SSR MARKER DEVELOPMENT IN MEDICAGO

 \&
PHYLOGENETIC STUDIES IN LEGUMES.

Dissertation Submitted In Partial Fulfillment Of
Requirement For The Award Of Degree Of

MASTER OF TECHNOLO(;Y in BIOTECHNOLOGY

By

ADDAGADA BALAKRISHNA

CENTRE FOR BIOTECHNOLOGY Institute of postgraduate studies $\mathcal{\&}$ research Jawaharlal Nehru Technology University

 Hyderabad-500028
TO

MY

LOVING PARENTS

International Crops Research Institute for the Semi-Arid Tropics

Tol $\quad \$ 9103296161$ (19 lines)
Fax +9140241239 $+91403296182$ Email ichisatecgiar org

CERTIFICATE

This is to certufied that the work reported in the dissertation entitled "SSR MARKER DEVELOPMENT IN MEDICAGO \& PHYLOGENETIC STUDIES IN

LEGUMES"Submitted by A.Balakrishna have been carried out under my supervision This work is towards the partial fulfillment of hei M.Tech Degiee from Jawaharlal Nehru Technological University, Hyderabad Ihis work is orgginal and has not been submitted in part or full for any other degree or diploma ol any university

い
[Dr. V. MAHALAKSHMI]
Principal Scientist, GT-1,
ICRISAT

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY CENTRE FOR BIOTECHNOLOGY
Institute of Post Graduate Studies and Research
Mahaveer Marg, Hyderabad - 500 028, A.P., India
Phone No. : 040-3373020

Dr. M. LAKSHMI NARASU
Associate Proiessor \& Head

CERTIFICATE

This is certified that the work reported in the dissertation entitled "SSR MARKER DEVELOPMENT IN MEDICAGO \& PHYLOGENETIC STUDIES IN

LEGUMES" Subnitted in partial fulfillment for the award of M.Tech in biotechnology from Jawaharlal Nehru Technological University. Hyderabad, is a bonafied work carried out by Mr.Balakrishna.Addagada under the guidance of Dr.V.Mahalakshmi, Senior scientist, International Crops Research Institute For Semi-Arid Tropic.(ICRISAT)

[Dr.M.Lakshmi Narasu]

DECLARATION

I Balakrishna.addagada. a bonafied student of IPGSR. JNTU. Hyderabad here by declare that the dissertation entitled "SSR Marker Development In Medicago And Phylogenetic Studies In Legumes" is solely done by me under the expertise guidance of Dr.V.Mahalakshmi at International Crops Research Institute For Semi-Arid Tropics (ICRISAT), Hyderabad.
The facts and figures enumerated in this project work are in accordance with the results of the modeling done in computer. This project work has not been submitted to any university or institution for the award of any degree or diploma.
(Balakrishna addagada)

ACKNOWLEDGEMENTS

This project work is carried out with valuable suggestions and guidance under the supervision of Dr.V. Mahalakshmi,Principalscientist.GTI.ICRISA'T.patancheru.

Her unstilted encouragement and deep concern helped me to complete my project work in time. I am highly grateful and indebted to her.

It gives me immense pleasure in expressing my deep sense of gratitude to Dr. Lakshmi Narasu. Head, Centre for biotechnology, Jawaharlal Nehru University, Hyderabad. I take this opportunity to thank her for suggesting me to join in the ICRISAT as an ApprenticeAnd helped me in finishing my project work.

My sincere thanks to Dr.Prameela Devi. Dr.Archana giri associate professors and Mr.kiran, Ms.Anuradha and Ms. Radhika academic associates, C'entre for biotechnology,JNTU, for their valuable guidance.

I would like to thanks to my friends Ms. hemabindu. Ms.Manjula. Mr.PVNS Prasad, Ms. Rekha. Ms. Leela, Mr. Kumar, Ms. Sasikala. Ms. shanthi. and other colleagues in ICRISAT for their encouragement and cooperation during my course of project work.

I show my gratitude to my beloved parents, brother's and my Roommates, for their constant encouragement and good support throughout this course of work.

Abstract:

Bioinformatics is the application of computational techniques to analyze the information associated with bio-molecules on a large scale and encompasses a wide range of subject areas from structural biology, genomics to gene expression studies.

Chapter 1 gives an introduction and overview of the finding of tandem repeats for medicago truncatula. For this purpose bioinformatics tools like Tandem Repeats Finder, Primer3, Windows software and MS Access were used. The complete database of medicago truncatula plant was created and placed in the INTRANET of ICRISAT, which could be accessed by the scholars and scientists for their requirements. The database of medicago truncatula gives complete information regarding the different tandemrepeats, their complete sequence, the accession number of that sequence which was given by NCBI, left primer, right primer, left temperature, right temperature, and total sequence size.

Chapter 2 gives an introduction about the molecular phylogenetic studies and describes completely about the phylogeny of selected legumes for conserved enzymes. For this purpose we utilized the software tools like CLUSTAL W for multiple alignment, JALVIEW for alignment analysis and phylogenetic tree construction, AND PRIMER 3 for primer designing which is crucial for PCR success. Phylogeny is about evolution and is used to reconstruct evolutionary events. It is now possible to construct phylogenetic evolution at a molecular level through analysis of molecular sequences, namely proteins \& nucleic acids. To construct phylogenetic tree among grass family, the sequences of conserved enzymes from mitochondria, chloroplast and nucleus are probed by using bio-informatics tools.

CONTENTS

1. SSR Marker Development For Medicago Data Base 1
1.1 Introduction 1
1.1.1 DNA repeat - finding tools 2
1.1.2 Tandem Repeats Finder 2
1.1.2.1 Levels of Tandem Repeat Finder. 3
1.1.2.2 Advanced Tandem Repeat Finder Program Parameters. 4
1.1.2.3 Options 5
1.1.2.4 Procedure for finding Tandem repeats 6
1.1.2.5 Alignment Explanation 11
1.2 Primer Design 12
1.2.1 Introduction. 12
1.2.1.1 Primer Design Programs 12
1.2.1.2 Primer Design Considerations. 13
1.2.1.3 Features of Primer Design 15
1.2.1.4 Limits of Primer Design 15
1.2.2 Primer3 16
1.2.2.1 Primer3 input parameters. 19
1.2.2.2 Procedure for Primer Design by using Primer3 28
1.2.2.3 Output of Primer 3 28
1.2.2.4 Results. 31
1.2.2.5 Data base of medicago 32
1.2.2.6 Discussion 35
2. Phylogenetic studies in legumes 37
2.1 Introduction 37
2.1.2 Phylogenetic Terms. 38
2.2 Molecular phylogenetics. 43
2.3 Multiple alignment. 44
2.3.1 Phylogenetic tree construction methods. 45
2.3.2 Phylogenetic tree. 46
2.3.3 Tree building. 49
2.4 Method Of Phylogenetic Studies Of Legumes. 51
2.4.1 Reasons For Taking Conserved Common Finzymes In Phylogenetic Studies. 51
2.4.1.1 Nuclear Enzyme. 51
2.4.1.2 Mitochondrial Enzyme. 52
2.4.1.3 Chloroplast Enzyme. 53
2.4.2 Multiple Alignment Method 53
2.4.2.1 Steps involved in multiple alignment method 54
2.5 Design Primers For The Sequences Of Medicago 80
2.5.1 Selection of first set of primers. 81
2.5.2 Calculation of product size. 89
2.6 Selection of second set of primers 90
2.7 Results.90
2.8 Discussion. 93

WEBSITES USED IN THE PROJECT WORK

1) http://unn-genome.wi.mut.edu/cgi-hn/primer/primer3 nun.cgi
2) http://wnw.nebi.nlm.nilh.gov/entre//quers.teg
3) http://"nn.ebi.ac.uh/elustalw/
4) http://nwn.ncbu.nIm.nilh.gos/
5) http://ce3.biomath.mssm.edu/trif.html
6) http://c.3.homath.mssm.edu/caample.html
7) http://c. 3 .biomath.mssm.edu/trf.definitionn.htm 1 flanta
8) http://c3. biomath.inssm.edu/trf.submit.option .h.tml
9) http://c3.bomath.mssm.edu/trf.adhanced., vubmiththtml
10) http://c3.buomath.mssm.cdu/trt.upload.form.htmil
11) http://wnw.nchi.nIm.nih.gov/entre//quers. feyi'db=Nucleotide
12) http://unw 2. .ebi.ac.uh/-nichelefialview/content $5 . h$ htmI
13) http://unw.evpaw.ch/eng me/
14) http://u wn.genome.ad.jp/
15) http://wnu. m. mem.edu/cchool.html

1. SSR Marker Development For Medicago Database:

1.1 Introduction:

DNA simple sequence repeats (SSRs) are also called as microsatellites. These micro satellites are becoming used as DNA markers in marker assisted breeding. They are codominant, occur in high frequency, and appear to be distributed through out the genomes of most, not all the higher plants and animals. They also display a high level of polymorphism, even among closely related accessions, and are amenable to simple and inexpensive Polymerase Chain Reaction (PCR) assays (Brown et al (1996)). SSR are becoming the standard DNA markers for plant genome analysis. A wide variety of methods for construction of libraries enriched for micro-satellite sequences have been reported, the most popular among these being the ones based on vectorette PCR using anchored primers (Lench et al. 1996).

The standard procedure for developing SSRs as genetic markers is to isolate and sequence SSR -containing DNA clones from size-fractionated and (or) enriched genomic DNA libraries, and to design, produce, and test PCR primer sets for SSRs contained in the sequenced clones. The most rapidly reassociating DNA is simple sequence DNA, which is composed of short [5-to 10-base] oligonucleotides that are tandemly repeated. The tandem repetition of a short sequence often creates a fraction with distinctive physical properties that can be used to isolate it. The term satellite DNA is essentially synonymous with simple sequence DNA. Tandemly repeated sequences are especially liable to undergo misalignments during chromosome pairing, and the size of tandem clusters tends to be highly polymorphic. The smaller clusters of this simple sequence can be used to characterize individual genomes in the technique of "DNA finger printing". Comparisons of corresponding regions of simple sequence DNA with in and
between species are informative about the mechanisms involved in manipulating sequences.

1.1.1 DNA repeat - finding tools:

DST- locate human repeats:

Two search modes are available, a search for human repeats using the file BR3X and a self-homology search that will find repeats more than 2 kb apart.

Tandem Repeats Finder:

A Tandem repeat in DNA is two or more adjacent, approximate copies of a pattern of nucleotides.

Large Dot Plots:

This page accesses a very fast dot plot algorithm designed for large DNA sequences.
REPuter- Fast Computation of Maximal Repeats in complete genome: REPuter computes all maximal duplications and reverse, complemented and reverse complemented repeats in a DNA input sequence.

Repeat Masker- mask out repeat sequences:

Repeat Masker screens DNA sequences in FASTA format against a library of repetitive elements and returns a masked query sequence ready for database searches as well as a table annotating the masked regions.

1.1.2 Tandem Repeats Finder

Tandem Repeats Finder is a program to locate and display Tandem Repeats in DNA sequences. In order to use this program, we have to submit the
sequence in FASTA format. There is no need to specify the pattern, the size of the pattern or any other parameter. The program's analysis is sent back as two files, a summary table file and an alignment file. The summary table contains information about each repeat, including its location, size, number of copies and nucleotide content. Clicking on the location indices for one of the table entry opens a second web browser that shows an alignment of the copies against a consensus pattern. The program is very fast, analyzing sequences on the order of .5 Mb in just a few seconds. Submitted sequences may be up to 5 Mb in length. Repeats with pattern size in the range from 1 to 500 bases are detected.

1.1.2.1 Levels of Tandem Repeat Finder:

There are 3 levels of tandem repeat finders.

1. Basic: It uses default parameters (recommended for beginners.)
2. Intermediate: It provides the parameter Maximum period size, and options Flanking sequence and Masked Sequence File.
3. Advanced: It provides the parameters like Alignment parameters (match, mismatch and indels), Minimum Alignment Score To Report Repeat, Maximum Period Size and options like Flanking sequence, Masked sequence file, Data file.

I.1.2.2 Advanced Tandem Repeat Finder Program Parameters:

Input of the program consists of a sequence file and the following parameters:

1. Alignment Parameters: Weights for match, mismatch and indels. Lower weights allow alignments with more mismatches and indels. Match weight is +2 in all options here. Mismatch and indels weights [interpreted as negative numbers] are 3,5 , or 7 . A 3 is more permissive and a 7 is less permissive of these types of alignment choices.
2. Minimum Alignment Score: The alignment score must meet or exceed this value for the repeat to be reported.
3. Maximum Period Size: The period size must be no larger than this value for the repeat to be reported. The program will find all repeats with period size between 1 and 500, but the output table can be limited to some other range.
4. Detection parameters: Matching probability P_{m} and indeal probability $P_{\text {I }}$ $P_{m}=.80$ and $P_{1}=.10$ by default and it cannot be modified in this version of the program.

1.1.2.3 Options:

1. Flanking sequence: Flanking sequence consists of the 200 nucleotides on each side of a repeat. Flanking sequence is recorded in the alignment file. This may be useful for PCR primer determination.
2. Masked sequence File: The masked sequence file is a FASTA format file containing a copy of the sequence with every character that occurred in a tandem repeat changed to the letter ' N '. The word "masked" is added to the sequence description line just after the ' $>$ ' character.
3. Data File: The data file is a text file, which contains the same information, in the same order, as the summary table file, plus consensus sequences. This file contains no labeling and is suitable for additional processing, for example with a perl script, outside of the program.

1.1.2.4 Procedure for finding Tandem repeats:

Web tools like http://c3.hiomath.mssm edu/triacdvanced.submit.htinl can used to find out the tandem repeats of particular sequence (source sequence). This web tool is provided by The Department of Biomathematical sciences, Mount sinai School of Medicine.

Down load the source sequence from the www.ncbi.nlm.nih/gov/entrez in FASTA format.

Open the page http $/ \mathrm{c} 3$ bomath mssm edu ul adranced submut.html
Enter the source sequence in cut and paste sequence blank.
Adjust the parameters according to our practical requirement
Click the submit sequence button.

- By clicking on the submit sequence the tandem repeats finder server will display on screen

- By clicking on the tandem repeats report displays the program analysis.
- It shows the results in a table format.
- Results of search:

The program's analysis is sent back to the user's web browser as two files, a summary table file and an alignment file.

- Table Explanation:

The summary table includes the following information:

1. Indices of the repeat relative to the start of the sequence.
2. Period size of the repeat.
3. Number of copies aligned with the consensus pattern.
4. Size of consensus pattern (may differ slightly from the period size).
5. Percent of matches between adjacent copies overall.
6. Percent of indels between adjacent copies overall.
7. Alignment score.
8. Percent composition for each of the four nucleotides.
9. Entropy measure based on percent composition.
10.If the output contains more than 140 repeats, multiple linked tables are produced. The links to the other table appears at the top of each table.

- Clicking on the location indices of the table opens a second web browser which shows an alignment of the copies against a consensus pattern.


```
Alvonment explangtion
    Indices! 60 -84 Score 50
    Perzod size. 2 Copynumber: 12.5 Congenaus mize: 2
    SO ACTCTAATAG
    GO OL GA GA OL GA OA GA GA GA GA GA GA G
    1 GA GA GA GA GA GA GA GA G& GA GA GA G
    BS GANGANAACA
Schtigtzec
Matehes: 23, Hismatehesi 0, Indels: 0
    1.00 000 0.00
Mmeches are diseributed enong these digtancent
    3 23 1.00
ACGTCount: A:O.4B, CID.OD, GiO.52, T:O.00
Consmnsus pattern (2 bp):
GA
Found ec 2:236 oragmnel azeeid3 tinal miseri4
Alignmemc madenaczon
Indices, 218--246 Score: 51
Period miEEz 14 Copynumber: 2.1 Conmensust size: 14
    200 Actctcatca
    210 TTCTTCC-&&&CCC
        1 TTCTTCCAAdACCC
    231 TTCTTCCANANCCC
        1 TTCTTCE&&n&cce
    245 TT
        1 TT
    247 ITTCTTCACT
8tatcimtian
Hatchute: 15, Fimpacchen: 0. Indelp: }
    0.94 0.00 0.08
```



```
    13 7 0.47
    14 0 0.53
ACo%epunt: A:0.24. Cs0.41. Gs0.00. Ti0.34

\subsection*{1.1.2.5 Alignment Explanation:}

The alignment is presented as follows:
1. In each pair of lines, the actual sequence on top and a consensus sequence for all the copies are on the bottom.
2. Each pair of lines is one period except very small patterns.
3. The 10 sequence characters before and after a repeat is shown.
4. The Symbol ( \({ }^{*}\) ) indicates a mismatch.
5. The Symbol ( - ) indicates an insertion or deletion.
6. Statistics refers to the matches, mismatches and indels overall between adjacent copies in the sequence, not between the sequence and consensus pattern.
7. Distances between matching characters at corresponding positions are listed as distance, number at that distance, percentage of all matches.
8. A, C, T, G count is percentage of each nucleotide in the repeat sequence.

\subsection*{1.2 Primer Design:}

\subsection*{1.2.1 Introduction:}

Designing PCR and sequencing primers are essential activities for molecular biologists around the world. Primer design was developed to find suitable primers for PCR or oligo nucleotides for probes and DNA sequencing. Primer design is crucial for the success of PCR. Inappropriate primers cause low yield and misinterpretation. Primers that bind to multiple DNA loci can synthesize side products and render sequencing illegible, especially with high amplification of small amounts of DNA and with impure DNA. They are generally the result of short DNA sequence repeats. An ideal primer should only bind to a unique sequence. To ensure this the given sequence must be compared with itself to identify repeats.

Primer Design is a DOS-program to choose primer for PCR or oligonucleotide probes. Napiwotzki, J. and Becker, A. wrote this program in 1995. It is tailored to check known sequences for repeats and unique sequences and subsequently to create proper primers according to this data.

\subsection*{1.2.1.1 Primer Design Programs:}

These are all primer design tools, which are generally used for the primer prediction and analysis programs.
1. The PCR Jump Station: The ultimate Web page for information and links on all aspects of the Polymerase Chain Reaction (PCR).
2.Gene Fisher: Gene fisher processes aligned or unaligned sequences.
3.Gene Walker: It allows working with two primer sequences
4.Cyber Gene: Cyber Gene is a company that provides commercial oligonucleotide synthesis, DNA sequencing, genotyping and bioinformatics services.
5.Web Primer: An application that designs primers for PCR or sequencing purpose.
6.Primer Design: A free primer design utility, from the EMBL.
7.Primer3: Primer3 picks primers from PCR reactions, according to the conditions specified by us. Primer considers things like melting temperature, concentrations of various solutions in PCR reactions, primer bending and folding, and many other conditions when attempting to choose the optimal pair of primers for reaction.
8.Poland - melting profiles of double stranded DNA: The Poland server will calculate the thermal denaturation profile of double stranded RNA or DNA based on sequence input and parameter settings in this form.
9.Net Primer: Net primer combines the latest primer design algorithms with a Web-based interface allowing the user to analyze primers over the Internet. 10.Gene Primer: It gives computational support of gene experiments. This software implements an algorithm for experimental gene identification by multiple PCR amplification.

\subsection*{1.2.1.2 Primer Design Considerations:}

One of the single most important factors in successful automated DNA sequencing is proper primer design. It is important that a primer has the following characteristics:
1. Primers should be at least 18-20 nucleotides in length to minimize the chance of encountering problems with a secondary hybridization site on vector or insert.
2. Primers with long runs of a single base should generally be avoided. It is especially to avoid 3 or more G's or C's in a row.
3. For cycle sequencing, primers with melting temperatures above \(55^{\circ} \mathrm{C}\) are generally produce better results than primers with lower melting temperatures.
4. Primers should have a G/C content between 40 and 60 percent. For primers GC content of less than \(50 \%\), it may be necessary to extend the primer sequence beyond 18 bases to keep the melting temperature above the recommended lower limit of \(55^{\circ} \mathrm{C}\).
5. Primers should be "stickier" on their 5' ends than on their 3' ends. A "sticky" 3 ' end as indicated by a high G/C content could potentially anneal at multiple sites on the template.
6. " \(G\) " or " \(C\) " is desirable at the 3 ' end.
7. Primers should not contain complementary (palindromes) within themselves, that is they should not form hairpins. If this state exists a primer will fold back on itself and result in an unproductive priming event which decreases the overall signal obtained.
8. Primers should not contain sequences of nucleotides that would allow one primer molecule to anneal to it self or to the other primer used in a PCR reaction (primer dimer formation).
9. If possible, run a computer search against the vector and insert DNA sequences to verify that the primers, and especially the 8-10 bases of its \(3^{\prime}\) end, are unique.
10.Do not design degenerate primers. Do not request inosine in sequencing primers. They either do not work or give poor cycle sequencing results.

\subsection*{1.2.1.3 Features of Primer Design:}
- Creating of new primer pairs.
- Creating one suitable primer to a given primer.
- Finding of repeats within a sequence.
- Finding of unique sequences within a sequence.
- Handling of sequences up to \(\mathbf{3 2 , 0 0 0 b p}\).

\subsection*{1.2.1.4 Limits of Primer Design:}
- The sequence length which can be used for primer design, repeat and unique search is limited to \(32,000 \mathrm{bp}\).
- Maximal 16000 repeats can be found and sorted.
- Primer combinations can be explorated up to 6000 pairs.

\subsection*{1.2.2 Primer3:}

To design primers for a region of interest, Genotator i.e.Primer 3 is used. The development of Primer 3 and the Primer3 WWW interface were funded by Howard Hughes Medical institute and by the National Institutes of Health, National Human Genome Research Institute, under grants ROI - HG00257 and P50-HG0098.

Primer 3 started as a reimplementation of Primer . 5 as software component; the design of Primer 3 draws heavily on the design of Primer .5 and Primer v2 and WWW inter face designed by Richard Resnick for Primer \(\mathbf{v 2}\).
Primer 3 is a computer program that suggests PCR primers for a variety of applications.
a) To create STS (sequence tagged sites).
b) To amplify sequences for single nucleotide polymorphism discovery.
c) To select single primers for sequencing reactions.
d) Do design oligo nucleotide hybridization probes.


Generul Prinner Picking Conditions:



Other Pex-Sequence Imputs


\section*{Sequence Ourilty}

\section*{Sequerse Qunlity}

Objective Function Penalty Welghts for Primern


Ohjective Function Penalty Weights for Primer Putrs
\begin{tabular}{|c|c|}
\hline  & \(0 \longdiv { 0 0 0 ^ { \circ } }\) \\
\hline \(\mathrm{F}_{3}\) sduct in 12 [0] & \(9 \longdiv { 1 0 }\) \\
\hline  & \(\sqrt{100}\) \\
\hline  & \(\sqrt{00}\) \\
\hline - - mol metituy & [10] \\
\hline  & 万os \\
\hline  & 10 \\
\hline Hyh Uler Eeritry Wrip & \\
\hline
\end{tabular}
Peltepimare Reset Form

Liyb Olige (Intersial (Sifgo) Per Sequence Inpuits

Hyb Oligo (Internal OHge) Gemerul Conditions


\section*{}

Objective Function Penalty Welfhts for Hyb i)Hgos (Internal iligos)
\begin{tabular}{|c|c|}
\hline Hybutier Im Lt 110 & \\
\hline \multicolumn{2}{|l|}{Hyb Sluge Lar Lt 10} \\
\hline \multicolumn{2}{|l|}{Hyb Clue Cry} \\
\hline \multicolumn{2}{|l|}{Hypoine -elif =mplementarity 00} \\
\hline Hyb Oluac uris & 100 \\
\hline Heterther Mashytum & 100 \\
\hline Hyb Olier Securence Oundity & \\
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

Copyright Notice and Disclaimer

\subsection*{1.2.2.1 Primer3 input parameters:}

\section*{Source Sequence:}

The sequence from which to select primers.
Sequence Id:
An identifier that is reproduced in the output to enable us to identify the chosen primers.

\section*{Targets:}

If one or more Targets are specified then a legal primer pair must flank at least one of them. A Target might be a simple sequence repeat site (for example a CA repeat) or a single-base-pair polymorphism.

\section*{Excluded Regions:}

Primer oligos may not overlap any region specified in this tag. The associated value must be a space-separated list of
Start, length
Pairs where start is the index of the first base of the excluded region, and length is its length.
E.g. 401,768,3 forbids selection of primers in the 7 bases starting at 401 and the 3 bases at 68. E.g. ...ATCT<CCCC>TCAT. Forbids primers in the central CCCC.

\section*{Product Size:}

Minimum, Optimum, and Maximum lengths (in bases) of the PCR product. Primer3 will not generate primers with products shorter than Min or longer than Max, and with default arguments Primer3 will attempt to pick primers producing products close to the Optimum length,

\section*{Number To Return:}

The maximum number of primer pairs to return. Primer pairs returned are sorted by their "quality", in other words by the value of the objective function (where a lower number indicates a better primer pair). Setting this parameter to a large value will increase running time.

\section*{Max 3' Stability:}

The maximum stability for the five \(3^{\prime}\) bases of a left or right primer. Bigger numbers mean more stable \(3^{1}\) ends.

\section*{Max Mispriming:}

The maximum allowed weighted similarity with any sequence in Mispriming Library. Default is 12 .

\section*{Pair Max Mispriming:}

The maximum allowed sum of similarities of a primer pair (one similarity for each primer) with any single sequence in Mispriming Library. Default is 24

\section*{Primer Size:}

Minimum, Optimum, and Maximum lengths (in bases) of a primer. oligo. Primer3 will not pick primers shorter than Min or longer than Max, and with default arguments will attempt to pick primers close with size close to Opt. Min cannot be smaller than 1. Max cannot be larger than 36. (This limit is governed by maximum oligo size for which melting-temperature calculations are valid.) Min cannot be greater than Max.

\section*{Primer \(\mathrm{T}_{\mathrm{m}:}\)}

Minimum, Optimum, and Maximum melting temperatures (Celsius) for a primer oligo. Primer3 will not pick oligos with temperatures smaller than Min or larger than Max, and with default conditions will try to pick primers with melting temperatures close to Opt.

\section*{Maximum \(\mathbf{T}_{\mathbf{m}}\) Difference:}

Maximum acceptable (unsigned) difference between the melting temperatures of the left and right primers.

\section*{Product \(\mathbf{T}_{\mathrm{m}}\) :}

The minimum, optimum, and maximum melting temperature of the amplicon. Primer3 will not pick a product with melting temperature less than min or greater than max.
\(\mathrm{T}_{\mathrm{m}}=81.5+16.6\left(\log _{10}([\mathrm{Na}+])\right)+.41^{*}(\% \mathrm{GC})-600 /\) length,
Where \([\mathrm{Na}+]\) is the molar sodium concentration, ( \(\% \mathrm{GC}\) ) is the percent of Gs and Cs in the sequence, and length is the length of the sequence.

Primer GC\% Minimum, Optimum, and Maximum percentage of Gs and Cs in any primer.

\section*{Max Complementarity:}

The maximum allowable local alignment score when testing a single primer for (local) self-complementarity and the maximum allowable local alignment score when testing for complementarity between left and right primers. For example, the alignment

\section*{5' ATCGNA 3'}
|||

\section*{3' TA-CGT 5'}
is allowed (and yields a score of 1.75), but the alignment

\section*{5' ATCCGNA 3'}
|| ||
3' TA--CGT 5'
is not considered. Scores are non-negative, and a score of 0.00 indicates that there is no reasonable local alignment between two oligos.

\section*{Max 3' Complementarity:}

The maximum allowable 3 '-anchored global alignment score when testing a single primer for self-complementarity, and the maximum allowable 3'anchored global alignment score when testing for complementarity between left and right primers. The 3 '-anchored global alignment score is taken to predict the likelihood of PCR-priming primer-dimers, for example 5' ATGCCCTAGCTTCCGGATG 3'

\section*{3' AAGTCCTACATTTAGCCTAGT 5'}
or

\section*{5` AGGCTATGGGCCTCGCGA 3'}
||||||

\section*{3' AGCGCTCCGGGTATCGGA 5'}

The scoring system is as for the Max Complementarity argument. In the examples above the scores are 7.00 and 6.00 respectively. Scores are nonnegative, and a score of 0.00 indicates that there is no reasonable \(3^{\prime}\)-. anchored global alignment between two oligos. In order to estimate \(3^{\prime}\) anchored global alignments for candidate primers and primer pairs, Primer assumes that the sequence from which to choose primers is presented \(5^{\prime}->3^{\prime}\). It is nonsensical to provide a larger value for this parameter than for the Maximum (local) Complementarity parameter because the score of a local alignment will always be at least as great as the score of a global alignment.

\section*{Max Poly-X:}

The maximum allowable length of a mononucleotide repeats for example AAAAAA.

\section*{Included Region:}

A sub-region of the given sequence in which to pick primers. For example, often the first dozen or so bases of a sequence are vector, and should be excluded from consideration. The value for this parameter has the form Start, length

Where start is the index of the first base to consider, and length is the number of subsequent bases in the primer-picking region.

\section*{Start Codon Position:}

This parameter should be considered EXPERIMENTAL at this point. Some erroneous input might cause an error in Primer. Index of the first base of a start Codon. This parameter allows Primer to select primer pairs to create in-frame amplicons.

\section*{Mispriming Library:}

This selection indicates what mispriming library (if any) Primer should use to screen for interspersed repeats or for other sequence to avoid as a location for primers.

\section*{CG Clamp:}

Require the specified number of consecutive Gs and Cs at the 3' end of both the left and right primer. (This parameter has no effect on the hybridization oligo if one is requested.)
\[
\text { BR } 63106
\]

\section*{Salt Concentration:}

The millimolar concentration of salt (usually KCl ) in the PCR. Primer3 uses this argument to calculate oligo-melting temperatures.

\section*{Annealing Oligo Concentration:}

The nanomolar concentration of annealing oligos in the PCR. Primer3 uses this argument to calculate oligo-melting temperatures.

Max Ns Accepted:
Maximum number of unknown bases \((\mathrm{N})\) allowable in any primer.

\section*{Liberal Base:}

This parameter provides a quick way to get Primer3 to accept IUB / IUPAC codes for ambiguous bases (i.e. by changing all unrecognized bases to N .

\section*{First Base Index:}

The index of the first base in the input sequence. For input and output using 1-based indexing (such as that used in Genbank and to which many users are accustomed) set this parameter to 1 . For input and output using 0 -based indexing set this parameter to 0 . (This parameter also affects the indexes in the contents of the files produced when the primer file flag is set.) In the WWW interface this parameter defaults to 1 .

\section*{Inside Target Penalty:}

Non-default values valid only for sequences with 0 or 1 target regions. If the primer is part of a pair that spans a target and overlaps the target, then multiply this value times the number of nucleotide positions by which the primer overlaps the (unique) target to get the 'position penalty'. The effect of this parameter is to allow Primer3 to include overlap with the target as a term in the objective function.

\section*{Outside Target Penalty:}

Non-default values valid only for sequences with 0 or 1 target regions. If the primer is part of a pair that spans a target and does not overlap the target, then multiply this value times the number of nucleotide positions from the \(3^{\prime}\) end to the (unique) target to get the 'position penalty'. The effect of this parameter is to allow Primer3 to include nearness to the target as a term in the objective function.

\section*{Sequence Quality}

\section*{Sequence Quality:}

A list of space separated integers. There must be exactly one integer for each base in the Source Sequence if this argument is non-empty. High numbers indicate high confidence in the base call at that position and low numbers indicate low confidence in the base call at that position.

\section*{Min Sequence Quality:}

The minimum sequence quality (as specified by Sequence Quality) allowed within a primer.

\section*{Min 3' Sequence Quality:}

The minimum sequence quality (as specified by Sequence Quality) allowed within the \(3^{\prime}\) pentamer of a primer.

\section*{Sequence Quality Range Min:}

The minimum legal sequence quality (used for interpreting Min Sequence Quality and Min 3' Sequence Quality).

\section*{Sequence Quality Range Max:}

The maximum legal sequence quality (used for interpreting Min Sequence Quality and Min 3' Sequence Quality).

\section*{Penalty Weights:}

This section describes "penalty weights", which allow the user to modify the criteria that Primer3 uses to select the "best" primers. There are two classes of weights: for some parameters there is a ' Lt ' (less than) and a ' \(\mathrm{Gt}^{\prime}\) (greater than) weight. These are the weights that Primer3 uses when the value is less or greater than (respectively) the specified optimum. The following parameters have both ' Lt ' and ' Gt ' weights:
- Product Size
- Primer Size
- Primer \(T_{m}\)
- Product \(T_{m}\)
- Primer GC\%
- Hyb Oligo Size
- Hyb Oligo \(\mathrm{T}_{\mathrm{m}}\)
- Hyb Oligo GC\%

For the remaining parameters the optimum is understood and the actual value can only vary in one direction from the optimum:
- Primer Self Complementarity
- Primer 3' Self Complementarity
- Primer \#N's
- Primer Mispriming Similarity
- Primer Sequence Quality
- Primer 3' Sequence Quality
- Primer 3' Stability
- Hyb Oligo Self Complementarity
- Hyb Oligo 3' Self Complementarity
- Hyb Oligo Mispriming Similarity
- Hyb Oligo Sequence Quality
- Hyb Oligo 3' Sequence Quality

The following are weights are treated specially:

\section*{Position Penalty Weight}

Determines the overall weight of the position penalty in calculating the penalty for a primer.

\section*{Primer Weight}

Determines the weight of the 2 primer penalties in calculating the primer pair penalty.

\section*{Hyb Oligo Weight}

Determines the weight of the hyb oligo penalty in calculating the penalty of a primer pair plus hyb oligo.
The following govern the weight given to various parameters of primer pairs (or primer pairs plus hyb oligo).
- \(T_{m}\) difference
- Primer-Primer Complementarity
- Primer-Primer 3' Complementarity
- Primer Pair Mispriming Similarity

\section*{Hyb Oligos (Internal Oligos):}

Parameters governing choice of internal oligos are analogous to the parameters governing choice of primer pairs.

\subsection*{1.2.2.2 Procedure for Primer Design by using Primer3:}
- Select the query sequence and Id, which has the Tandem repeats in it
- Paste source sequence in FASTA format.
- Paste the sequence Id number in the sequence Id blank.
- Then put the tandem repeats in brackets [], which are present in the source sequence.
- Then adjust parameters according to our requirement.
- Then click the Pick Primers option.
- Then it shows the results as output.

\subsection*{1.2.2.3Output of Primer 3}

In primer 3 input after adjusting the parameters like temperature, (the default temperatures of minimum, optimum and maximum are \(57,60,63\) respectively. But adjust them to \(59,60,61\) respectively for more reliable results, which are more acceptable for practical purpose.) By clicking on the PICK PRIMERS gives the results as PRIMER3 OUTPUT. It will display like as shown below.

The top of the output displays the sequence id. The next part of the output displays the best left and right primers, and their characteristics (starting position, length, melting temperatures, and so forth). Then the output displays information specific to the input sequence and the selected pair.

The next information is a quasi-graphical representation of the location of the left ( \(\ggg \ggg>\)...) and right ( \(\lll \lll \lll . .\). ) primers in the source sequence. The position of the target is marked by asterisks (*******).


\subsection*{1.2.2.4 Results:}

For our study, we selected medicago, which is considered the nodal crop for all legumes. All available (approximately \(1,56,000\) ) nucleotide sequences were analyzed for the presence of tandemrepeats upto 50bp (maximum) length of repeat motif and no penalty gaps or indels were allowed. All the genomic sequences of medicago from public domain database were searched and analysed of Di, Tri, and tetra nucleotide repeats. Of the total about \(1,56,000\) sequences, which were searched, 7325 sequences were found to contain repeat motif and may yield SSRs, which would yield product sizes of around 200 bp . Of these mostly abundantly found repeats were the Trinucleotide group.
Out of 7325 tandemrepeats the Di-nucleotides are 1290,tri-nucleotides are 5210, and tetra -nucleotides are 925.

Summary by nucleotide unit length
\begin{tabular}{|l|l|}
\hline Unit length & SSR Count \\
\hline 2 & 1290 \\
\hline 3 & 5210 \\
\hline 4 & 925 \\
\hline
\end{tabular}

\subsection*{1.2.2.5 Data base of medicago:}

As descried in the above procedure the nucleotide sequences are allowed to find tandem repeats by submitting them to Tandem repeat finder. Then the primers are found to these repeats by using Primer3. The results of Primer3 output are collected and created as database. This database contains eight columns, id, accession number, sequence, left primer sequence, right primer sequence, left primer temperature, right primer temperature and total sequence.

This database link to gene annotation database at TIGR (www.tigr.org)
To facilitate further exploration of this resource, a dynamic database with options to search and link to other resources is available at (htp://wh w.icrisat.org/text/research/grep/homepage/genomics/medssrs 1 .asp ) and on CDs from V.Mahalakshmi(o)cgiar.org.
\begin{tabular}{|l|l|l|}
\hline Group & SSR Count & SSR Units in Group \\
\hline AC & 89 & AC CA GT TG \\
\hline AG & 828 & AG CT GA TC \\
\hline AT & 371 & AT TA \\
\hline CG & 2 & CG GC \\
\hline AAC & 721 & AAC ACA CAA GTT TGT TTG \\
\hline AAG & 2067 & AAG AGA CTT GAA TCT TTC \\
\hline AAT & 364 & AATATA ATT TAA TAT TTA \\
\hline ACC & 462 & ACC CAC CCA GGT GTG TGG \\
\hline ACG & 508 & ACG AGC CAG CGA CGTCTG GAC GCA GCTGTC TCG TGC \\
\hline ACT & 809 & ACT AGTATC ATG CATCTA GAT GTA TAC TAG TCA TGA \\
\hline AGG & 196 & AGG CCT CTC GAG GGA TCC \\
\hline CCG & 83 & CCG CGC CGG GCC GCG GGC \\
\hline AAAC & 73 & AAAC AACA ACAA CAAA GTTT TGTT TTGT TTTG \\
\hline AAAG & 141 & AAAG AAGA AGAA CTTT GAAA TCTTTTCTTTTC \\
\hline AAAT & 172 & AAAT AATA ATAA ATTT TAAA TATT TTAT TTTA \\
\hline AACC & 1 & AACC ACCA CAAC CCAA GGTT GTTG TGGT TTGG \\
\hline AACG & 5 & \begin{tabular}{l} 
AACG AAGC ACGA AGCA CAAG CGAA CGTT CTTG GAAC GCAA GCTT \\
GTTC TCGT TGCT TTCG TTGC
\end{tabular} \\
\hline AACT & 44 & \begin{tabular}{l} 
AACT AATC ACTA AGTT ATCA ATTG CAATCTAA GATT GTTA TAAC TAGT \\
TCAA TGAT TTAG TTGA
\end{tabular} \\
\hline AAGG & 39 & AAGG AGGA CCTTCTTC GAAG GGAA TCCT TTCC \\
\hline AAGT & 80 & \begin{tabular}{l} 
AAGT AATG ACTT AGTA ATGA ATTC CATT CTTA GAAT GTAA TAAG \\
TACT TCAT TGAA TTAC TTCA
\end{tabular} \\
\hline AATT & 123 & AATT ATTA TAATTTAA \\
\hline ACAG & 44 & ACAG AGAC CAGA CTGT GACA GTCT TCTG TGTC \\
\hline ACAT & 56 & ACAT ATAC ATGTCATA GTAT TACA TATG TGTA \\
\hline ACCC & 2 & ACCC CACC CCAC CCCA GGGT GGTG GTGG TGGG \\
\hline ACCT & 3 & \begin{tabular}{l} 
ACCT AGGT ATCC ATGG CATC CCAT CCTA CTAC GATG GGAT GGTA \\
GTAG TACC TAGG TCCA TGGA
\end{tabular} \\
\hline ACGC & 1 & ACGC CACG CGCA CGTG GCAC GCGTGTGC TGCG \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ACGG & 2 & ACGG AGGC CAGG CCGT CCTG CGGA CGTC CTGC GACG GCAG GCCT GGAC GGCA GTCC TCCG TGCC \\
\hline ACGT & 24 & ACGT ATGC CATG CGTA GCAT GTAC TACG TGCA \\
\hline ACTC & 37 & ACTC AGTG CACT CTCA GAGT GTGA TCAC TGAG \\
\hline AGAT & 47 & AGAT ATAG ATCTCTAT GATA TAGA TATC TCTA \\
\hline ĀGCG & 1 & AGCG CGAG CGCT CTCG GAGC GCGA GCTC TCGC \\
\hline AGCT & 9 & AGCT ATCG CGAT CTAG GATC GCTA TAGC TCGA \\
\hline AGGG & 20 & AGGG CCCT CCTC CTCC GAGG GGAG GGGA TCCC \\
\hline CCCG & 1 & CCCG CCGC CGCC CGGG GCCC GCGG GGCG GGGC \\
\hline CGGCG & 2 & CGGCG GGCCC \\
\hline ACCGG & 9 & ACCGG ACGCC CAGGC CCACG CGCCA \\
\hline AAAAT & 79 & aAnat aadta aatan aatta atana atatt attat attit tanan TATAA TATTT TTAAA TTATA TTATT TTTAA TTTAT TTTTA \\
\hline AACCC & 54 & AACCC AAGGG ACACC AGGAG AGGTG ATCCC CAACC CAGAT CTCTC GAAGC GGAGA GGGAT GGTTC GTCCT GTGGA GTGTC TCACC TCCAC TCCGA TCGAC TCGCA TCTCC TGCGA TTCCG TTGGC \\
\hline AAAGG & 237 & AAAGG AACAC AACAG aACCA AAGAG aAGCA AATCC AATCG ACAAC ACACA ACAGA ACTCA ACTTC AGACA AGAGA AGCAT AGTAC ATCCA ATCTG ATGAG ATGGA ATGTC CAAAC CAACA CAACT CACAA CACAT CACTA CAGAT CATCT CCAAA CCAAT CTCAA CTCAT CTCTT CTTCA TCCAA TCCTT TCGAT TCTCA TCTCT TCTGT TCTTC TGAAG TGACA TGTCA TGTTC TTCCT TTCTC TTCTG TTGGA TTGTG TTTCC TTTGG \\
\hline AAAAC & 236 & AAAAC AAAAG AAACA AAAGA AAATC AACAA AACAT AAGAA AAGAT AATAG AATCA AATGA AATTC AATTG ACAAA ACAAT ACATA AGAAA atcan atcta atctt atgan atciat atgia attag attca attct aTTGA ATTTC ATTTG CAAAA CAATT CATAA CATAT CATTT CTAAA CTAAT CTATT C'ITAT CTTTT GAAAA GAATA GTTTT TAGTT TATCA TATTC TCAAA TCAAT TCTAT TCTTA TGTTT TTCAA TTCAT TTCTA TTCTT TTG̣AA TTGAT TTGTA TTGTT TTTCA TTTCT TTTGT TTTTC TTTTG \\
\hline
\end{tabular}

\subsection*{1.2.2.6 Discussion:}

Data mining encompasses the use of pattern recognition technologies and statistical techniques to examine large amounts of data. De Novo generation of microsatellite markers through laboratory based screening of SSR enriched genomic libraries is highly time consuming and expensive. An alternative is to screen the public databases of related model species where abundant sequence data is already available. Beyond the cost savings, this approach also offers the possibility of identity through laboratory protocols. The availability of massive amounts of nucleotide sequence data has led to the development of innovative ways to examine these data as reflected in their functions.

Since the advent of recombinant DNA technology in population genetics in the mid-1980s, the repertoire of genetic markers available for population studies and for crop improvement has increased enormously. Plant breeding has changed with the introduction of these molecular techniques. Molecular markers allow for the extension of traditional breeding methods with one important difference-to transfer greater variety of genetic information in a more precise and controlled manner. Since the advent of molecular markers various types of DNA markers have been used in plant breeding and of these the most extensively used are the micro-satellite markers. The reasons for their extensive use are due to their mode of transmission, which is bi-parentral-nuclear with few loci and many alleles per locus. Mode of action being co-dominance with the exception of null alleles at some loci, show large variation within population \(s\) and are generally found in non-coding regions, which may contribute to the genome stability.

Our project work suggests that we can take advantage of DNA marker technology, a core set of at least 1000 sequence tagged sites (STSs) that are universal among all legume species could be developed. Though these approaches are proving to be useful as SSR markers for the same species or closely related species within the same genus, their utility in other related species is yet to be tested.

\section*{Phylogenetic studies in legumes}

\subsection*{2.1 Introduction:}

Phylogenetics, the science of phylogeny, is one part of the larger field of systematics, which also includes taxonomy. Taxonomy is the science of naming and classifying the diversity of organisms.

Phylogeny is a diagram (a phylogenetic tree or cladogram) that depicts the evolutionary relationships among organisms. Comparative morphological, anatomical, embryological, molecular, behavioral, physiological, chemical, geographical, and fossil data can all be used, together or separately to construct the phylogeny. It is a hypothesis based on interpretation of the data at hand and subject to further evaluation (and possibly change) as new data become available. Phylogenetic focuses on the construction of ancestral relationships of species or groups of species and on how to incorporate these relationships into classification systems.

Phylogeny is used to classify organisms on the basis of their inferred evolutionary relationships (the phylogenetic approach to classification). Phylogeny provides the historical perspective from which to interpret the evolution of characters, patterns and processes of diversification, rates of evolution, historical biogeography, and co-evolutionary phenomena, such as the relationships between plants and herbivores.

Problems: If the evolutionary clock is not constant, the procedure generates results, which can be misleading.
1. Within practical computational limits, this often leads in the generation of tens or more "equally most parsimonious trees" which make it difficult to justify the choice of a particular tree.
2. Long computation time to construct a tree.

\subsection*{2.1.2 Phylogenetic Terms}

Systematics
Field of biology that deals with the diversity of life. Systematics is usually divided into the two areas of phylogenetics and taxonomy.

Taxon

Taxonomy

Rank

The science of naming and classifying organisms.
Any named group of organisms, not necessarily a clade.

In traditional taxonomy, taxa are ranked according to their level of inclusiveness. Thus a genus contains one or more species, a family includes one or more genera, and so on.

\begin{abstract}
Evolution
Darwin's definition: descent with modification. The term has been variously used and abused since Darwin to include everything from the origin of man to the origin of life.
\end{abstract}

Evolutionary tree

Phylogenetic

A diagram, which depicts the hypothetical phylogeny of the taxa under consideration. The points at which lineages split represent ancestor taxa to the descendant taxa appearing at the terminal points of the cladogram.

Field of biology that deals with the relationships between organisms. It includes the discovery of these relationships, and the study of the causes behind this pattern.

Phylogeny The evolutionary relationships among organisms; the patterns of lineage branching produced by the true evolutionary history of the organisms being considered.

Ancestor
Any organism, population, or species from which some other organism, population, or species is descended by reproduction.

The earliest diverging group within a clade; for instance, to hypothesize that sponges are basal animals is to suggest that the lineage(s) leading to sponges diverged from the lineage that gave rise to all other animals.

Character
Heritable trait possessed by an organism; characters are usually described in terms of their states, for example: "hair present" vs. "hair absent," where "hair" is the character, and "present" and "absent" are its states.

Lineage
Any continuous line of descent; any series of organisms connected by reproduction by parent of offspring.

Clade
A monophyletic taxon; a group of organisms which includes the most recent common ancestor of all of its members and all of the descendants of that most recent common ancestor. From the Greek word "klados", meaning branch or twig.

Stasis
A period of little or no discernible change in a lineage.

Extinction

Pseudoextinction

Sister group

Cladogenesis

Stem group
when all the members of a clade or taxon die, the group is said to be extinct.

The apparent disappearance of a taxon. In cases of pseudoextinction, this disappearance is not due to the death of all members, but the evolution of novel features in one or more lineages, so that the new clades are not recognized as belonging to the paraphyletic ancestral group, whose members have ceased to exist. The Dinosauria, if defined so as to exclude the birds, is an example of a group that has undergone pseudoextinction.

The two clades resulting from the splitting of a single lineage.

The development of a new clade; the splitting of a single lineage into two distinct lineages; speciation.

All the taxa in a clade preceding a major cladogenesis event. They are often difficult to recognize because they may not possess synapomorpies found in the crown group.

Cladogram

Parsimony

Homology

Relatedness

Diversity

A diagram, resulting from a cladistic analysis, which depicts a hypothetical branching sequence of lineages leading to the taxa under consideration. The points of branching within a cladogram are called nodes. All taxa occur at the endpoints of the cladogram.

Refers to a rule used to choose among possible cladogram, which states that the cladogram implying the least number of changes in character states is the best.

Two structures are considered homologous when they are inherited from a common ancestor who possessed the structure. This may be difficult to determine when the structure has been modified through descent.

Two clades are more closely related when they share a more recent common ancestor between them than they do with any other clade.

Term used to describe numbers of taxa, or variation in morphology.

Similarities that have arisen independently in two or more organisms that are not closely related. Contrast with homology.

\subsection*{2.2 Molecular phylogenetics:}

Molecular phylogenetics attempts to determine the rates and patterns of change occurring in DNA and proteins and to reconstruct the evolutionary history of genes and organisms. Two general approaches may be taken to obtain this information. In the first approach, scientists use DNA to study the evolution of an organism. In the second approach, different organisms are used to study the evolution of DNA. Whatever the approach, the general goal is to infer process from pattern: the processes of organismal evolution deduced from patterns of DNA variation and processes of molecular evolution inferred from the patterns of variations in the DNA itself.

\section*{Molecular Phylogenetic Analysis: Fundamental Elements}

Nucleic acid and protein sequences can also be used to generate trees. DNA, RNA and protein sequences can be considered as phenotypic traits. The sequences depict the relationship of genes and usually of the organism in which the genes are found.

As we just discussed, macromolecules, especially gene and protein sequences have surpassed morphological and other organismal characters as the most popular forms of data for phylogenetic analyses.
First, it is important to point out that a single, all-purpose recipe does not exist for phylogenetic analysis of this type of data. Although numerous algorithms, procedures; and computer programs have been developed, their
reliability and practicality are, in all cases, dependent upon the size and structure of the data set under analysis. Phylogenetic tree-building models presume particular evolutionary models. For any given set of data, these models may be violated because of various occurrences, such as the transfer of genetic material between organisms. Therefore, when interpreting a given analysis, a person should always consider the models used and entertain possible explanations for the results obtained. For example, models used in molecular phylogenetic analysis methods make "default" assumptions, including:
1. The sequence is correct and originates from the specified source;
2. The sequences are homologous--are all descended in some way from a shared ancestral sequence;
3. Each position in a sequence alignment is homologous with every other in that alignment;
4. Each of the multiple sequences included in a common analysis has a common phylogenetic history with the other sequences;
5. The sampling of taxa is adequate to resolve the problem under study;
6. Sequence variation among the samples is representative of the broader group; and
7. The sequence variability in the sample contains phylogenetic signal adequate to resolve the problem under study.

\subsection*{2.3 Multiple alignment:}

The most practical and widely used method is multiple alignment method. This method is the hierarchical extensions of pairwise alignment methods. Multiple alignments are built by successive application of pairwise methods:
- It Compares all the sequences pairwise; (for N sequences there are \(\mathrm{N} .(\mathrm{N}\) 2)/2 pairs or scores)
- It performs cluster analysis on pairwise scores to generate a hierarchy for alignments;
- It builds the multiple alignment by aligning the most similar pair of sequences first, then the next most similar pair and so on.

Once an alignment of 2 sequences has been made, then this is fixed. Thus for a set of sequences \(A, B, C, D\) having aligned \(A\) with \(C\) and \(B\) with \(D\) the alignment of \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\) is obtained by comparing the alignments of A and C with that of B and D using averaged scores at each aligned position.
- Phylogenetic tree will strongly depends on the alignments obtained.
- In simple cases, the quality of the alignments is good, in more difficult cases, the alignments give good starting points for further automatic or manual refinements ;
- The multiple alignment is dependent of the score calculation model (gap, transversions, weights...)

\subsection*{2.3.1 Phylogenetic tree construction methods:}

Its topology (form) and its length (sum of its branch lengths) characterize a phylogenetic tree.

Each node of a tree is an estimation of the ancestor of the elements included in this node.

The phylogenetic methods for constructing phylogenies from sequence data:
1.Methods directly based on sequences:
- Parsimony;
- Maximum likelihood;
2.Methods indirectly based on sequences:
- Distance matrices (UPGMA, NJ, ) ;
2.3.2 PHYLOGENETIC TREE: In phylogenetic studies, the most convenient way of visually presenting evolutionary relationships among a group of organisms is through illustrations called phylogenetic trees.
A phylogenetic tree is a graph composed of nodes and branches, in which only one branch connects any two adjacent nodes. The nodes represent the taxonomic units and the branches define the relationships among the units in terms of descent and ancestry. The branching pattern of a tree is called the topology. The branch length usually represents the number of changes that have occurred in that branch. The taxonomic units represented by the nodes can be species, populations, individuals or genes.

- Node: represents a taxonomic unit. This can be either an existing species or an ancestor.
- Branch: Defines the relationship between the taxa in terms of descent and ancestry.
- Branch length: Represents the number of changes that have occurred in the branch.
- Root: The common ancestor of all taxa.
- Clade: a group of two or more taxa or DNA sequences that includes both their common ancestor and all their descendents.

Branches can also be unscaled, which means that the branch length is not proportional to the number of changes that has occurred, although the actual number may be indicated numerically somewhere on the branch. Phylogenetic trees may also be either rooted or unrooted. In rooted trees, there is a particular node, called the root--representing a common ancestor--from which a unique path leads to any other node. An unrooted tree only specifies the relationship among species, without identifying a common ancestor, or evolutionary path.


\subsection*{2.3.3 TREE BUILDING:}

The other type of phylogenetic analysis we'll discuss is tree building. This form of analysis is more work than signature analysis, but is quantitative and more reliable. There are several methods for building trees, including distance matrix methods and parsimony methods. We'll discuss the 'least-squares distance matrix' method.
Tree building starts with a sequence alignment. Here is an example alignment of 5 sequences with 25 positions in the alignment:
Seq. A AGAUUCGUCUGUAGGUUUCCACCAA
Seq. B ACAUUCGUGUAUAGGUUUCCACUAA
Seq. C ACAUUCGUGUAGAGGUUUCCACUAA
Seq. D AAGUUCGCUUGGAGGUUUCCACGAA
Seq. E AUCGUGAGAUCCAGGUAUCCACAAU
The first step toward building a tree is to generate a similarity matrix: Just count the fraction of identical bases in every pair of sequences in the alignment.

\section*{Seq. A AGAUUCGUCUGUAGGUUUCCACCAA}
\(|X||||||X| X|||||||||||X|| 21 / 25=0.84\)
Seq. B ACAUUCGUGUAUAGGUUUCCACUAA
\begin{tabular}{|c|c|c|c|c|c|}
\hline & A & B & C & D & E \\
\hline A & ----- & ----- & ---- & --- & \\
\hline B & 0.84 & ----- & ----- & ---- & \\
\hline C & 0.80 & 0.96 & & & \\
\hline D & 0.76 & 0.72 & 0.76 & & \\
\hline E & 0.52 & 0.52 & 0.52 & 0.52 & --- \\
\hline
\end{tabular}

In this example, sequences \(A\) and \(B\) are \(0.84(=84 \%)\) similar, \(A\) and \(C\) are 0.80 similar, B and C are 0.96 similar, etc, etc.

With all of the similarities converted to evolutionary distances (whether or not they are corrected, or how they are corrected), you have a distance matrix:

Evolutionary distance


These distances can then be used to construct a tree that best fits these evolutionary distances. This done by starting with two of the sequences separated by a line equal in length to the evolutionary distance between the sequences.

Then the next sequence is added to the tree such that the distances between \(\mathrm{A}, \mathrm{B}\) and C are approximately equal to the evolutionary distances.

Notice that the fit isn't perfect. If we could determine the evolutionary distances exactly, they would fit the tree exactly, but since we have to estimate these distances, the numbers are fit to the tree as closely as possible using a least-squares best fit.

The next step is to add the next sequence, again re-adjusting the tree to fit the distances as well as possible.

And at last we can add the final sequence and readjust the branch lengths one last time using least squares.

Notice that the distance between any two sequences is (approximately) equal to the sum of the length of the line segments joining those two sequences - in other words, the tree is additive.

This type of tree is called a dendrogram. The nodes connecting different sets of branches represent common ancestors of those branches. This tree is unrooted - the single common ancestor of all of the sequences cannot be determined in this tree. Some people prefer dendrogram because evolutionary distance is easily visualized. In this example, sequence \(B\) and \(C\) are the most closely related. Each of these are somewhat less similar to A (a little closer in the case of seq. B; that's why the branch to B is shorter than to C). A, B, and C are less similar to D, and E is only distantly related to the rest.

\subsection*{2.4 Method Of Phylogenetic Studies Of Legumes}

Take the legumes i.e., Pisum sativum, Medicago, Glycine max, Arabidopsis, Lotus and co-related the phylogenetic relationship between these Legumes by taking a nuclear enzyme, a mitochondrial enzyme and a chloroplast enzyme.

\subsection*{2.4.1 Reasons For Taking Conserved Common Enzymes In Phylogenetic}

\section*{Studies.}

\subsection*{2.4.1.1 Nuclear Enzyme}
1) Nuclear enzymes have BI-parental inheritance.
2) Nuclear enzymes are in abundance in a Genome.
3) Amplification and sequencing are easy.
4) They have mosaics of highly conserved variable region. The conserved regions have been informative for resolving relationship at higher taxonomic levels. Alignment of the variable region is often problematic.
5) They exhibit a wide range of evolutionary rate in phylogenetic utility.
6) Many nuclear genes may contain large Intron that necessitates reverse transcriptase PCR.
7) The nuclear enzyme which we are taken are Chitinase due to its role in metabolism a key functional pathway.

\subsection*{2.4.1.2 Mitochondrial Enzyme}
1) Mitochondrial enzymes are maternally inherited.
2) These enzymes are used to construct a PhylogeneticTree to display the evolutionary relationships between Individual sequences.
3) The structure of this gene tree contains information which in conjunction with a calibrated mutation rate for the DNA sequence under study, can be used to estimate a time-scale for events in evolutionary prehistory.
4) Sites that have frequently undergone mutations are less conserved among species compared to those where the consensus is more the sequence is highly conserved. Evolutionary changes are found the non-conserved regions of the sequence.
5) These will provide the phylogenetic evolution of a given mitochondrial gene.
6) The mitochondrial enzyme investigated in this study is Aspartate amino transferase a key enzyme in the respiratory pathway.

\subsection*{2.4.1.3 Chloroplast Enzyme}
1) Chloroplast gene Restriction-Site Variation has been shown to be well suited for studies of genetic relationships at or below the family level.
2) The chloroplast genome consists of a large and a small region of Singlecopy DNA separated by a pair of identical but inverted repeat sequences.
3) Restriction-pattern differences between taxa may be interpreted as site changes caused by single base substitutions or single insertion deletion events.
4) By relating variation in chloroplast DNA restriction-fragment patterns to specific mutations, either base substitution or indels data sets suitable for phylogenetic reconstruction's using Parsimony analysis may be produced.
5) Restriction-site variation is used to estimate total sequence divergence between taxa. Such distance measures may used to reconstruct phylogenies.
6) Chloroplast Enzymes found in plants only. These enzymes are mostly related to C3 and C4 pathways of photosynthesis.
7) These enzymes are maternally inherited.
8) The chloroplast enzyme which we taken is Glutamine synthase the key enzyme of the photosynthetic pathway.

\subsection*{2.4.2 Multiple Alignment Method}

The most practical and widely used method in multiple sequence alignment is the hierarchical extensions of pair wise alignment methods.

\subsection*{2.4.2.1 Steps involved in multiple alignment method}
1.Select the most conserved enzymes:

First we selected the most conserved mitochondrial, chloroplast and nuclear enzymes of legumes. In legumes the most conserved functional enzymes are

\section*{Mitochondrial enzymes:}
1. Aspartate amino transferase
2. NADH dehydrogenase
3. ATP synthase
4. Succinate dehydrogenase
5. Malate dehydrogenase
6. Citrate synthase

\section*{Chloroplast enzymes:}
1. Glutamine synthase
1.4.1.13
2. Fructose 1,6 bis phosphatase 31311
3. Phospho enol pyruvate carboxylase 41131
4. Glyceraldehyde 3-phosphate dehydrogenase1219

\section*{Nuclear enzyme:}
1. Chitinase
2. Methyl transferase
3. Alcohol dehydrogenase
4. Cysteine synthase 42998

\subsection*{3.2.1.14}

21137
1111
2.From the all above-mentioned enzymes the following enzymes which were selected for the practical purpose.i.e sequence available from GenBank
- Aspartate amino transferase (mitochondrial enzyme)
- Glutamine synthase
(chloroplast enzyme)
- Chitinase
(nuclear enzyme)

\section*{3.Search The Sequences From NCBI:}

Search the sequences of the Aspartate amino transferase (mitochondrial enzyme), Glutamine synthase (chloroplast enzyme), and Chitinase (nuclear enzyme)
From NCBI.
Then accession numbers and their sequence of the above enzymes of interest of legumes were downloaded on to a local database .

Mitochondrial Enzyme (Aspartate amino transferase)

Legume
Medicago
Accession number

Glycine max L25335

L40579
Arabidopsis X91865

Lotus AF029898
4.Paste accession numbers of these legumes for a Mitochondrial Enzyme (Aspartate amino transferase) in the NCBI. We will get the sequences for that accession number of the Legumes for ex:-(Medicago, Arabidopsis, Glycine, and Lotus).


- 5) First click on accession number of Medicago then (ilycine followed by Arabidopsis and lotus. We will get sequence of Medicago, Glycine, Arabidopsis, and lotus.



2701 acaaccatat
2761 gtttgcacat
aactgtatga tgtaagttaa aagttataag ttatatctgg ctaccatta ctttcgagga tgttaat.tat gtecttaace gttgttttt aaaactttta cttactaat.t. tgacttcaac cttacatttg tgggaatgta atagagact t tctgtttect cetgacanaa atgaaattag ttcattttce atcagatttt aagtaat tat cqattcatcc cttaaaaaaa ltttttgaca acaaaacat t tcatttcata acacaac:aaa ctlcacuaca cactttcgat atgaatgatt qcttggaatc ttattat.cat tgtgtatata tttttgt.aac Itcagctega qtatgtt.eca aagtggttaa caacaactac ttagattaga ttgaatcgat. gactttacat ttaagacaaa tttttgtttc aggatttagg attcagtcat ataccgatgg aatgatgtca qtgcttaatg ttectgtgce ttcagttgag gagagagggg aattgttga tgagggtttg agcaatcaaa taacatttat tectttttac gtgcagctct ggggtgtgaa ttcgtacatc gctcgagtac gagggcatga atcatacttt agtaagatag
gtagaccaat. aytctttuay guat:tgaat tctcattaca taatcaatti. tuatcacatt dcaartttac taaatcaatt atttaaatita amcoattgaq agtgatgeat tecactettt tgttatgttatttttitca tettaggtca cctcacttta qatagacaad taaacgtatg tctantatea aqganaada atgt:tctt coctcatgat aggaqaaat aatcatact. cottcttaat.
titttgtat attccgacca tttaqttuqa tgattettt. cocittataat agaattatgd tadttttta gtcgttgttg ataqdatqaq teactctcac tiscosettty atcaaaccat. titcocranct aatatgqca cctcqacrac: taatcalttg attaatttat aacaacttct. ceaatttiang ttcaatttta attattt.taa taattcaatt catcttact.t ttttttaaat: ttatcattit ggtattaqte tct.qcaqt 14 atttttgtgt. tcatadat.qq tattattact. aacacacact ttttaattqt. tattttgtta attgtaaaac: caagtgqttg tatgaatat, gagtttazag acctocayas: atc'agattac aataaqadat. tagadatagta tataatgqat. Caaagaatiag aggtgatcct. act accetga ctggt.cgqal. st.qcatgget ctcctcctga agctcaatct: ttgtgaaaar atgtattgat tcaatattga aaaacaaaga tagatt attgactgtg getgcattta acaaggcaac cagcaagag tatgtagtgg tgactgtgay atcataaaaa tcaggttgce actgtceaag gatagaacga tattttcctg ttttattcct ttctcggttt gtaggtaaca tttttgtctt catggtctga gtaccgatac tagaagatat aaaggttaca ttatatggac tatgatattt atactgattt tgatttataa
aattgagatc actaatcgta gagtattttt tttaatggac cqttattaag acttqaatca gctasctaat. ccaccectec ttecetttt tatactaaaa cattacaaac cattetctt dqtqaccace actgtecttt thatactgta gcaacegtad acatatagtt aatatcttta as't gatctcq actcattgta catcatcqaa qatattttt dtcqagaatt cattcaaaaa agataatatc tocatett ddddadt tqt ccacaccaaa aqqadnaaaa aaacatttt qaaccetgaq taatcatgaa carsctaaaaa ttqaacttgg atcttgaact caattggttq ttgaagaaaa tattattatt ttattaaaag ttadaatgaa ggacattgta gttgtcgtca tgatctcatc taadettta ctttetgttq agttgetttg tactctecte tatarcttca ttctqtatiat gaatcaatct t.ttqtttce attcaacagg ggtgtgtata tataatatga tatatcatta ctctatgat.c actaatgtta ttcattaact lcagctttac tttagattaa eqcgegcaga gataccagct attgaagaac agttttaaaa \(t\) coltotact tattagttac atttactaat qt tac:ttata gatcaagcaa ttaacaaggt cctgactgan acaattgttg caggrgtgect t.t.cet.ctgga attcaattcc tqat.gttaac ttttaaaatt gcaattgaaa tcaatttcat tttgtctgtt g†tgegacta atgtttctcq ggagtttctg aagcatttaa gcetacagaa cggaagaact gctgtgettt tttttttaca acttcttgtt cagaaacctg tattgetttt aggcagaaaa tttaggtcgt atgcaattta atttcacttg gaattgcagt tgcagagttg ttgctcggag atttagaaaa tataatattt caaacaagaa ataaatcaac gtetttcagg aactggttet gagcaaagt tttgatatca aacttggtca tgatatttgt gcaggtaatc acaagaatat tatgacccca agacagttgg tectcatcca ttatttagaa ttctcaactg ttttctttt gtatgtttta

3661 tagtqaaggc ctacagaaga acacgaattc acatttadt agaatatcca tgcaattcta
\(3 / 21\) aagaaaatgg 3781 aacttttgtg 3841 acagtgggaa 3901 tgcttaccag 3961 cgtgttcaaa 4021 gtggatedcaa 4081 actaaactgc 4141 cttctgtgag 4201 adaacctcgg 4261 aatctgcaac 4321 atgcacttgt 4381 atc:aatcaag 4441 tgaaataatc 4bol aatgaactt. 4561 agtatatatt 4621 tgaceaatgc 4681 tqattactat 4741 t:t.aatccacc 4801 tt.qatgaatg 4861 s:qctgtatgi 4921 aqcagatagg 4981 tt.qacttatc
gすaaqqattt
5221 at.cgattcat
5281 tatggtgagt
5341 qcatt.qtttg
5401 gaataagttg
5461 gtt.gaaccta
5521 atcatttttt
5581 attgttqtaa
5641 accaatgt.ca
5701 t.cacgcacat tgaaatygat
5761 aatgtatcat aatcgt.taga aatgtatcat aatcgt.taga caaagatc
aacttcatc:t. ctacttcatg aaaatagct.g gtacacaatc tgtcgt laac catgaaaccg tcattaaaaa attgtttgag cctttatgct aaggtgttgt ctasaatatt agtcataggg ttgtattact cacacat taa caacttadtc aatgtatgct gtatttcagg agttcac:gga yaaagcagaa tagtatttct catgttc:ica tattttatac: gatt.tgtatt gtcagagtga ccotggcagg citcataatgt. attataccaa tcatttttca adtcaaagtq attattgaat. gcagacttca tactactata atagaggaca tgaaatygat aatgtatcat aatcgt.taga caaagatc
acacgaattc acatttaat. agaatatcca aattgcaact gtttgcattt ttatagtcgg gatgtgcaca taaccctact atgtaat.tcs acaaaagasc tttggtaaas gaactatctt aaaat.tgtaa t.taagacaaa gtggatatcu tgcagtaacc tttcagggt ttgctagtgg tcacgtggca gaaagggttq g tgqaagttct gagctattaa aaattacgta tgetqtqctt gasttctgat tctttlctag aataaactta acgataggca getacqagtc: t.tttcgat.aa cttctitgat agcoctctca aattgtttta tttagaagag atagtaaacy tectgtcttg gtaaagaqce a gctaggat.tc t atggaaat:ga t tcaaaagaci a ttcacagqci t qttatcttit taatgtattq caatatgaca at.tgtcecta cagctgaaac: atcatagtta tatgtaccca ttgatgtanc: ttagagtatc agcaagtt:gat tt.aaatcati t.tacgttat ttgggt.qaaa cagttacgge t tcaadccetg cett saagga a
tatagtcgg ctccggaagg ggtattgatc caacaccaga cactttccat ttttgatgt ttttgtaat ttgtqgacag tamacicttac adcaaatgaa gtgaatatat ttcacgatat aagcettgat gaagatgegg tgtagctcag tcatacagta tgtcatttcc tcatcacegg tctaatattt ttgaaattca gtaggtgaag gtttcatttt ttttgtagga atagaaaagt tcact tcetq aatqaqttga t.tterscat gagcacctat aagacatct gtattcaact gtcaacactc aacaatttga gottgctoga ccaatgtact tgttqggact ccagctctct gataaaaact gttaggcagg ggatt.gqtca ttcatactca ccaggttttt qactccccet tttgacteta teaacgtaat tttgetgttc tttgttatat atatatacat gacaaaggat aatacctggc agatgctatt dicgcttttaa agcaagcata acaataattt tatcatgtat ggaaatcatg ttgtaacctt cttttgcaga cttqangcaá ttgtaatact actatattaa tgatt.t.ggag tatgtttctt aqttcttcaa aattggtaac tit.cagtcaa sataaatgat sacicatgcat tc;at.gcagtc
SNIMS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\cdots\) & & \[
\begin{aligned}
& \text { /note-"puta } \\
& \text { 129..1334 } \\
& \text { /product="m } \\
& \text { /EC number= } \\
& 1335.171 \text { / } \\
& 1717
\end{aligned}
\] & \begin{tabular}{l}
atıve" \\
mature mito
\[
="
\]
\(\qquad\)
_ "
\end{tabular} & chondrıal a & partate am & nınotransferase" \\
\hline BASE COUN \({ }^{-}\) & 471 a & a 301 ( & 382 g & 49 t & & \\
\hline \multicolumn{7}{|l|}{URIGIN} \\
\hline c & etctecotet & ctgttcacac & tctgtcttts & coctatttcs & gcatcactga & gtcatgguga \\
\hline 61 t & ttegcaacte & gcteaccggc & caattecter & gccgeagcte & cglcgecgga & gcaaggetra \\
\hline 121 t & tatettette & qtectcatgg & ttcoggaqea & teqageceac & tcccaaggat & cetatcotcg \\
\hline 181 g & gaqtcactga & agctttcctc & gcegat adga & gtcladacida & agtcaacgto & ggagtgggtg \\
\hline 241 & cgtat cgega & tgaccadcgg & aaacctgtga & rtttgaanta & tgttagagaa & gcagagagga \\
\hline 301 & gggttgceag & aagtcarttc & atggagtat & ttcccatgaq & tgadagcata & danatgataq \\
\hline 361 & zagaatc qct & gaagct gqla & tttguaqaca & detctaagt & catcaaggat & aandqaatag \\
\hline 421 & Ltgcagtgca & ggctttatct & gggactggta & catatcqact & ttttgetgo & tttcaacaqa \\
\hline 481 & yatttcatic & taatacceda & atctatala & caqtgectal & ctaggecadt & caccataaca \\
\hline 541 t & tttggagaqa & tgetggaqt.g & cetatgaaga & cattrcatta & ctatcaccet & gagtctagag \\
\hline 6019 & gattggattt & ttcagqacta & atggatquca & taanquatge & tcragatggt & tcettettic \\
\hline 661 t & tgcttgtast & tactgetsat & aatcotacty & qagtagatic & + tr aqaagaa & , intggagay \\
\hline & agatctettc & ccagatadag & getangqute & atttccett & ctitgacatg & ccatatcasa \\
\hline 781 & gttttgctag & 1 ggtgatcca & qagagagata & ( sadagecat & magatttt & cttgaggata \\
\hline 841 & qtcatttaat & aggacttact & cagtcatety & c Iddaaatrit & yggactatat & ggcragcgaq \\
\hline 901 & cugqaagect & gagtgtactt & t.gt.geagato & Hgadacaaqr & totggetgta & aaaagtcagt \\
\hline 961 t & tucagctgat & tgctagacc c & atgtacagta & dscoacotst & coatggaqca & cttatagttt \\
\hline 1021 & ctactgtcet & tggtgatcer & gatttgang. & agttatgge 2. & taamadgtc & aaggttatgg \\
\hline 1081 & cagarcgcat & catuggaatg & aqgactacar & tacgagadda & cttagdraag & aagqggtcta \\
\hline 1141 & ctttgccatg & gcagcatata & actaatcaga & ttqgtatqtt & , tqrtacagt & ggattgacas \\
\hline 1201 & ctgaacaggt & tgatcgtatg & acaancgagt & ttcatatta & catgacecgt & aacggtegta \\
\hline 1261 t & teagtatgge & tggtcttaat & acggqcasca & itgaatatgt & cttagarget & atccatgaga \\
\hline 1321 t & ttacaaaatc & attctagatt & attcaatcal & ccaacaggta & dccaratttt & tgtcttt.gqa \\
\hline 1381 & yacaaacate & tcagaaqtag & taccettests & cagaggagca & adatrastt & aataragtct \\
\hline 1441 & gucaaattt & <aacttgtt \({ }^{\text {c }}\) & cagggtang.ı & tagtgatact & cttcagggtt & taccttgcat \\
\hline 1501 a & attyaagace & (ttattgcaa & tacgtatccy & atttatcala & trratgearr & atagattata \\
\hline 1561 + & +ccatttta & (agacatet t & gtttagcal & traatyagra & taacritgta & tcatcatttt \\
\hline 16>1 1 & Itttatama & taatttgagt & agtagattga & ataduggett & tat titatgat & qadcaggaaq \\
\hline 1681 t & tacglagett & caticottac & tasactatta & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline & /db_xref="GI:1017411" \\
\hline & /db_xref="SW1SS-PROT:P40こ48" \\
\hline & /trānslatıon="MASLMLSLGSTSLLFREINKDNVKLGTSASNPFLKAKSFSRVTM \\
\hline & TVAVKPSRFEGITMAPPDPILGVSEAFKADTNGMKLNLGVGAYRTEELQPYVLNVVKK \\
\hline & AENLMLERGDNKEYLPIEGLAAFNKATAELLFGAGHPVIKEQRVATIQGLSGTGSLRL \\
\hline & AAALIERYFPGAKVVISSPTWGNHKNIFNDAKVFWSEYRYYDPKTIGLDFEGMIADIK \\
\hline & EAPEGSFILLHGCAHNPTGIDPTPEQWVKIADVIQEKNHI PFFDVAYQGFASGSLDED \\
\hline & AASVRLFAERGMEFFVAQSY:SKNLGLYAERIGAINVVİSSADAATRUKSQLKR IARPM \\
\hline & YSNPIVUHGARIVANVVGDVTMFSEWKAEMEMMAGRIKTVRQEIMDSLVSKDKSGKDWS \\
\hline & FILKQIGMFSFTGLNKAQSDNMTDKWIAVYMTKDGR I SLAGLSLAKCEYL.ADAI IDSYH \\
\hline & NVS" \\
\hline - & 2237. 2296 \\
\hline & 'gene="aspb" \\
\hline & /number-1 \\
\hline \(\pm\) & 2297. 2388 \\
\hline & /gene-"aspy" \\
\hline & / number \(=1\) \\
\hline 三 - & 2389..2439 \\
\hline & /gene="asp5" \\
\hline & /number \(=2\) \\
\hline 1 & 2440..2562 \\
\hline & /gene-"aspr" \\
\hline & /number \(=2\) \\
\hline \(\stackrel{.}{ }\) & 2563. 2757 \\
\hline & /gene="asps" \\
\hline & /number-3 \\
\hline 1. & 2758..2831 \\
\hline & 'gcre= "asp5" \\
\hline & /number -3 \\
\hline & 2832.. 2870 \\
\hline & /gene="aspr" \\
\hline & /number=4 \\
\hline - & 2871. 2954 \\
\hline - - & /gene="asp5" \\
\hline & /number -4 \\
\hline 3 & 2955..3044 \\
\hline \(=\) & /gene="asp5" \\
\hline & /number \(=5\) \\
\hline 211 & 3045..3141 \\
\hline & /gene="asp5" \\
\hline & /number=5 \\
\hline \(=\) & 3142..3250 \\
\hline & /gene="asp5" \\
\hline & /number \({ }^{\text {6 }}\) \\
\hline \(\underline{111}\) & 3251. . 3334 \\
\hline & /gene="asp5" \\
\hline & /number \(=6\) \\
\hline - & 3335.. 3444 \\
\hline & /gene="asp5" \\
\hline & /number=7 \\
\hline 11 & 3445..3651 \\
\hline & /gene-"asp5" \\
\hline & /number=7 \\
\hline \(\underline{.}\) & 3652..3795 \\
\hline & /gene="asp5" \\
\hline & /number \(=8\) \\
\hline 11 & 3796. 3887 \\
\hline & /gene="asp5" \\
\hline &  \\
\hline 4 & 3888..4054 \\
\hline & /gene="asp5" \\
\hline & /number \(=9\) \\
\hline in \(1 / 1\) & 4055..4192 \\
\hline
\end{tabular}

aqtgctatt tgttcatcat accttggctc cgattagcag ccaacctggg accaccttta gccadagttc qagggaatga ttgetttata gtttgcagtt ctgatggatt gaaggatcct ccaqaacagt gatgttgcat agtadgcgaa gaagcettga ttgttgctca atgtcgtgtg catgagcetg atctagctac gce agttgaa Lcgtggccaa tgatggcagg acaagagcgg qı ctaacac aa gtttagactt atgacqqaca tetctgqcea tgagcttcca tcttgatctt ctaqacadt
ggagctggt gttattaaaa taaatcacca cggctcttat gtacattgtc tcaactgaca cgtggtccga tagcagatat tatgcatcaa atactgtctg ataatggtta tcatcttgct gggtaaaat accaggtatc accatattat tgaagatgca gtcatatagt ctcctcagct ttgcaagtga aggtt.ttatg aaggat tgct tgtagtgggt aagaataaaq gaaggactga agctcaggta gtggtttgaa catggratgt datgegagta tctcagtaga tgattgaaac ttcaaqgaaa
catcctqtta tgttttctca ggtagcaaca agagcgttat ttgaccacaa aataccaca ataccgctac aaaggtttgt caaacagqat tgtgatacad atcttgant tcacggatgt tgetgatgtc cccctattcc gtaacgctac gcatctgtga aaaadtttag gatgctgeta tectggagte gaacetttas cggcctatgl gatgtaacta acggttagas tccttcattc tgccaacuat gtttgtgetg gtatalgact tcttqctgat tqacaatady cagatggeta cttttgat t
ttaagqaica tgatgttcct attcagggte ttccctggag acattttrga tcaggtaatc tatgatccaa tegtcctaga atcatttilg cgaqtacttg tctqttatgt gctcacaacc attcaggaaa taratttccg atgcacctat. gattatttgc gtttgtatqc canggtaaad tcagtttcta cagtaacact actcqaatce tqt.tcagtya aagagetgta tgaagcaat tttratacta t+tictttta adagacggqa qcgatcatco aadcagttt aattaatarg gaattc
aagagtaatt ctgcatcttt gtttctgagc taatccattt tttcgggaac aggttcactg caaaagttgt gatctcatca gtgatttggt ttcatattta acaagdatat cttcaatgat addcaattgg tttggatttt aggctatgtt ttagttgaca tgatgccaaa gtgagtattt ttteaaqaca acgtgaaacc aaaatataca ggaagctcca caactggaat tgacccaaca agaaceatat cocattttc aatatcgtgt ttccgagaga tttccagggc tttgctagtg tgagcgggga atggagtttt agaaagaatt ggggcaatca cttactctaa attttcttat tctttaccgt cacgaaccat acttqctttc agggtcaaga accagtt cat ggggcgagaa atggetaagca gagatggada tgatagcctc qtttcaaaag tggcatgttc tctttcaccg cacagattcc ctttqgectt gtaacgagca gagcgataac ggatatcatt gqcoggatta actcitacca taacgtaagc atataccett tttaqcttct ctagcatcac actatgattg


- 6) Note the Exon regions of Medicago, Arabidopsis, Glycine, and lotus.
- 7) Make a Multiple alignment by putting the sequences (only Exons) of Medicago, Arabidopsis, Glycine, and lotus in Clustal W.


Help Iridenx
－Benera Helo
－Format．
－Cans
Matra
－Relerences
－Clustane \(\mathrm{H}+\mathrm{H}\)

Rembirl submission form：
\begin{tabular}{|c|c|c|c|c|}
\hline YOUR
EWABL & A HONMENT
THLE & \[
\underset{\text { moor }}{\text { mot }}
\] & aubsmemit &  \\
\hline & Pave &  &  & ander \\
\hline \[
\begin{aligned}
& \text { gurful } \\
& \text { RROEE }
\end{aligned}
\] & COLOR
A IINHENT & (muctive & FWatocye & somet tipa \\
\hline  & \(110]\) & ［0］\({ }^{\text {a }}\) & 阿 - &  \\
\hline maprac & palisis & PHILOQENEIC
TREE & mereve & sambiten \\
\hline 滑 & \(\sqrt{40}\) &  & \(\sqrt{4+1}\) & \(\sqrt{W}\) \\
\hline  & \[
\operatorname{sexefic}
\] & Distars & TRFE TYPE & THEE GRAPH DGYANGES \\
\hline ［雨］ & \(\sqrt{1+1}\) & 回 & Humplat & 「u］ \\
\hline
\end{tabular}

Enter or Paste a set of sequences in any supperted formal
\begin{tabular}{|c|c|c|c|}
\hline &  & \begin{tabular}{l}
\[
\Delta
\] \\
\(-1\)
\end{tabular} & \\
\hline load a file & ［－Browse．］ & Fium & Reset \\
\hline
\end{tabular}

It you plan to use these servaces duing a course please contact us usmat the eman below．


\section*{Internet}

2）
男Stan

```

 Ele Edde yigev Fivorites Iools Help
 4
    ```



```

 Your job is currently tumning.
 Eusopean Bioinformatics Institute
 The results of your job will appear in this browser window.
 Ous det butput
    ```

\section*{Please Note the I ollowinty:}


``` brown
```



``` Metscape usem: !
```




```
a] Ponis

\section*{\(941166716022-11800\) aln}

```

    11 196
    1u
1t ik 1 Nesp 24
ねノ 2r*

```


\(11<1 r\)
 13
 18: TOI 1
1 ハ1
\(+11+g 0\)
1rti
ivabidopais
llf ins
1) dit agc
Ictu
IAbly yop 1 s
3y1re
 11 196
 \(t 1\)
11 1b1despls
11yく1:
edic ago
lotu?
utabldopsis

 ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊

 دAt © AGATMACAAAGACTJTCTTC AATTGAGKGGTTGGCAGCFTTCAACNA，GCTACTC，S以

 © 「LAGTIGLTATTIGGAG TGGTCAICCIGFTATTAAGGAA AZAGATIAGCAAC゙AATTG 147
:サasi Mictu.
. तr

mesdi Fiacuc
.. c)
istabiclups \(1 \times\)
-17cirict
Hisedt, "tuc
:) 14:
4t abi तopsits
11 yoitim

iotwe
.H.athidopsits
+ + Wirt

1st11:4
, Irabidopsis,
は1ゾitu*

! : 1t a:
Arabl. tuplsis;

anodic'digo
1:) \(\mathrm{C}, 1,1 \mathrm{~s}\)
At atididup:zis
11y". in

!ot1as
ariabiclopsifs
11Yc:int
Merli: acye
! ertus

1) \(\mathbf{y s}^{\circ}\) : tic
mosicagu
i 1 ） 4 ： arabl dogas is：

medic：acgo
：oru：
urabidoptis
Glycine？
smesdi Fiacue


```

-%%家
I:^h:= \OmegaO\&*is
タ.yバ:=40
\#64.1!c:3gm
, \%:د:*
A1.ak: TON:M:
14)'心::10

```


\begin{abstract}

\end{abstract}

 T＂I＇；©

 T＇T＇\({ }^{\prime \prime}\) A

 TAAAGAATGTTAGACAGAAGCTATATGATAGTATTTCTTCAAAF：GACAACIATGOMAAGG 1！AD

 \＆ATGGGAGCATATAACIAATCAGATYGGIATETTCTGUTACAGIGGAY＂GACACOTGAAC \(11 G 3\)

\section*{941166 716022-11800 dnd}
```

    a 9 HOb
    11 うня

```

```

    1(7)
    ```
8) An alıgnment graph among Medicago, Arabidopsis, lotus and Glycine is obtained a

 G1

Rual itwi-1) 1 g

解

4.1.5\% 1-1.25

\title{

}

*ual iryf1~10gs

Ne. 11:290/1-127\%
1orna/ \(\mathrm{L}-1\) :3

105u=/1-1235

 : ATG:

\(\qquad\)

\(\qquad\)

Construct the phylogenetic tree among Medicago, Arabidopsis, lotus and Glycine with distances.

\section*{}

- Check the two species which having maximum alignment By tree Analysis.
- Take the species, which have maximum alignment.
- By Tree Analysis we have got that there is maximum alignment between Medicago and Lotus.

\subsection*{2.5 Design Primers For The Sequences Of Medicago:}
- Design two sets of Left and Right Primers for the exon regions of medicago by using PRIMER3. One set of primer is sufficient for PCR, but the second set is taken as additional primer in the event the first fails hybridize.

\subsection*{2.5.1 SELECTION OF FIRST SET OF PRIMERS}

1 Design left primer from one Exon of the sequence and right primer from another Exon, which is adjacent right position of the left exon sequence. The distance between the two primers should be about 500 to 1000 base pairs. Take the sequence from the species, which has both Exons and introns.i.e Medicago sequence has both Exons and introns. But Glycine sequence for this enzyme has only coding regions i.e.Exons.so we can't design primer from Glycine for sequencing of DNA but can be used as a marker.

2 Take one Exon region sequence of the Medicago and then paste it in PRIMER3 and pick primers. From this primer output left primer only has to consider. Then design right primer from another Exon, which is adjacent right position of the left exon sequence of the Medicago. The parameters for both the primers should be same.

\section*{Genctal Primer Piching Conditions}

\section*{obter Per Sequence Inpurs}

\section*{Primar3 Output}

WARNING：Numbers in input sequence were deleted．

PRODUCT SI2E：104，PAIR ANY COMPL：4．00，PAIR 3＇COMPL： 2.00
1 gttgecactgtccaaggtctttcaggaactggttct：ctgegactaggtgeagetctgata
\(\ggg \ggg \ggg \ggg \ggg \ggg\)

61 gaacgatattetcetggageaaagttttgatatcaaatectacgtggg
くくくく！くくくくくくくくらくくくく
KFYS（in order of precedence）：
＞＞＞＞＞＞left primer
＜＜＜＜＜＜＜right primer
ADDITIONAL OLIGOS

2 LEFT PRIMER \(8 \quad 18 \quad 51.17 \quad 50.00 \quad 4.00 \quad 1.00\) ctgtccaaggtetttcag RIGHT PRIMER \(109 \quad 18 \quad 51.62 \quad 44.44 \quad 6.00 \quad 2.00\) cccacgtaggatttgata PRODUCT SIZE：102，PAIR ANY COMPL：4．00，PAIR 3 ＇COMPL： 2.00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{3} & LEFT PRIMER & & 7 & 19 & 52， 51 & 47.37 & 4.00 & 1.00 & 9 \\
\hline & RIGHT PRIMER & & 109 & 18 & 51.62 & 44.44 & 6.00 & 2.00 & cccacgtaggat．ttgata \\
\hline & PRODUCT SIIE： & 103， & PAIR & ANY & COMPL： 4 & 4．00，PAIR & R \(3^{\prime} \mathrm{C}\) & COMPL： & 2.00 \\
\hline \multirow[t]{3}{*}{4} & LEFT PRIMER & & 5 & 18 & 53.23 & 50.00 & 4.00 & 3.00 & ccactgtccaaggtcttt \\
\hline & RIGH＇S PRIMER & & 109 & 18 & 51.62 & 44.44 & 6.00 & 2.00 & cccacgtaggatttgata \\
\hline & PRODUCT SIZE： & 105， & PAIR & ANY & COMPL： 4 & 4．00，PA & 31 & OMPL： & 1.00 \\
\hline
\end{tabular}
Statistics
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { con } \\
& \text { sid } \\
& \text { ered }
\end{aligned}
\] & \[
\begin{array}{r}
\text { too } \\
\text { many } \\
\mathrm{Ns}
\end{array}
\] & \[
\begin{aligned}
& \text { in } \\
& \text { tar } \\
& \text { get }
\end{aligned}
\] & \[
\begin{array}{r}
\text { in } \\
\operatorname{excl} \\
\text { reg }
\end{array}
\] & bad GC & & \[
\begin{aligned}
& \text { tm } \\
& \text { too } \\
& \text { low }
\end{aligned}
\] & \[
\begin{array}{r}
\text { tm } \\
\text { too } \\
\text { high }
\end{array}
\] & \[
\begin{array}{r}
\text { high } \\
\text { any } \\
\text { compl }
\end{array}
\] & \[
\begin{array}{r}
\text { high } \\
31 \\
\text { compl }
\end{array}
\] & \[
\begin{array}{r}
\text { poly } \\
X
\end{array}
\] & high end stab \\
\hline \multicolumn{13}{|l|}{ok} \\
\hline \[
\begin{aligned}
& \text { Left } \\
& 8
\end{aligned}
\] & 100 & 0 & 0 & 0 & 0 & 0 & 0 & 92 & 0 & 0 & 0 & 0 \\
\hline Right & 100 & 0 & 0 & 0 & 0 & 0 & 8 & 46 & 19 & 8 & 0 & 0 \\
\hline
\end{tabular}
19
Pair Stats:
considered 172, unacceptable product size 164 , ok 8
primer3 release 0.9

Note down the left primer from the above PRIMER3 output．
- Select another exon region of sequence which is right adjacent to the left primer from the Medicago sequence to select the right primer.

lvinncri
\[
\begin{aligned}
& 4 \\
& \text { 11) }
\end{aligned}
\]
\[
I
\]

\section*{}

\[
\text { FickFormets } 1 \text { Rusetfoun } 1
\]

\section*{Wher Per Sequence Input,}

\section*{Sequenerg guality}

\begin{tabular}{|c|c|}
\hline In \(42 \sqrt{10}\) or \(\sqrt{10}\) & \\
\hline Sise Lt 100 ar 10 & \\
\hline & \\
\hline Selic Complementanty & 100 \\
\hline & 100 \\
\hline He & 00 \\
\hline Muermene & \(\boxed{00}\) \\
\hline Seausice sumaty & \(\longdiv { 0 0 }\) \\
\hline EndSesuence Suatry & \(\sqrt{0.0}\) \\
\hline Foration Fenaly & \(\sqrt{0.0}\) \\
\hline End Smbury & \(\sqrt{0}\) \\
\hline
\end{tabular}

\section*{Objective Function Pearality Welghto for Pidmer Palrs}
Prochuct Sues Lt \(\sqrt{005}\) G: \(\sqrt{005}\)
\begin{tabular}{|c|c|}
\hline Prodxat Tm Lt \(\sqrt{00}\) & Or 100 \\
\hline Tm reference & 10.0 \\
\hline Ary Comsleruentanis & 0.0 \\
\hline 3'Complementanty & 0.0 \\
\hline Earr Maxtrurims & 0.0 \\
\hline Eramer Penaly Wewht & 1.0 \\
\hline Eyph Cume Fenalty Weicht & 10 \\
\hline & \\
\hline
\end{tabular}
Hyb OHgo (Internal OHgo) Per-Sequence Inputs
Hyb Chec Excluded Fegion:
Hyb OHzo (Internal OHso) General Comatilions

Objective Function Pemalty Welghte for Hyb OHges (Internal OHgos)
\begin{tabular}{|c|c|}
\hline Hxb Chaeo Tm \(4 x \sqrt{1.0}\) & 10 \\
\hline Hyb-Onue Sure \(14 \sqrt{1.0}\) & \(\sqrt{1.0}\) \\
\hline Hyb Oline S SC\% Le: 0.0 & \(\ldots\) \\
\hline Hyb Clise Sele crmplemexas & arisy 0.0 \\
\hline Hxb Oheo tiv: & \(\sqrt{00}\) \\
\hline Hub Olieo Mustrvane & \(\sqrt{0.0}\) \\
\hline Hub Cheo Sequence (uadioy & \(\sqrt{0.0}\) \\
\hline & \\
\hline
\end{tabular}
Copyright Notice and Disclaimer

WARNING: Numbers in input sequence were deleted.
```

No mispriming library specified
Using l-based sequence positions
OLIGO
LEFT PRIMER - < - < - % 51.38 30.00 6.00 2.00 tcacaagaatattttcaacg
RIGHT PRIMER }105\quad20\quad53.28 40.00 4.00 l.00 tatcetctatcatgcectca
SEQUENCE SIZE; 110
INCLUDED REGION SIZE: 110

```

PRODUCT SIZE: 101, PAIR ANY COMPL: 5.00, PAIR 3' COMPL: 0.00
1 gtaatcacaagaatattttcaacgatgetcgagtaccatggtctgagtaccgatactatg
\(\ggg \ggg \ggg \ggg \ggg \ggg \gg\)

61 accecaagacagtt.ggcttggattttgagggcat.gatagaagatataaag

KEYS (in order of precedence):
>>>>>> left primer
<<<<<<< right. primer
ADDITIONAL OLIGOS

2 LEFT PRIMER \(\quad 6 \quad 19 \quad 49.08 \quad 31.58 \quad 6.00 \quad 2.00\) cacaagaatattttcaacg RIGHT PRIMER \(105 \quad 20 \quad 53.28 \quad 40.00 \quad 4.00 \quad 1.00\) tatcttctatcatgectca PRODUCT SIZE: 100, PAIR ANY COMPL: 5.00, PAIR 3' COMPL: 0.00

4 LEFT PRIMER \(\quad 3 \quad 21 \quad 48.74 \quad 23.81 \quad 6.00 \quad 1.00\) aatcacaagaatattttcaac RIGHT PRIMER \(\quad 105 \quad 20 \quad 53.28 \quad 40.00 \quad 4.00 \quad 1.00\) tatcttctatcatgectea PRODUCT SIZE: 103, PAIR ANY COMPL: 5.00, PAIR 3 ' COMPL: 0.00
```

Statistics

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & con & \[
\begin{array}{r}
\text { too } \\
\text { many }
\end{array}
\]
Ns & \[
\begin{aligned}
& \text { in } \\
& \text { tar } \\
& \text { get }
\end{aligned}
\] & \[
\begin{array}{r}
\text { in } \\
\text { excl }
\end{array}
\]
reg & bad GC8 & \[
\begin{array}{r}
\text { no } \\
\text { GC } \\
\text { clamp }
\end{array}
\] & \[
\begin{aligned}
& \text { t.m } \\
& \text { too } \\
& \text { 10w }
\end{aligned}
\] & \begin{tabular}{l}
\[
\begin{array}{r}
\text { tm } \\
\text { too }
\end{array}
\] \\
high
\end{tabular} & \[
\begin{array}{r}
\text { high } \\
\text { any } \\
\text { compl }
\end{array}
\] & \[
\begin{array}{r}
\text { high } \\
3 ' \\
\text { compl }
\end{array}
\] & poly & high end stab \\
\hline ok & & & & & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { Left } \\
& 35
\end{aligned}
\] & 110 & 0 & 0 & 0 & 2 & 0 & 9 & 59 & 0 & 5 & 0 & 0 \\
\hline Right & 94 & 0 & 0 & 0 & 0 & 0 & 8 & 67 & 0 & 0 & 0 & 4 \\
\hline
\end{tabular} 15
Pair Stats:
considered 430, unacceptable product size 307 , high end compl 2, ok 121
primer3 release 0.9
(primer3_www_results.cgi v 0.2)

Note down the right primer from the above PRIMER3 output.

\subsection*{2.5.2 CALCULATION OF PRODUCT SIZE}
a) Put the sequence of the Exon of the Medicago for the left primer in the primer output and by clicking pick primer we will get the left primer and right primer both. But we have to consider the left primer only.

For example:
Left primer start point is 6
End of the left primer is 109
So the bases from which left primer starts are 103.
b) Put another sequence of Exon of the Medicago for the right primer in the primer output and by clicking pick primer we will get the right primer and left primer both.but we have to consider right primer only.
Right primer end point is 105 bases.
Sequence size of the right primer is 110 .
c) Introns between these two Exons are 92 bases.

Calculation the product sizes are as follows:
Left primer sequence size is 109
Left primer starting point is 6
Left primer total length is 103
Introns length is 92
Right primersequence size is 110
Right primer ending point is 105
Total right primer length is 105
Product size is = Left primer total length (103)+ Introns length (92)+ Total right primer length (105)=300

\subsection*{2.6 SELECTION OF SECOND SET OF PRIMERS}

Repeat the same process as explained in the first set of primers. Adjust the parameters for getting the primers for PCR.
2.7 Results: For our study, we selected the different conserved nuclear, mitochondrial and chloroplast enzymes, which has the abundant sequence data, which is available from public databases (NCBI) for the different legumes. Out of these different enzymes for our project work we have taken one enzyme from each nuclear, chloroplast and mitochondrial areas from each legume. Then we find out the genetic relationship by constructing the phylogenetic tree among different legumes for all enzymes. It was observed that in case of mitochondrial enzyme Medicago and Lotus are phylogenetically closely related, In case of chloroplast enzyme Glycine and Medicago are closely related, In case of nuclear enzyme Medicago and Pisum are closely related. The results are summarized in the following tables.
\begin{tabular}{|c|c|c|c|c|}
\hline id & . enzymes & Crop name & \[
\begin{gathered}
\text { accession } \\
\text { no }
\end{gathered}
\] & exon reglon \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{1 Aspartate aminotransferase}} & medicago & L25335 & \(1525-1599\) 1680-1721
\(2537-27312873-2911\)
\(3000-30893205-3313\)
\(3405-35143767-3910\)
\(4107-42734700-4964\)
\(5116-5247\) \\
\hline & & Glycine max & L40579 & 54-1337 \\
\hline & & Arabidopsis
Lotus & X91865 & \[
\begin{aligned}
& 2237-2296 \\
& 2563-2757 \\
& 2839-2439 \\
& 2955-3044 \\
& 3142-3250 \\
& 3335-3444 \\
& 3652-3795 \\
& 388-40544193-4457 \\
& 4552-4683 \\
& 119-1492
\end{aligned}
\] \\
\hline \multicolumn{2}{|r|}{\multirow[t]{5}{*}{2 Glutamine synthase}} & medicago & X03931 & 741-814 1529-1568 1682-1785 1910-1958 2404-2510 2604-2691 29783106 3221-3295 3424-3477 3613-3650 3741-3900 4078-4230 \\
\hline & & Arabidopsis & AB015045 & \[
\begin{aligned}
& 1791-2078 \\
& 2340-2388 \\
& 2460-2263 \\
& 2664-2751 \\
& 3043-2578 \\
& 3044-3118 \\
& 3530-3590 \\
& 3671-3481-3810
\end{aligned}
\] \\
\hline & & Pisum & U28925 & \[
\begin{aligned}
& 1141-1302 \text { 1642-1681 } \\
& 1791-1894 \text { 2013-2061 } \\
& 21298-23042617-2704 \\
& 2835-29633211-3285 \\
& 3412-34653595-3631 \\
& 3859-40184145-4561
\end{aligned}
\] \\
\hline & & lotus & Y12859 & \begin{tabular}{l}
10123-10409 10919-10958 \\
11055-11158 11286-11334 \\
11727-11833 11932-12019 \\
12721-12849 13137-13211 \\
13307-13361 13593-13629 \\
13714-13873 13979-14131
\end{tabular} \\
\hline & & Glycine & AF091456 & 3013-3120 3579-3707 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{5}{*}{3 Chitinase}} & medicago & Y10373 & 31-1008 \\
\hline & & Pisum & L37876 & 269-1243 \\
\hline & & trifolum & AJ011940 & 25-921 \\
\hline & & Glycine & AF335589 & \[
\begin{aligned}
& 3338-37964265-4412 \\
& 5215-5719
\end{aligned}
\] \\
\hline & & Arabidopsis & AF422179 & \[
\begin{aligned}
& 884-1271 \text { 1490-1649 } \\
& 1751-2168
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline id & \[
\begin{aligned}
& \text { enzyme } \\
& -. s
\end{aligned}
\] & legume name & accessi on no & exon region & left primer & left tem p & right primer & \[
\begin{array}{|l|}
\hline \text { right } \\
\text { temp }
\end{array}
\] & product size \\
\hline & \begin{tabular}{l}
1 aspartat e aminotra nsferase second set \\
2 glutamin e synthase second set
\end{tabular} & medicago
medicago
glycine
glycine & \[
\begin{aligned}
& \text { L25335 } \\
& \text { L25335 } \\
& \text { AF09145 } \\
& 6 \\
& \text { AF09145 } \\
& 6
\end{aligned}
\] & \[
\begin{aligned}
& 3205- \\
& 3313 \\
& 3405- \\
& 3514 \\
& 3767- \\
& 3910 \\
& 4107- \\
& 3013- \\
& 3120 \\
& 3579- \\
& 4557- \\
& 4716 \\
& 5036- \\
& 5193
\end{aligned}
\] & \begin{tabular}{l}
cactgtccaaggtctttc \\
ctccggaaggaactttgt \\
g \\
gtgtgatgcttacactcctg ct \\
agtccatgagaaacgatg gtg
\end{tabular} & \begin{tabular}{l}
50.9 3 \\
59.7 \\
59.4 59.9
\end{tabular} & \begin{tabular}{l}
tcttctatcatgccctca \\
ttccggtgatgaggaa g \\
caggcatcacttctcca \\
ctgcttatggtttccaaa a
\end{tabular} & 53.28
59.75
60.07
5935 & 300
494
694
634 \\
\hline & 3 chitinase & arabidops is & \[
\begin{aligned}
& \text { AF42217 } \\
& 9
\end{aligned}
\] & \[
\begin{aligned}
& 884-1271 \\
& 1490- \\
& 1649
\end{aligned}
\] & atcatttctggccttggttg & & ccgcgtccgtagtattc g & 6015 & 693 \\
\hline & second set & arabidops is & & \[
\begin{aligned}
& 1490- \\
& 1649
\end{aligned}
\] & ggctatggagttgcaaca gg & & gctgagctcatcgtttg & 60.02 & 2621 \\
\hline
\end{tabular}
2.8 Discussion: Phylogeny is about evolution and is used to reconstruct evolutionary events. It is now possible to construct phylogenetic evolution at a molecular level through analysis of molecular sequences, namely proteins \& nucleic acids.

To construct phylogenetic tree among legumes, the sequences of conserved enzymes from mitochondria, chloroplast and nucleus are probed using bioinformatics tools. The scheme for such study is the following
- Identify exon regions for the enzyme to be investigated.
- An exon region of the particular enzyme is used to design the primers.
- Confirm the presence the particular sequence of the enzyme (exon) in the species of interest using wet lab techniques.
\(\checkmark\) Isolation of chloroplast,mitochondrial and nuclear DNA
\(\checkmark\) Amplification of DNA by using PCR
\(\checkmark\) Hybridization techniques (southern blotting)
\(\checkmark\) DNA sequencing by chemical and enzymatic methods.
\(\checkmark\) Analysis of sequence based on mitochondrial and chloroplast to determine maternal inheritance.
\(\checkmark\) Analysis based on nucleus to determine paternal inheritance.
\(\checkmark\) Comparison of sequences using multiple alignment tools Determine the relationship among the species is under study.

\section*{References:}

Benson,G.(1999)Tandem repeats finder program to analyze DNA sequences Nucleic acids Research 27:573-580.

GerardF.B.(2001).The use of the Monsanto draft rice genome sequence research. Plant physiology 125:1164-1165.

Katti, V.M.;Sami-Subbu,R.;Ranjekar,P.K. and gupta, V.S.(2000). Amonoacid repeat patterns in protein sequences:Their diversity and structural and functional implications.

Protein science 9:1203-1209.

Lench,N.J.;Norris,A;Bailey,a.;Booth,A. and Markham,A.F.(1996).Vectoreete PCR isolation of microsatellite repeat sequences using anchored dinucleotide primers.Nucleic acids research 24:2190-2191.

Macas,J.;Meszaros.T. and Nouzova,M.(2002).Plantsat:a specialized database for plant satellite repeats .Bioinformatics 18:28-35.

Mahalakshmi,V. and Ortiz, R.(2001). Plant genomics and agriculture :from model organisms to crops, the role of data mining for gene discovery. Electronic journal of biotechnology.

Dinakar bhattramakki,jianmindong,ashok K.chhabra, and Gary E.Hart. An integrated SSR and RFLP linkage map of Sorghum bicolor(L.) Moench

Pearson,C.E,nad Sinden.R,R.(1998). Trinucleotide repeat DNA structures:Dynamic mutations from dynamic DNA. Current openion in Structural biology 8:321-330

Yuan, q.; Quackenbush,J.;Sultana ,R.;Pertea,m.:Salzberg,S.L. and Buell, C.R.(20010. Rice bioinformatics. Analysis of rice sequence data and leveraging the data to other plant species. Plant physiology, 125:1166-1174.

\section*{References}

BASU.D.,K.DEHESH,H.J.SCHNEIDER-
POETSCH,S.E.HARRINGTON,S.R.McCOUCH and P.H.QUAL.2000.rice PHYC gene: structure,expression, map position and evolution. plant mol bio44:27-42.

DJE, Y., M. HEUERTZ, C. LEFEBVRE and X.VENKEMANS.2000.Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatelite markers. Theoretical and applied genetics.100:918-925.

DOEBLEY, J. 1989. Isozymic evidence and the evolution of crop plants. Pp. 165-191 in D. E. soltis and P. S. soltis, eds. Isozymes in plant biology.Dioscorides press, Portland, Oregon.

DGGETT,H. 1976.Pp. 112-117.Evolution of crop plants. Longman, Essex, UK.

GAUT,B.S. and M. T. CLEGG. 1993a.Molecular evolution of the Adh1 locus in the genus Zea.proc Natl Acad Sci U S A 90: 5095-5099.

HARLAN, J. R. and A. B. L. STEMILER. 1976. The races of Sorghum in Africa. Pp. 465-478 in J. R. Harlan, J. M. de wet, and A. B. L. STEMLER, eds.origins of African plant Domestication. Mouton Press, The Hague.

HILTON,H. and B. S. GAUT. 1998.Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. Genetics 150:863872.

HUDSON, R. R., M. KREITMAN and M.AGUADE.1987.Atest of neutral molecular evolution based on nucleotide data. Genetics 116: 153-159.

KIMURA, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences Mol Evol 16: 111-20.

KOLUKISAOGLU, H.U., S. MARX., C. WIEGMANN, S. HANELT and H. A. SCHNEIDER-POETSCH.1995. Divergence of the pyhtochrome gene family predates angiosperm evolution and suggests that selaginella and Equisetum arose prior to psilotum. J Mol Evol 41: 329-337.

KUMAR, S., K. TAMURA, I. B. JAKOBSEN and M. NEI, 2001 MEGA2:
Molecular Evolutionary Genetics Analysis software, Pp., Arizona state University, temp, Arizona, USA.

Nei,m.1987. molecular Evolutionary Genetics.Columbia University Press,New York.```

