominantly by additive gene 

action, indicating that straight selection is effective. 

Shinde et al. (1 982) undertook heterosis studies involving a tolerant line (CSV 5), 

a moderately tolerant line (CSV 8 R) and two susceptible lines (CKGOB and 1202 B). The 

4 parents and 6 hybrids were grown in a Striga-sick plot. They found that the hybr~d 

obtained from tolerant line (CSV 5) with susceptible male sterile line (CKGOA), i.e.. 

CK6OA x CSV 5 developed a lower Striga population (636) but had the highest heterosis 

(234.7%) for grain yield. Subbarayudu et al. (1983) indicated that the nature of 

resistanceltolerance and susceptibility can be best studied through using a ratooped 

crops instead of seed crops, due to their better developed root system with closer 

proximity to Striga seeds ensuring successfcll infestation. 

Shinde et al. (1983b) found that in F, progenies the lines selected from the 

crosses between resistant x resistant parents also were susceptible. This is indicative 

of the fact that the genes responsible for Striga resistance in the original parents might 

be in a heterozygous condition or the genes contributing to resistance may be located 

at different loci in the parents. 



Shinde and Kulkarni (1987) studied seven parents and their 42 hybrids from a 

diallel cross grown in Striga-infested soil at 2 fertilizer application rates. They found that 

genotype x environment interaction was significant for yield, cluster analysis of means 

indicated that screening for Striga resistance should be done under low fertility 

conditions. Additive and non-additive components of genetic variance were significant 

under normal fertility, but non-additive gene action appeared to be predominant. 

Obilana (1984) defining resistance as "low total number of Str~ga sorghum plant'", 

reported gene action to non-aaditive with over domiriance of susceptibility and estimated 

two to five genes control the resistance action. 

Barche et al. (1988) observed significant differences among genotypes for all the 

attributes in reciprocal crosses including 4 Striga resistant (SAR 1, SAR 2, AKSR 2, and 

N 13), susceptible (Swarna) and agronomically desirable (SPV 472 and SPV 475) 

genotypes. The analysis revealed that mean squares for both general combining ability 

(GCA) and specific combining ability (SCA) were significant for days to 50% flowering, 

grain yield plant-' and positional check value for Striga. They reported that additive arid 

non additive components of heritable variance were responsible for the inher~tance of 

these attributes. They also reported that Swarna and SAR 2 were good combiners for 

earliness whereas N 13 and SPV 475 were undesirable (having significant and positive 

GCA for days to 50% flowering). SPV 472 and SPV 475 were desirable combiners for 

yield, since they had significant and positive GCA effects, but AKSR 2 was a poor 

combiner. Estimates of GCA effects of SPV 472 and N 13 were significant and negative 

for positional check values of Striga infestation, but SAR 1 was an undesirable combiner. 



Shinde and Kulkarni (1987) studied seven parents and their 42 hybrids from a 
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non additive components of heritable variance were responsible for the inheritance of 
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yield, since they had significant and positive GCA effects, but AKSR 2 was a poor 

combiner. Estimates of GCA effects of SPV 472 and N 13 were significant and negative 

for positional check values of Striga infestation, but SAR 1 was an undesirable combiner. 



Therefore, SPV 472 was desirable combiner not only for positional check value of Striga 

(resistance to Striga) but also for grain yield. N13 was desirable only for resistance to 

Striga. SAR 2 x,SPV 472 was the only specific combination showing a significant and 

positive SCA for grain yield and a negative significant SCA for positional check values 

of Striga infestation (Striga resistance). 

Hess and Ejeta (1992) conducted a pot study in Niger using a known volume of 

S. hermonthica seed and established that the stable resistance observed in the sorghum 

cultivar SRN 39 is inherited as a recessive trait controlled by one or two genes. 

Mulatu and Kebede (1991) in their crossing program to transfer the resistance trait 

to agronomically elite material, lCSV 1007, found it to be a maintainer line on the three 

female lines (IS 10468, 221 A, and MA 44). 

Ramaiah et al. (1990) recently reported a single recessive gene for low stimulant 

production in three sorghum genotypes using as an index percent S. asiatica seed 

germination in the presence of sorghum root exudate collected with the double-pot 

technique (Parker et at. 1977). 



Materials and Methods 



3. MATERIALS AND METHODS 

3.1. Plant Materials and Data Collected 

Plant material used in this study was developed by ICRISAT Asia Center (IAC). 

A total of 17 parental lines (selected for good agronomic characters) comprising 6 

resistant cytoplasmic-genetic male steriles (A-lines), 6 resistant restorers (R-lines), 2 

susceptible cytoplasmic-genetic male steriles (A-lines), and 3 susceptible R-lines as 

restorers were crossed in a line x tester (LxT) design. The resulting 72 hybrids and with 

their 17 parents formed the basic material of this study. In addition, 296 B as susceptible 

control and CSH 1 as a systematic susceptible control, and SAR 1, SAR 16, and SAR 

34 as resistant controls were included. The genotypes used along with their origin and 

pedigree are shown in Appendix Table 1. The experimental trial was conducted in India 

during the rainy season of 1995, at two locations. 

3.1.2. Location 1 experiment 

The basic materials along with checks (totalling 93 entries) were evaluated in 

randomized complete block designs with three replications in a Striga-sick field at 

ICRISAT Asia Center (IAC), Patancheru, which is located in Andera Pradesh state at 

latitude 17" 32'N, longitude 78" 16' E and at an altitude of 545 m above sea level. The 

soil type is heavy black Vertisol. The seasonal rainfall extends over five months 

between June and October with a mean annual rainfall of 760 mm. During the period 

of experimentation, the rainfall was 716.4 mm (May 15 - September 15). During the 

study (May 15 - September 15) the mean minimum temperature was 23.4"C and the 

mean maximum temperature was 32.7"C. 



3.1.2.1. The Striga-sick field 

It is an isolated infested field developed by ICRISAT for Striga screening 

purposes. The field was developed by providing for season after season conditions 

known to favour Striga, such as shallow tillage and low fertilizer inputs and light perfo 

irrigation, in order to improve the incidence and regular appearance of Striga in the field. 

In addition to the Striga seeds stored in the soil accumulated from naturally infested 

Striga plants, two-year- old Striga seeds collected from farmers' fields were thoroughly 

mixed with sand in 1 :20 proportion and irioculated into the soil two weeks before planting 

to increase the infestation level. The rate of application of Striga seeds was 0.8 kg ha.'. 

The land was prepared by discing and ridgers were made with 60 cm space 

between rows. A light perfo-irrigation was given ten days prior to sowing of experimentai 

material. The trial was planted mechanically on 17 May 1995, one month earlier than 

the beginning of the season to synchronize the stimulant production by the test entries 

with high temperatures which enhance the germination of the Striga seeds. One light 

perfo-irrigation was applied for germmation. Thereafter the crop was completely rainfed. 

One hand weeding was done once two weeks after planting. Thinning of plants to leave 

plants at 10 cm interval within the rows was carried out 14 days after planting. Seventy 

five kilograms of ammonium phosphate (28:28:0) ha-' was applied as basal fertilizer prior 

to the sowing. As side dressing, urea 50 kg ha.' was applied mechanically. The trial 

consisted of 94 genotypes which include 72 hybrids, 17 parents, 4 checks and CSH 1 

as systematic check (planted after every five test plots). The genotypes were replicated 

three times in a randomized complete block design (RCBD). The plot size was 3 rows 



of 2 m length with 60 cm between rows and with 15 cm within row spacing. 

3.1.3. Location 2 experiment 

The basic materials along with checks (totalling 93 entries) were evaluated in 

randomized complete block designs with two replications in a Striga-sick field at 

Punjabrao Krishi-Vidyapeeth, Akola in a Striga-sick field. Akola is located in 

Maharashtra state at latitude 2Oo42'N and longitude 77'02'E at 41 5 m above mean sea 

level. It is clayey soil with clay 47.O0/0, sand 24.4% and silt 28.6%. The pH is 8.1, with 

total nitrogen of 0.022%, available P,O, of 14.8 kg ha.' and available K,O 290 kg ha ' .  

The rainy season extends over 4 month period between June and September. The 

mean annual rainfall during experimentation (23 June - 30 October) was 542 mm. 

During the season the mean minimum temperature was 21.8"C and mean maximum 

temperature was 34.6"C. 

3.1.3.1. The Striga-sick field 

Striga-sick plot at Akola has been maintained for the last 15 yezf : by allowing 

natural infestation of Striga and providing proper conditions for Striga germination and 

growth plus artificial inoculation of Striga seeds collected from farmers' fields into the soil 

every year. In this season the rate of application of Striga seed was 20 kg ha.' which 

was thoroughly mixed with fine sand and broadcast 15 days before sowing. Ploughing 

by bullocks was carried out at the end of May and a harrowing in June. The same set 

of 94 genotypes used in location 1 was repeated in this location with CSH 1 as 

systematic check planted after every five test plots. The plots were assigned in a 

randomized complete block designs (RCBD), with two replications. The plot size was 



3 rows of 2 m length with 45 cm between rows and with 15 cm within row spacing. The 

trial was planted manually on 24 June 1995, and irrigated once on the same day by 

furrow irrigation to ensure germination. Thereafter, the crop was completely rainfed. 

The plants were thinned to one plant per hill two weeks after germination. One hand 

weeding and two-hoeings were carried out within 23-25 days after germination. Ninety 

six kilograms of ammonium phosphate (21:21:0) ha" was applied as basal fertilizer prior 

to sowing. As top dressing, 23 kg urea ha.' was applied. The following observations 

were recorded at both locations: 

3.1.4. Days to 50% flowering 

Number of days required for 50% of the plants in the plot to have 50% of the 

florets open. 

3.1.5. Plant height 

Plant height was measured In cm as average of five plants at physiological 

maturity. 

3.1.6. Striga count 

At IAC the number of emerged Stn'ga plants per plot in the central row was 

counted at four intervals 55, 70, 85, and 100 days after sowing. The maximum Striga 

count among the four intervals was used for the analysis. At Akola, the number of Striga 

plants emerged per plot in the central row was counted at two intervals, 55 and 85 days, 

and maximum count among two counts was used for the analysis. Striga incidence 

(SI0/o) which is the percentage of the maximum Striga plant count in the test plot over 

the average maximum number of Striga plants in CSki 1 plots (systematic susceptible 



checks) was calculated as 

Striga incidence (IS%) = ----------------- ( s )  
{(s,+s~,. ..s,,)/nf 

100 

Where, 

S = maximum number of Striga plant in test entry. 

S., S ,,.... S, = maximum number of Striga plant in CSH 1 plots. 

Heads from all the plants in the central row in the test entries were harvested on 

15 September '1995. The heads were harvested in bags and oven dried for three days 

at 40°C. 

3.1.7. Grain yield plant" 

Threshing was done mechanically and the grain yield from the central row of each plot 

(1.2 m2) was considered for the analysis. 

3.2. Statistical Analysis 

Analysis were carried out by using Genstat version 4 developed by Rothamstead 

Experimental Station. In these analyses the null hypothesis that there are no genotypic 

differences was belng tested. The testing procedure lnvolved the randomized complete 

block design. The variance due to entries was further partitioned into lines, testers, 

hybr~ds, lines x testers, and parents vs checks vs hybrids. The outline analysis of 

variance for individual locations is shown in Table 3.1. 



3.2.1. Analysis of variance for combining ability in line x tester (L X T) experiment 

at individual location 

Combining ability for 72 hybrids was based on the procedures developed by 

Kempthorne (1957) which is related to design ll of Comstock and Robinson (1952). The 

sources of variation are shown in Table 3.2 

3.2.2 Genetic components 

$,,, (line) = Cov. half sib (line) 

$,,, (tester) = Cov. half sib (tester) 

Covariance half sib (average) 

Covariance full sib = [(M,-M,)+(M!-M,)+(M,,-M,)]/3xr - [6r 
Cov. Hs - r(l+t) Cov HsIl3xr 

Where, 

MI = Lines mean squares 

M, = testers mean squares 

MI, = L x T mean squares 

Me = Error mean squares 

r = No. of replications 

&,,, = Cov. half s ~ b  = [(1+F)/4I7 x&, 

dSCA = (MI,,-M,)lr = [ ( l  +F)/2]"xo', 
where, 

F = Coefficient of inbreeding depression 

A = Additive variance. 

D = Dominance variance 

The ratio between a,,, (variance of general combing ability) and &,,, (variance 

of specific combining ability) was expressed as  la?,,^. This ratio >1 indicates the 

additive gene action is more important and <1 indicates non-additive gene action is 



important. 

3.2.3. Estimates of general and specific combining ability effects 

The model used to estimate the general and specific combining ability effects of 

the (ij) observation was based on the procedures developed by Kempthorne (1957). 

X,, = P +g, + g, + s,, + e!, 

Where, 

p = Population mean, 

g = GCA effects of the i tY ine ,  

g, = GCA effects of the Jt"ester, 

s - SCA effects of the (ij):' combination, 

el, = error associated with the observation.. xi), 

I = lines 1 ,2,3...i, and 

j = testers 1,2,3.. t. 

The analysis is based on individual observation over replications. 

pit = X... 

Where X... = grand total of all ijt" hybrids combinations 

g, = Xl../tr - X.../ltr 

where, 

X = total of it" males over all females 

I = NO. of lines 

t = No. of testers 

r = No, of replication 



g, = X., Ilr - X.,,/ltr, 

Where, 

XI. = total of jth rqales over all females 

S = 
I 

XI, - X, ltr - X.,. IIr + X.../ltr 

where, XI, = (ij)Ih combinatron 

3.2.4 Calculation of S.E. mean for general and specific combining ability effects 

1. S.E. (GCA for lines) = ( ~ , / r t ) " ~  

2. S.E. (GCA for testers) = (Mclrl)1i2 

3. S.E. (SCA effects) = (Melr)"2 

4. S.E. (gl-g,)line = (2M,/rt)"2 

5. S.E. (g,- g)tester = (2M,/lr)"' 

6. S.E. (sij-skl) = (2M,/r)li2 

Where. 

Me = Error mean squares 

I = No. of lines 

t = No. of testers 

3.2.5 Proportional contribution of males, females, and their interaction to the sum 

)f squares of the hybrids at individual location 

The percentage contribution of females (lines), males (testers) and females (lines) 

28 



x males (testers) to the hybrids were calculated as: 

1. Percentage contribution of lines = {SS(L) x 100)l hybrids SS 

2 .  Percentage contribution of Testers = {SS(T) x 100)lhybrids SS 

3. Percentage contribution of Lines x Testers interaction = {SS(LxT) x 100)lhybrids 

SS Where, 

SS (L) = Sum squares of the lines 

SS (T) = Sum squares of the testers 

Hybrids SS = Sum squares of the hybrids 

3.2.6 Estimation of heterosis for individual location 

The amount of heterosis over higher parent (HP) (heterobeltiosis) as well as mid- 

parent (MP) were computed for days to 50% flowering, plant height and yield plant-' 

using the formula developed by Singh and Narayanan (1993), and for Str~ga resistance 

heterosis over mid parents (MP) was only calculated. 

Heterobeltiosis (HP) = {(F, - HP) x 100)lHP 

Heterosis over mid parents (MP) = {(F, - MP) x 100)lMP 

where, 

MP = (PI + P,)/2 

The standard errors for above estimates were calculated as follows 

SE of heterobeltios~s = (2 x M, x1lr)l" 

SE of heterosis = (1.5 x Me x 11r)"~ 

Where M, is error mean square obtained from analysis of variance. If the 



differences between the F. value and HP and F, value and MP were greater than the 

values obtained from the formulae above respectively, the heterosis estimates were 

considered significant. 

3.2.7 Heritability 

Heritability in broad sense (on plot basis) was calculated by using Genstat verslon 

4, RBDMEAN.PR0 (Appendix p.143). 

3.4. Combined Analysis For Two Locations: 

The combined analysls was done by considering two replications with the least 

standard error from IAC (replications one and three) and the two replications of Akola 

location. The ANOVA table is given in Table 3.3. The analysis was carried out by using 

Genstat 4 computer program. The combined analysis of variance for combining ability 

is shown in Table 3.4. 



Table 3.1. Form o f  analysis o f  variance for individual locations. 

Source of varlatlon D F 

Replications (R) 

Treatments (E) 

Genotypes (G) 

Hybrrds (H) 

L~nes (L) 

Testers (T)  

L x T 

Parents (P) 

Parents vs Hybrrds 

Controls (C) 

Res~stant controls (RC) 

Res~stant vs suscept~ble 

Genotypes vs controls 

Error 

Total 

Table 3.2. Form o f  analysis o f  variance for combining ability for  individual locations. 

Source of var~atron DF MS EMS 

Testers (T) t - I  M. d , + c , + l u  

Error I t(r-I) M, d' 

1 I and t are numbers of lrnes and testers respectrvely 
2 Error IS obta~ned from analysls of variance table d~rectly as lrne x tester analysls IS  based on lndrvidual 
observat~on over replrcatrons Mean squares due to Irnes, testers, and lhnes x testers are tested aga~nst 
error 



Table 3.3 Form of analysis of variance for combined locations 

Source of variation OF 

Locations (Loc) 

Locat~on x replicatiohs 

parents vs hybrids vs controls 

Locations vs parents vs controls 

Treatments (E) 

Genotypes (G) 

Hybrids (Hy ) 

t ~ n e s  (L) 

Testers (T) 

L x T 

Parents (P) 

Parents vs Hybrids 

Controls (C) 

Reststant (RC) 

Resistant controls vs suscepttble controls 

Genotypes vs control 

Loc x Controls 

Loc x parents 

LOC x L 

Loc x T 

Loc x L x T 

Error 

Total (Loc x r (e - I )  



Table 3.4. Form of combined analysis of variance for combining ability 

DF MS EMS 

L~nes (L) (1-1) MI 

Testers (T) (t-1) M, 

L x T  ( I - 1 - 1  M, ,  

LOG x L ( L C - l ) ( )  MI ,, 

LOC x T (Loc- l ) ( t - I )  MI ,, . 
LOC x L x T L O  ( I  ( - 1  ) M,,, 1 

Error l t(r-I) M, 



4. RESULTS 

4.1.1. Mean Performance 

4.1 .I .I. Striga incidence (SIX) 

The mean Striga plants plot-' (1.2 m') is given in Appendix 2a. In general, the 

infestation was low (1 plant plot-') as indicated by average Striga plants in the trial. The 

coefficient of variation (CV) was high (188%) which may indicate that infestation was not 

uniform across the trial in the field; and the differences for the susceptibility to the Striga 

among the test entries was not significant. Therefore, the Striga inc~dence in the test 

plots was weighed in relation to the average Striga plants in the nearest systemat~c 

susceptible control (CSH 1) plots, and a relative measure called Striga incidence (SI0/0) 

was calculated. Both SI% values and square root transformed values of Sl0/o i.e., 

:(IS0/0+1) are given in Appendix 2a, and the coefficient of variation has been reduced to 

76% in TSI% . Accordingly, entries were classified based on Striga incidence (SI%) as 

follows: those with less than 1O0/0 incidence as resistant, 11 to 20% as moderately 

resistant, and those with greater than 20 percent Striga incidence as suscept~ble. 

Among the male-sterile lines, L1 (SPST 94009B), L2 (SPST 9401 1 B), and L3 

(SPST 940018) confirmed to be resistant to Striga (having less than 10 percent 

Incidence over the systematic susceptible control). Among the restorers, T I  (SAR I), 

T3 (SAR 34), T4 (SAR 35), T6 (SAR 42), and T9 (ICSR 93004) showed less than 10 

percent Striga incidence compared to the systematic susceptible control, therefore, were 

resistant. The susceptible male-sterile lines were L7 (ICSB 89) and L8 (ICSB 93), both 

with 60 IS%, and also the control 2968 with 26.7% whereas susceptible restorer was T8 



(,lCSR 93002) with the maximum S1% (100) The other restorers (SAR 16, SAR 41. ICSR 

92001) were moderately resistant. 

The hybrids showed different responses to Striga. Among them, 23 showed less 

than 10 percent incidence over CSH 1. Of these, five hybrids had zero S IX .  These were 

entry 16 (SPST 9401 1A x ICSR 92001), entry 41 (SPST 94008A x SAR 41), entry 42 

(sPST 94008A x SAR 42), entry 47 (SPST 94026A x SAR 16), and entry 49 ( SPST 

g4026A x SAR 35). However, the susceptible control entry 90 (296B) showed 26.7% 

I.e., susceptible, while resistant controls SAR 16 with zero SI0/0 and SAR 34 was scored 

13.3 SI0/0. 

4.1.1.2. Days to 5O0lO flowering (DFL) 

At IAC average days to 50% flowering was 80 days (Appendix 2a). Among the 

male- sterile lines, the earliest to flower was L3 (SPST 940016) which flowered in 72 

days followed by L4 (SPST 94014B), and L6 ( SPST 94026B), which both flowered at 

75 days. Among the restorers, T5 (SAR 41) was the earliest (79 days), followed by T2 

(SAR 16) and T3 (SAR 34), both of which flowered in 80 days, and T4 (SAR 35) which 

took 81 days to flower. Among the hybrids, the following were the earliest: entry 5 

(SPST 94009A x SAR 41) and entry 29 (SPST 94014A x SAR 16) flowered in 73 days, 

entry 20 (SPST 94001A x SAR 16), entry 22 (SPST 94001A x SAR 35), and entry 47 

(SPST 94026A x SAR 16) took 74 days to flower, while the following six hybrids 

attained 50% flowering in 76 days; entry 10 (SPST 9401 1A x SAR 1), entry 19 (SPST 

94001A x SAR I ) ,  entry 23 (SPST 94001A x SAR 41), entry 24 (SPST 94001A x SAR 

42), entry 27 (SPST 94001A x ICSR 93004), entry 67 (ICSR 93 x SAR 35). The earliest 



controls in this location were entry 92 (SAR 16) with 76 days, and entry 91 (SAR 1) (79 

days). 

4.1.1.3. Plant height (PHT) 

The mean values for plant height at IAC are given in Appendix 2a. The average 

height was 1.85 m.  Among the male-sterile lines, L8 (ICSB 93) was the tallest (1.93 m), 

while the shortest line was L4 (SPST 94014B) with 1.05 m plant height. Among the 

testers T I  (SAR 1) was the tallest (2.05 m ) ,  and T2 ( SAR 16) was shortest (1 . I 0  m). 

The following six hybrids were the tallest: entry 64 (ICSA 93 x SAR 1) (2.55 m), entry 

66 (ICSA 93 x SAR 34) (2.50 m), entry 71 (ICSA 93 x ICSR 93002) (2.47 m),  entry 70 

(ICSA 93 x ICSR 92001), entry 37 (SPST 94008A x SAR A), entry 55 (ICSA 89 x SAR 

1) the last three hybrids had 2.40 m height. However, the lowest height was recorded 

in entry 38 (SPST 94008A x SAR 16) with plant height of 1.20 m,  entry 31 (SPST 

94014A x SAR 35) (1.30 m), entry 20 (SPST 94001A x SAR 16), and entry 29 (SPST 

94014A x ?"I 16) both with 1.35 m plant height. Among the controls. entry 91 (2.25 m) 

was the tallest, followed by entry 93 (SAR 34) with 1.75 m height. 

4.1 .I .4. Grain yield plant-' (GYLDIPLT) 

The mean grain yield plant" at IAC is given in Appendix 2a. In this location, the 

mean performance for grain yield was poor due to cultural practices (conditions for 

inducing Striga germination). 

Among the male sterile-lines, L5 (SPST 940088) and L8 (ICSB 93) had high grain 

yield (1 1.73 g plant"), and it was low in L6 (SPST 94026B) (3.33 g plant ' ) .  Among the 

restorers, the grain yield was high in T2 (SAR 16) (1 1.63 g plant ') followed by 1 5  (SAR 



41) (1 1.37 g plant-'), and the lowest in T7 (ICSR 92001) which was 6.37 g plant-'. 

Among the hybrids, the following were the highest yielders: entry 35 (SPST 9401 1A x 

ICSR 93002), with 26.93 g plant-', entry 42 (SPST 94008A x SAR 42) with 23.10 g plant 

' , entry 15 (SPST 94011A x SAR 42) (21.00 g plant-'), and entry 16 (SPST 94011A x 

ICSR 92001) which gave 20.83 g plant-'. The grain yield was poor in the entry 38 (SPST 

94008A x SAR 16) and entry 66 (ICSA 93 x SAR 34), which gave 1.83, and 2.43 g 

plant', respectively. Among the controls entry 92 (SAR 16) scored the highest yield 

(10.10), followed by the susceptible control entry 296B with 9.20 g. 

4.1.2. Analysis of variance 

4.1.2.1. Striga incidence (SI0/0) 

The analysis of variance for transformed Striga incidence is given in Table 4 . l a .  

At IAC Striga infestation was low and not uniform which led to hrgh heterogenerty among 

the data across the replications. Replications, treatments, genotypes, hybrids, lines and 

testers showed significant differences among the sources of variation. 

4.1.2.2. Days to 50% flowering (DFL) 

At this location (IAC) all sources of variation showed significant differences with 

the exception of replications, resistant controls, and genotypes vs controls (Table 4.  l a ) .  

4.1.2.3. Plant height (PHT) 

The analysis of variance for plant height at IAC is given in Table 4 . l a .  All sources 

of variation for plant height were highly significant at IAC. 



4.1.2.4. Grain yield plant" (GYLDIPLT) 

As indicated in Table 4. la,  all sources of variation were highly significant for grain 

yield plant-' at IAC location except resistant control vs susceptible control which was non 

significant. 

4.1.3. The combining ability and gene action 

4.1.3.1. Striga incidence (SI%) 

The GCA and SCA variance at IAC is given in Table 4.2a. The variances due to 

general combining ability (GCA) of the lines and testers were significant at IAC location 

which indicates predominance of additive type of gene actions in determining the 

res~stance (Table 4.2a). The ratio between GCA and SCA variance was less than one 

indicating that non-additive gene action was more important than additive gene action 

in governing the trait (Table 4.2aj. For Striga resistance L5 (SPST 940088) was the 

best combiner at IAC (highly negative significant GCA i.e., -0.90), followed by L2 (SPST 

9401 1 B) (-0.48) (Table 4.3a). 

None of the testers had significant GCA effect in the desirable direction. However, 

high negative GCA effect was estimated in T6 (SAR 42), T2 (SAR 16), and T7 (ICSR 

92001) and were the best combiners for Sfriga resistance (Table 4.4a). 

The proportions contributed by lines, testers and their interaction to the total 

variance of SIOh at IAC is given in Table 4.5a. The highest contribution to TSI% was 

shown by lines x testers. The lowest percentage was contributed by the male-sterile 

lines which was 14.5 which indicated the high diversity of the restores used in the crosses. 



From the estimation of SCA effects at IAC (Table 4.6a), 37 hybrids showed 

(resistant) SCA for TSI%. The highest negative SCA effects were shown by 

the following ten'entries: entry 72 (ICSA 93 x ICSR 93004) with -2.60, entry 37 (SPST 

94008A x SAR 1) with -2.49, entry 30 (SPST 94014A x SAR 34) with -2.36, entry 36 

(SPST 94014A x ICSR 93004) with -2.27, entry 64 (ICSA 93 x SAR 1) had -2.16, entry 

I 5 (SPST 9401 1A x SAR 42) with -2.04 SCA effect, entry 14 (SPST 9401 1A x SAR 41) 

with -1.76, entry 50 (SPST 94026A x SAR 14) with -1.76, entry 27 (SPST 94001A x 

ICSR 93004) with -1.66, entry 23 (SPST 94001A x SAR 41 j ,  entry 3 (SPST 94009A x 

SAR 34) with -1.62, and entry 4 (SPST 94009A x SAR 35) with -1.57 SCA effects. 

4.1.3.2. Days to 5O0/0 flowering (DFL) 

The Line x Tester analysis for DFL at IAC is given in Table 4.2a. Highly 

significant differences due to lines and testers were shown for DFL at IAC location, while 

LxT was significant. The ratio of GCA to SCA variance for DFL was less than one, 

indicating that days to 50% flowering is controlled mostly by non-additive gene action. 

At IAC, L3 (SPST 94001 B) was observed to be good combiner for earliness with 

significant (negative) GCA effects (-5.83), followed by L4 (SPST 94014A) (Table 4.3a). 

Among the testers, T2 (SAR 16) and T4 (SAH 35) were good combiners for earliness 

at IAC, with GCA effect values of -2.90, and -1.73, respectively (Table 4.4a). 

Percent contribution to the total variance of lines, testers, and LxT interaction for 

DFL is presented in Table 4.5a. The highest contribution to the total variance of DFL 

at IAC was through LxT interaction (48.5), followed by lines (30.1). 



The highest SCA effects was shown by the entry 42 (SPST 94008A x SAR 42) 

with -3.60, entry 18 (SPST 9401 1A x ICSR 93004) (-3.44), entry 32 (SPST 94014A x 

SAR 41) with -3.34, entry 33 (SPST 94014A x SAR 42) with -3.21 SCA effects, and entry 

49 (SPST 94026A x SAR 35) with -3.04 SCA effects (Appendix 3). 

4.1.3.3. Plant height (PHT) 

The combining ability effect and gene action at IAC for plant height are given In 

Table 4.2a. Highly significant differences due to lines, testers, and lines x testers were 

observed at this location. The ratio between the GCA and SCA variances was less than 

one which indicated the importance of non-additive gene action. Among the male-sterile 

lines, L1 (SPST 94009B), L6 (SPST 94026B), L7 (ICSB 89), and L8 (ICSB 93) showed 

positive GCA effects (Table 4.3a), while, T1 (SAR 1) and T3 (SAR 34) were found to 

be good combiners with high positive GCA effects (Table 4.4a) among the restorers. 

The proportion contributed by lines, testers, and their interaction to the total 

variance for plant height at IAC is shown in Table 4.5a. The highest percentage was 

contributed by lines (52.5%), while lowest contribution to ihe total variances was scored 

by LxT interaction (19.8%), which indicated that the restores used in the hybr~ds 

development were less diverse for plant height. The following hybrids had the highest 

positive significant SCA values (Appendix 4): entry 65 (ICSA 93 x SAR 16) with 0.40, 

entry 33 (SPST 94014A x SAR 42) with 0.31, entry 22 (SPST 94001A x SAR 35) with 

0.20, and entry 41 ( SPST 94008A x SAR 41) (0.18), and entry 59 (ICSR 89 x SAR 41) 

with 0.18. 



4.4.3.4. Grain yield plant' (GYLDIPLT) 

Analysis of variance for line x tester at IAC for grain yield plant-' is given In Table 

4.2a. Variances were significant with respect to grain yield plant-' in lines, testers, and 

their interactions. The SCA variance was very large compared to that of GCA in this 

location (IAC), and the ratio, GCA variance to SCA variance was less than one which 

~ndicates the importance of non-additive gene action in governing this trait. 

Line 2 (SPST 9401 1 B) was found to be good combiner at IAC location, followed 

by L4 (SPST 94014B) and both had highly significant positive GCA effects i.e., 5.02 and 

3.96, respectively (Table 4.3a). Among the testers. T6 (SAR 42), T8 (ICSR 93002) and 

T9 (ICSR 93004) showed positive significant GCA effect (Table 4.4a). 

The proportional contributions of lines, testers, and LxT to the total variance of 

grain yield plant-' at IAC is presented in Table 4.5a. The highest contribution was 

expressed by LxT, followed by lines. Significant positive SCA effect was found for 20 

hybrids at IAC (Table 4.6b), and it was the highest in the following hybrids: entry 60 

(ICSA 89 x SAR 42) with 10.23 , followed by entry 37 (SPST 94008A x SARI)  with 9.0Q 

entry 67 (ICSR 93 X SAR 35) with 4.87, entry 17 (SPST 9401 1A X ICSR 93002) , entry 

27 (SPST 94001A x ICSR 93004) 4.54, and entry 54 (SPST 94026A x lCSR 93004) with 

3.37 SCA effects. 



4.1.4. Heterosis 

4.1.4.1. Striga incidence (SI0/0) 

The average heterosis% (compared with the mean SI% of the two parents) wa 

calculated for individual locations separately. The heterosis analysis for Striga incidenct 

at IAC is given in Table 4 6 a  Heterosis for transformed Str~ga ~ncidence (TSI%) rangea 

from 0.0 to 292.47% in opposite direction, and 0 0 0  to -69.97% in the desirable direction. 

~t this location nine hybrids, 1.e.. entry 45 (SPST 94008A x ICSR 93004) (-69.97%), 

entry 37 (SPST 94008A x SAR 1) (-63.37%), entry 64 (ICSA 93 x SAR 1) (-61.56), entry 

24 (SPST 94001A x SAR 42) (-58.95%), entry 30 ( SPST 94014A x SAR 34) (-54.34), 

entry 14 (SPST 9401 1A x SAR 41) (-54.34), entry 72 (ICSA 93 x lCSR 93004) (-53.47), 

entry 8 (SPCT 94009A x ICSR 93002) (-47.52), and entry 16 (SPST 94011A x ICSR 

92001) (-36.46) showed highly negative heterosis, and most of these hybrids had 

negative SCA effects which is desirable (Table 4.6a). 

4.1.4.2. Grain yield plant" (GYLDIPLT) 

At IAC heterosis ranged from 0.00 to -80 26 in the opposed direction, and from 

0.00 to 185.22% in the desirable direction, and heterobeltios~s ranged from -83.87 to 

149.50%. There were 18 entries showing highly positive heterosis and heterobeltiosis 

at IAC (Table 4.6b). The following crosses showed the highest heterosis: entry 60 (ICSA 

89 x SAR 42) with 185.22%, followed by entry 50 (SPST 94026A x SAR 41) (178.40%). 

entry 54 (SPST 94026A x ICSR 93004) (141.81 %), ertry 51 (SPST 94026A x SAR 42) 

(135.00%), and entry 37 (SPST 94008A x SAR 1) (134.01), while the highest 

heterobeltiosis showed by the following crosses: entry 60 (ICSA 89 x SAR 42) w ~ t h  



l49.5O0/o, entry 54 (SPST 94026A x ICSR 93004) (138.52%), entry 45 (SPST 94008A 

x ICSR 93004) (96.88%), entry 37 (SPST 94008A x SAR I) with 81.52% and entry 50 

(SPST 94026A x SAR 41) (79.09%). 

4.4. Heritability 

The broad sense heritability for the four traits (transformed SIOh, days to 50% 

flowering, plant height, and grain yield plant-') at IAC is given in Table 4.7. The highest 

heritability was exhibited by grain yield plant-' at IAC, 0.91, while the lowest heritability 

value was expressed by Striga incidence (0.10). 



Akola (Location 2) 

4.2.1. Mean performance 

4.2.1.1. Striga incidence (SI%) 

The mean of Striga plants plot" is given in Appendix 2b. The infestation was low 

(1 plant  plot^') as showed by the average Striga plants in the experiment. The coefficient 

of variation (CV) was high (178%) indicating the non-uniformity of the infestation across 

!he trial in the field, and the differences for the reaction with the Striga among the test 

entries was not significant. Therefore, the Striga incidence in the test plots was weighed 

in the same way as was done cit IAC (location 1) by calculating the Striga incidence 

(Sl0/o) in relation to the systematic control (CSH 1). The analysis of the SI% values 

transformed to square root transformation [t'(Sl%+l)] is presented in Appendix 2b. The 

CV(%) has been reduced trom 178 to 97. The entries were classified into three groups 

according to Striga incidence (3%)  as in the first location, those with SIX from 0.0 to 

10 as resistant, from 11 to 20 percent as moderately resistant, and above 20 as 

susceptible. 

Among the male-sterile lines, L2 (SPST 9401 1 B), L3 (SPST 94001 B), L4 (SPST 

94014B), and L6 (SPST 94026B) were found to be resistant (having less than 10 Sl%j, 

while L5 (SPST 940088) was moderately resistant (20 SI%). Among the restorers, the 

following entries were found to be resistant: T2 (SAR 16), T4 (SAR 35), T6 (SAR 42), 

and T9 (ICSR 93004). While, T3 (SAR 34) was moderately resistant to Striga. The 

susceptible male-sterile lines, L7 (ICSB 89) and L8 (ICSB 93) both depicted 110.0 SI%, 

whereas the susceptible restorers, T7 (ICSR 92001) and T8 (ICSR 93002) had 30.0 and 



5 0 , ~  SI%, respectively. However, T9 (ICSR 93004) though was used as susceptible 

tester, but did not harbor any Striga plants in the plot. 

Among the hybrids 37 found to be resistant with Str~ga incidence from 0.0 to 

percent, among them 20 showed zero 3 % :  entry 2 (SPST 94009A x SAR 16). entry 7 

(spST 94009A x ICSR 92001), entry 12 ( SPST 9401 1A x SAR 34), entry 13 ( SPST 

9401 1A x SAR 35), entry 19 (SPST 94001A x SAR l ) ,  entry 20 (SPST 94001A x SAR 

16), entry 22 (SPST 94001A x SAR 35), entry 23 (SPST 94001A x SAR 41), entry 24 

(SPST 94001A x SAR 42), entry 27 (SPST 94001A x ICSR 93004), entry 33 (SPST 

04014A x SAR 42), entry 34 (940:4A x ICSR 92001), entry 37 (SPST 94008A x SAR I ) ,  

entry 38 (SPST 94008A x SAR 16), entry 42 (SPST 94008A x SAR 42), entry 43 (SPST 

94008A x ICSR 92001), entry 47 (SPST 94026A x SAR 16), entry 49 (SPST 94026A x 

SAR 35), entry 51 (SPST 94026A x SAR 42), and entry 67 (ICSR 93 x SAR 35), while 

the susceptible control entry 90 (2966) showed 100 SIN and the resistant controls entry 

51 (SAR I), and entry 93 (SAR 34) were scored 0 and 10 SI0/0 respectively. 

4.2.1.2. Days to 50% flowering (DFL) 

Days to flowering at Akola is given in Appendix 2b.  Among the male-sterile lines, 

L3 (SPST 940016) was the earliest line (flowered in 64 days), followed by L6 (SPST 

94026B) which took 69 days to flower, and L2 (SPST 9401 1B) and L4 (SPST 940148) 

both flowered in 77 days. Among the restorers, T5 (SAR 41) was the earliest, which 

flowered in 75 days, followed by T2 (SAR 16) (76 days), and T3 (SAR 34) which took 

77 days to flower. Among the controls entry 93 (SAR 34) was the earliest (77 days), 

followed by entry 92 (SAR 16) which flowered in 78 days. 



The following 10 entries were the earliest ones among the hybrids: entry 5 

(SPST 94026A x ICSR 93004) and entry 56 (ICSA 89 x SAR 16) both flowered in 6 

days, entry 53 (SPST 94026A x ICSR 93002) flowered in 67 days. entry 24 (SPS- 

94001A x SAR 42) took 68 days to flower, entry 48 (SPST 94026A x SAR 34). entry 45 

(sPST 94026A x SAR 34) and flowered in 69 days; entry 19 (SPST 94001A x SAR 1) 

and entry 27 (SPST 94001A x ICSR 93004) both flowered in 70 days, entry 21 (SPST 

94001A x SAR 34) and entry 50 (SPST 94026A x SAR 41) took 71 days to flower. The 

remaining six flowered in 72 da)/s: entry 1 (SPST 9 4 0 0 9 ~  x SAR 1 )  , entry 29 ( SPST 

94r314A x SAR 1 6 ) ~  entry 32 (SPST 94014A x SAR 41), entry 47 (SPST 94026A x SAR 

j 6 ) ,  entry 5 j  (SPST 94026A x SAR 42), and entry 66 (ICSA 93 x SAR 34). 

4.2.1.3. Plant height (PHT) 

The rneans for $ant height at Akola are given in Appendix 2b. The average 

he~ght was 1.68 m. Among the male-sterile lines the tallest lines were L7 (ICSB 89) with 

1.85 rn plant height, followed by L8 (ICSB 93) with 1.70 m, while the shortest lines were 

12 (SPST 9401 18) and L4 (SPST 94014B), both with 0.95 m plant height. Among the 

testers. the tallest were T3 (SAR 34) with 1.80 rn and T1 (SAR 1) (1.75 m), while the 

lowest plant heights were recorded i l l  T2 (SAR 16) (1.15 m), T5 (SAR 41), and T9 (ICSR 

93004) both with 1.40 m. Among the controls entry 91 (SAR 1) was the tallest (1.75 m),  

followed by susceptible control entry 90 (2968) with 1.70 m. 

Among the hybr~ds, the following were the tallest: entry 61 (ICSA 89 x ICSR 

92001) with 2.45 m height. entry 64 (ICSR 93 x SAR 1) with 2.40 m, entry 37 (SPST 

94008A x SAR I ) ,  entry 71 (ICSA 93 x ICSR 93002) the two with 2.30 m, entry 62 (ICSA 



89 x lCSR 93002), and entry 70 (ICSA 93 x ICSR 92001) both with 2.25 rn plant height. 

However. the shortest entries were the following: entry 28 (SPST 94014A x SAR 1) 

entry 38 (SPST 94008A x SAR 16) both with 0.95 rn height. entry 29 (SPST 94014A 

SAR 16) with 1.10 rn height, entry 32 (SPST 94014A x SAR 42) with 1.15 rn heigh 

entry 20 (SPST 94001A x SAR 16), entry 18 (SPST 94011A x ICSR 93004) and 3 

(SPST 94014A x SAR 35) each with 1.30 m height. 

4.2.1 -4. Grain yield plant '  (GYLDIPLT) 

The means for grain y~eld plant.' are given in Appendix 2b. Among the male- 

sterrle lines, entries L7 (ICSB 89). L6 (SPST 94026B), L5 (SPST 940088), and L8 (ICSB 

93) were the highest yielding lines with grain yield plant" of 29.4 g, 28.4 g, 22.9 g, and 

27 3 g ,  respect~vely Amorig the restorers, T2 (SAR 16) was highest yielder with 26.15 

g plant ' ,  followed by T8 (ICSR 93002) of 25.15 g  plant^' and T6 (SAR 42) with 23.55 

g plant ' .  

Among the hybrids the following entries had the highest grain yield plant-': entry 

65 (ICSA 93 x SAR 16) with 72.75 g, entry 64 (ICSA 93 x SAR I )  with 72.65 g entry 72 

ilCSA 93 x ICSR 93004) with 6975 g, entry 23 (SPST 94001A x SAR 41) (69.00 g), 

entry 41 (SPST 94008A x SAR 41) with 6300 g entry 54 (SPST 94026A x ICSR 93004) 

with 59.1 g, and entry 67 (ICSA 93 x SAR 35) with 58.55 g The poorest grain yields 

were recorded in entry 57 (ICSA 89 x SAR 34) with 11.75 g, entry 60 (ICSA 89 x SAR 

42) w~th  16.55 g, and entry 25 (SPST 94001 x ICSR 92001) with 20.90 g. However, 

among the hybrids, the high yield was recorded in the susceptible control entry 90 

(2968) with 19.40 g plant.'. 



4.2.2. Analysis o f  variance 

4.2.2.1 Striga incidence ( 9 % )  

At Akola, S,friga infestation was low and not uniform, which resulted in high 

ileterogeneity among the data across the replications of the same location. Square root 

transformation of SIO/o was used for the analysis. Only lines, controls, and res~stant 

control vs susceptible control showed significant differences (Table 4 . l a ) .  

4.2.2.2. Days t o  5O0/0 f lowering (DFL) 

Treatments, genotypes, lines, parents vs controls vs hybrids and parents vs 

controls exhibited significant differences in this location (Table 4.1 a). 

4.2.2.3. Plant height (PHT) 

Most sources of variation for plant height were significant at Akola with the 

exception of replications, and resistant controls vs suscept~ble controls (Table 4.1 a). 

4.2.2.4. Grain yield plant-' (GYLDIPLT) 

Consistent highly significant differences for grain yield plant-' at this location were 

due to treatments, genotypes, lines, testers, LxT, parents, parents vs controls vs hybrids, 

parents vs controls, and genotypes vs controls Table 4 . l a .  

4.2.3. The combin ing ability and gene action 

4.2.3.1. Striga incidence (SIOh) 

The variances due to GCA of the lines was significant at Akola location which 

indicated both additive and non-additive type of gene actions are involved in determining 

the resistance (Table 4.2a). The ratio between GCA variance and SCA variance was 



less than one indicating that non-additive gene action was more important than additive 

gene action in governing the trait (Table 4.2a). Testers variances due to GCA were not 

significant. Among the lines, L3 (SPST 940018) was the best combiner for Striga 

resistance, followed by L6 (SPST 940268) (Table 4.3a). Among the testers T6 (SAR 42) 

was the best combiner (showed the highest negative GCA effect), followed by T4 (SAR 

35) (Table 4.4a ). 

The proportions contributed by lines, testers and their interaction to the total 

variances of TSI% is given in Table 4.5a. The highest contribution to TSI% was shown 

by lines x testers (66.70), and the lowest percentage was contributed by testers which 

was 14.8. 

From the estimation of SCA effects at Akola, 41 entries expressed negative SCA 

effects (Table 4.6a), with the highest SCA effects expressed by the following entries: 

entry 52 (SPST 94026A x ICSR 92001) (-3.11), entry 32 (SPST 94014A x SAR 41) (- 

3.02), entry 63 (ICSA 89 x ICSR 93004) (-2.79), entry 18 (SPST 9401 1A x lCSR 93004) 

(-2.68), entry 44 (SPST 94008A x ICSR 93002) (-2.38), and entry 56 (ICSA 89 x SAR 

16) (-2.24). 

4.2.3.2. Days to 50% flowering (DFL) 

Significant differences due to lines and testers were shown for DFL at Akola 

location. GCA variance for DFL was relatively large at Akola when compared with that 

of IAC, while SCA variance was relatively smaller at Akola than at IAC, and the ratio 

between GCA and SCA variance was less than one (Table 4.2a), an indication that days 

to 50% flowering is controlled by non-additive gene action as found at IAC. 



Line 3 (SPST 94001 B) w~ th  -5.83 GCA effect and L6 (SPST 94026A) (-4.20) were 

found to be good general combiners at Akola (Table 4.3a). Among the testers T5 (SAR 

41) (-4.69) and T3 (SAR 34) 1-1.76) were good combiners (Table 4.4a). 

Percent contribution to the total variance, of lines, testers, and LxT interaction for 

DFL at Akola is presented in Table 4.5a. The highest contribution to the total variance 

of DFL was expressed by LxT interaction (52.30), followed by lines (31 .go). 

Estimates of SCA effects indicated that entry 70 (ICSA 93 x ICSR 92001) had the 

highest SCA effects (-5.78). followed by entry 1 ( SPST 94009A x SAR 1) (-5.72), entry 

24 (SPST 94001A x SAR 42) (-4.76), entry 32 (SPST 94014A x SAR 41) ( -4.33), entry 

12 (SPST 9401 1A x SAR 341 with -3.65 SCA effect (Appendix 3). 

4.2.3.3. Plant height (PHT) 

Highly significant differences due to lines, testers and lines x testers were 

observed at Akola location (Table 4.2a). GCA and SCA variances for plant height at 

.Akola location were very small, and the ratio between the GCA variance and SCA 

variance was less than one ivh~ch indicated the rmportance of non additive gene action. 

Among the lines. L8 (ICSB 93), and L7 (ICSB 89) were found to be good combiners for 

plant height with highly positive significant GCA effects (Table 4.3a). Among the resistant 

testers T3 (SAR 34) and T I  (SAR 1) were found to be good combiners with highly 

positive GCA effects at Akola location (Table 4.4a). 

The proportions contributed by lines, testers, and their interaction to the total 

variance for plant height is shown in Table 4.5a. The highest percentage was 

contributed by lines, and the lowest contribution to the total variances was scored by LxT 



interaction (Table 4.5a). Among the hybrids the following showed highest SCA effects: 

entry 2 (SPST 94009A x SAR 16) (0.37), entry 5 (SPST 94009A x SAR 41) with 0.31, 

entry 55 ( ICSA 89 x SAR 1) (0.31), entry 9 (SPST 94009A x ICSR 93004) with 0.28, 

and entry 69 (ICSA 93 x SAR 42) with 0.25 SCA effects (Appendix 4). 

4.2.3.4. Grain yield plant'' (GYLDIPLT) 

At Akola, significant differences for grain yield plant-' were observed for the lines, 

testers, and their interactions (Table 4.2a). The SCA variance was very large compared 

to that of GCA in this location, and the ratio of GCA variance to SCA variance was less 

than one which indicated the importance of non-additive gene action in governing this 

trait. Line 8 (ICSB 93) was found to be good combiner (positively high significant GCA 

effects i.e., 10.03), followed by L5 (SPST 94008B) (9.69), and L3 (SPST 94001B) (4.49) 

(Table 4.3a). Among the testers, T9 (ICSR 93004) showed positive highly significant 

GCA (1 1.60), followed by T I  ( SAR 1) with 4.17 GCA effects (Table 4.4a). 

The proportional contribution of lines, testers, and LxT to the total variance of 

yield is presented in Table 4.5a. The highest contribution was expressed by LxT 

interaction (60.10) followed by lines (24.40). 

On examination of the SCA effects for grain yield at Akola, revealed that 19 

entries showed significant positive SCA effects. The highest significant SCA effects was 

observed in the following entries: entry 55 (ICSA 89 x SAR 1) with value of 26.39, entry 

35 (SPST 94014A x ICSR 93002) with value of 26.07 SCA effects, entry 16 (SPST 

9401 1A x ICSR 92001) with 22.1 1 SCA, entry 22 (SPST 94001A x SAR 35) with 20.34, 

entry 8 (SPST 94009A x ICSR 93002) with 19.43,and entry 37 (SPST 94008A x SAR 1) 



with 18.87. High negative SCA effect was expressed by entry 56 (ICSA 89 x SAR 16) 

with value of -25.34, followed by entry 69 (ICSA 93 x SAR 42) with -20.72. 

4.2.4. Heterosis 

4.2.4.1. Striga incidence (SI0/0) 

At this location (Akola) heterosis ranged from 0.00 to -83.87% in the desirable direction, 

and from 0.00 to 78.26% in the opposed direction (Table 4.6a). Highly negative 

heterosis was shown by 28 entries. Following entries showed highly negative heterosis: 

entry 67 (ICSA 93 x SAR 35) with -83.87%, ertry 9 (SPST 94009A x ICSR 93004) with - 

81.3I0/o, entry 45 (SPST 94008A x ICSR 93004) with (-75.16), entry 49 (SPST 94026A 

x SAR 35) with -73.86%, entry 43 (SPST 94008A x ICSR 92001) with -71.01% and 

entry 65 (ICSR 93 x SAR 16) with -66.67%. 

4.2.4.2. Grain yield plant-' (GYLDIPLT) 

At Akola heterosis ranged from 0.00 to -41.03 in the opposed direction, and from 

0.00 to 376.61% in the des~rable direction, and heterobeltiosis ranged from 0 00 to - 

29.72% in the opposed direction, and from 0.00 to 317.94% In the desirable direction. 

Among the hybrids 34 entries showed highly positive heterosis and heterobeltiosis (Table 

4.6b). The highest heterosis percent was expressed by entry 37 (SPST 94008A x SAR 

1)  with 375.6I0/o, entry 16 (SPST 9401 1A x SPST 92001) with 366.35%, entry 32 (SPST 

94014A x SAR 41) with 292.95%, entry 8 (SPST 94009A x ICSR 93002) with 286.95%, 

and entry 29 (SPST 94014A x SAR 16) with 238.98%. However, the highest 

heterobeltiosis was reflected by entry 37 (SPST 94008A x SAR I )  with 317.94%, entry 



16 (SPST 9401 1A x ICSR 92001) with 286.97%, entry 32 (SPST 94014A x SAR 42) with 

236.4g0/o, entry 29 (SPST 94014A x SAR 16) 216.09%, and entry 40 (SPST 94008A x 

SAR 35) with 196.37%. 

4.2.5. Heritability 

The broad sense heritability for the four traits (SI%, days to 50% flowering, plant 

height and grain yield plant-') is given in Table 4.7. The highest heritability was showed 

by grain yield  plant^' which was 0.95, while the lowest heritability value was expressed 

by Striga incidence (0.02). However, for DFL the heritability was high at the two 

locations. 



4.3. Combined Analysis 

4.3.1. Mean Performance 

4.3.1 . l .  Striga incidence (SIO/~) 

The pooled mean Striga plants plot-' (1.05 m 7  is given in Appendix 2c. The 

infestation was low (1 plant plot-') as indicated by average Striga plants In the 

experiment. The coefficient of variation CV (%) was high (157) for actual Striga plants 

and (164) for SI% indicating the infestation was not uniform, and the differences for the 

susceptibility to the Striga among the test entries was not significant. The same 

procedure used in the individual locations for calculating SI% was applied in the 

combined analysis. Square root transformation of SI% [d(SlO/~+l)] was used for the 

analysis. The CVO/o ieduced from 164 to 71. Classification for Striga resistance based 

on Striga incidence ( 3 % )  was used in the combined analysis as follows: 0-10 percent 

incidence as resistant, 11-20 percent as moderately resistant, and those with greater 

than 20 percent Striga incidence as susceptible. 

All resistant male-sterile lines, L1 (SPST 94009B) (7.0), i 2  (SPST 9401 1B) (0.5). 

L3 (SPST 940018) (0.5), L4 (SPST 94014B) (0.5), and L5 (SPST 940088) (6.7) were 

resistant to Striga except L6 (SPST 940268) which was moderately resistant (10.5). 

Among the restorers used as resistant sources, T I  (SAR I ) ,  T3 (SAR 34), T4 (SAR 

35), and T6 (SAR 42) had less than 10 percent Striga incidence over the systematic 

susceptible control, while in, T2 (SAR 16), and T5 (SAR 41) 10.5 and 17.3% Striga 

inc~dence was noticed, respectively. Similarly, susceptible male-sterile lines, L7 (ICSB 

89) with 43.7 SI0/0 and L8 (ICSB 93) with 49.5 SI0/0, whereas the early classified 



~usceptible restorers were T7 (ICSR 92001) with 7.5%, T8 (ICSR 93002) with 32.50 and 

T9 (ICSR 93004) with 0.5 St%. All resistant controls (SAR I, SAR 16, and SAR 34) 

were confirmed to be resistant, while the susceptible control 296B was showed 24.5 

SIO/o. 

Among the hybrids, 37 showed less than 10 percent incidence over CSH 1 

Some of the hybrids with lowest SIOh (less than 2.5%) were entry 7 (SPST 94009A x 

ICSR 92001), entry 11 (SPST 94011A x SAR 16), entry 16 (SPST 94011A x ICSR 

93001), entry 28 (SPST 94014A x SAR l ) ,  entry 32 (SPST 94014A x SAR 41), entry 41 

(SPST 94008A x SAR 41), entry 42 (SPST 94008A x SAR 42), entry 47 (SPST 94026A 

x SAR 16), entry 49 (SPST 94026A x SAR 35), entry 51 (SPST 94026A x SAR 42). 

4.1.1.2. Days to 50% flowering (DFL) 

The means for DFL in combined analysis are given in Appendix 2c. In this 

analysis the average DFL was 78 days. Among the male-sterile lines, the earliest one 

to flower was L3 (SPST 94001B) which flowered in 69 days, followed by L6 (SPST 

94026B) (72 days). Among the restorers, T2 (SAR 16) was the earliest to flower (77 

days), followed by T3 (SAR 34) and T5 (SAR 41) both took 78 days to flower. While the 

earliest control was entry 92 (SAR 16) (78 days), followed by entry 93 (SAR 34) which 

flowered in 79 days. 

The following hybrids were the earliest: entry 24 (SPST 94001A x SAR 42), entry 

49 (SPST 94026A x SAR 35) both flowered in 72 days, entry 20 (SPST 94001A x SAR 

16), entry 29 (SPST 94014A x SAR 16), entry 47 (SPST 94026A x SAR 16) and entry 

48 (SPST 94026A x SAR 34) flowered in 73 days, entry 21 (SPST 94001A x SAR 34), 



entry 27 (SPST 94001A x ICSR 93004), and entry 53 (SPST 94026A x ICSR 93002) 

which took 74 days to flower. 

4.1 .I .3. Plant height (PHT) 

The mean of plant height in the combined analysis is given in Appendix 2c. The 

average height was 1.77 m. Among the male-sterile lines L7 (ICSB 89) was the tallest 

(1.84 m), while the shortest line was L4 (SPST 940145) with 0.99 m height. Among the 

testers T I  (SAR 1) was the tailest with 1.93 m height, whereas T2 ( SAR 16) was 

shortest restorer with 1 . I 5  m plant height. The following six hybrids were the tallest in 

the experiment: entry 64 (ICSA 93 x SAR 1) (2.49 m), entry 61 (ICSA 89 x ICSR 92001) 

(2.39 m), entry 70 (ICSA 93 x ICSR 92001) (2.38 m), entry 66 (ICSA 93 x SAR 34) (2.35 

m), entry 71 (ICSA 93 x ICSR 93002) (2.38 m), entry 48 (SPST 94026A x SAR 34) (2.31 

m), and entry 62 (ICSA 93 x ICSR 93002) (2.31 m). However. the lowest height was 

recorded in entry 29 (SPST 94014A x SAR 16), entry 32 (SPST 94014A x SAR 41), 

entry 38 (SPST 94008A X SAR 16), the three with plant height of 1.26 m,  followed by 

entry 31 (SPST 94014A x SAR 35) (1.28 m). While the tallest control was entry 91 (SAR 

1 )  with 2.05 height. 

4.1 .I -4. Grain yield plant'' (GYLDIPLT) 

The mean for grain yield plant ' in combined analysis is given in Appendix 2c. In 

the pooled mean grain yield plant'  was 21.95 g. Among the male-sterile lines. L8 

(ICSB 93), and L7 (ICSB 89) had high grain yield of 20.52 g and 18.50 g plant", 

respectively, and the lowest by L4 (SPST 940145) which was 9.03 g plant " .  Among the 

restorers, the highest grain yield was recorded in T9 (ICSR 93004)(17.23 g  plant^'), 



followed by T3 (SAR 34) (16.30 g plant-'), and the lowest by T6 (SAR 42) which was 

9.25 g plant-'. Among the controls the highest yield was recorded in entry 90 (2968) 

with 15.40 g grain yield plant" , followed by entry 92 (SAR 16) (12.15 g).  Among the 

hybrids, the following were the highest yielders: entry 41 (SPST 94008A x SAR 41), with 

41.88 g plant-', entry 72 (ICSA 93 x ICSR 93004) with 41.48 g plant ' ,  entry 64 (ICSA 93 

x SAR 1) (39.15 g plant"), and entry 65 (ICSA 93 x SAR 16) which gave 39.08 grams 

plant-'. The grain yield was poor in entry 57 (ICSA 89 x SAR 34) (10.90 g), and entry 

47 (SPST 94026A x SAR 16) which gave 1 I .93 g  plant^'. 

4.1.2. Analysis of variance 

4.1.2.1. Striga incidence (SI0/0) 

Low Striga infestation and non-uniformity led to high heterogeneity among the 

data across the locations and within the replications of the same location, hence for 

combined analysis two replications with least standard errors were considered. The 

coefficient of variation CV(%) was very high (164), the square root transformation of SIO/~ 

reduced CV% to 71 (Appendix 2c). From the analysis, variances due to locations, 

replications within location, treatments, genotypes, resistant control vs susceptible 

control, testers and parents were significant (Table 4 . l b ) .  Locations x genotypes 

interaction effects were not significant indicating that the data can be pooled across the 

locations. However, since locations effects are significant, ~ndividual locations data are 

analyzed and presented in previous sections. 



4.1.2. Days to 50% flowering (DFL) 

In combined analysis, the locations, parents vs hybrids vs controls, treatments, 

genotypes, hybrids, (ines, testers, parents, parents vs hybrids showed highly significant 

differences (P= O.Ol).(Table 4. lb . ) .  As in SI0/0, locations x genotypes effects were not 

significant. 

4.1.3 Plant height (PHT) 

Most sources of variat~on were significant for plant height, except replications 

within locations, locations vs parents vs hybrids vs control, resistant control vs 

susceptible control, location x parects, locations x lines, and locations x testers (Table 

4.1 b). 

4.1.4. Grain yield plant" 

From combined analysis all sources of variations were highly significant except 

replications within the location, controls, resistant controls, and resistant controls vs 

susceptible controls (Table 4.1 b). 

4.3.3. The combining ability and gene action 

4.3.3.1. Striga incidence (SIO/o) 

The pooled analysis indicated that the variances due to lines, testers, and LxT 

were not significant. The ratio between GCA and SCA variance was less than one 

indicating non-additive gene action was more important than additive gene action in 

governing the trait (Table 4.2b). Estimates of GCA effect for lines in combined analysis 

(Table 4.3b) indicated that L5 (SPST 940088) was the best combiner for Striga 



resistance (high negative GCA effect i.e., -4.70), followed by L2 (SPST 9401 1 B) (-2.26) 

Among the testers, T6 (SAR 42) showed the highest negative GCA (-5.96) followed by 

T2 (SAR 16) (-3.94) (Table 4.4b). 

The proportions contributed by lines, testers and their interaction to the total 

variance for SI% is given in Table 4.5b. The highest percentage to SI% was contributed 

by lines x testers (70.06), followed by testers (23.65) which indicated the divers~ty of the 

testers used in the trial. 

From the estimation of SCA effects in combined analysis, six crosses showed 

highly negative SCA effects, they were entry 70 (ICSA 93 x ICSR 92001) with -1.68, 

entry 60 (ICSA 89 x SAR 42) with -1.60, entry 28 (SPST 94014A x SAR 1) w ~ t h  -1.50, 

entry 49 (SPST 94026A x SAR 35), with -1.33. and entry 54 (SPST 94026A x ICSR 

93004) with -1.08 (Table 4 . 6 ~ ) .  

4.3.3.2. Days to 50% flowering (DFL) 

In the combined analysis, the SCA variance (0.70) was more important than GCA 

variance (0.41) and the ratio between GCA and SCA variance was less than one (Table 

4.2b), an indication that DFL is controlled by non-additive gene action. Among the lines, 

L3 (SPST 94001 B) with -4.84, and L6 (SPST 940268) with -1.89 were found to be good 

general combiners in the combined analysis (Table 4.3b). Among the testers T5 (SAR 

41) with -2.27, and T2 (SAR 16) with -1.14 were the best combiners for DFL (Table 

4.4b). 

Percent contribution to the total variances of lines, testers, and LxT interaction for 

days to 50% flowering is presented in Table 4.5b. The highest contribution to the total 



variances of DFL was expressed by LxT interaction (43.54), followed by lines (38.88). 

In the combined analysis the highest negative SCA effects were shown by the 

following entries: entry 51 (SPST 94026A X SAR 42) with -12.04, followed by entry 1 

(SPST 94009A x SAR 1) with -3.59, entry 36 (SPST 94014A x ICSR 93004) (-3.44), 

entry 49 (SPST 94026A x SAR 35) (-2.87), entry 70 (ICSA 93 X ICSR 92001) with -2.30 

SCA effects (Table 4 . 6 ~ ) .  

4.3.3.3. Plant height (PHT) 

Highly significant differences due to lines, testers and line x testers were observed 

in the combined analysis for plant height (Table 4.2b). The ratio between the GCA 

variance to SCA variance was equal to one indicating the importance of both additive 

and non-additive gene action in controlling the plant height. Among the male-sterile 

lines. L8 (ICSB 93) (0.93) and L7 (ICSB 89) (0.28) were found to be good combiners for 

height (Table 4.3b). Among the testers, T3 (SAR 34) with (0.23), T1 (SAR 1) with (0.22) 

were found to be good combiners with high positive GCA effects in the combined 

analysis (Table 4.4b). 

The proportions contributed by lines, testers, and their interaction to the total 

variance for plant height is shown in Table 4.5b. The highest percentage was 

contributed by the lines (59.84), while the lowest contributor to the total variances was 

LxT interaction (1 6.59). 

The highest positive SCA effects were shown by the following crosses: entry 10 

(SPST 94011A x SAR 1) and entry 22 (SPST 94001A x SAR 35) both with significant 

values of 0.26, other crosses, namely, entry 18 (SPST 9401 1A x ICSR 93004). entry 24 



(SPST 94001A x SAR 42), entry 32 (SPST 94014A x SAR 41), and entry 33 (SPST 

94014A x SAR 42), and entry 37 (SPST 94008A x SAR 1) also had high SCA effects 

(Table 4 . 6 ~ ) .  

4.3.3.4. Grain yield plant" (GYLDIPLT) 

In the combined analysis, significant variances for grain yield plant'' was observed 

due to lines, testers, and the their interactions (Table 4.2b). The SCA variance was very 

large compared to that of GCA, and the ratio of GCA variance to SCA variance was less 

than one which indicates the importance r ~ f  non-additive gene action in governing the 

grain yield plant-' 

Among the lines, L5 (SPST 94008A) (5.50) was found to be good combiner, 

followed by L8 (ICSB 89) with 3.50 GCA effect (Table 4.3b). Among the testers. T9 

(ICSR 93004) was the best combiner for the yield (6.65), followed by T1 (SAR 1) with 

0.71 GCA effects (Table 4.4b). 

The proportions contributed by lines, testers, and LxT to the total variance of grain 

yield is presented in Table (4.5b). The highest contribution was through LxT interaction 

(74.97), followed by testers (19.46). 

On examination of the SCA effects for grain yield in combined analysis (Table 

4 . 6 ~ )  reflected that, entry 24 (SPST 94001A x SAR 42) showed the highest SCA effects 

(1 3.03), followed by entry 72 (ICSA 93 x ICSR 93004) (1 1.83), entry 69 (ICSA 93 x SAR 

42) (1 1.67), and entry 51 (SPST 94026A x SAR 42) (10.66). On the other hand the 

highest negative SCA effect was noticed in the entry 19 (SPST 94001A x SAR 1)  (- 

12.12), followed by entry 14 (SPST 94011A x SAR 41) (-9.71). 



Table 4.1a. Analysis of variance for transformed Striga incidence (TSI%), days to 50% flowering (DFL), plant height (PHT), and grain yield 
plant-' (GYLDIPLT) at ICRISAT Asia Center (IAC) and Akola. 

Mean squares 

TS I %" DFL PHT GY LDlPLT 

SV DF IAC Akola IAC Akola IAC Akola IAC Akola 

Repl~cation 2(lZ) 31 50*' 3 07 16 96 0 65 0.07' 0 08 0.68 3.07 

Treatment 92 11.13' 9 77 43 75** 61 67* 0 42*' 0 26.' 67 19" 471.73" 

Genotypes(G) 88 11 35* 9 35 43 35** 62 69* 0 40" 0 26" 68 84" 464 21" 

Hybr~ds (Hy) 71 11 39' 8 48 28 80*" 59 43 0 34" 0 26" 79 15" 405 90 

Llnes (L) 7 1676' 22 36' 87 93*' 192 47" 1 79"' 1 38" 267 06** 1019 56" 

Testers (T) 8 19 05' 10 99 54 76" 83 24 0 82"' 1 47" 171 30'* 545 86** 

L x T 56 9 63 6 39 17 70' 39 39 0 08** 0 09' 42 49" 309 20" 

Parents (P) 16 1083 13 76 100 42" 65 88 0 26" 0 18'* 19 95" 66 83" 

P vs C vs Hy 2 1005 2 46 85 34** 178 50' 4 01" 1 40*' 85 62" 6715 32'* 

P vs C 

Controls (C) 

Res~s  Cont 2 7 51 3 10 21 44 17 17 1 02" 0 25" 29 48'- 18 50 

Res~s  Cont vs 1 6 28 65 34'* 160 44** 8 17 0 63'* 0 02 13 @8* 43 74 
Sus Cont 

Error 184(92') 8 3 1 9 46 1 1  95 42 27 0 03 0 04 2 10 i2 01 

'." S~gnif~cant at 0 05 and 0 01 levels of probab~lity respectively 
Llnes and testers mean squares were tested agalnst llnes x testers mean squares and lines x testers mean squares are tested aga~nst error mean 
squares 
a = Square root transformat~on <(SI% + I )  b = DF for Akola 



Table 4.1b. Combined Analysis of variance for transformed Striga incidence (TSI%), days to 50% 
flowering (DFL), plant height (PHT), and grain yield plant" (g) (GYLDIPLT) 

Mean squares 

SV DF TSIO/o" DFL PHT GY LDIPLT 

Locations 

Replicat~on w ~ t h ~ n  location 

P vs HY vs Cont 

Loc vs P vs HY vs Cont 

Treatments 

Genotypes 

Genotypes vs controls 

Controls 

Resrstant cont 

Resls cont vs sus cont 

Hybrids 

Lines (L) 

Testers (T) 

L x T  

Parents (P) 

Parents vs Hybr~ds 

Loc x parents 

Loc x cont 

Loc x lines 

Loc x testers 

Lac x (LxT) 

Error 

' ", Srgn~ficant levels at 0.05, and 0.01 levels of srgn~ficant respectrvely. 
Mean squares of lines and testers were tested agalnst mean squares of llnes x testers 
Mean squares of lines x testers were tested against mean squares of error. 
a = Square root transformation \ '(SI%+I). 



Table 4.2a. Line x tester analysis of variance for transformed Striga incidence (TSIO/~), days to 50% flowering (DFL), plant height (PHT), 
and grain yield plant-' (g) (GYLDIPLT). 

Mean squares 

TSI%" DFL PHT GY LDIPLT 

DF IAC Akola I AC Akola IAC Akola i AC Akola 

L~nes  7 16 76' 22 36' 87 3" 19; 47" 1 78" 1 38" 267 05" 101 9 56* 

Testers 8 1905* 10 99 54 76" 83 24 0 82" 1 47" 171 30" 545 86" 

L~nes x testers 56 9 63 6 39 17 70' 39 39 0 08" 0 05" 42 49" 309 20" 

Error 184(92') 8 31 9 46 11 95 42 27 0 020 0 040 2 10 12 01 

'," S~gn~flcant at 0 05, 0 01 levels of probab~l~ty, respectlbely 
Mean squares due to llnes and testers were tested agalnst mean squares due L~nes x testers and L~nes x testers, were tested agalnst error mean 
squares 
a = Square root transformat~on \ (SI%+?)  
b = DF for Akola 



Table 4.2b. Combined analysis of variance for Striga incidence (TSIO/o), days to 50% flowering (DFL), 
Plant height (PHI) ,  and grain yield plant" (g) (GYLDIPLT) in Line x tester experiment. 

Mean squares 

SV D F TSI%" DFL PHT GY LDIPLT 

Lines 7 

Testers 8 

L x T  56 

LOC x L 7 

Loc x T 8 

Loc x L x T 56 

Error 184 

*.'* Sign~ficant at 0.05 and 0 01 levels of probability, respectively 
a = Square root transformation \. (SI%+l). 



Table 4.3a. Estimates of GCA effects for transformed Striga incidence (TSIO/~), days to 50% flowering (DFL), plant height (PHT), and grain 
yield plant' (GYLDIPLT) on lines (male sterile lines) in line x tester experiment at ICRISAT Asia Center (IAC) and Akola. 

TS I %" DFL PHT GY LDIPLT 

Lines Pedigree IAC Akola I AC Akola IAC Akola IAC Akola 

SPST 940098 

SPST 9401 1 B 

SPST 940018 

SPST 940148 

SPST 940088 

SPST 94026B 

ICSB 89 

ICSB 93 

" S~gnif~cant at 0 05, and 0 01 levels of probability respectively 
a = Square root transformat~on )(Sl0/~+l j 



Table 4.3b. Estimates of GCA effects for transformed Striga incidence (TSI%), days to 50% flowering 
(DFL), plant height (PHT), and grain yield plant" (GYLDIPLT) on lines (male sterile lines) in line x 
tester experiment in combined analysis. 

ENT# Ped~gree TSIS'o" DF L PHT GY LDIPLT 

SPST 940098 

SPST 9401 1 B 

SPST 94001 B 

SPST 94014B 

SPST 940088 

SPST 940268 

ICSB 89 

ICSB 93 

" S~gn~f icant  at, 0 05, and 0 01 levels of probab~li ty respectively. 
a = Square root transformat~on \. (SIO/o+l). 



Table 4.4a. Estimates of GCA effects for transformed Striga incidence (TSI%), days to 50% flowering (DFL), plant height (PHT), and grain 
yield plant-' (GYLDIPLT) on testers (restorers) in line x tester experiment at ICRISAT Asia Center (IAC) and Akola. 

TSI%" DFL PHT GYLDIPLT 

Testers Pedigree IAC Akola IAC Akola IAC Akola IAC Xkola 

SAR 1 

SAR 16 

SAR 34 

SAR 35 

SAR 41 

SAR 42 

ICSR 92001 

ICSR 93002 

!CSR 93004 

* " Slgniflcant at 0 05, and 0 01 levels cf probability respectively 
a = Square root transformatlcn of \ (SI%+l)  



Table 4.5a. Percent contribution of lines, testers, and lines x testers to total variances for 
transformed Striga (TSI%), days to 50% flowering (DFL), plant height (PHT), and grain yield plant-' 
(GYLDIPLT) in line x tester experiment at ICRISAT Asia Center (IAC) and Akola. 

L~nes  Testers Llnes x Testers 

Tra~ ts  I AC Akola IAC Akola IAC Akola 

DFL 30 1 31.9 21.3 15.8 48 5 52.3 

PHT 52 5 52 8 27 7 20.4 19 8 26 9 

GYLDIPLT 33 1 24.8 24 4 15 2 42 3 60 1 

* ,+*  Signlflcant at 0 05, and 0 01 levels of probabll~ty, respectlvely 
a = Square root transformation of 1 jS I%+l )  

Table 4.5b. Percent contribution of lines, testers, and lines x testers to total variances for 
transformed Striga incidence (TSI%), days to 50 % flowering (DFL), plant height (PHT), and grain 
yield plant.' in line x tester experiment in combined analysis. 

T ra~ ts  Ltnes Testers Lines x Testers 

DFL 

PHT 

GY LDIPLT 5 57 19.46 74 97 

*, '* Slgnlf~cant at, 0 05 and 0 01 levels of probab~l~ty, respectlvely 
a = Square root trans -mat~on \l(SIO/~+l) 



Table 4.6a. SCA effects and heterosis for Striga incidence (TSlO/~")in line x tester experiment at IAC 
and Akola. 

IAC Akola I IAC Akola 

Ent # Ped~gree SCA effects 

SPST 94009A x SAR 1 

SPST 94009A x SAR 16 

SPST 94009A x SAR 34 

SPST 94009A x SAR 35 

SPST 94009A x SAR 41 

SPST 94009A x SAR 42 

SPST 94009A x ICSR 92001 

SPST 94009A x ICSR 93002 

SPST 94009A x ICSR 93004 

Average heteros~s('l/o) 

SPST 9401 1A x SAR 1 

SPST 94011A x SAR 16 

SPST 9401 1A x SAR 34 

SPST 9401 1A x SAR 35 

SPST 9401 1A x SAR 41 

SPST 94011A x SAR 42 

SPST 9401 1A x ICSR 92001 

SPST 9401 1A x ICSR 93002 

SPST 94011A x ICSR 93004 

SPST 94001A x SAR 1 

SPST 94001A x SAR 16 

SPST 94001A x SAR 34 

SPST 94001A x SAR 35 

SPST 94001A x SAR 41 

SPST 94001A x SAR 42 

SPST 94001A x ICSR 92001 

SPST 94001A x ICSR 93002 



SPST 94014A x SAR 1 

SPST 94014A x SAR 16 

SPST 94014A x SAR 34 

SPST 94014A x SAR 35 

SPST 94014A x SAR 41 

SPST 94014A x SAR 42 

SPST 94014A x ICSR 92001 

SPST 94014A x ICSR 93002 

SPST 94014A x ICSR 93004 

Ent # Ped~gree SCA effects 

IAC Akola 

SPST 94008A x SAR 1 

SPST 94008A x SAR 16 

SPST 94008A x SAR 34 

SPST 94008A x SAR 35 

SPST 94008A x SAR 41 

SPST 94008A x SAR 42 

SPST 94008A x ICSR 92001 

SPST 94008A x ICSR 93002 

SPST 94008A x ICSR 93004 

Average heteros~s(%) 

IAC Akola 

SPST 94026A x SAR 1 

SPST 94026A x SAR 16 

SPST 94026A x SAR 34 

SPST 94026A x SAR 35 

SPST 94026A x SAR 41 

SPST 94026A x SAR 42 

SPST 94026A x ICSR 92001 

SPST 94026A x ICSR 93002 

27 SPST 94001P x ICSR 93004 -1 66 0 31 0 00 -56 06 



ICSA 89 x SAR 1 

ICSA 89 x SAR 16 

ICSA 89 x SAR 34 

ICSA 89 x SAR 35 

ICSA 89 x SAR 41 

ICSA 89 x SAR 42 

lCSA 89 x ICSR 92091 

ICSA 89 x ICSR 93002 

ICSA 89 x ICSR 93004 

Ent # Ped~gree SCA effects 

IAC Akola 

ICSA 93 x SAR 1 

ICSA 93 x SAR 16 

ICSA 93 x SAR 34 

ICSA 93 x SAR 35 

ICSA 93 x SAR 41 

ICSA 93 x SAR 42 

ICSA 93 x ICSR 02001 

ICSA 93 x ICSR 93002 

ICSA 93 x ICSR 93C04 

Average heteroslsl ' , I  

IAC Akola 

a = square root transforrnat~on \(Slo/o+l i 

54 SPST 94026A x ICSR 93004 -0 68 2 33 -21 51 36 GO 



Table 4.6b. SCA effects and heterosis (%) for yield plant" at IAC and Akola. 

SCA effects 1 Heteros~s (Yo\  

I AC Akoa 

Ent Pedlgree 
# 

IAC Akola H P MP H P 

SPST 94009A x SAR 1 

SPST 94009A x SAR 16 

SPST 94009A x SAR 34 

SPST 94009A x SAR 35 

SPST 94009A x SAR 41 

SPST 94009A x SAR 42 

SPST 94009A x ICSR 92001 

SPST 94009A x ICSR 93002 

SPST 94009A x ICSR 93004 

SPST 9401 1A x SAR 1 

SPST 94011A x S4R 16 

SPST 94011A x SAR 34 

SPST 9401 1A x SAR 35 

SPST 94011A x SAR 41 

SPST 9401 1A x SAR 42 

SPST 9401 1A x ICSR 92001 

SPST 9401 1A x ICSR 93002 

SPST 9401 1A x ICSR 93004 

SPST 94001A x SAR 1 

SPST 94001A x SAR 16 

SPST 94001A x SAR 34 

SPST 94001A x SAR 35 

SPST 94001A x SAR 41 

SPST 94001A x SAR 42 

SPST 94001A x ICSR 92001 



SCA effects I Heteros~s t % )  

1 IAC Akola 

Ent 
# 

26 

Pedlgree , IAC Akola H P MP H P I MP 
- 

SPST 94001A x ICSR 93002 -1 23 1 2 3  27 97 -1 0 t50 138 60 134 48 

SPST 94001A x ICSR 930C4 4 54*' 11 58" 56 58 33 33 160 16 116 93 

SPST 94014A x SAR 1 

SPST 94014A x SAR 16 

SPST 94014A x SAR 34 

SPST 94014A x SAR 35 

SPST 94014A x SAR 41 

SPST 94014A x SAR 42 

SPST 94014A x ICSR 92C01 

SPST 94014A x ICSR 93C02 

SPST 94014A x ICSR 93C04 

SPST 94008A x SAR 1 

SPST 94008A x SAR 16 

SPST 94008A x SAR 34 

SPST 94008A x SAR 35 

SPST 94008A x SAR 41 

SPST 94008A x SAR 42 

SPST 94008A x ICSR 92C01 

SPST 94008A x ICSR 93C02 

SPST 94008A x ICSR 93C04 

SPST 94026A x SAR 1 -5 81" 841"" -45 71 -57 39 15896 '14 13 

SPST 94026A x SAR 16 3 81" -11 98'* 82 32 40 63 -20 43 -29 72 

SPST 94026A x SAR 34 -1 07 -7 36** 0 -2187 15977 11911 

SPST 94026A x SAR 35 -4 84*' 0 55 -8 16 -30 42 80 87 50 66 

SPST 94026A x SAR 41 426"  6 6 1 -  17840 7 9 0 9  92 24 -2  71 

SPST 94026A x SAR 42 2 49** -17 54" 135 00 58 00 -14 78 -2C 08 



Ent Pedlgree 
# 

IAC Akola H P 1,1 P H P I MP 

SCA effects 

52 SPST 94026A x ICSR 92001 -1 85* 3 24 109 20 -10 42 52 43 26 74 

53 SPST 94026A x ICSR 93002 -3 69** 12 ;6*' 28 80 -16 72 19723 14623 

54 SPST 94026A x ICSR 93004 3 37" -6 67" 141 81 13852 19 02 -9 83 

Heteros~s i "  i 

IAC Akola 

ICSA 89 x SAR 1 

ICSA 89 x SAR 16 

ICSA 89 x SAR 34 

ICSA 89 x SAR 35 

ICSA 89 x SAR 41 

ICSA 89 x SAR 42 

ICSR 89 x ICSR 92001 

ICSA 89 x ICSR 93002 

ICSA 89 x ICSK 93004 

ICSA 93 x SAR 1 

ICSA 93 x SAR 16 

ICSA 93 x SAR 34 

ICSA 93 x SAR 35 

ICSA 93 x SAR 41 

ICSA 93 x SAR 42 

ICSA 93 x ICSR 92001 

ICSA 93 x ICSR 93002 

ICSA 93 x ICSR 93004 



Table 4 . 6 ~ .  SCA effects for transformed Striga incidence (TSI%), days to 50 % flowering, plant 
height (PHT), and grain yield  plant^' in combined analysis. 

Ent# Ped~aree TSI%' DFL PHT GYL 

SPST 94009A x SAR 1 

SPST 94009A x SAR 16 

SPST 94009A x SAR 34 

SPST 94009A x SAR 25 

SPST 94009A x SAR 41 

SPST 94009A x SAR 42 

SPST 94009A x ICSR 92001 

SPST 94009A x ICSF? 93002 

SPST 94009A x ICSR 93004 

SPST 94011A x SAR i 

SPST 9401 1A x SAR 16 

SPST 9401 1A x SAR 34 

SPST 9401 1A x SAR 35 

SPST 9401 1A x SAR 41 

SPST 94011A x SAR 42 

SPST 9401 1A x ICSR 92001 

SPST 94011A x ICSR 93002 

SPST 9401 1A x ICSR 93004 

SPST 94001A x SAR 1 

SPST 94001A x SAR 16 

SPST 94001A x SAR 34 

SPST 94001A x SAR 35 

SPST 94001A x SAR 41 

SPST 94001A x SAR 42 

SPST 94001A x ICSR 92001 

SPST 94001A x ICSR 93002 

SPST 94001A x ICSR 93004 

-0.33 1 91 

0 0 0  O C O  



-- - 

Ent# Ped~gree TS14/3' DFL PHT 3YLC F 

55 ICSA 89  x SAR 1 2 65 -0 31 -0 13 9 07 

56 ICSA 89  x SAR 16 3 0 0  0 0 0  0 00 1: 03 

57 IC'SA 89  x SAR 34 2 4 9  2 1 6  -0 06 CG 

58 ICSA 89  x SAR 35 - 3 9 0  0 1 3  -0 10 5 44" 

59 I C S A 8 9 x S A R 4 1  2 82 -1 32 0 05 ; 3 7 -  

60  ICSA 89 x SAR 42 - 1 6 0  0 6 8  -0 1 7  5 27" 

61 ICSA 89 x ICSR 92001 1 1 5  1 2 7  -0 17 ? GO 

6 2  ICSA 89 x ICSR 93002 005 - 1 3 0  0 02 4 31' 

63  ICSA 89 x ICSR 93004 - 2  0 0 00 0 02 J 31' 

64  ICSA 93 x SAR 1 

65  ICSA 93 x SAR 16 

66 ICSA 93 x SAR 34 

67 lCSA 93 x SAR 55 

68 l C S A 9 3 x S A R 4 1  

69 ICSA 93 x SAR 42 

70 ICSA 93 x ICSR 92001 

71 ICSA 93 x ICSR 93002 

72 ICSA 93  x ICSR 93004 

S E  ' 48 3 56 0 I ?  - 
1 89 

a = Square root transformatlon of \ (S I -  + I \  



Table 4.7. Estimate of broad sense heritability for Striga incidence (TSI), days to 50 % 
flowering (DFL), plant height (PHT), and grain yield plant" at IAC and Akola. 

Tra~t  IAC Akola 

TSI %' 0.10 0 02 

DFL 0 47 0 76 

PHT 

GY LDIPLT 0 91 - 
0 95 

a = Square root transforrnat~on of \ ( S I O / ~ + l )  





The discovery of cytoplasmic-genic male sterility systems in sorghum enhanced 

the development ot sorghum hybrids for commercial cultivation. The superrority of 

hybrids overall performance in productivity, greater stability, and better adaptation to 

stress over open pollinated varieties is widely acknowledged (Ejeta 1988). Unfortunateiy. 

to date sorghum hybrids developed and released for cultivation rn lnd~a  and Africa do not 

have tolerance or resistance to Striga. Both CSH 1 and Hageen Dura-I ,  the first 

commercial sorghum hybrids released in India, and Sudan, respectively, are tlighly 

susceptible to StrIga. 

The most commonly adopted method in breeding for StrIga resrstance is the 

pedigree method in which crossing between one or more source(s) of resistance and 

des~rable parents is carried out with the purpose of generating new gene comb~nations 

that will allow the placement of the factors of resistance in an agronomically superior 

genetic background. But the use of this method is limited by the absence of an 

appropriate screening method that allows identification of genotypes having high levels 

of resistance in segregating populations. 

There is no previous effort directed to developing parental lines wlth genes for 

resistance, with the goal of developing Striga resistant grain sorghum hybr~ds. ICRISAT 

developed Striga resistant male-sterile lines using pedigree breedlng coupled with back 

crossing and screening for resistance (ICRISAT 1993). In thls study a set of resistant 

male-sterile lines were crossed with a set of resistant and susceptible restorers with an 

aim to exploit the general combining ability and hybrid vigor, and to produce hybrids that 



are res~stant to Str~ga w~th  good agronomic traits T h ~ s  will be very useful to farmers. 

especially in Afr~ca and Ind~a where Striga IS a maln constra~nt for sorghum production 

5.1. Mean Performance 

Differences observed in means for most of the characters studied were hrgh 

across two locations. However. within these groups, spec~fic relatronsn~ps were 

observed in mean performance of some lines and hybrids. 

5.1 .I. Striga incidence (SIO/~) 

The selected lines, testers. arld hybr~ds are given in Table 5.1 Among the male-ster~le 

lines, L2 (SPST 9401 1B). L3 (SPST 94001B), and L4 (SPST 94014A) were confirmed 

to be resistant to Striga In individual locations and in combined analysis. Arnonq the 

restorers, T4 (SAR 35) and T6 [SAR 42) were confirmed to be resistant over locat~ons 

and in combined analysis. Therefore the combination of "-e above lines w ~ t h  these 

restorers will give promising resistant hybrids It is clear that the majority of the restorers 

and male-sterile lines bred earlier specifically for resistance are resistant in t h~s  study. 

However, though T9 (ICSR 93004) was considered as susceptible it was found !o be 

resistant in the present study. 

The hybrids showed different responses to Striga across locations and in 

combined analysis. Some of them were confirmed to be resistant in one locatron but not 

in another. Among them, entry 42 (SPST 94008A x SAR 42) and entry 49 (SPST 

94026A x SAR 35) were confirmed to be resistant across locations and in combined 

analysis. These hybrids were produced by the resistant restorers SAR 42. and SAR 35, 



respectively. However, most of the other hybrids whlch were resistant across locations 

and in combined analysis are the ones that were produced from one of the male ster~le 

lines (female), or the restorers (male) resistant parent. 

5.1.2. Days to 50% flowering (DFL) 

Breeding of Str~ga resistance with earliness is of vital Importance in hybrids with good 

agronomic characters to suit the semr-arid Troplcs like Sudan. The genotypes used In 

the study were variable and behaved differently for days to 50% flowerlng, both the 

locations and in combined analysis. Consistent and early flowerlng was recorded in L3 

(SPST 94001B), followed t;\/ 1-6 (SPST 940268) at Akola and in combined analys~s, both 

were earlier than the widely adapted control 2968. Among the restorers, at IAC the 

earliest were: T6 (SAR 42), followed by T2 (SAR 16). and T3 (SAR 34) both earlier than 

control 296B. at Akola T5 (SAR 41), T2 (SAR 16), and T3 (SAR 34) were earlier among 

the testers and in compared to the control 296B, and In combined analysis T2 (SAR 16) 

and T3 (SAR 34). 

Early flowering In hybr~ds was noticed across locat~ons and In combined analysis. 

when either female, male or both the parents were early except in entry 5 (SPST 94009A 

x SAR 41). This indicated the manifestation of heterosis. 

Among the hybrids, the moderately resistant hybrid entry 29 (SPST 94014A x 

SAR 16), resistant hybrid entry 47 (SPST 94026A x SAR 16), and susceptible hybr~d 

entry 27 (SPST 94001Ax ICSR 93004) were the earliest across locations and in 

combined analysis. Among them entry 47 was found to be res~stant, entry 29 

moderately res~stant, and entry 27 was susceptible. The tallest hybrid among these 



three was entry 47. followed by entry 27. However, the highest yielding hybrid among 

these was entry 27, followed by entry 29, both yielded higher than control 2968 as well 

as other cqntrols. 

5.1.3. Plant height (PHT) 

Sorghum grain and stover are both economlc products in vast areas of the semi- 

arid tropics. particularly Sudan, where sorghum is grown In molsture limlted env~ronrnent. 

Under such conditions the combination of Striga resistance w ~ t h  earliness associated 

w ~ t h  tall plant stature are important. Among the male-sterile lines. LS (ICSB 93) and L7 

(ICSB 89) were found to he the tallest lines across the locations and In cornblned 

analysis. Among the restorers. TI (SAR I )  and T4 (SAR 34) were the tallest. Therefore 

combination of the male sterile lines with these restorers is expected to produce tall 

hybrids. Among the nybrids the follow~ng three showed consistent height across ttie 

locations, and in combined analysis: entry 64 (ICSA 93 x SAR 1 ) ,  entry 70 (ICSA 93 x 

ICSR 920011, entry 61 (ICSA 89 x ICSR 92001). Regarding the other three traits (Striga 

incidence. days to 50%. and grain yleld plant ' GYLD PLT) at IAC, entry 61 and eritry 64 

appeared to be moderately resistant, and earl~er than entry 70 and the control 2968, 

while entry 70 was susceptible. However, entry 61 was yielding the highest amorlg the 

three hybr~ds, and compared to the four controls. At Akola entry 70 was found to be 

resistant, while entry 61 and entry 64 were susceptible. Wlth respect to the earliness. 

entry 61 and entry 70 were earlier than the widely adapted controls 2968 and SAR 1 ,  

but were later than the other two controls SAR 16 and SAR 34 at Akola, regarding the 

yield, entry 65  was the highest, followed bv ent r j  64, and both were higher in yleld than 



the controls. In the combined analysis entry 61 was res~stant. entry 64 moderately 

resistant, and entry 70 was susceptible. For days to flowering, In combined analys~s 

entry 61 and entry 64 were the earliest (reaching flower~ng at same time) and higher 

yielding than the two controls 2968 and SAR 1. It is clear that height In three hybrids 

resulted, when either female, male, or both the parents were tall, which is reflected In 

the superiority of the hybrids over the mid- and high parents. 

5.1.4. Grain yield plant-' (GYLDIPLT) 

Grain sorghum hybrids that combine y~eld potential, adaptation, and gram quality 

with resistance to Striga, earliness and high biomass w ~ l l  make a significant contribution 

in increasing the crop yields in Str~ga-endem~c environments like Sudan. The genotypes 

behaved differently across locations, but in general the performance of the genotypes 

at Akola was better than at IAC. Among the male-sterile l~nes at IAC, the moderately 

resistant line L5 (SPST 94008B). and susceptible line. L8 I!CSB 93). gave the h~ghest 

grain yield plant-' compared to all the controls, and both were earlier than the control 

2966, but later than the other coritrols (SAR 1. SAR 16, SAR 34). Regarding the t~elght. 

L8 was taller than all the controls except SAR 1. At Akola the best line with respect to 

grain yield was the susceptible line, L7 (ICSB 89), followed by the resistant I~ne ,  L6 

(SPST 94026B), both earlier than the controls 2968 and SAR I ,  However In pooled 

analysis the highest yielding lines L8 (ICSB 93) and L7 (ICSB 89) both found to be 

susceptible, but earlier than the controls 296B and SAR 1 ,  and both taller than the 

control 2968. Among the restorers at IAC, the highest yield plant-' was shown by T2 

(SAR 16), followed by T5 (SAR 41). Both were found to be moderately resistant to 



Striga. Among the two testers, T5 was earlier than all the controls, and it was taller than 

the two controls 296B and SAR 16. At Akola, the high yielding testers were T2 (SAR 

16), followed by T8 (ICSR 93002), T2 was found to be resrstant wlth zero S14: and 

earlier than all the controls. and T8 was susceptible and taller than all controls except 

SAR 1. In combined analysis the highest grain yield was recorded In T9 (ICSR 93004). 

followed by T3 (SAR 34), both confirmed to be resistant and earlier than the adapted 

control 2968. Regarding the he~ght T3 was taller than all the controls except SAR 1 

Among the hybrids at IAC, the highest yielding entries were: entry 35 (SPST 9401 1 x 

ICSR 93002) which found to be suscept~ble, entry 42 (SPST 94008A x SAR 42) v~tirch 

was resistant, and entry 15 (SPST 9401 1A x SAR 42) which was moderately resistant. 

among the three entry 35 was the earliest. and earlier than all the controls except SAR 

16, regarding the plant herght, entry 42 was the tallest, and it IS taller than ail the 

controls except SAR 1.  At Akola, the best combinations for grain yield were entry 65 

(ICSA 93 x SAR 16) which was confirmed to be moderately res~stant, followed by entry 

64 (ICSR 93 x SAR 1), and entry 72 (ICSA 93 x ICSR 93004) wh~ch were founrli to be 

susceptible, the earliest hybrids among the three were entry 65 and entry 72 both 

flowered at the same time with the well adapted control 296B. and the tallest hybr~ds 

among these three was entry 64 in compared all controls. In cnrnbrned analysis entry 41 

(SPST 94008A x SAR 41) which was found to be reslstant. was the best yielder, followed 

by entry 72 (ICSA 93 x ICSR 93004) which found to be moderately resistant, the two 

hybrids were flowered at the same time but entry 72 was taller than all the controls. It 

1s clear that the yield at Akola was higher than at IAC, t h~s  may be due to the difference 



in the two environments 

5.2. Analysis of Variance 

Analysis of variance indicated significant variation among parents and hybrids for 

three traits: grain yield plant ' ,  days to 50% flowering, and plant height Indicating the 

diversity in the material tested. For Striga incidence (SI%), the entr~es showed d~fferent 

behavior at IAC, Akola, and in combined analysts which reveal low ~nfestat~on pressure 

which did not allow the genotypes to fully express their reaction to Striga ~nfestat~on. 

Striga incidence was low and this led to high CV. and the CV may not be entirely due 

to non-uniformity in the germination of the strtga. The combined analysis showed no 

sign~ficant variation in locations x parents, locations x controls, locatrons x Irnes, locations 

x testers, and locaticns x L x T for Striga incidence (TSI0/0) which rndicated that IAC 

Striga strain is not drfferent from that of Akola. 

5.3. Combining Ability Effects and Gene Action 

Variation among the genotypes IS an important tool for the breeder to be able to 

fully exploit the d~vers~ty  in the population to select parents for hybrrds. In such 

programs knowledge of combining ability of parents becomes necessary. The major~ty 

of studies on the nature of comb~ntng ability in sorghum populations pointed to 

preponderarlce of additive gene action for most characters including y~eld (Beil and 

Atkins 1967 and Rao 1970). The present study showed the ~mportance of non-additive 

gene action for resistance to Striga as shown by the low ratio of GCA variance to SCA 

variance at IAC, and Akola, as well as in combined analysis. This finding is In line wrth 



that found by Obilana (1984). Kulkarni and Shinde (1985) and Shlnde and Kulkarn~ 

(1987). but contradicts that of Shinde and Kulkarni (1983) and Vasudeva Rao et at. 

(1 983) and,Dangi (1  989) who reported predominance of additive genes in controll~ng the 

Striga resistance. 

For days to 50% flowering, the analysis revealed that ratlo of GCA to SCA 

variance was less than one which indicated the importance of non-additive camp,., fl ierits 

of variance for the inheritance of earliness. This in line wlth Manicham and Vijendra Das 

(1994). but opposed to that of Kambal and Webster (1965). and Patel et al. (1983) who 

reported the preponderance of additive gene action, However. Barche et al. (19881 

reported the importance of both additive and non-additive gene action in controlling days 

to 50% flowering. 

Specific combining ability variance of gram yield plant ' was higher than the mean 

squares for general combin~ng ability variance indicating the importance of non-additive 

gene action in controlling this character. This finding was in agreement with that of 

Shinde and Jagadeshwar (1986), Goyal and Joshi (1983). and Madupur~ et al 1 !J83) 

who reported the predominate role of non-additive gene action for grain yield, Barche 

et al. (1988) found that both additive and non-additive components of variances are 

important for the inheritance of grain yield plant-'. Be11 and Atkins (1967). Rao ( 1  970), 

Patel et al. 

(1983), and Kambal and Webster (1965) reported the importance of additive gene action 

for inheritance of grain yield plant-'. However, Barche et al. (1988) found both the 

variances were important for the inheritance of the grain yield plant 



The GCA variances for plant he~ght In rndrv~dual analyses were less than SCA 

wh~ le  rn combrned analys~s the ratlo GCA to SCA varrance was equal to one rndlcat~ng 

the importance of both add~t~ve  and non-addrt~ve gene actron for the ~nher~tance of th~s  

character these results are In l ~ne  w ~ t h  what found by Kambal and Webster ( 1  965) Patel 

et al (1983), and Dass et al (1985) Whereas Manrcham and Vljendra Das (1994) 

reported the non-add~t~ve gene act~on for controll~ng plant helght 

In thls study ccrntr~but~on of llne x tester rnteractron to the total varlance h ~ g h  In 

most of the characters tollowed by that of the llnes Therefore, the lrnes used In thrs 

study were more d~verse for most of the characters than the testers (Mushonga 1991) 

Wh~ le  the testers were d~verse for Stnga ~nc~dence 

5.3.1. General combining ability (GCA) effects on male sterile lines 

The llnes unaer study d~ffered from one another wrth respect to the~r  GCA effects 

for Str~ga and other tra~ts at two locat~ons as well as In comb~ned analys~s The resrstant 

lrnes L3 (SPST 940018) and L6 (SPST 94026B) were the best general comb~ners for 

Stnga res~stance (highly negat~ve GCA effects) at Akola whrle at IAC they ~vere 15 

(SPST 9008), and L2 (SPST 9401 1B) However rn the comb~ned analysrs L5 (SPST 

94008B) and L3 (SPST 94001 B) were the good combrners for the Stnga res~stance 

The comblnat~on of Str~ga res~stance w ~ t h  earl~ness and other agronomic tra~ts IS 

of v~ta l  ~mportance to produce res~stant hybrrds for arrd and semi-ar~d cond~t~ons In case 

of DFL the resistant lines, L3 (SPST 94001 B) and L4 (SPST 940148) were found to be 

good combrners for earliness (hav~ng hrghly negat~ve s~gn~ f~can t  GCA effects) at IAC 

Akola as well as In combrned analys~s, and 16 (SPST 94026B) was good comb~ner at 



Akola and in combined analysis. The early lines, L3 (SPST 94001B) and L6 (SPST 

940268) had negative GCA effects for Striga incidence (SI%) at Akola and in combined 

analysis, s,o these two l~nes can be exploited to produce early reststant hybrids. 

The analysis of the GCA effects for plant herght revealed that the highest pos~ t~ve  

significant GCA effect was shown by L8 (ICSB 93) at IAC. and Akola as well as in the 

combined analys~s. The highest negative significant difference was observed for L4 

(SPST 940148) at both locations and In combined analysts. 

The best combiner for grair: yield across locattons and in cornbtned analysts was 

L5 (SPST' 940088) (which had positively signrficant GCA effects), followed by LS (ICSB 

93). It was interesting to note that L5 (SPST 94008B) was good comb~ner for Stnga 

resistance as well as for grain  yield^' over the locations as well as In combined anniysls. 

This may tmply that such line can be used to produce htgh yreld~ng Striga res~stance 

hybrids. 

5.3.2. General combining ability (GCA) effects for testers (restorers) 

Among the testers, T6 (SAR 42) was found to be the best combiner for :;tr/ga 

res~stance (having high negative GCA effects) followed by T2 (SAR 16). Tester, T3 

(SAR 34) was good combiner tor earliness since it had negattve GCA effects for C)FL at 

IAC, Akola and in comb~ned analysis. However, it had highly stgntficant positive GCA 

effects for plant herght at the two locations and in combined analysts. Tester, T9 (ICSR 

93004) appeared to be a good combiner for !/teld over locattons and in combined 

analysis, followed by T I  (SAR 1) at Akola and in combined analysis. This indicates that 

SAR 42 and SAR 16 were good combiners for Striga resistance as well as for most of 



the other traits at the two locations and in the combined analys~s. 

5.3.3. Specif ic combining ability effects (SCA) 

Examination of the negative SCA effects for Str~ga Incidence (TSIO/~) at IAC. 

revealed that entry 72 (ICSA 93 x ICSR 93004) had the highest per se performance, it 

had highest negative SCA effect, followed by entry 37 (SPST 94008A x SAR I ) ,  entry 

30 (SPST 94014A x SAR 34). entry 64 (ICSA 93 x SAR 1).  entry 15 (SPST 9401 1A x 

SAR 42), and entry 14 (SPST 9401 1A x SAR 41). At Akola entry 52 (SPST 94026A x 

ICSR 93004), entry 32 (SPST 94G14A x SAR 41), showed the highest negat~ve SCA 

effects. However. In combined analysis entry 70 (ICSA 93 x ICSR 92001) was showed 

the h~ghest negative SCA effects, followed by entry 60 (ICSA 89 x SAR 42), and entry 

28 (SPST 94014A x SAR 1) It is noticed that most of the high specific comb~n~ng 

genotypes were from resistant x resistant crosses, while others from resistant x 

susceptible, or susceptible x res~stant crosses. whereas some res~stant hybrids resulted 

from susceptible x susceptible parents. t h ~ s  Indicates the complex nature of resistance 

inheritance, and incomplete dominance of resistance. Tarr (19621 reporteci that 

resistance may be recessive in some crosses, domlnant in some and partially dorn~nant 

in other crosses (Saunders ?933 and Rama~ah 1987). Obilana 11984) reported the 

overdom~nance of suscept~b~lity, and two to five genes control the res~stance reaction. 

wh~ le  Ramaiah et al. (1990) reported single recessive gene ior low st~mulant production 

in three sorghum genotypes. Hess and Ejeta (1991) reported that the stable resistance 

in sorghum cultivar SRN 39, is inherited as a recessive trait controlled by one or two 

genes. 



With regard to grarn yield plant '  at IAC, entry 60 (ICSA 89 x SAR 42) had the 

highest positive SCA effect followed by entry 37 (SPST (94008A x SAR I ) ,  and entry 45 

(SPST 94Q08A x ICSR 93004), while at Akola, entry 55 (ICSA 89 x SAR I) had the 

highest positive SCA effect followed by entry 35 (SPST 94014A x ICSR 93002), entry 

16 (SPST 9401 1A x ICSR 92002), and entry 22 (SPST 94001A x SAR 35. However, in 

the combined analysts entry 24 (SPST 94001A x SAR 42) was found to be tile best 

specific combination, followed by entry 72 (ICSA 93 x ICSR 93004) and entry 69 ilCSA 

93 x SAR 42). 

5.4. Proport ional  Contribution o f  Lines, Testers and L x T to  Total Variances 

From the analysis. the LxT contr~bution seems to be the hlghest in most cases 

and characters, followed by that of the lines. The lines used in thls study were very 

diverse for days to 50% flowering, plant height, and yield plant ' ,  while both iines and 

testers were diverse for Str~ga incidence. Mushonga (1991) found in line x tester 

experiment in sorghum, the proportions contributed by lines and line x tester ~nteract~on 

to the total variance for dlastatic untt, 1000 seed weight, grain hardness, ana proteln 

content, then he concluded that the lines were more diverse than the testers. 

5.5. Heterosis 

5.5.1. Striga incidence (SIO/o) 

Several studies on the manifestation of hybr~d vigor in graln sorghum have been 

reported (Kanaka 1982: Nayeem and Bapat 1984: and Kambal and Webster 1966). 



Grain yield and its components have been reported to be more heterotic than other 

characters. 

Kulkarni and Shinde (1985) reported that heterosis breeding is useful when the tra~t IS 

controlled by non-additive gene action. In this study, although there was a great 

variation in the estimates of heterosis from cross to cross, certain traits exhibited higher 

heterosis than others. For Striga incidence at IAC the highest negative heteroslsO/" over 

mid parents showed by entry 45 (SPST 94008A x ICSR 93004) (-69.97%). whlch 

resulted from resistant x susceptible cross, followed by entry 37 (SPST 94008A x SAR 

1) resistant x resistant, a ~ d  entry 64 (ICSA 93 x SAR I )  susceptible x reslstant. At 

Akola, entry 67 (ICSA 93 x SAR 35) (susceptible x reslstant) expressed the highest 

heterotic value over mid parents (-83.87%), followed by entry 9 (SPST 94009A x ICSR 

93004) (R x S). Some hybrlds showed highly negative heterosis across locat~ons 

suggesting dominance gene effects for resistance. It appezred from the study the 

crosses with highest heterotic values were not necessar~ly the best in performance for 

resistance to Striga and other characters. 

For grain yield plant-' some crosses showed high positive heterosis percentage. 

The highest heterotic percentage over mid parent at IAC were shown by: entry 37 !SPST 

94008A x SAR I ) ,  entry 50 (SPST 94026A x SAR 41), and entry 60 (ICSA 89 x SAR 42) 

all the three with highly positive SCA. At Akola. entry 16 (SPST 9401 1A x ICSR 92001). 

entry 32 (SPST 94014A x SAR 41), and entry 27 (SPST 94008A x SAR 1) had highly 

heterosis in addition to highly significant SCA effects. Most of the hybrids mentioned 

above showed high negative heterosis percentage over mid parent for Strlga resistance. 



In addition to heterosis. per se performance of these hybrlds for the tralts was also 

quite high as compared to controls. This is an important finding for the breeder. since 

his interest is not only in highest heterosis, but also high performance of the genotypes 

in the desirable directions some heterosis with good yield. The highly pos~tive 

heterobeltiosis values of the hybrids; entry 37 (SPST 94008A x SAR 1) which confirmed 

to be resistant to Str~ga at Akola and in combined analysls and entry 50 (SPST 94026A 

x SAR 41) which is moderately resistant at Akola, indicated the effect of overdominance 

for gram yleld plant-'. According to Sokol and Baker ( 1  977) dominant gene action always 

contributes to heterosis, and when gene frequencies are not equal to 0.5 then additive 

x dominance gene actlon also contributes to heterosls. Correlated gene contribution and 

repulsion phase linkaqe may convert dominance to overdomlnance, and non-dllel~c 

interactions also cause heterqsis (Jinks and Mather, 1955). 

5.6. Heritability 

The magnitude of the estimates of broad sense her~tabi l~t~es varied sreatly 

between characters studied at both locations The est~mates of her~tablllty for Striga 

lncldence was 10, and 2 percent at IAC and Akola respectively In addlt~on to IJW and 

non-unlform Striga ~nfestat~on the hlgh sensltlvlty of Str~ga plant to the env~ronmental 

condition led to low her~tablllty values at both locations Frey (1954) Inferred that 

characters wh~ch  are h~ghly Influenced by environment tend to have low herltabilitles 

Days to 50% flowering appeared to be moderately sensltlve to the envlronmental 

condltlon since ~ t s  heritable values varled from one locat~on to another, I e 47, 76 



percent at IAC and Akola, respectively. The plant height showed hlgh heritability at both 

locations, hence it appears to be less sens~tive to the environment. This may be 

because thq plant height is governed by few genes (Mushonga 1991). 

Grain yield  plant^' showed high heritability at both locations (91, and 95 percent 

at IAC and Akola, respectively). This is in line with the finding of Kukadia et al. (1983) 

who found that heritability of grain yield plant-' was 95.53 percent This IS a broad sense 

heritability which might be due to both dominance and additive (and their interactions) 

types of gene action. 

The conclusion which can be deduced from this study based on GCA to SCA 

variances ratios is that non additive genes are involved in the inheritance of resistance 

to Str~ga,  days to 50% flowering and grain yield. However. plant he~ght is found t j ~  Le 

controlled by both additive and non-addltive genes. 

The male sterile lines. 1.2 (SPST 9401 1 B) and L3 (SPST 94001 8) were confirmed 

to be resistant, and good combiners for striga res~stance, and L3 also good combiners 

for earliness, and among the restorers. T4 (SAR 35) and TG (SAR 42) were confi;rned 

to be resistant. Therefore these lines and testers could be further used in hybrid 

development for Striga resista~ce. Among the hybrids entries 42 (SPST 94008A x SAR 

42) and entry 49 (SPST 94C26A x SAR 35) were confirmed to be reslstant over locations 

and in combined analys~s. Among the lines, L3 (SPST 94001 6) and L6 (SPST 94026B) 

were best combiners for Str~ga reslstant as well as for earliness. wh~le among the 

restorers, SAR 42 and SAR 16 were good combiners for Str~ga res~stance as well as for 

most of the other traits. 



It was observed that Striga germination in the field was low. Striga growth IS very  

sensitive to the heavy rains that followed the germinat~on. To avoid these events. the 

Striga eyperiment could be conducted in the post-ralny season instead of the rnain 

season to avoid low temperatures and heavy raln which prevent the germinatron and 

subsequent growth of Stn'ga. Yet in this study, the incidence was low wh~ch niight be 

due other reasons, such as natural fertility of the soils. compaction of the field 

For further reflection of the actual potentiality of these genotypes, the contrnuatlon 

of this study with added genetic material, locations across countries (perhaps lnd~a and 

Sudan), and Striga sp. (3 .  asiatica and S, hermonth~ca) IS suggested. 



Table 5.1. Selected lines, testers, and hybrids for Striga resistance. 

No. Pedigree I AC Akola combined 

Lines 

L 1 SPST 940098 

L2 SPST 9401 1 B 

L3 SPST 94001 B 

L4 SPST 94014B 

L 5 SPST 940088 

Testers 

T 1 SAR 1 

T 2 SAR 16 

SAR 34 

SAR 35 

SAR 42 

ICSR 93004 

Hybrids 

entry 2 SPST 94009A x SAR 16 20 0 0.0 11 7 

entry 7 SPST 94009A x lCSR 92001 6 7 0 0 0.5 

entry 11 SPST 9401 1A x SAR 16 E 7 20.0 2.1 

entry 12 SPST 9401 1A x SAR 34 6 7 0 0 5.5 

entry 13 SPST 9401 1A x SAR 35 33.3 0.0 2.5 

entry 16 SPST 94011A x ICSR 92001 0 0 30.0 2.0 

entry 17 SPST 9401 1A x ICSR 93002 20.0 30.0 7 5 

entry 19 SPST 94001A x SAR 1 6 7 0.0 5.5 

entry 20 SPST 94001A x SAR 16 46.7 0.0 30.5 

entry 22 SPST 94001A x SAR 35 6.7 0.0 5.5 

entry 23 SPST 94001A x 41 26.7 0.0 15.5 

entry 24 SPST 94001A x SAR 42 26.7 0.0 10.5 

entry 27 SPST 94001A x ICSR 93004 26.7 0 0  2 0 5  



No. Pedigree IAC Akola combined 

entry 28 SPST 94014A x SAR 1 6.7 20.0 1 7  

entry 32 SPST 94014A x SAR 41 6.7 20.0 2 1 

entry 33 SPST 94014A x SAR 42 6.7 0 .0  5 5 

entry 34 SPST 9401 1A x ICSR 92001 13.3 0.0 1 0 5  

entry 37 SPST 94008A x SAR 1 13.3 i) 0 5 5 

entry 38 SPST 94008A x SAR 16 6.7 0.0 5.5 

entry 41 SPST 94008A x SAR 41 0.0 0.0 1.7 

entry 42 SPST C4008A x SAR 42 0.0 0.0 0.5 

entry 43 SPST 94008A x ICSR 92001 20.0 0 .0  15.5 

entry 47 SPST XG26A x SAR 16 0.0 0.0 0 5 

entry 49 SPST 94026A x SAR 35 0 0 0.0 0.5 

entry 51 SPST 94026A x SAR 42 6.7 0.0 0 5 

entry 67 ICSA 93 x SAR 35 

Susc. control 

entry 90 296B 

Resis. control 

entry 91 SAR 1 

entry 92 SAR 16 0.0 20.0 1.7  

entry 94 SAR 34 13 3 100 1 1 3  



Table 5.2. Selected lines, Testers, and hybrids for earliness. 

No. Pedigree IAC Akola Combined 

Lines 

L 3 SPST 94001 8 

L6 SPST 94026B 

Testers 

T2 SAR 16 

T3 SAR 34 

T5 SAR 41 

Hybrids 

entry 5 SPST 94009A x SAR 41 73 74 7 5 

entry 20 SPST 34001A x SAR 16 74 72 7 3 

entry 21 SPST 94001A x SAR 34 78 7 1 7 4 

entry 22 SPST 94001A x SAR 35 74 78 77 

entry 24 SPST 94001A x SAR 42 76 6 8 72 

entry 27 SPST 94001A x ICSR 93004 76 7 0 7 4 

entry 29 SPST 94014A x SAR 16 73 72 73 

entry 47 SPST 94026A x SAR 16 74 72 7 3 

entry 48 SPST 94026A x SAR 34 7 7 6 9 7 3 

entry 49 SPST 94026A x SAR 35 75 G 9 72 

entry 53 SPST 94026A x ICSR 93002 79 67 7 4 

entry 54 SPST 94026A x ICSR 93004 8 3 6 5 7 5 

entry 56 ICSR 89 x SAR 16 7 8 6 5 7 7 

Controls 

entry 92 SAR 16 

entry 93 SAR 34 8 2 77 79 



Table 5.3. Selected lines, testers, and hybrids for plant height. 

No. Pedigree IAC Akola Comb~ned 

Lines 

L7 

Testers 

T 1 

T3 

Hybrids 

entry 37 

entry 48 

entry 55 

entry 61 

entry 62 

entry 64 

entry 66 

entry 70 

entry 71 

ICSB 93 

ICSB 89 

SAR 1 

SAR 34 

SPST 94008A x SAR 1 

SPST 94026A x SAR 34 

ICSA 89 x SAR 1 

ICSA 89 x lCSR 92001 

ICSR 89 x ICSR 93002 

ICSA 93 x SAR 1 

lCSA 6 3  x SAR 34 

ICSA 93 x ICSR 92001 

ICSA 93 x ICSR 93002 

Controls 

entry 91 SAR 1 

entry 93 SAR 34 



Table 5.4. Selected lines, testers, and hybrids for grain yield plant". 

No. Pedigree IAC Akola Combined 

Lines 

L 5 SPST 94008B 

L6 SPST 94026B 

L7 ICSB 89 

L 8 ICSB 93 

Testers 

T2 SAR 16 

T3 SAR 34 

T5 SAR 41 

T6 SAR 42 

T8 ICSR 93002 

T9 ICSR 93004 

Hybrids 

e n t r y  15 SPST 9401 1A x SAR 42 21.00 49.40 35.63 

e n t r y  16 SPST 9431 1A x ICSR 92001 20.83 39.55 30.35 

e n t r y  23 SPST 94001A x SAR 41 3.37 69.00 36.38 

e n t r y  35 SPST 9401 1A x ICSR 93002 26.93 38.05 32.45 

e n t r y  41 SPST 94008A x SAR 41 20.63 63.00 41.813 

e n t r y  42 SPST 94008A x SAR 42 23.10 48.00 35.00 

e n t r y  54 SPST 94026A x ICSR 93004 9.47 59.10 34.26 

e n t r y  64 ICSA 93 x SAR 1 5.80 72.65 39.13 

e n t r y  65 ICSA 93 x SAR 16 5.37 72.75 39.08 

e n t r y  67 ICSA 93 x SAR 35 3.33 58.55 31.23 

e n t r y  72 ICSR 93 x ICSR 93004 12.53 69.75 41.48 

Controls 

e n t r y  90 296B 

e n t r y  92 SAR 16 10.10 14.40 12.15 
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Appendix 7 .  Sorghum genotypes used in the study. 
.................................................................... 

Entry # O r ~ g ~ n  Ped~gree 

A. Hybrids 

SPST 94009A x 
SPST 94009A x 
SPST 94009A x 
SPST 94009A x 
SPST 94009A x 
SPST 94009A x 
SPST 94009A x 
SPST 94009A x 
SPST 94009A x 

SPST 9401 1A x 
SPST 9401 1A x 
SPST 9401 1A x 
SPST 9401 1A x 
SPST 9401 1A x 
SPST 9401 1A x 
SPST 9401 1A x 
SPST 9431 1A x 
SPST 9401 1A x 

SPST 94001A x 
SPST 94001A x 
SPST 94001A x 
SPST 94001A x 
SPST 94001A x 
SPST 94001A x 
SPST 94001A x 
SPST 94001A x 
SPST 94001A x 

SPST 94014A x 
SPST 94014A x 
SPST' 94014A x 
SPST 94014A x 
SPST 94014A x 
SPST 94014A x 
SPST 94014A x 
SPST 94014A x 
SPST 94014A x 

SPST 94008A x 
SPST 94008A x 
SPST 94008A x 
SPST 94008A x 
SPST 94008A x 
SPST 94008A x 
SPST 94008A x 
SPST 94008A x 
SPST 94008A x 

SAR 1 
SAR 16 
SAR 34 
SAR 35 
SAR 41 
SAR 42 
ICSR 92001 
ICSR 93002 
ICSR 93904 

SAR 1 
SAR 16 
SAR 34 
SAR 35 
SAR 41 
SAR 42 
ICSH 92001 
ICSR 93002 
ICSR 93004 

SAR 1 
SAR 16 
SAR 34 
SAR 35 
S A R  41 
SAR 42 
ICSR 92001 
ICSR 93002 
ICSR 93004 

SAR 1 
SAR 16 
SAR 34 
SAR 35 
SAR 41 
SAR 42 
ICSR 92001 
ICSR 93002 
ICSR 93004 

SAR ? 
SAR I 6  
SAR 34 
SAR 35 
SAf? 441 
SAR 42 
ICSR 92001 
ICSR 93002 
ICSR 93004 



Appendix 1 (continued) 

Entry # Orlg~n 
------------------ 

46. 44079A x 44092 
47. 44079A x 44093 
48. 44079A x 44094 
49. 44079A x 44095 
50. 44079A x 44096 
51. 44075A x 44097 
52. 44079A x 44098 
53. 44079A x 44 100 

64. 44091 A x 44092 
65 44091A x 44093 
66. 4409 1 A x 44094 
6 7 44091 A x 44095 
68  44091 A x 44096 
69. 4409 1 A x 44097 
70. 44091 A x 44098 
7 1 44091A x 44: 22 
72. 44091 A x 44102 
b. Resistant restorers. 

7 3  SAR 1 
74  SAR 16 
7 5 SAR 34 
7 6 SAR 35 
7 7 SAR 41 
78 SAR 42 
c Susceptible restorers 

79. ICSR 92001 
80. ICSR 93002 
81. ICSR 93004 
d. Resistant male sterile lines 

82. SPST 94009B 
83. SPST 9401 1 B 
8 4 SPST 94001B 
85. SPST 940148 
86. SPST 940088 
87. SPST 940268 
e. Susceptible male sterile lines 

SPST 94026A x SAR 1 
SPST 94026A x SAR 16 
SPST 94026A x SAR 34 
SPST 94026A x SAR 45 
SPST 94026A x SAH 41 
SPST 94026A x SAR 42 
SPST 9402GA x ICSR 92001 
SPST 9402EA x ICSR 93002 

SPST 94026A x ICSR 01004 

ICSA 89 x 
l C S A 8 9  x 
ICSA 89 Y 
ISSA 89 ..: 
l C S A 8 9  x 
ICSA 89 x 
l C S A 8 9  x 
l C S A 8 9  x 
ICSA 89 Y 

SAR 1 
SAR 16 
SAR 34 
SAR 35 
SAR 41 
SAR 42 
lCSR 92001 
ICSR 93002 
ICSR 93004 

ICSA 93 x SAR 1 
ICSA 93 x SAR 16 
ICSA 93 x SAR 34 
ICSA 93 x SAR 35 
ICSA 93 x SP,R 41 
ICSA 93 x SAR 42 
ICSA 93 x ICSR 92001 
ICSA 93 x ICSR 93002 
ICSA 93 r ICSK 33064 



Appendix 2a. Mean Strigaplants, Striga incidence (SIo/o), transformed Stnga incidence (TS14/o), days 
to 50 % flowering, plant height (PHT), and grain yield plant.' at IAC. 

- - - - - - - - - 

MSM SIPL TSi"' DFL PHT GYLI! 
PLT 

1 ' SPST 94009A x SAR 1 

2 SPST 94009A x SAR 16 

3 SPST 94009A x SAR 34 

4 SPST 94009A x SAR 35 

5 SPST 94009A x SAR 41 

6 SPST 94009A x SAR 42 

7 SPST 94009A x ICSR 92001 

8 SPST 94009A x ICSR 95CC2 

9 SPST 94909A x ICSR 93304 

SPST 9401 1A x SAR 1 

SPST 9401 1A x SAR 16 

SPST 9401 1A x SAR 34 

SPST 9401 1A x SAK 35 

SPST 9401 1A r: SAR 41 

SPST 9401 1A x SAR 42 

SPST 9401 1A x ICSR 92001 

SPST 9401 1A x ICSR 92002 

SPST 9401 1A x ICSR 92003 

SPST 94001A x SAR 1 

SPST 94001A x SAR 16 

SPST 94001A x SAR 34 

SPST 94001A x SAR 35 

SPST 94001A x SAR 41 

SPST 94001A x SAR 42 

SPST 94001A x ICSR 92001 

SPST 94001A x ICSR 93002 

SPST 94001A x ICSR 93004 



Ent# Pedgree MSM SlO( TSI X "  GF- PHT GYLI' 

PLT 

SPST 34014A x SAR 1 

SPST 34014A x SAR 16 

SPST 94014A x SAR 34 

SPST 34014A x SAR 35 

SPST 94014A x SAR 41 

SPST 3401 1A x SAR 42 

SPST 9401 1A x ICSR 92001 

SPST 34011A x ICSR 93002 

SPST 5401 1A x ICSR 93004 

SPST 340086 SAR 1 

SPST 34008A x SAR 16 

SPS- 34008A x SAR 34 

SPST 34008A x SAR 35 

SPS' 04008A x SAR 41 

SPS' 34008A SAR 42 

SPST 94008A x ICSR 02001 

SPST 34008A x iCSR 92G02 

SPS' 24008k x ICSR 93304 

SPST 94026A x SAR 1 

SPST 34026A x SAR 16 

SPST 34026A x SAR 34 

SPST 34026A x SAR 35 

SPST 34026A x SAR 41 

SPST 94026A x SAR 42 

SPST 94026A x ICSR 92001 

SPST 94026A x ICSR 93002 

SPST 24026A x ICSR 93004 



Ent# Pedigree MSM Sl;L ;SI'X' DFL PHT GYL2 

5 5 ICSA 89 x SAR 1 4 7 3  3 3 2 

56 ICSA 89 x SAR 16 1 13 3 2 8 

5 7 ICSA 89 x SAR 34 I 13 3 3 J 

5 8 ICSA 89 x SAR 35 7 33 3 . - 3 1 

5 9 ICSA 89 x SAR 41 10 200 0 1 1  

60 ICSA 89 x SAR 42 1 26 7 -1 6 

6 1 ICSA 89 x ICSR 92001 1 13 3 3 4 

6 2 ICSA 89 x ICSR 93002 2 26 7 5 2 

63 ICSA 89 x ICSR 93004 1 40 0 G 3 

ICSA 03 x SAR 1 

ICSA 93 x SAR 16 

ICSA 93 x SAR 34 

ICSA 63 x SAR 35 

ICSA 33 x SAR 41 

ICSA 93 x SAR 42 

ICSA 33 x ICSR 92C01 

ICSA 93 x ICSR 93002 

ICSA 53 x ICSR 93004 

SAR ; ( T I )  

SAR '6 (T2) 

SAR 34 (13: 

SAR 35 (14) 

SAR 41 (T5) 

SAR 42 (T6) 

ICSR 92001 (T71 

ICSR 93002 (T8) 

ICSR 93004 (T9) 

82 SPST 940098 (L1) 
0 6 7 2 2 



Ent# Pea~gree MSM I TSI%" LIFL PHT G Y L 3  
P LT 

83 SPST 9401 1 B iL2) 0 6 7 2 2 - , I  - 1 1 0  i 2 3  

84 SPST 940018 iL3)  0 6 7 2 2 7 2  1 35 2 1  j 3  

8 5 SPST 940148 (L4) 

86 SPST 340088 (L5) 

87 SPST 940268 (L6) 

88 ICSB 89 iL7) 

8 9 ICSB 93 iL8) 

90 2968 

9 1 SAR 1 

92 SAR 15 

9 3 SAR 34 

Mean 1 22 4 3 i 3  i'r r 85 2 4 3  

a= Square root transformaton \iSIri,+l 1 



Append ix  2b Mean performance for  Striga plant, Striga i nc~dence  (SIX), transformed Striga 
inc idence (TSI%), days to 50 ?/a f lowering, plant height (PHT), and grain yield p l a n t '  at Akola. 

Ent# Pedigree MSM SI:h TSl",, DFL PHT GYLD 

:PLT 

1 SPST 94009A x SAR 1 

2 SPST 94009A x SAR 16 

3 SPST 94009A x SAR 34 

4 SPST 94009A x SAR 35 

5 SPST 94009A x SAR 41 

6 SPST 94009A x SAR 42 

7 SPST 94009A x ICSR 92CC1 

8 SPST 94009A x ICSR 93002 

9 SPST 94009A x ICSR 93CC4 

10 SPST 94011A x SAR 1 

11 SPST 9401 I A  x SAR 16 

12 SPST 9401 1A x SAR 34 

13 SPST 94011A x SAR 35 

14 SPST 94011A x SAR 4 1  

15 SPST 9401 1A x SAR 42 

16 SPST 9401 1A x ICSR 970:: 

17 SPST 9401 1A x ICSR 93OC"- 

18 SPST 9401 1A x ICSR 93C04 

19 SPST 94001A x SAR 1 

20 SPST 94001A x SAR 16 

21 SPST 94001A x SAR 34 

22 SPST 94001A x SAR 35 

23 SPST 94001A x SAR 41 

24 SPST 94001A x SAR 42 

25 SPST 94001A x ICSR 92CO: 

26 SPST 94001A x ICSR 93CC2 

27 SPST 94001A x ICSR 930CJ 



28. SPST 94014A x SAR 1 

29. SPST 94014A x SAR 16 

30 SPST 94014A x SAR 34 

31. SPST 94014A x SAR 35 

32. SPST 94014A x SAR 41 

33. SPST 94014A x SAR 42 

34 SPST 94014A x ICSR 92001 

35 SPST 94014A x ICSR 93002 

36. SPST 94014,4 x ICSR 93004 

37 SPST 94008A x SAR 1 

38 SPST 94008A x SAR 16 

39 SPST 94008A x SAR 34 

40 SPST 94008A x SAR 35 

41 SPST 94008A x SAR 41 

42 SPST 94008A x SAR 42 

43 SPST 94008A x ICSR 92001 

44 SPST 94008A x ICSR 93002 

45 SPST 94008A x ICSR 53004 

46 SPST 94026A x SAR 1 

47 SPS r 9 4 0 2 6 ~  x SAR 15 

48 SPST 94026A x SAR 34 

49 SPST 94026A x SAR 35 

50 SPST 94026A x SAR 41 

51 SPST 94026A x SAR 42 

52 SPST 94026A x ICSR 92001 

53 SPST 94026A x ICSR 03002 

54 SPST 94026A x ICSR 93004 

MSM SIT2 TSI?:, DFL PHT GYLD 
P LT 



-- 

MSM I TSI0:1 DFL PHT GYLC 

55. ICSA 89 x SAR 1 1 20 G 4 6 

56. ICSA 89 x SAR 16 2 30 0 5 5 

57. ICSA 89 x SAR 34 , l o  0 2 8 

58. ICSA 89 x SAR 35 2 40 0 5 0 

59. ICSA 89 x SAR 41 1 LO 0 3 7 

60. ICSA 89 x SAR 42 1 20 0 q -- .: I 

61. ICSA 89 x ICSR 92001 5 30 0 9 0 

62. ICSA 89 x ICSR 93002 1 10 0 2 8 

63, ICSA 89 x ICSR 93004 1 20 0 4 7 

64 ICSA 93 x SAR 1 

65 ICSA 93 x SAR 15 

66 ICSA 93 x SAR 34 

67 ICSA 93 x SAR 35 

68 ICSA 93 x SAR 41 

69 ICSA 93 x SAR 42 

70 ICSA 93 x ICSR 92001 

71 ICSA 93 x ICSR 93002 

72 ICSA 93 X ICSR 930C4 

73  SAR 1 ( T I  i 

74 SAR 16 (72) 

75 SAR 34 (T3) 

76 SAR 35 (14) 

77 SAR 41 (T5) 

78 SAR 42 (T6) 

79 ICSR 92001 (T7) 

80 ICSR 93002 (T8) 

81 ICSR 93004 (T9) 

82 SPST 94009B (L1) 



83 SPST 94011B (L21 

84 SPST 94001 B iL31 

85 SPST 940148 (L4)  

86 SPST 940088 L5) 

87 SPST 940268 i L6 \  

90. 2968 

91. SAR 1 

92. SAR 16 

93. SAR 34 

Mean 

S E 

cv ( O/o) 

MSM SIC% TSI':!, DFL ?HT SYLD 
PLT 

a = Square root transformatlor? \(SI%+11 



Appendix 2c. Mean Striga plants, Striga incidence (SI%), transformed Striga incidence (TSI0/0), days 
to 50°/o flowering (DFL), plant height (PHT), and grain yield plant' in combined analysis. 

Ent# Ped~gree M S M  SI" TSI',,' GFL PHT GYLD 

PLT 

1 SPST 94009A x SAR 1 1 6 7 2 3 7 6 1 8 5  18 45 

2 SPST 94009A x SAR 16 1 11 7 3 0 1'8 1 86 22 77 

3 SPST 94009A x SAR 24 L 7 25 2 3 7 - - 1 90 27 25 

4 SPST 94009A x SAR 35 1 5 7' 2 4 " I: 1 94 19 60 

5 SPST 94009A x SAR 41 1 1 '  ' 2 9 7 5 : 15 :5 88 

6 SPST 94009A x SAR 42 1 11 3 2 8 - 5 1 93 5 53 

7 SPST 94009A x ICSR 92001 0 0 5 1 2  - 1 2  n 2 08 '9 15 

8 SPST 94009A x ICSR 93002 2 1; 'I 3 6 0 3 1 89 24 7:J 

9 SPST 94009A x ICSR 930C4 2 37 3 3 9 33 1 85 .'b 05 

'0 SPST 94011A x SAR 1 1 15 3 ? 3 ,r 3 2 08 ,17 89 

I 1  SPST 94011A x SAR 16 1 2 1 16 -8 1 48 ? 1  08 

SPST 94011A x SAR 34 0 2 1 - - 12 5 5 1 79 ,: 0 7 3 

13 SPST 94011A x SAR 35 1 L 9 i 4 4 3 1 48 L C  113 
-- 

' 4  SPST 9401 1A x SAR 41 1 r: - 2 4 
- 1 4 1  7" - ?  

L &  1 L 

15 SPST 94011A x SAR 42 1 '1  ' 3 3 - 8 1 58 5 63 

' 6  SPST 9401 1A x ICSR 92001 1 2 S ' 6  .J: 1 5 7  20 35 

SPST 94011A x ICSR 93002 1 
- 

%, 16 17 J 1 4'3 '15 35 

18 SPST 94011A x ICSR 93004 2 3 1 '  4 9  
- 1 1 4 1  '9 43  

SPST 94001A x SAR 1 

SPST 94001A x SAR 16 

SPST 94001A x SAR 34 

SPST 94001A x SAR 35 

SPST 94001A x SAR 41 

SPST 94001A x SAR 42 

SPST 94001A x ICSR 32001 

SPST 94001A x ICSR 93002 

SPST 94001A x ICSR 93004 



Ent# Pedigree MSM 5lL'/:. TSI",' DFL PHT GYLD: 

- PLT 

SPST 94014A x SAR : 1 

SPST 94014A x SAR 15 1 

SPST 94014A x SAR 2 t  2 

SPST S4014A x SAR 35 1 

SPST 94014A x SAR 4' 1 

SPST 94014A x SAR 4; 0 

SPST 94014A x ICSR 92001 1 

SPST 94014A i ICSR 53302 5 

SPST 94014A x ICSR S3004 3 

SPST C4008A x SAR 1 

SPST 24008A x SAR 16 

SPST 94008A x SAR 24 

SPST 94008A x SAR 35 

SPST C4008A x SAR 41 

SPST 34008A x SAR 42 

SPST C4008A x ICSR 92001 

SPST 54008A x ICSR C3002 

SPST 34008A x ICSR 53004 

SPST 53026A x SAR ' 
SPST S4026A x SAR 16 

SPST Q4026A x SAR 34 

SPST 04026A x SAR 35 

SPST 94026A x SAR 41 

SPST 94026A x SAR 4; 

SPST 94026A x ICSR sZC01 

SPST 04026A x ICSR 93002 

SPST 94026A x ICSR 03004 



Ent# Ped~gree '"ISM S1°6 TSI '5 '  DFL. PHT GY LEI 

PLT 

55 ICSA 89 x SAR 1 u 52 ' 5 1 ;9 2 23 20 - 2  

5 6 ICSA 89 x SAR 16 I I / 1 85 , 12 5 3 1 
- -. 14 53 

5 7 ICSA 89 x SAR 34 6 3 2 3 73 "9 10 29 

5 8 ICSA 89 x SAR 35 - - 22 3 4 2 -5 2 98 18 S1 

5 9 ICSA 89 x SPR 41 11 7 3 3 - , - , 2 90 17 E,S 

60 ICSA 89 x SAR 42 11 7 3 9 ' 8  2 13 16 EY 

6 1 ICSA 89 x ICSR 9200" 9 3 3 0 8 2 2 39 31 d? 

6 2 ICSA 89 x ICSR 93002 16 3 3 7 7 9 2 3: 25 55 

6 3 ICSA 89 x ICSR 93004 21 7 3 1 I 2 01 23 29 7 - 

64 ICSA 93 x SAR 1 

6 5 ICSA 93 x SAR 16 

66 ICSA 93 x SAR 34 

67 ICSA 93 x SAR 35 

68 ICSA 93 x SAR 41 

6 9 ICSA 93 x SAR 42 

7 0 ICSA 93 x ICSR 92001 

7 1 ICSA 93 x ICSR 93002 

7 2 ICSA 93 x ICSR 93004 

SAR 1 - 1  / 

1 1 1  

SAR 16 (T2) 

SAR 34 tT31 

SAR 35 \T'li 

SAR 41 ITS) 

SAR 42 (Tc) 

ICSR 92001 (T;) 

ICSR 93002 cTS) 

ICSR 93004 (T31 

8 2 SPST 940098 (11) 



Ent# Ped~gree tb1SM SI"5 TS l rs '  DFL PHT GY LC 
P LT 

8 3 SPST 9401 1 B 12) 3 0 5 1 -  I .. I 1 l L  i 
- ' 

1 05 4 9 -7- 

84 SPST 940018 (13) 9 0 5 1 2  09 1 23 11 69 

8 5 SPST 94014B ( ~ 4 )  0 5 5 2 1 I I 3 99 9 03 - .. 

86 SPST 940088 iL5) 1 6 7 7 4 83 1 29 ' 5  05 

8 7 SPST 940268 I LC) 1 105  S O  -2 1 51) 13 I t !  

8 8 ICSB 89 r ~ 7 )  5 43 7 4 7 F:! 84 18 5C 

8 9 ICSB 93 i L8) u r, 4 9 5  5 9  9 2 1 78 20 5: 

9 0 296B 

9 1 SAR 1 

9 2 SAR 16 

9 3 SAR 34 

Mean , 130  2.9 ;.a 1 77 .:I 35 

a= Square root transformanon of \iSlu/o+l 



Append ix  3. SCA effects and  heterosis for  days to 50% f lower ing (DFL) i n  l ine x tester experiment 
a t  IAC  and  Akola. 

, I 
i Akola IAC 

Ent# Pedlgree IAC Akola 1 h4P H P MP H P 

1 SPST 94009A x SAR 1 -83 54 -5 72 -5 3; 5 56 -10 :I6 - 7 :  '5 

2 SPST 9 4 0 0 9 ~  x SAR 16 4 61" -0 49 5 ;a 7 ;- o 32 3 ' 1  

3 SPST 94009A x SAR 34 -1 58 -0 38 - 1  - ,- J- ,, -3 52 - 1 1  1 '  73 :‘I 

4 SPST 94009A x SAR 35 - :  17 2 7 3  5 85 -7 54 0 63 - I  ?-I 

5 SPST 94009A x SAR 41 2 - 0 0 5  -3 46 -5 95 1 65 - 1  35 

6 SPST 94009A A SAR 42 2 ?4* 1 28 -2 18 -2 37 - 5 -3 '0 

7 SPST 94009A x ICSA 92001 -: 54 -1 55 9 3 3  1444 1 2 4 6  - 1 - 3 3  

8 SPST 94009A x ICSA 93002 - '  30 4 17 - 9 4 4  - 1 3 6 7  3 09 2 45 

9 SPST 94009A x ICSA 93004 3 42*' -0 60 -2 63 3 99 4 1 3  - 4 4 3  

SPST 9401 1A x SAR 1 

SPST 9401 1A x SAR 16 

SPST 9401 1A x SAR 34 

SPST 9401 1A x SAR 35 

SPST 3401 1A x SAR 41 

SPST 9401 1A x SAR 42 

SPST 9401 1A x ICSR 92001 

SPST 94011A x ICSR 93002 

SPST 9401 1A x ICSR 93004 

19 SPST 94001A x SAR 1 : 38* 3 38 r: 01 1 66 -a 44 -a  44 

20  SPST 94001A x SAR 16 4 45" -0 02 4 04 2 47 -6 07 - 7  55 

21 SPST 94001A x SAR 34 ' 75 -0 30 5 31 3 77 -0 66 -1 35 

22 SPST 94001A x SAR 35 -2 1 0 04 -4 74 -8 69 - 1 2  25 -12 '9 

23 SPST 94001A x SAR 4: : 42 1 70 -5 05 -13 73  - 1065  -17 53 

24 SPST 94001A x SAR 42 - '  5 1 -4 76 -5 88 -13 67 -9 78 -12 l 7  

- - ,,,, , P C D  07nn.1 q 51** 7 8  9 7 8  120 1 0 8 8  0 64 



SCA effects 

SPST 940014A x SAR 1 

SPST 940014A x SAR 16 

SPST 9400144, x SAR 34 

SPST 940014A x SAR 35 

SPST 940014A x SAR 41 

SPST 940014A Y SAR 42 

SPST 940014A x ICSR 9200 1 

SPST 940G14A x ICSR 93002 

SPST 940014A x ICSR 93004 

Heterosis( %) 

Ent# Ped~gree IAC Akola 

SPST 94008A r SAR ? 

SPST 94008A x SAR 16 

SPST 94008A x SAR 34 

SPST 94008A x SAR 35 

SPST 94008A x SAR 41 

SPST 94008A x SAR 42 

SPST 94008A x ICSR 92001 

SPST 94008A x ICSR 93002 

SPST 94008A x ICSR 93004 

4kola I r4C 

MP H P MP m ?  

SPST 94026A x SAR I 0 03 1 76 -3  76 -3 35 -8 86 -4 23 

SPST 94026A x SAR 16 2 92** -1 17 -4 48 -9 87 -13 70 -1'. 5- 

SPST 94026A x SAR 34 3 32" -0 45 -2 64 -7  20 -4 35 -5 52 

SPST 94026A x SAR 35 -2  04" -2 34 -0 63 -5 58 A 76 , 1 

SPST 94026A x SAR 41 -0 89 -1 62 6 87 3 75 9 34 9 ?<: 
2 - -  

SPST 94026A x SAR 42 -0 75 4 50 0 43 -2 50 5 84 0 23 

26 SPST 94001A x ICSR 93002 2 7  O 99 6 58 1 -r ..- 7 86 0 .zs 
27 SPST 94001A x ICSR 93004 -0 45 8 62 2 2 0  -709 1064  . -. 2 



SCA effects Heterosls~ ?/ui 

Ent# , Pedlgree IAC Akola 1 MP H P MP H P 

52 SPST 94026A x ICSR 92001 -0 67 -0 40 ‘. -- I ,  2 53 4 73 - 52 
53 SPST 94025A x ICSR 93002 0 63 -3 1' 8 39 5 '13 8 71 2 C3 

54 SPST 94026A x ICSR 93004 0 07 5 '6 3 13 ? ;; S 16 4 ,, . 
L I 

ICSA 89 x SAR 1 

ICSA 89 x SAR 16 

ICSA 89 x SAR 34 

ICSA 89 x SAR 35 

ICSA 89 x SAR 4: 

ICSA 89 x SAR 42 

ICSA 89 x ICSR 92001 

ICSA 89 x ICSR 93002 

ICSA 93 Y ICSR 93004 

6 4 ICSA 93 x SAR 1 

55 lCSA 93 x SAR 16 

66 ICSA 93 x SAR 34 

67 ICSA 93 x SAR 35 

38 ICSA 93 x SAR 41 

69 l C S A 9 3 x S A R 4 2  

70 ICSA 93 x ICSR 92001 

-. 
I ICSA 93 x ICSR 93002 

- ,. , . ICSR 93 x ICSR 93004 



Appendix 4. SCA effects and heterosis for plant height (PHT) i n  l ine x tester experiment at IAC, and 
Akola. 

SCA affects I Heterosrsi?:) 
I 1 IAC Akola 

Ent Ped~gree 
# 

IAC Akola I N P  H P MP H P 

I 

1 SPST 94009A x SAR 1 -0 46' -0 22 A -  - 7 1  -6 76 11 '1  3 00 

2 SPST 94009A x SAR 16 0 10 0 37" 67 05" 51 $1" GO 78" 46 43' 

3 SPST 94009A r SAR 34 -011  -015  36 86'' 19 ,'8 O (20 -11 1 i  

4 SPST 94009A x SAR 35 -1 17'* -0 54" 62 14" 58 74" 33 33' -34 48 

5 SPST 94009A x SAR 41 -0 33" 0 31' 58 42" 62 16" 64 2 9 ' 3 4  29'' 

6 SPST 94009A x SAR 42 0 19' 0 21 53 90" 43 67'* 49 15" 41 04' 

7 SPST 94009A x ICSR 92001 -0 12 -0 OR 53 31" 3600" 38 71' 26 4 7  

8 SPST 94009A x ICSR 93002 -0 08 0 08 i 3  05'' 60 62" 57 38" 45  45' 

9 SPST 94009A x ICSR 93004 O 08 0 28" 3 81 -1) 18 1; 11 0 00 

SPST 9401 1A x SAR 1 

SPST 94011A x SAR 16 

SPST 94011A x SAR 34 

SPST 94011A x SAR 35 

SPST 9401 1A x SAR 41 

SPST 9401 1A x SAR 42 

SPST 9401 1A x ICSR 92001 

SPST 9401 1A x ICSR 93002 

SPST 9401 1A x ICSR 93004 

19 SPST 94001A x SAR 1 0 0 7  0 2 4  4082" 1774 4909"  1389  

20 SPST 94001A x SAR 16 0 13 0 18 55 29"' 38 46" 41 67' 17 24 

21 SPST 94001A x SAR 34 -0 01 0 08 52 29" 3864" 78 72" 50 00' 

22 SPST 94001A x SAR 35 020'  0 0 8  8519'" 5823" 6800"  3548  

23 SPST 94001A x SAR 41 -0 07 -0 22 62 33"' 31 67'" 54 72" 20 59 

24 SPST 94001A x SAR 42 -0 05 -0 15 85 29" 57 50" 69 23" 33 33 

*r c n r ~  n~nn.1 ,, I ~ C R  a7nnl 01 0 11 14 04 -5 80 20 69 0 00 



Ent 
# 

2 6 

SCA effects 

Pedigree 

Heteros~s(' : /~\ 

IAC Akola 

IAC Akola i i P  MP t i  P 

- 
SPST 94001A x ICSR 93002 0 02 0 06 25 51- 14 81  21 7.1 21 ;.: 
SPST 94001A x ICSR 93003 -0 01 -0 02 -1039  -5C8 ??  ^I- 2 21 -- LL 

SPST 94014A x SAR 1 

SPST 94014A x SAR 16 

SPST 94014A x SAR 34 

SPST 94014A x SAR 35 

SPST 94014A x SAR 41 

SPST 94014A x S.49 42 

SPST 94014A x ICSR 92001 

SPST 94014A x ICSR 93002 

SPST 94014A x ICSR 93004 

SPST 94008A x SAR 1 

SPST 94008A x SAR 76 

SPST 94008A x SAR 34 

SPST 94008A x SAR 35 

SPST 94008A x SAR 41 

SPST 94008A x SAR 42 

SPST 94008A x ICSR 92001 

SPST 94008A x ICSR 93002 

SPST 94008A x ICSR 93003 25 O O *  

SPST 94026A x SAR 1 -0 12 0 2 1  52 98'" 37 97" 37 93' 29 03 

SPST 94026A x SAR 16 -0 12 0 01 34 85" 15 OG 34 43' 20 59 

SPST 94026A x SAR 34 -0 17 0 02 48 43" 33 13" 40 00' 27 27 

SPST 94026A x SAR 35 - n o 9  0 1 2  11 29 0 00 26 98 14 29 

SPST 94026A x SAR 41 -0 01 -0 18 26 35' 6 06 9 80 0 00 

SPST 94026A x SAR 42 -0 07 -0 21 2 02 -2 75 -9 37 -19 44 



\ 
52 SPST 94026A x ICSR 92001 -0 10 0 01 3 90 -3 03 -1  75 - 3  45 

SCA effects 

Ent Pedlgree IAC 
# 

Akola 

53 SPST 94026A x ICSR 93001 0 04 0 16 29 07" 22 42 46 43" .I6 43  

Heteros~s(%) 

IAC Akola 

M P HP MP H P 

54 SPST 94026A x ICSR 93004 0 12 -0 24 30 56" 37 58" 1 1  R E  *-7 '1 5 

55 ICSA 89 x SAR 1 

ICSA 89 x SAR 16 

ICSA 89 x SAR 34 

ICSA 89 x SAR 35 

ICSA 89 x SAR 41 

ICSA 89 x SAR 42 

ICSA 89 x lCSR '32001 

ICSA 89 x ICSR 93002 

lCSA 89 x ICSR 93004 

ICSA 93 x SAR 1 

ICSA 93 x SAR 16 

ICSA 93 x SAR 34 

ICSA 93 x SAR 35 

ICSA 93 x SAR 41 

ICSA 93 x SAR 42 

ICSA 93 x ICSR 92007 

ICSA 93 x ICSR 93002 

ICSA 93 x ICSR 93004 



Genstat Programs Used in the Analyses 

LINE X TESTER PROGRAM 

'REFElNUNN=1000,NID=1000' LINE - X - TESTER-ANALYSIS 

INPUT 
NR NUMBER OF REPLICATIONS 
NE: TOTAL NUMBER OF ENTRIES 
NL: NUMBER OF LINES 
NT. NUMBER OF TESTERS 

'SCAL' NL=8 : NT=9 : NR=2 NE=93 NN NOES IJ 
'SCAL' NV=6 
'INTE' NUM-VAR=I . . .  NV 
'CALC' NN=NL*NT 
'CALC' NOBS=NR'NE 
'R'  
'MATR' M $ NL,NT MM S NT NL 
'VARI' LINES=I ...  NL . TESTER=l .NT LXT=I 7 2  
'VARI' GCALS $ NL GCATS S NT SCALT S NN 
'SCAL' MSE.MSL,MST,R?SI-T,SEGCAL.SEGCAT SESCA SEDL SEDT SED SSC CCI- CCT CCL'T 

COVHSL.COVHS1',COVHSA,COVFSl1COVFS2 COVFS SSQAO SSQAl SSQDO SSUUI SCASO 
COVHSA1 

'UNITS' $ NOBS 
'FACT' REP S NR=(1.2)93 
'FACT' TREAT $ NE=NR!(l 93) 
INPUIRECL=132' 2 
'READIP' DUMI  ,DUM2,DUM3,V(NUM-VARI 
'INPUT' 1 
R '  

Enter your parents, l~nes and testers accoru~ngly 

INTE 1 0 ~ 1  2 70 71 -72 73 74 87 88 -89 90 91 92 -93 
INTE 1 2 ~ 1  2 70 71 -72 -73 -74 -87 -88 -89 90 91 92 -33 
INTE IC1=1 2 70 71,-72 73 74 87 88 -89 -90 91 92 -93 

'INTE' 1012= 1, 2, 3, 4, 5, 6, 7 8. -9, 10,11,12,13 14,15,16.17.-18 
19,20,21.22.23.2~1,25.26.-27. 28.29 30.31 32,33.34 35-36 
37,38,39,40,41,42,43,44.-45. 46,47,48.49 50.51.5253,-54 
55,56,57,58.59,60,fi1.62.-63, 64,65.65.67 6869.70 71.-72, 
73,74 87.88,-89.90.91.92,-93 

INTE' 1011=1,10,19,28.37,46.55,-64, 2.11,20,29.38,47 56,-65. 
3,12,21.30,39,48,57,-66. 4 13,22,3140.49.58.-67 
5,14,23,32,41,50,59,-68. 6.15,24,33.42,51 60.-69 
7,16,25.34,43,52,61,-70. 8,17,26,35 44.53.62.-71 
9,18,27,36,45.54.63,-72 
73,74.. .87,88,-89,90,91,92,-93 

'HEAD' H I = "  GCA EFFECTS FOR LINES 
'HEAD' HZ=" GCA EFFECTS FOR TESTERS 



'HEAD' H3=" SCA EFFECTS 
'HEAD' H4=" STANDARD ERROR (GCA FOR LINE) 
'HEAD' H5=" STANDARD ERROR (GCA FOR TESTER) 
'HEAD' HE=' '  STANDARD ERROR (SCA EFFECTS) 
'HEAD' H7=" STANDARD ERROR (G(I)-G(j1) LINE ' 

'HEAD' H8=" STANDARD ERROR (G(I)-G(J'I, TESTER ' 

'HEAD',HS=" STANDARD ERROR 
'HEAD' H10=" COV H.S. (LINE) 
'HEAD' H I  I = "  COV H.S (TESTER) 
'HEAD' H12=" COV H.S (AVERAGE) 
'HEAD' H13=" COV F S 
'HEAD' H14=" SIGMA SQUARE A WHEN F=O 
'HEAD' H15=" SIGMA SQUARE A WHEN F = l  
'HEAD' H16=" SIGMA SQUARE D WHEN F=O 
'HEAD' H17=" SIGMA SQUARE D WHEN F = l  
'HEAD' H18=" CONTRIBUTION OF LINES 
'HEAD' t i1 9=" CONTRIBUTION OF TESTERS 
'HEAD' H20=" CONTRIBUTION OF LlNE X TESTER 
'HEAD' H21=" VARIANCE RATIO OF GCA TO LlNE X TERSTER 
'HEAD' H22=" VARIANCE RATIO OF SCA TO LlNE X TERSTER 
'GROUP' IPXC=GROUP(TREAT , 10) 
'GROUP' IP=GROUP(TREAT . 12) 
'GROUP' CHK=GROUP(l'?EAT , IC1) 
'GROUP' IT=GROUP(TREAT ; 1011) 
'GROUP' IL=GROUP(TREAT ; 1012) 
'BLOC' REP/TREAT 
'TREAT' (IPXC/(IP+CHK))+IPXC IL+IPXC IT+IPXC.IL.IT 
'FOR' YSET=V(1.2.3,4.5,6.8) 
'ANOV/SE=M.PR=OOO1O,PROB=YY YSET . OUT=AOVI 
'EXTR' AOVl  , REP.TREAT S SS=SSE , DF=DFE 
'EXTR' AOV1 , IPXC.IL $ EFF=GCAL , SS=SSL DF=DFL- 
'EXTR' AOVl  . IPXC.IT $ EFF=GCAT : SS=SST , DF=DFT 
'EXTR' AOVl  ; 1PXC.IL.IT S EFF=SCA . SS=SSLT DF=DFLT 
'SCAL' VRGCA,VRSCA 'CALC' VRGCA=(SSLiDFL)/(SSLT,DFiTj 
'CALC' VRSCA=(SST/DFT~~(SSLT/DFLT) 
'PRINTIC' HZ1 ,VRGCA $ 0 10 3 
'PRINTIC' H22,VRSCA S 0 10.3 
'PRINT' GCAL $ 10 2 
'PRINT' GCAT $ 10.2 
'PRINT' SCA $ 10.2 
'EQUA' GCALS=GCAL : GCATS=GCAT M=SCA S (NT.2X)NL 

'EQUA' SCALT=MM 
'CALC' MSE=SSE/DFE . MSL=SSL/DFL MST=SST/DFT MSLT-SSL-TJDFLT 
'CALC' SEGCAL=SQRT(MSE/(NR'NT)) 
'CALC' SEGCAT=SQRT(MSE/(NR*NL)) 
CALC '  SESCA=SQRT(MSE/NR) 
CALC '  SEDL=SQRT(2)*SEt3CAL 
'CALC' SEDT=SQRT(2)*SEGCAT 
'CALC' SED=SQRT(2)*SESCA 
'SCAL' FO=O F1 = I  
'CALC' COVHSL=(MSL-MSLT)/(NR*NT) COVHST=(MST-MSLT)/(NR'NL) 
'CALC' COVHSAI =((NL-1 )'MSL+(NT-1 )*MSTI/(NL+NT-2) 
'CALC' COVHSA=(COVHSA~ -MSLT)/(NR*(Z*NL*NT-NL-NT)) 
'CALC' COVFSl  =((MsL-MSE)+(MST-MSE)+(MSLT-MSE))I(3*NR) 
'CALC' COVFS~=(G*NR*COVHSA-NR*(NL+NT)*COVHSA)I( 
'CALC' COVFS=COVFSl +COVFS2 



'CALC' SSQAO=COVHSA'(4/(1 +FO)) 
'CALC' SSQA1 =COVHSA*(4/(1 + F l  ) )  
'CALC' SCASQ=(MSLT-MSE)/NR 
'CALC' SSQDO=SCASQ'((2/(1 +F0))*(2/(1+ FO))) 
'CALC' SSQD1 =SCASQ'((2/(1 +F1))*(2/(1 +F1 ) ) )  
'CALC' SSC=SSL+SST+SSLT 
'CALC' CCL=(SSUSSC)'I 00 
'CALC' CCT=(SST/SSC)*lOO 
'CALC' CCLT=(SSLT/SSC)'I 00 
'PRINT' H1 
'PRINT/P.LABC=l'  LINES.GCALS B 10.0.10.4 
'PRINT' H2 
'PRINT/P.LABC=l' TESTER,GCATS $ 10.0.10.4 
'PRINT' H3 
'PRINT/P,LABC=I' LXT.SCALT $ 10.0.10.4 
'PRINT/C,LABC=l ,LABR=Is H4,SEGCAL S 15.4 
'PRINT/C,LABC=l ,LABR=I' H5,SEGCAT S 13.4 
'PRINT/C,LABC=I .LABR=l '  H6,SESCA S 16.4 
'PRINT/C,LABC=I ,LABR=l l  H7,SEDi $ 13 4 
'PRINT/C,LABC=I ,LABR=IV H8,SEDT S 11 4 
'PRINT/C.LABC=I ,LABR=Im H9,SED $ 30.4 
'PRINT/C.LABC=I .LABR=l l  H10,COVHSL S 29.4 
'PRINT/C.LABC=I .LABR= I '  H I  1 ,COVHST S 27.4 
'PRINT/C.LABC=l ,LABR=l '  H12.COVHSA S 26.4 
'PRINT/C,LABC=I ,LABR=I' H I  3,COVFS S 36.4 
'PRINT/C,LABC=1,LABR=I' H14,SSQAO S 27.4 
'PRINT/C,LABC=I .LABR=I '  H I  5,SSQAl S 21.4 
'PRlNT/C.LABC=l .LABR=I' H16.SSQDO S 21.4 
'PRINT/C,LABC=l.LABR=l'  H17,SSQDl S 21.4 
'PRINT/C,LABC=l ,LABR=1' H18,CCL S 23 4 
'PRINT/C,LABC=l ,LABR=l '  H19,CCT 9 21 4 
'PRINT/C,LABC=I .LABR=7' H20,CCLT S 15 4 
'REPE' 
'R' 
'CLOS' 
'STOP' 



COMBINED LINE X TESTER 
'REFEiNUNN=1000,NID=1000' LINE-X-TESTER-ANALYSIS-ACR-LOC 

INPUT 
NR: NUMBER OF REPLICATIONS 
NE. TOTAL NUMBER OF ENTRIES 
NL: NUMBER OF LINES 
NT. NUMBER OF TESTERS 
NL2: NUMBER OF LOCATIONS 

'SCAL NL2=2 NL=8.  NT=9.  NR=2 NE=93 NN,NOBSIJ NOBS2 
'SCAL NV=5 
'INTE' NUM-VAR=l ..NV 
'CALC' NN=NL4NT 
'CALC' NOBS=NL2*NR*NE 
CALC' NOBS2=NR*NE 
R' 
'MATR' M $ NL.NT , MM S NT.NL 
VARI' LINES=l ..NL : TESTER=l . . .  NT . LXT=l . 72 
VARI' GCALS S NL . GCATS S NT SCALT S NN 
'SCAL' MSE,MSL.MST.MSLT.SEGCAL,SEGCAT,SESCA,SEDLSEDTSEDSSCCCL CCT.CCLT 

COVHSL,COVHST,COVHSA,COVFSl COVFS2,COVFS.SSQAO.SSQAl SSQDO SSQDI SCASQ 
COVHSAI 

'UNITS' S NOBS 
'FACT' LOC $ NL2=NOBS21(1 .NL2) 
'FACT' REP $ NR=(1 .NR)186 
'FACT' TFIEAT S NE=NRIIl NE)2 
'INPUT' 2 
'READIP' DUM1 ,DUM2,\J(NUM_VAR) 
'INPUT' 1 
'CALC' V(4)=SQRT(V(4)+ 1 ) V(S)=SQRT(Vt5)+1) 
R' 

Enter your parents.1ines and testers accord~ngly 

INTE' 10=1.2.. 70.71 ,-72.73.74 37,88.-89.C10.91.92.-93 
INTE' 12=1,2.. .70,71,-72.-733-74 -37.-88,-89.90.91.92,-93 
INTE' IC1=1,2 . . .  70.71.-72.73 74. .87,88.-89.-90,-91,-92,-93 

INTE' 1012= 1, 2, 3, 4, 5. 6.  7. 8, -9, 10.11.12.13.14,15,16.17.-18. 
19,20,21,22,23,24.25,26,-27, 28,29.30,31.32,33,34.35,-36. 
37,38.39.40.41.42,43,44,-45, 46,47 48.49,50,51 52.53 -54, 
55,56,57,58,59.60.61,62.-63, 64.65.66,67,68,69.70,71 -72, 
73,74.. .87,88,-89,90 91.92.-93 

INTE' 1011=1,10,19,28,37.46,55,-64, 2.11,2@.29,38.47,56,-65, 
3,12,21.30.39,48.57,-66 4,13.22.31.40,49,58-67, 
5,14,23,32,41,50.59.-68. 6.15,24,33 42.51.60,-69, 
7,16,25,34,43,52.61,-70, 8,17.26.35.44,53.62.-71, 
9,18,27.36,45,54 63,-72, 
73.74 .. .87,88,-89,90,91,922-93 



'HEAD' H I = "  GCA EFFECTS FOR LINES 
'HEAD' H2=" 5 C A  EFFECTS FOR TESTERS 
'HEAD' H3=" SCA EFFECTS 
'HEAD' H4=" STANDARD ERROR (GCA FOR LINE) " 

'HEAD' H5=" STANDARD ERROR (GCA FOR TESTER) 
'HEAD' H6=" STANDARD ERROR (SCA EFFECTS) " 

'HEAD'-H7=" STANDARD ERROR (G(I)-G(J)) LlNE " 

'HEAD' H8=" STANDARD ERROR (G(I)-G(J)) TESTER " 

'HEAD' H9=" STANDARD ERROR 
'HEAD' H10=" COV H S (LINE) 
'HEAD' H I  1 =" COV H S. (TESTER) 
'HEAD' H12=" COV H.S. (AVERAGE) 
'HEAD' H13=" COV F S. 
'HEAD' H14=" SIGMA SQUARE A WHEN F=O 
'HEAD' H15=" SIGMA SQUARE A WHEN F = l  
'HEAD' H16=" SIGMA SQUARE D WHEN F=O 
'HEAD' H17=" SIGMA SQUARE D WHEN F = l  
'HEAD' H18=" CONTRIBUTION OF LINES 
'HEAD' H I  9=" CONTRlB JTlON OF TESTERS 
'HEAD' H20=" CONTRIBUTION OF LlNE X TESTER " 

'HEAD' H21=" VARIANCE RATIO OF GCA TO LlNE X TERSTER " 
'HEAD' H22=" VARIANCE RATIO OF SCA TO LlNE X TERSTER " 

'GROUP' IPXC=GROUP(T KEAT , 10) 
'GROUP' IP=GROUP(TREAT ; 12) 
'GROUP' CHK=GROUP(TREAT ; I C I )  
'GROUP' IT=GROUP(TREAT ; 1011) 
'GROUP' IL=GROUP(TREAT ; 1012) 
'BLOC' LOC/REP/TREAT 
'TREAT' LOC*((IPXCI(IP+CHK))+IPXC.IL+IPXC.IT+lPXC IL IT) 
'FOR' YSET=V(I . .  NV', 
'ANOV/SE=M,PR=OOOl O,PROB=Y,LlMA=9' YSET : OUT=AOVI 
'EXTR' A O V l  : LOC.REP.TREAT $ SS=SSE , DF=DFE 
'EXTR' AOVl  ; IPXC.IL S EFF=GCAL ; SS=SSL : DF=DFL 
'EXTR' AOVl  ; IPXC.IT S EFF=GCAT ; SS=SST , DF=DFT 
'EXTR' AOVl  : IPXC.IL.IT 9 EFF=SCA . SS=SSLT .DF=DFLT 
'SCAL' VRGCA.VRSCA 'CALC' VRGCA=lSSL/DFL)/(SSLT:CFLT) 
'CALC' VRSCA=(SSTIDFT)I(SS LTIDF LT) 
'PRINTIC' H21 ,VRGCA S 0,10.3 
'PRINTIC' H22,VRSCA S 0, lO 3 
'PRINT' GCAL 9 10.2 
'PRINT' GCAT S 10 2 
'PRINT' SCA S 10.2 
'EQUA' GCALS=GCAL GCATS=GCAT M=SCA 9 (NT.X)NL 
'CALC' MM=TRANS(M) 
'EQUA' SCALT=MM 
'CALC' MSE=SSE/DFE MSL=SSL/DFL ?vIST=SST/DFT MSLT=S 
'CALC' SEGCAL=SQRT(MSE/(NR*NT)) 
'CALC' SEGCAT=SQRT(MSE/(N R'NL)) 
'CALC' SESCA=SQRT(MSEINR) 
'CALC' SEDL=SQRT(2)'SEGCAL 
'CALC' SEDT=SQRT(2)*SEGCAT 
'CALC' SED=SQRT(2)'SESCA 
'SCAL' FO=O . F l = l  
'CALC' COVHSL=(MSL-MSLT)/(NR*NT) COVHST=(MST-MSLT)/(NR'NL) 
'CALC' COVHSAI =((NL-1 )*Ms~+(NT-1 )*MST)/(NL+NT-2) 
'CALC' COVHSA=(COVHSAl -MSLT)/(NR'i 2'NL'NT-NL-NT)) 
'CALC' COVFSl=((MSL-MSE)+(MST-MSE\+(MSLT-MSE))i(3*NR) 



'CALC' COVFS2=(6'NR'COVHSA-NRt(N L+ NT)*COVHSA)/(3'N R )  
'CALC' COVFS=COVFSI +COVFS2 
'CALC' SSQAO=COVHSA"(4/( 1 + FO)) 
'CALC' SSQAI =COVHSA*(4/( 1 +F 1 ))  
'CALC' SCASQ=(MSLT-MSE)/NR 
'CALC' SSQDO=SCASQ*((2/(1 +F0))*(2/(1 +FO))) 
'CALC: SSQDI =SCASQ'((2/(1 +F 1 ))*(2/(1 +FA))) 
'CALC' SSC=SSL+SST+SSLT 
'CALC' CCL=(SSUSSC)'100 
'CALC' CCT=(SST/SSC)'I 00 
'CALC' CCLT=(SSLT/SSC)'I 00 
'PRINT' H I  
'PRINT/P,LABC=I' LINES.GCALS S 10.0.10.4 
'PRINT' H2 
'PRINT/P,LABC=I' TESTER,GCATS $ 10.0.10.4 
'PRINT' H3 
'PRINT/P,LABC=I' LXT.SCALT S 10.0,10.4 
'PRINT/C.LABC=I ,LABR=I '  H4,SEGCAL S 15.4 
'PRINT/C.LABC=I ,LABR=l' H5.SEGCAT S 13.4 
'PRINT/C,LABC=I ,LABR=I'  H6.SESCA S 16.4 
'PRINT/C,LABC=I, LABR=I1 H7,SEDL 9 13.4 
'PRINT/C,LABC=I ,LABP.=13 H8.SEDT $ 11.4 
'PRINT/C,LABC=I ,LABK=I '  H9,SED $ 30.4 
'PRINT/C.LABC=I ,LABR=l '  H I  0.COVHSL S 29.4 
'PRINT/C,LABC=l .LABR=I'  H I  1 .COVHST S 27.4 
'PRlNT/C,LABC-1 ,LABR=I '  H12,COVHSA $ 26.4 
'PRlNT/C.LABC=I ,LABR=ls H I  3,COVFS S 36.4 
'PRlNT/C.LABC=I .LABR=l '  Hl4.SSQAO S 21 4 
'PRlNT/C.LABC=I,LABR=I' H15,SSQAl S 21.4 
'PRINT/C.LABC= 1 ,LABR=I'  H16,SSQDO S 21.4 
'PRlNT/C.LABC=I ,LABR=Ir H I  7.SSQD1 S 21.4 
'PRINT/C,LABC=I .LABR=13 H18,CCL 9 23 4 
'PRINT/C.LABC=l .LABR=I3 H I  9.CCT $ 2 :  .4 
'PRINT/C.LABC=I ,LABR=I' H20,CCLT 3 15.4 
'REPE' 
'R' 
'CLOS' 
'STOP' 



HETEROSIS PROGRAM 
'REFE/NUNN=400.NID=400' Heteros~s-for-Line-X-Tester 

'SCAL' NR=2 " Number of Repllcat~ons ' 
SCAL' NL=8 ' Number of Llnes ' 

SCAL' NT=9 " Number of Testers 
SCAL" NV=6 ' Numoer of Var~ables 

'SCAL' VA(1)=11.95 . VA(2)=0.02453 : VA(3)=10 76 : VA(41=425.4 
'SCAL' VA(5)=8 309 ' \JA(6)=0 2121 

The data f~ l e  should be as follows 
Data for Llnes 
Data for Testers 
Data for Hybrids 
Line 1 X Tester 1 
L ~ n e  1 X Tester 2 
Llne 1 X Tester 3 

'INTE' NUM-VAR=1 NL' 
'SCAL' NP,NC.NO 
'CALC' NP=NL+NT 
CALC'  NC=NL*NT 
CALC' NO=NC+NP 

VARI' LINES(NUM VAR) S NL 
VARI T E S T S ( N U ~  VAR) S NT 
VARI HYBDSINUM~VAR) s NC 

INPUiRECL= 132' 2 
'READIP' LINES(NUM-VAR) 
READIP' TESTS(NUM-VAR) 
READIP' HYBDS(NUh1-VARI 
INPU' 1 

NAME' HI=Cross-No H2=X H3=Mld-Parent H4=H1gh-Parent HS=LLW-garent 
H6=Best-Parent H;=Lowest-Par 

SCAL IJ PMIN(NUM-VAR) PMAX(NUM-VAR) PMID(NUM-VAR) PBES(NUM-VAR) PBf2(NUhl-VAR) 
SCAL HETO/oMP(NUM-VAR) HETc/oHPINUM-VAR) HET0'cLP(NUM-VAR) HET%BP(NUM-VARl 

HET%2P(NUM_VAR) hET2P(NUMPVAR) 
HETMP(NUM-VARI HETHP(NUM-VAR) HETLP(NUM-VAR) HETBPINUM-VARI 
THTMP(NUM-VAR),THTHP(NUM-VAR) SEMP(NUM-VAR) SEHP(NUb1-VAR) 
THTLP(NUM-VAR) THTBP(NUM-VAR) THT2P(NUM_VAR) 

VARI' PAR(NUM-VAR) $ 2 
VARI' HYB(NUM-VAR) S 1 
VARI' PARS(NUM-VAR) $ NP 
EQUA' PARS(NUM-VAR)=LINES(NUM-VAR),TESTS(NUM-VAR) 
'CALC' PBESiNUM VAR)=MAX(PARS(NUM-VAR)) 
'CALC' PBE~(NUM~AR)=MIN(PARS(NUM-VAR))  

'FOR' I=1 NL 
FOR' J=I  NT 
CALC IJ=J+NT'(I-1) 



'COPY' PAR(NUM-VAR) S I=LINES(NUM-VAR) S I 
'COPY' PAR(NUM-VAR) $ 2=TESTS(NUM_VAR) $ J 
'COPY' HYB(NUM-VAR)=HYBDS(NUM-VAR) $ IJ 
'CALC' PMAX(NUM-VAR)=MAX(PAR(NUM-VAR)) 
'CALC' PMIN(NUM-VAR)=MIN(PAR(NUM-VAR)) 
'CALC' PMID(NUM-VAR)=MEAN(PAR(NUM-VAR)) , 
'CALC' HETO/oMP(NUM-VAR)=(HY B(NUM_VAR)-PMID(NUM-VAR))/PMID( NUM-VAR) 

HET%HP(NUM-VAR)=(HYB(NUM-VAR)-PMAX(NUM-VAR))/PMAX(NU M-VAR) 
HET?/oLP(NUM-VAR)=(HYB(NUM-VAR)-PMIN(NUM-VAR))IPMIN(NUhl-VAR) 
HET%BP(NUM-VAR)=(HYB(NUM-VAR)-PBES(NUM-VAR))/PBES(NUM-VAR) 
HET0/o2P(NUM-VAR)=(HYB(NUMMVAR)-PBE2(NUM-VAR))/PBE2(NUM-VAR) 

'CALC' SEMP(NUM-VAR)=SQRT(1.5'VA(NUM-VAR)/NR1 
'CALC' SEHP(NUM-VAR)=SQRT(2*VA(NUM-VAR)/NR) 
'PRINIP' SEMP(NUM-VAR) $ 12.4 
'PRINIP' SEHP(NUM-VAR) $ 12.4 
'CALC' THTMP(NUM-VAR)=HETOhMP(NUM-VAR)lSEMP(NUMMVAR1 
'CALC' THTHP(NUM-VAR)=HET0/ot-IP(NUMPVAR~1SEHP(NUM-VAR) 
'CALC' THTLP(NUM-VAR)=HET%LP(NUM-VAR)/SEHP(NUM-VAR) 
'CALC' THTBP(NUM-VAR)=HETOhBP(NUMMVAR)/SEHPfNUMMVAR) 
'CALC' THT2P(NUM VAF?)=HET%2P(NUM-VAR)/S€.HP(NUMMVAR) 
'NAME' H D M = T S ~ ~ ~ ~  
'PRINTIP,LABC=l'  H1.1,H2.J,H3,HET0/~MP(NUM-VAR) $ 8.2.1,2.10.NV~(7 41 
'PRINT/P,LABC=l'  HDM,I.H2,J,H3.THTMP(NUM-VAR) S 8,2,1,2, IO.NVl(7 41 
'PRINT/P,LABC=l'  Hl.l.H2.J.H4,HET%HP(NUM_VAR) $ 8.2,1,2,IO7NV1(7 4 )  
'PRINT/P,LABC=l'  HDM,l,H2,J,H4,THTHP(NUM-VAR) S 8,2,1,2,1O,NV1(7.4) 
'PRINT/P.LABC=l'  H I  .I.H2,J,H5,HET%LP(NUM-VAR) 9 8 2,1,2,1O,NV!(7 4 )  
'PRINT/P.LABC=l' HDM,l,H2,J,HS,THTHP(NUM_VAR) S 8,2,1,2,1O,NV!(7 4 )  
'PRINTIP.LABC=I' H I  .I.H2,J,HG,HET?/oBP(NUM-VAR) S 8 2,1,2,10,NV1(7 4 )  
'PRINT/P.LABC=l'  HDM.I,H2,J,HG3THTBP(NUM-VAR) S 8.2.1,2,10.NV1(7 4 )  
'PRINTIP,LABC=I' H I  .I,H2.J,H7.HET0/02P(NUM-VAR) S 8.2.1,2, IO.NVl(7 4 )  
'PRINTIP,LABC=l'  HDM,I,H2.J,H7,THT2P(NUM-VAR\ S 8.2.1,2,10,NV1(7 4) 
'REPE' 
'REPE' 
'R' 
'CLOS' 
'STOP' 



'REFElNID=6000,NUNN=6000,PRIN=Z' RANDOMIZEDBLOCK 
'UNITS' 9 186 
'SCAL' NT=93 . NREP= 2 : NSITES=I NVAR= 7 
'INTE', NLOC=I . . .  NSITES 
'INTE' NUM VAR=l ..NVAR 
'FACT' REPS $ NREP:TREATSNT,PLOT s NT: PLOT s NT=(I. .NT)NREP 
'VARI' A(NUM-VAR). MYLD(NUM-VAR)S NT 
'VARI' B(NUM_VAR)M2(NUM_VAR) $ 3 
'SCAL' SS2,DF2,MS,GR_MEAN,SE,CV 
'VARI' V l = l  . . .  NT 

'NAME' V1= 

'FACT' ENTRYSVI , NT=1 . . NT 
'VARI' V2=1. . .  NT 
'FACT' E-NO $ V2. NT=1 . . .  NT 
'NAME' NM=Mean,SE+/-,CV(%) 
'FACT' ENAMES NM.3=1 . . .  3 
'HEAD' HX=" 

Table Characterist~cs of entries ~n ISVAT at 
Patancheru - 1982 

Ent ICSV-No. Days to Plant Grain y~eld 
no 500/6flo.. height ----------- 

werlng (cm) kg/ha Rank 

'HEAD' HY=" 

'I NPUTirecl=132' 2 
'FOR' SF=SF(NLOC) 
READJP. NUN=Q' REPS.TREAT.YLD(NUM-VAR) 
'FOR' Z=YLD(NUM-VAR),M=MYLD(NUhiI-VAR),Ml =M2(NUMPV,4R) 
'BLOCK' REPSIPLOT 
'TREAT' TREAT 
OUTPUT'2 
'ANOVA' Z . OUT=AOVl 
'EXTR' AOVI  ; REPS/PLOT 9 SS=*,SS2. DF=', DF2 
'EXTR' AOV1; TREAT $ MEAN=MN 
'CALC' MS=SS2/DF2 
'CALC' GR-MEAN=MEAN(MN) 
'CALC' CV= 1 OO*SQRT(MS)/GR-MEAN 
'CALC' SE=SQRT(MS/NREP) 
'EQUA' M=MN:MI=GR-MEAN.SE.CV 
'REPE' 
'PUT/FILE= 1 ' SF $ MYLD(NUM-VAR),M2(NUM-VAR) 
'REPE' 
'JUMP' LBI'(NSITES GT. 1) 



'FOR' SF=SF(NLOC) 
'GET/FILE=l' SF $ A(NUM-VAR)=MYLD(NUM-VAR) 
'GET/FILE=l' SF 9 B(NUM_VAR)=M2(NUM_VAR) 
'REPE' 
'VARI' MEANS,RNKl.RNKS S NT 
'SCAL' MAXM 
'EQUA' MEANS=A(NVAR) 
'GROUP' RNK=RANK(MEANS) 
'CALC' RNKI =FLOAT(RNK) 
'CALC' MAXM=MAX(RNKI ) 
'CALC' RNKS=(MAXM-RNKI )+ 1 
'PRIN/PLABC=I1 ENTRY,A(NUM-VAR),RNK S 6, 6, 6(9.2).5 
" RNKS FOR DESCND RNK ASCND e-no for entry no. ENTRY FOR ORIGIN 
'PRIN/P,LABC=l' ENAME.B(NUM-VAR) S 6. 6.6(9 2) 

'PRIN' HY 
'JUMP' L5 
'LABEL' L B I  
'FOR' M=MYLD(NUM-L'AR); Ml=M2(NUM_VAR) 
'FOR' SF=SF(NLOC):A=A(NLOC);B=B(NLOC) 
'GET/FILE=l' SF $ A=M 
'GET/FILE=17 SF 3 B=M1 
'REPE' 
'PAGE' 
VARI' MEANS.RNK1 .RNKS S NT 
CALC' MEANS=VMEAN(A(NLOC)) 
'GROUP' RNK=RANK(MEANS) 
'CALC' RNKI =FLOAT(RNK) 
CALC' RNKS=(NT-RNK1)+1 
'CAPT' " "**' 2 WAY TABLE OF GENOTYPE X ENVIRONMENT ""' " 
'LINE' 2 
'PRINIP' ENT-NO.GENCTYPE.A(NLOC),MEANS,RNKS S 4 0.15 1 .8  1.7 1.4(6.2) 
'PRIN/P.LABC=l' STAT,B(NLOC) S 14 0.8 .7 ,5(7  1)  
REPE' 
'PAGE' 
'LABEL' L5 
INPUT ' I  
'RUN' 
'CLOSE 
STOP' 



PERCENTAGE OVER GRAND MEAN 

NR : No. of replications 
, NT No. of treatments 

NV : No. of variables 
NCHECK : No. of check entries 
CENTRY - Check entry nos. 
NTEST No.of test entrles 
TEST : Test entry nos. 
NN1 : Test entry names 
NN2 : Check entry names 

'UNIT' $ 279 
'SCAL' NR= 3: NT=93.  NV= 6: NCHECK=4 :NTEST=89 
'INTE' NORDERz2 " 1 - RANK ON ENTRY; 2 - RANK ON RANKS " 
'VARI' CENTRY=90,91.92,93 
'VARI' TEST=? ..89 
'vari' NN1=1 . . .  89 
'van' NN2=90.91.92,93 
'NAME' Nl=SE+/- N2fhlEAN : N3=C'J(%) : N4=CHECKS N5=h21 
'NAME' N6=FRATIO : N7=h22 
'FACT' S$N1,1=1: M$N2.1=1: CVS$N3.1=1- CTSN4,1=1 H2 $ N5.1=1 
FACT' F$N6.1=1- H21 $ N7,1=1 
'FACT' ENTRIES S NNI.NTEST=I NTEST 
'FACT' CHECK $ NN2,NCHECK=I . . .  NCHECK 
'FACT' REP 9 NR: TRT $ NT 
'INPU/RECL=132' 2 
'READ/P,NUN=Q3 REP.TRT,oIdeno.X(l . .  .NV) 
'~npu '  1 
r ' 
VARI' R2,%C,ENTRY1RNK $ NT 
'BLOCK' REP/TRT 
TREAT' TRT 
'FOR' ZZ=X( l  .NV); M l = V ( l  .NV); SE=SE(1 NV): CV=CV(l NV); 

HERIT1 =H21(1.. . NV); HERIT2=H22(1 . NV); FVAL=FV(l . . NV) 
'ANOVA/SE=M, PROB=Y' ZZ : OUT=AOV 
'EXTR' AOV; TRT S MEAN=MM 
'EXTR' AOV; REP.TRT $ SS=SSl .  DF=DFl 
EXTR' AOV; TRT S SS=SST, DF=DFT 
'VARI' M I  $ NT 
'EQUA' M I = M M  
'SCAL' EMS,SE,CV.MST,FVAL 
CALC' EMS=SSl/DFI  
CALC' MST=SST/DFT 
'CALC' FVAL=MST/EMS 
'CALC' SE=SQRT(EMS/NR) 
'CALC' CV=SQRT(EMS)*I OOlMEAN(M1) 
'SCAL' SIG1 ,HERIT1 ,SIG2,HERIT2 
CALC' SIG 1 =(MST-EMS)/NR 
'CALC' HERIT1 =SIGl/(EMS+SIGl) 
'CALC' HERIT2=SIGl/((EMSINR)+SIGl) 

'REPE' 
'SCAL' M(1. . .  NV) 



CALC' M ( l  NV)=MEAN(V(I NV)) 
calc M(1)=10*INTPT((M(1)110)+0 5) 
VARI' ENTRY=I NT 
CALC' V(1)=1 O'INTPT((V(1)/10)+0 5) 
GROUP' RI=RANK(V(I)  FLEV) 
CALC' RNK=VARFAC(RI ) 
SCAL' MX 
CALC' MX=MAX(RNK) 
CALC' RNK=(MX-RNK)+l 
calc' RNK=INTPT(RNK) 
SCAL NC( l  NCHECK) 
EQUA NC( l  NCHECK)=CENTRY 
VARI' CE CC(1 NV) %CC,CR2 S NCHECK 
CALC' %C=(V( l  ~/M(1))'100 
FOR' I=1 NCHECK, J=NC(I NCHECK) 
CALC' ELEM(CE CC(1 NV),%CC CR2 I)=ELEM(ENTRY V(1 NV) 3/,C RNK J)  
REPE' 
VARI' E W(l NV) R22 PC $ NTEST 
SCAL T ( l  NTEST) 
EQUA T ( l  NTEST)=TEST 
FOR' Z=1 NTEST, J=T(I  NTESTi 
CALC ELEM(E W ( l  NV),R22 PC ZI=ELEM(ENTRY \/,I NV) RNK '/oC ,, 
REPE 
JUMP LLBI'(N0RDER EQ 1) 
CALC CHECK CE CC( l  NV) %CC CR2=ORDER(CHECK CE CC(1 NV) %CC CR2 CR2: 
CALC' ENTRIES E V V ( l  NV) PC R22=ORDER(ENTRIES E \Nil NV) PC R22 R22) 
JUMF LLB2 
LABE LLBI 
CALC CHECK CCI I  NV) %CC CR2 CE=ORDER(CPECK CC(1 NV'I O'CC CR2 CE CE) 
CALC ENTRIES 'vV(1 NV) PC R22 E=ORDER(ENTRIES W ( l  NV) PC R22 E E )  
LABE LLB2 
HEAD' HX= 

Table Summary of performance for PMEPAT Kharir 1995 Location 

Gra~n Yield Time Plant Panicle 
..................... Panicle to 75% Plarlt Pan~cle number number 

Entry Entry ?lo of yeid flowe- height length -------------- Ag DM 3us t  Smut 
number kg ha Rank mean kg ha ring(di jcm) (cm) i 1 0  ha ) score 1 % )  

HEAD' EOL= 

h21 on plot basis h22 on mean basis 

PRIN' HX 

PRlNlP LABR=I LABC=l '  ENTRIES E , W ( l ) , R 2 2  P C . W I 2  NV) 

PRIN/P.LABR=l LABC=l '  ENTRIES W ( I ) , W ( 2  . . .  NV) 
S 10,8.10(8.2) 

PRINILABR=l ,LABC=l l  CT 
PRINIP,LABR=l .LABC=l '  CHECK.CC(l)CC(Z . . .  NV) 

$ 10.8,10(8 2) 
PRINIP.LABR=l L A B C = I '  S ,SE( l . .  NV) $ 8.19 7.22 2,13(8 2) 
PRlN/PLABR=lLABC=l '  M , M ( I  .NV) S 8,16,22.10(8 2) 



'PRI NIP,LABR=l,LABC=l' CVS,CV(l  . . .  NV) $ 8,18 1.22.1,10(8 1: 
'PRIN/P.LABR=l .LABC=l1 F.FVi1 ..NV) $ 8.19.2,22.2,10(8.2) 
'PRINIP,LABR=l.LABC=l' H2.H21(1.. NV) S 8.19.2,22.2.10(8.2) 
'PRINI P,LABR=l .LABC=ll H21 H22(1 ..NV) $ 8,19 2,22.2.10(8 2) 
'PRIN' EOL 
'RUN' 
'CLOSE' 
'STOP'22 
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