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Abstract

Chickpea, Cicer arietinum, is the third most important grain legume crop in the world, with India being the largest producer.

Insect pests are a major constraint to chickpea production. In India, the legume pod borer Helicoverpa armigera is the major insect

pest of chickpeas. However, sap-sucking insects that act as vectors for viral diseases and bruchid beetles in storage are also

considered important pests. Here we give an overview over the different management options to control these pests. There is a

growing interest in the genetic modification of crops to enhance their resistance against insect pests. Here we present the state-of-the-

art of chickpea transformation and give an overview on the available insecticidal genes that could be deployed to increase insect

resistance in chickpea. Prior to commercialization, transgenic crops have to be assessed for their effects on the environment

including the possible impact on non-target arthropods, many of which are important for biological pest control. Therefore, the

arthropod–food web in the Indian chickpea system is described. Possible routes through which entomophagous insects could be

exposed to insecticidal proteins expressed by genetically modified chickpeas are discussed, and species that could be selected for pre-

release risk assessment are recommended.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Chickpea (Cicer arietinum L.) is the third most
important grain legume crop in the world after dry
beans and peas (FAO, 2003). While this pulse crop is an
important source of dietary protein for human con-
sumption, it is also important for the management of
soil fertility due to its nitrogen-fixing ability (Maiti,
2001). The chickpea probably originated in an area of
south-eastern Turkey and adjoining Syria, but is now
cultivated throughout the semi-arid regions of the world
(Jodha and Subba Rao, 1987). Chickpea has enormous
prospects especially under marginal land and water
resource situations. Chickpeas are often divided into
two major groups (Muehlbauer and Singh, 1987). The
ng author. Tel.: +41-1-377-7299; fax: +41-1-377-
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‘desi’ types produce small, angular seeds that are
variously pigmented and are grown principally on the
Indian subcontinent and in East Africa. The ‘kabuli’
types have relatively large, round seeds of white or pale
cream colour and are predominantly grown in the
Mediterranean region and in Central and South
America.
In 2002, the worldwide chickpea area harvested was

10.7 million hectares and total grain production was 8.2
million tonnes. India is the largest producer and
consumer of chickpea in the world, and accounts for
more than 60% of the area harvested and of the total
worldwide production (FAO, 2003). Over the past 40
years, considerable progress has been made in chickpea
production. While the grain yield in farmer’s fields in
India has increased from about 0.55 t ha�1 in the early
1960s to an average of 0.8 t ha�1, productivity has stayed
stable between 4 to 6 million tonnes which is primarily
due to a decrease in the area harvested (FAO, 2003).
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Despite this progress, there is still a large gap in grain
yields between the average productivity on farmer’s
fields and the maximum yield potential of up to 6 t ha�1

recorded in field trials conducted in the Mediterranean
region (Singh, 1987). While low inputs and sub-optimal
crop management accounts significantly for this gap,
diseases and insect pests are also major constraints to
chickpea production. The enhancement of insect and
disease resistance in chickpea can increase its yield
potential by as much as three times (ICRISAT, 1992).
However, due to the lack of sources of resistance to
these constraints in the available germplasm, the success
rates of genetic enhancement of the chickpea by
conventional plant breeding has been modest. Possibi-
lities for further breakthroughs will therefore largely
depend on alternate sources of resistance from wild
species or through the use of modern tools in
biotechnology.
Genetic transformation to enhance crop resistance or

tolerance to biotic constraints is regarded as having
good potential to achieve more sustainable food
production in less-developed areas of the world such
as the semi-arid tropics where agrochemicals are
frequently inaccessible to farmers (Sharma and Ortiz,
2000; Sharma et al., 2001). Considering the potential
impact that biotechnology can have on the livelihoods
of resource-poor farmers, India is investing an increas-
ing amount of resources into plant biotechnology
(Paarlberg, 2001; Raghuram, 2002; Sharma et al.,
2003a). The interest in genetically modified (GM) plants
is likely to grow after the commercial release of
transgenic cotton in 2002 that expresses the insecticidal
cry1Ac gene of the soil bacterium Bacillus thuringiensis

(Bt) (James, 2002), and the apparent success in
controlling the pod borer Helicoverpa armigera

(H .ubner) (Lepidoptera: Noctuidae) (Quaim and Zilber-
man, 2003). However, prior to deployment, each crop
and transgene combination needs a close examination
for its potential to benefit the poor (Atkinson et al.,
2001) and possible environmental effects (Dale et al.,
2002; Conner et al., 2003). Here we provide an overview
of the most important insect pests of chickpea in India
and their management as well as the potential to control
these pests using GM chickpeas. We further present
information on the beneficial arthropods that are active
in the chickpea crop and suggest species that could be
tested as part of a regulatory risk assessment.
2. Insect pests of chickpea and their management

Even though a number of insect herbivores have been
reported to be associated with chickpea (Van Emden
et al., 1988; CPC, 2001), only three groups, i.e. the legume
pod borer H. armigera, sap-sucking pests [especially
Aphis craccivora Koch (Hemiptera: Aphididae)] and
bruchid beetles belonging to the genus Callosobruchus

[C. chinensis Linnaeus, C. maculates Fabricius, C. analis

Fabricius] cause major economic losses in India
(Reed et al., 1987). One reason for the paucity of
herbivores on chickpea is the dense layer of non-
glandular and glandular trichomes, which cover the
surface of all green plant parts, and the highly acidic
exudate excreted by the glandular trichomes (Cubero,
1987).

2.1. Helicoverpa armigera

The legume pod borer is one of the most serious and
widespread pests in the Old World. Its serious pest
status has mainly been attributed to the high fecundity,
extensive polyphagy, strong dispersal ability, and a
facultative diapause. The larval preference for feeding
on plant parts rich in nitrogen such as reproductive
structures and growing tips results in extensive crop
losses (Fitt, 1989). In chickpea, H. armigera is the
dominant field pest and yield losses of up to 40% have
been reported from farmer’s fields in India (Reed et al.,
1987; Srivastava and Srivastava, 1990). Worldwide
losses due to H. armigera in chickpea have been
estimated at over US$ 330 million annually (ICRISAT,
1992).
While a 1977–82 survey revealed that less than 10% of

farmers used pesticide to control H. armigera in
chickpea (Reed et al., 1987), the shift from subsistence
to commercial production and the resulting substantial
rise in the price of the crop has provided farmers with
the opportunity to consider pest management options
which formerly would have been uneconomic, leading to
an increased use of pesticides (Shanower et al., 1998). A
wide variety of insecticides have been used to control
H. armigera, and in many areas, several applications are
needed to contain this pest (Reed et al., 1987; Sachan,
1992). Intensive insecticide application to control
H. armigera on various crops (especially cotton) has
resulted in the development of resistance to the major
classes of insecticides such as chlorinated hydrocarbons,
organophosphates, synthetic pyrethroids and carba-
mates (Armes et al., 1996). This has resulted in
control failures and a lack of confidence in chemical
control among the farming communities (Raynolds and
Armes, 1994).
Since 1976, more than 14,000 chickpea germplasm

accessions and breeding lines have been screened for
resistance to H. armigera at the International Crops
Research Institute for the Semi-Arid Tropics (ICRI-
SAT) under open-field, pesticide-free conditions. Several
genotypes with low to moderate levels of resistance were
identified (Lateef and Sachan, 1990). However, while the
resistant lines suffered less pod damage, they often
produced lower yields than the controls, which was
partly due to the relatively small seed size of some of the
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resistant lines (Shanower et al., 1998). In addition, most
of the resistant/tolerant lines were found to be
susceptible to diseases, particularly to Fusarium wilt
and Ascochyta blight (Lateef and Sachan, 1990). So far,
few varieties with enhanced levels of resistance to
H. armigera have been released for cultivation by the
farmers (Sharma et al., 2003b). In recent years, much
has been learned about the mechanisms of H. armigera

resistance in chickpea. Ovipositional antixenosis is one
of the components of resistance (Lateef, 1985; Cowgill
and Lateef, 1996). In addition, inhibition of larval
growth by malic acid and oxalic acid contained in the
trichome exudates (antibiosis) appears to be an im-
portant mechanism (Cowgill and Lateef, 1996; Yoshida
et al., 1995). Other antibiosis factors include Helicoverpa

gut protease inhibitor activity in developing chickpea
seeds (Patankar et al., 1999) and phenyl ammonialyase
activity in leaves (Bhatnagar et al., 2000).
While a number of parasitoids and predators have

been reported to attack H. armigera in India, their
presence and impact in chickpea is generally low
(Romeis and Shanower, 1996). The most efficient species
is the parasitic wasp Campoletis chlorideae Uchida
(Hymenoptera: Ichneumonidae), for which parasitism
levels of up to 30% of young larvae have been reported
(Romeis and Shanower, 1996). The low activity of
natural enemies in chickpea is most probably due to the
dense trichome layer on the plant surface and the acid
exudates (Jalali et al., 1988; Murray and Rynne, 1994;
Romeis et al., 1999).
The use of microbial pathogens including Helicoverpa

nucleopolyhedrovirus (HaNPV), entomophatogenic fun-
gi, nematodes and biopesticides such as Bt-products and
neem seed kernel extract have shown some potential to
control H. armigera (Saxena and Ahmed, 1997; Sha-
nower et al., 1998; Lingappa and Hegde, 2001). In
particular, HaNPV has been demonstrated to be a viable
option to control H. armigera in chickpea as it can be as
effective as the chemical pesticides (Rabindra et al., 1992;
Cowgill and Bhagwat, 1996; Cherry et al., 2000).
However, there are still two major obstacles for wide-
spread adoption of this technology. The first is the high
production costs that make the viral treatments uncom-
petitive compared with the synthetic insecticides, and the
second is the lack of an effective product quality control
system (Jenkins and Grzywacz, 2000; Cherry et al., 2000).
Cultural control options such as manipulation of

plant spacing, time of sowing, intercropping and soil
operations such as ploughing have also been shown
to have some potential to reduce the damage caused by
H. armigera (Reed et al., 1987; Shanower et al., 1998).

2.2. Sap-sucking pests

Sap-sucking pests infesting chickpeas reach pest
status mainly due to the fact that they act as
virus vectors. Aphids, especially A. craccivora, are
known to transmit a large number of viral diseases in
chickpea (Kaiser et al., 1990). The most important is a
strain of the bean leaf roll luteovirus, the main cause of
chickpea stunt, which is transmitted in a persistent
manner by A. craccivora (Brunt et al., 1996). Another
chickpea disease is caused by the chickpea chlorotic
dwarf virus (Horn et al., 1995), a tentative mastrevirus
(Fauquet and Stanley, 2003). This virus is transmitted
in a persistent, non-propagative and circulative manner
by the leafhopper Orosius orientalis (Matsumura)
(Hemiptera: Cicadellidae) (Horn et al., 1994; Brunt
et al., 1996).
Aphids are generally not controlled in the

chickpea crop. While pesticides have been reported
to be effective against A. craccivora (Sharma et al.,
1991), their application is expected to be of limited
value since the aphids would still transmit the
virus before dying, therefore preventing only secondary
virus spread (Reed et al., 1987). In addition, A.

craccivora has already developed some levels of resis-
tance to a number of common insecticides (Dhingra,
1994). Little is known on possible mechanisms of
resistance in chickpea to aphid attack. Weigand and
Tahhan (1990) have reported that a lower pH in leaf
washings correlates with a smaller number of aphids
found on the plant.

2.3. Bruchids

Damage in chickpea storage in India caused
by Callosobruchus spp. varies among geographical
regions with reported average infestation levels of up
to 13% (Mookherjee et al., 1970; Dias and Yadav,
1988).
Even though chemical pesticides have the potential to

give good protection against bruchid attack (Rahman
and Yadav, 1987; Yadav and Singh, 1994; Lal and
Dikshit, 2001), their adoption in chickpea storage
appears to be small (Srinivasu and Naik, 2002).
Extensive screening of seeds of kabuli type chickpeas
against bruchids have not revealed any acceptable level
of resistance (Weigand and Pimbert, 1993). In contrast,
desi type seeds with enhanced levels of resistance have
been reported (Raina, 1971; Schalk et al., 1973;
Weigand and Tahhan, 1990). Unfortunately, resistant
lines usually produce relatively small seeds with a
rough seed coat which is unacceptable to consumers
(Reed et al., 1987). One way of reducing the oviposition
by bruchid beetles is to store split chickpea seeds as used
for dal preparation (Reed et al., 1987). Biological
control of bruchids has not really been exploited in
India, despite the use of different plant products (Boeke
et al., 2001). A comprehensive review of biological
control of bruchids in the tropics has been published by
Van Huis (1991).
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3. Potential of transgenic insect-resistant chickpeas

3.1. Genetic transformation of chickpea: current status

Non-sexual DNA transfer techniques make possible
the manipulations that are outside the repertoire of
breeding and cell fusion techniques (Sharma and Ortiz,
2000). Genes can be accessed from exotic sources (plant,
animal, bacterial, viral) and introduced in the crop of
interest. However, the lack of availability of efficient
transformation methods to introduce foreign genes can
be a substantial barrier to the application of recombi-
nant DNA methods in some crops including legumes
such as chickpea. A reliable shoot regeneration protocol
is a prerequisite for efficient application of genetic
transformation strategies. Several regeneration proto-
cols involving somatic embryogenesis (Rao and Chopra,
1989; Barna and Wakhlu, 1993; Sagare et al., 1993;
Dineshkumar et al., 1994; Suhasini et al., 1994) and
shoot organogenesis (Shri and Davis, 1992; Barna and
Wakhlu, 1994) in chickpea have been reported from
diverse explants in both mature and immature tissues
with varying success rates (Sonia et al., 2004). However,
the recovery frequency of regenerated plants and their
transfer to the glasshouse has been very low, which has
limited the progress in genetic transformation of
chickpea. More recently, an efficient and reproducible
protocol for the regeneration of shoots at high
frequency has been developed at ICRISAT that uses
explants derived from the axillary meristems of cotyle-
donary nodes of in vitro-germinated seedlings of
chickpea (Jayanand et al., 2003). This includes effective
rooting of the in vitro formed shoots and their successful
transplantation to the glasshouse with high frequencies.
Chickpea has been shown to be susceptible to wild

Agrobacterium tumefaciens as well as A. rhizogenes,
where infection results in the formation of crown galls
and hairy roots, respectively, on the infected explant
(Sonia et al., 2004). Even though the genetic transfor-
mation of chickpea has been reported where the primary
transformants were confirmed by molecular analysis
(Fontana et al., 1993; Kar et al., 1996, 1997; Krishna-
murthy et al., 2000), the methods were genotype
dependent and produced low frequencies of transgenic
tissue or plantlets.
Krishnamurthy et al. (2000) used embryo axes devoid

of root and shoot meristems for A. tumefaciens-
mediated transformation of chickpea. The binary
vectors contained two marker genes, the uidA gene
expressing b-glucuronidase and the antibiotic selection
marker nptII. After co-cultivation with Agrobacterium

and selection on the antibiotic kanamycin, 16 shoots
were obtained from nearly 4000 explants resulting in a
transformation efficiency of 0.4%. Due to problems
with efficient rooting, the shoots were grafted onto
germinated seedlings of wild type chickpea prior to their
hardening and transfer to soil. Genomic analysis was
carried out for only 4 out of the 16 plants, which
revealed the integration of single or multiple copies of
T-DNA. The plantlets transferred to soil had reduced
vigour and fertility, which the authors attributed to the
suboptimal glasshouse conditions. Out of 36 plants
growing in glasshouse, only 5 plants flowered and set
seeds. T1 progeny as analyzed by polymerase chain
reaction (PCR) was found to be positive for the selection
marker (nptII) but not for histochemical GUS assay
measuring the b-glucuronidase activity.
A robust and reliable protocol for A. tumefaciens-

mediated chickpea transformation has recently been
demonstrated by Sarmah et al. (2004) using cotyledon-
ary explants containing half embryogenic axes. The
Australian ‘desi-type’ cultivar Semsen was transformed
by using a bean gene construct that encodes for an a-
amylase inhibitor and nptII as the selectable marker
gene. Average transformation frequency was 0.72% and
therefore higher than reported in previous studies
(Krishnamurthy et al., 2000). However, since the
transgenes were transmitted to the next generation by
only 78% of the primary transgenics, transformation
efficacy based on the functionally transformed explants
was 0.56%. Southern blot analyses revealed that five out
of six independent transgenic lines contained a single
transgene insertion what is in contrast to earlier studies
where multiple gene inserts were more frequently
observed (Kar et al., 1996; Krishnamurthy et al., 2000).
At ICRISAT, chickpea transgenic lines have been

developed by incorporating a synthetic Bt cry1Ab and
soybean trypsin inhibitor gene through A. tumefaciens-
mediated genetic transformation by using the regenera-
tion protocol based on axillary meristem explants that
produce adventitious shoots (Jayanand et al., 2003;
K.K. Sharma, unpublished results). The molecularly
characterised plants are currently in T3 generation and
being employed in insect bioassays for resistance to H.

armigera. The protocol is applicable across a wide range
of desi-type chickpea cultivars.
An overall view of the scenario of transformation in

chickpea clearly demonstrates that considerable pro-
gress has been made in regeneration and genetic
transformation of chickpea that had earlier remained a
problematic crop for genetic engineering (Sonia et al.,
2004). With this progress it is hoped that chickpea
biotechnology will provide unique opportunities for its
agronomic improvement against insect pests and other
constraints to its productivity.

3.2. Candidate genes for genetic transformation of

chickpea for insect resistance

3.2.1. Helicoverpa armigera

While a number of different types of insect-resistant
genes are reported to encode for toxins that target
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lepidopteran larvae and could thus be suitable to
increase resistance of chickpea and other crops (Schuler
et al., 1998; Hilder and Boulter, 1999), Bt-toxins still
receive the most attention. H. armigera is sensitive to a
range of Bt-toxins, with Cry1Ac being the most effective
(Chakrabarti et al., 1998a; Kranthi et al., 2001; Liao
et al., 2002). Synergistic activity of Cry1Ac and Cry1F
toxins was also observed (Chakrabarti et al., 1998b). A
recent study reported a five-fold variation in the
sensitivity to Cry1Ac in H. armigera populations
collected in different geographical regions in India
(Jalali et al., 2004). So far, the only Bt-transgenic crop
that has been commercialised for the control of
H. armigera is cotton (James, 2002; Quaim and Zilber-
man, 2003). However, several other crops have success-
fully been transformed to express different cry genes for
protection against this pest. These include tobacco
(Selvapandiyan et al., 1998), brinjal (Kumar et al.,
1998), potato (Chakrabarti et al., 2000) and tomato
(Mandaokar et al., 2000; Kumar and Kumar, 2004).
Two chickpea cultivars (ICCV 1 and ICCV 6) have been
transformed to express the cry1Ac gene under a
constitutive promotor (CaMV35S) through micropro-
jectile bombardment using the nptII gene as the selection
marker (Kar et al., 1997). Young shoots of T1 plants
that expressed Cry1Ac at 0.004–0.0045% of soluble
protein caused a feeding inhibitory effect on first-instar
H. armigera. Unfortunately, the presence and expression
of transgenes and resistance level in subsequent proge-
nies have not been reported.
A number of studies have investigated the proteinase

activity in the gut of H. armigera and the possible use of
protease inhibitors (PIs) to control this pest.H. armigera

has the highly alkaline midgut characteristics of
Lepidoptera and secretes serine proteases as the main
gut endoproteinases (Johnston et al., 1991). This
explains the effects of serine PIs such as the soybean
Kunitz trypsin inhibitor (SBTI) onH. armigera larvae in
artificial diet bioassays (Johnston et al., 1991, 1993;
Nandeesha and Prasad, 2001; Gatehouse et al., 2002) or
when expressed by transgenic tobacco plants (Wu et al.,
1997; Charity et al., 1999; Christeller et al., 2002; but see
Nandi et al., 1999). Recent studies by Patankar et al.
(2001) have also revealed the presence of metallo-,
aspartic-, and cysteine-proteinase inhibitors in the larval
gut. The authors reported a considerable diversity in the
proteinase activity and a flexibility in their expression
during the various developmental stages of the insect
and depending upon the diet provided. The latter was
suggested to be linked to the polyphagous nature of
H. armigera which had evolved mechanisms to cope
with different PIs that are encountered on the different
host plants (Harsulkar et al., 1999). Further evidence for
this is the fact that inhibitors of trypsin activity from
host plants such as chickpea and pigeonpea (Cajanus

cajan) do not have a strong effect on H. armigera
(Godbole et al., 1994; Giri et al., 1998; Patankar et al.,
1999). Such adaptations have also been reported for H.

armigera feeding on artificial diets containing individual
PIs (Bown et al., 1997; Gatehouse et al. 1997), or when
feeding on transgenic tobacco plants expressing the
giant taro proteinase inhibitor (Wu et al., 1997). Due to
this adaptability, the use of PIs as a single resistance
strategy must be considered carefully. One of the ways
to use PIs may be to combine inhibitors that target
different proteinases (Jongsma and Bolter 1997; Har-
sulkar et al., 1999), or preferably, to use PIs in alliance
with other insecticidal gene products. For example,
synergistic effects of soybean trypsin inhibitor and Bt-
toxins onH. armigera have been reported by Zhang et al.
(2000). The suggested mechanism was an extended
retention time of the Bt-toxins in the insect’s midgut.
Recently, transgenic tobacco plants expressing avidin,

a protein that binds strongly to the vitamin biotin, have
shown good protection against H. armigera (Burgess
et al., 2002). Pyramiding the avidin gene with cry1Ba has
resulted in a strong synergistic effect, while avidin
expressing plants were as effective as plants that
expressed avidin and a serine PI (aprotinin, BPTI).
At Assam Agricultural University, chickpeas have

been transformed to express cry1Ac driven by either the
constitutive CaMV35S promoter or a green tissue
specific promoter (AraSSU). Presence and expression
of the transgene are currently being confirmed by PCR
and Western analyses (B.K. Sarmah, unpublished
results). Research is currently in progress at ICRISAT
to develop transgenic chickpeas expressing Bt-toxins,
protease inhibitors, and lectin genes for resistance to H.

armigera (Sharma and Ortiz, 2000; Sharma et al., 2002).
Transgenic plants pyramiding Bt-genes (cry1Ab or
cry1Ac) and the SBTI gene are at different stages of
evaluation for resistance to H. armigera (K.K. Sharma
and H.C. Sharma, unpublished results).

3.2.2. Sap-sucking pests

Until now, no transgenic plant expressing a resistance
factor against sap-sucking pests has been commercia-
lised. While there is a patent available on Bt-toxins that
affect aphids (Payne and Cannon, 1993), there is no
published evidence for this. The focus of research has
therefore been on other insecticidal compounds. Plant-
derived lectins appear to be the most promising
candidates. Lectins are carbohydrate-binding proteins
that are thought to play a defensive role in plants in
response to attack by herbivores or pathogens (Peumans
and van Damme 1995). So far, transgenic crops
expressing lectins from snowdrop (Galanthus nivalis,
GNA) (Shi et al., 1994; Down et al., 1996; Stoger et al.,
1999; Foissac et al., 2000), jackbean (Canavalia ensifor-

mis, ConA) (Gatehouse et al., 1996) or wheat (Triticum

vulgaris, WGA) (Kanrar et al., 2002) have shown
partial resistance to aphids (Aphididae), leafhoppers
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(Cicadellidae) and planthoppers (Delphacidae). Besides
the lectins that have been expressed in transgenic plants,
a number of other lectins have been found to affect sap-
sucking insects when provided in artificial diets (Habibi
et al., 1993; Rahb!e et al., 1995; Sauvion et al., 1996;
Bandyopadhyay et al., 2001; Roy et al., 2002). Because
many of the sap-suckers are phloem-feeders, studies are
in progress to target the transgene products to the
phloem-sap by the use of phloem-specific promoters
such as the rice sucrose synthase promotor (RSs1) (Shi
et al., 1994).
In aphids, lectins appear to act primarily by reducing

growth, development, and fecundity rather than causing
mortality. This makes the additional impact of antago-
nists such as predators and parasitoids necessary for
pest control (Van Emden, 1999). In addition, some
studies have suggested a ‘feeding deterrent’ effect of
lectins (Shi et al., 1994; Powell et al., 1995; Kanrar et al.,
2002), which appears to be a consequence of intoxifica-
tion rather than sensory-mediated (Sauvion et al., 2004).
Changes in the insect feeding behaviour could poten-
tially increase virus spread due to an increase in the
frequency of plant visits and probing by the vectors,
which is especially likely for non-persistant viruses
(Kennedy, 1976). Since both the bean leaf roll luteovirus
and the chickpea chlorotic dwarf virus are transmitted
by their vector in a persistent manner (Horn et al., 1994;
Brunt et al., 1996), a feeding deterrent effect of lectin-
expressing transgenic chickpeas might not cause an
increase in virus spread (Kennedy, 1976). However, this
would need further investigation once lectin-expressing
chickpea plants are available since virus spread will
depend on the amount of time an aphid spends feeding
on the plant and the inoculation and retention times of
the virus. For example, the minimum acquisition access
period reported for O. orientalis was found to be only
2mins (Horn et al., 1994). Also, chickpea stunt is caused
by a number of different viruses (Horn, 1994), for which
the mode of transmission is not yet known. If chickpea
diseases cannot be controlled by enhancing resistance
towards the vector, plants could be genetically engi-
neered to target the virus directly (Schillberg et al., 2001;
Dasgupta et al., 2003). However, this approach might
not be durable since viruses evolve rapidly (Prins, 2003).
So far, only a few mannose-binding lectins have been

tested for their activity against A. craccivora in artificial
diet bioassays: leaf lectins from garlic (Allium sativum,
ASAL), onion (Allium cepa) and Diffenbachia sequina as
well as a lectin from tubers of Colocasia esculenta. Of the
four lectins tested, ASAL was found to be the most
effective against A. craccivora [with a median effective
dose (LC50) of 0.15 nmol], followed by that of onion, C.

esculenta and D. sequina (Sampa Das, unpublished
results). After incubating A. craccivora on an artificial
diet containing a sublethal dose of ASAL, the aphid’s
midgut was dissected and challenged with anti-ASAL
antibodies. Light microscopic observations demon-
strated the binding of the lectin to the inner epithelial
membrane of A. craccivora which may explain the
insecticidal activity of ASAL. At least some of the
mannose binding lectin ASAL appears to remains
stable when passing through the gastrointestinal tract,
at least to the extent that immunoreactive peptides
are detectable. This is important since biochemical
stability is a prerequisite for biological activity of the
lectin. ASAL has earlier been shown to be effective
against sap-sucking pests, i.e. the aphid Lipaphis erysimi

Kaltenbach (Hemiptera: Aphididae) and the red cotton
bug Dysdercus cingulatus (Fabricius) (Hemiptera: Pyr-
rhocoridae) (Bandyopadhyay et al., 2001, Roy et al.,
2002). ASAL is therefore a potential agent to
control A. craccivora and chickpea transformation
work has commenced using the lectin coding sequence
driven by either a constitutive (CaMV35S) or phloem-
specific (RSs1) promoter (Sampa Das, unpublished
results).

3.2.3. Bruchids

While a number of plant derived lectins have been
shown to affect Callosobruchus species when provided in
artificial seeds, those with specificity for N-acetylgalac-
tosamine/galactose or N-acetylglucosamine seem to be
the most effective in inhibiting larval development
(Murdock et al., 1990; Gatehouse et al., 1991; Zhu
et al., 1996; Huesing et al., 1991a,b; Machuka et al.,
2000; Macedo et al., 2002b).
Bruchids use cysteine proteinases as their predomi-

nant digestive enzymes with an optimum activity at
about pH 5 (Ryan, 1990), explaining the reported effects
of protease inhibitors (PIs) of the cysteine group
(Murdock et al., 1988; Campos et al., 1989; Kuroda
et al., 1996; Oliveira et al., 2001a, 2002; Macedo et al.,
2002a). In addition, activity of aspartic proteinases has
been reported in C. maculatus larvae (Silva and Xavier-
Filho, 1991). The reported effects of the cowpea trypsin
inhibitor on growth and development of C. maculatus

larvae (Gatehouse and Boulter, 1983) is due to the fact
that this PI shows a low level inhibitory activity against
cysteine type proteinases (Gatehouse et al., 1985).
Recently, Zhu-Salzman et al. (2003) reported a syner-
gistic delay in development of C. maculatus by a
recombinant fusion protein consisting of the soybean
cysteine protease inhibitor soyacystatin and Griffonia

simplicifolia lectin II, whereas a mixture of the separate
proteins only showed an additive effect.
A range of other compounds isolated from legume

seeds have shown insecticidal activity to Callosobruchus

spp. These include polysaccharides (Applebaum et al.,
1970; Oliveira et al., 2001b), proteins with unknown
functions such as canatoxin (Carlini et al., 1997) and
zeatoxin (Macedo et al., 2000), and storage proteins
such as vicilins (Macedo et al., 1993; Yunes et al., 1998).
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By far the most effective compounds are those lectin-
like proteins that inhibit the insects a-amylases, enzymes
that catalyse the hydrolysis of a-1,4-glucan linkages in
starch components, glycogen and other carbohydrates.
Such inhibitors (a-AIs) with activity against Calloso-

bruchus spp. have been purified from different plant
sources (Franco et al., 2002). The best characterised
inhibitor, a-AI-1, has been purified from the common
bean Phaseolus vulgaris and the cDNA has been cloned
(Moreno and Chrispeels, 1989; Chrispeels et al., 1998).
a-AI-1 is known to inhibit the amylases of three
important Old World bruchid pests. Bioassays deploy-
ing artificial seeds revealed that the presence of a-AI-1 at
a level of 0.2% (w/w) almost completely inhibits the
development of larvae of C. chinensis and C. maculatus

(Ishimoto and Kitamura, 1989). In addition, transgenic
peas expressing a-AI-1 have shown good protection
against Bruchus pisorum (L.) (Schroeder et al., 1995).
For comparison, the a-amylases of the Mexican bean
weevil Zabrotes subfasciatus (Boheman) are not inhib-
ited by a-AI-1 (Ishimoto and Kitamura, 1989). While a-
AI-1 is inactive against plant and bacterial enzymes, it
also inhibits mammalian a-amylases (Chrispeels et al.,
1998). Therefore this anti-nutritional factor must be
inactivated by cooking prior to human consumption.
Inhibitors that affect Callosobruchus spp. a-amylases
but not those of mammals have also been reported
(Yamada et al., 2001; Franco et al., 2002). For example,
some wild accessions of the common bean contain an
inhibitor (a-AI-2) that exclusively inhibits insect
a-amylases. While a-AI-2 inhibits the a-amylases of Z.

subfasciatus, it is not effective against C. maculatus, and
far less active against C. chinensis when compared to
a-AI-1 (Suzuki et al., 1993).
Peas (Pisum sativum L.) (Shade et al., 1994) and

adzuki beans (Vigna angularis) (Ishimoto et al., 1996)
were genetically modified to express the bean cDNA
encoding a-AI-1. A a-AI-1 gene construct was used that
is regulated by flanking sequences from the seed-specific
bean phytohemagglutinin (PHA-L) gene (dlec2). The
PHA-L regulatory DNA sequences restrict the expres-
sion of the a-AI-1 to the cotyledon and embryonic axis
of the developing seeds (Schroeder et al., 1995).
Transgenic peas were tested for their resistance to C.

maculatus and C. chinensis in the laboratory (Shade et al.,
1994). For C. chinensis, in nearly every seed where a-AI-
1 was detected, all infesting larvae died. Seeds from
which adults emerged contained a maximum of 0.14%
(w/w) of the inhibitor. The response of C. maculatus was
more variable and depended on the level of a-AI-1 in the
seeds, with levels of above 0.8% giving complete
mortality. Subsequent experiments showed that a-AI
cDNA was expressed stably in transgenic pea seeds at
least to the T5 generation (Schroeder et al., 1995).
Transgenic peas in which the a-AI-1 level reached
approximately 3.5% of the total protein, provided
complete protection against B. pisorum, both in green-
house as well as in field studies (the pea weevil lays its
eggs on developing green pods) (Schroeder et al., 1995;
Morton et al., 2000). Larval development was found to
be blocked at an early developmental stage (Schroeder
et al., 1995). Studies with transformed adzuki beans that
expressed a-AI-1 in their seeds at a level of 0.9% dry
weight were found to be completely resistant to three
species of Callosobruchus spp. but not, as expected, to Z.

subfasciatus (Ishimoto et al., 1996). Peas expressing a-
AI-2 in their seeds were not protected from B. pisorum

(Morton et al., 2000).
Transgenic chickpea lines that express a-AI-1 in their

seeds were developed using an Australian cultivar. The
a-AI-1 produced in chickpeas was shown to be
functionally active against a-amylase from porcine
pancreas in vitro. Transgenic chickpeas expressing a-
AI-1 at a level of 2.1% of seed protein inhibited the
development of C. maculatus and C. chinensis by over
90% in insect bioassays (Sarmah et al., 2004). Thus the
a-AI-1 gene is considered as effective for developing
transgenic chickpeas resistant to storage pests. Pre-
sently, a transformation system has been established for
Indian chickpea cultivars (Das et al., 2002) and
transgenics are being developed using a reconstructed
bean a-AI-1 gene (B.K. Sarmah, unpublished results).
4. Possible effects of insect-resistant GM chickpeas on

entomophagous arthropods

Among the widely discussed environmental impacts
of GM crops is their potential effect on non-target
organisms including entomophagous insects (Dale et al.,
2002; Conner et al., 2003). Since parasitoids and
predators are important for natural pest regulation,
they help to prevent secondary pest outbreaks and can
affect the rate of resistance evolution of the target pest
to the introduced resistance factor (Gould et al., 1991;
Gould, 1994). A risk assessment should therefore be
carried out for the economically or ecologically most
important species associated with the crop prior to the
commercial release of the novel plant. Such a regulatory
testing and risk assessment is well established for
pesticides (Candolfi et al., 2001) and there are many
lessons to learn for risk assessment of GM plants (Hill
and Sendashonga, 2003). Recently, Dutton et al. (2003)
have proposed a tiered testing procedure for insect-
resistant GM plants with increasing levels of complexity
and realism that has largely been adapted from the
ecotoxicological evaluation of pesticides. As a first step,
it is required to determine which entomophagous
arthropods play an important role in regulating pests
in the respective GM crop. Since risk is defined as a
product of a hazard (toxicity of a transgene product)
and exposure (level of exposure to the compound), it has
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to be established which of the selected arthropods are
potentially exposed to the transgene product under field
conditions in a second step. For the arthropods that are
likely to be exposed, their sensitivity to the product then
has to be established (hazard identification and char-
acterisation). The potential hazard of the insecticidal
proteins will vary with their spectrum of activity. While
Bt-toxins are known to be active on a subset of species
belonging to the same insect order, other compounds
such as lectins or protease inhibitors have a less-specific
mode of action, potentially affecting many more non-
target species (Schuler et al., 1998; Hilder and Boulter,
1999). Based on the information gained, the potential
risk of a certain GM plant on non-target organisms can
be characterised and possibly managed (Hickson et al.,
2000; Dutton et al., 2003).
The application of this approach to crop systems in

tropical areas, where the arthropod communities are
usually not well described, is a challenge. In the
following, we discuss possible routes through which
entomophagous insects could be exposed to insecticidal
proteins expressed by GM chickpeas. We further
recommend species that could be selected for a pre-
release risk assessment taking the availability/amenabil-
ity and the knowledge on the species’ biology into
account since these are important prerequisites for
setting up reliable and reproducible bioassays.
Even though a number of insect herbivores have been

reported to be associated with chickpea (Van Emden
et al., 1988; CPC, 2001), we will confine our focus on the
three major pests in India, i.e. H. armigera, aphids and
bruchids (Fig. 1). This is done, firstly, because these are
the only chickpea herbivores for which information
regarding their antagonists is available, and, secondly,
any disturbance of the natural control of the herbivores
that are not targeted by a particular GM chickpea
should be avoided. There are a number of routes
through which entomophagous arthropods could be
exposed to the transgene products. (i) Carnivory of

herbivorous arthropods—The predominant route for
entomophagous insects to be exposed to transgene
products is through their prey or hosts. Therefore it
has to be assessed at an early stage which herbivores
ingest the transgene product when feeding on a GM
chickpea. This will depend on the mode of feeding of the
herbivores and on the site and time of toxin expression
(Dutton et al., 2003). The latter will vary with the
promoter that drives the transgene. Bt-chickpeas that
are currently developed express the Cry1Ac toxin under
a constitutive (CaMV35S) or green tissue specific (Ara
SSU) promoter, expression of a-AI-1 is restricted to the
seeds while it is envisaged to express ASAL under a
phloem-specific (RSs1) promoter. In addition, concen-
tration of a transgene product within an insect can also
vary among species with a similar mode of feeding
(Foissac et al., 2000; Head et al., 2001). (ii) Direct plant
feeding—A number of predators are facultative feeders
on plant material (incl. pollen) (Coll and Guershon,
2002). While transgene products have so far not been
detected in nectar of GM crops (Malone and Pham-
Del"egue, 2001), pollen may contain the novel proteins
when constitutive promoters such as CaMV35S are used
(for Bt-maize see Dutton et al., 2003). (iii) Honeydew

feeding—Transgene products have been detected in the
sugar-rich excretions (honeydew) from phloem-sucking
Sterrnorhyncha (Hemiptera) feeding on insect-resistant
transgenic plants. This indicates that the transgene
product was present in the phloem-sap and could
potentially affect a broad range of non-target arthro-
pods including entomophagous insects that use honey-
dew as an energy source (Romeis et al., 2003). The
presence of transgene products in honeydew has been
observed not only in cases where the trangenes were
driven by a phloem-specific promoter such as RSs1 (Shi
et al., 1994) but also in cases where a constitutive
promoter was deployed (Kanrar et al., 2002; Bernal
et al., 2002; Rahb!e et al., 2003).
In addition, transgene products also enter the soil

ecosystem either through crop residue or herbivore
detritus and can be detectable in the soil for a long
period of time resulting in exposure of non-target soil
organisms to the compound. The effects of GM plants
on soil communities and processes in soil have been
reviewed recently by Bruinsma et al. (2003) and
Kowalchuk et al. (2003).
The entomophagous arthropods that attack H.

armigera in India are relatively well known (Fig. 1).
However, information regarding their impact and
activity in the chickpea crop is still scarce (Romeis and
Shanower, 1996). From the parasitoids reported to
attack H. armigera on chickpea, Campoletis chlorideae is
particularly abundant and effective (Romeis and Sha-
nower, 1996). This along with the fact that C. chlorideae

can be reared in the laboratory and is relatively well
studied (e.g. Nikam and Gaikwad, 1991; Murugan et al.,
2000) makes it a possible candidate for risk assessment
studies. Only a few predatory arthropods are reported
from chickpea (Mehto et al., 1986; Singh et al., 1990)
(Fig. 1). One of the species, the ladybird beetle
Coccinella septempunctata L. (Coleoptera: Coccinelli-
dae), is a well established test insect for ecotoxicological
studies (Schmuck et al., 2000). This species is known to
attack both lepidopteran larvae as well as aphids
(including A. craccivora on chickpea; Saxena et al.,
1970), making it a good test species. Several other aphid
predators have been reported in India, although not
from chickpea (Waterhouse, 1998; Joshi et al., 1997).
There is no published information on the parasitoids
that attack aphids on chickpea, and field investigations
should be conducted to describe the parasitoid complex
involved. In the meantime, one might have to consider
species that attack the chickpea infesting aphids on
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Parasitoids 1,2

Brachymeria marmonti (Hym., Chalcididae)
Campoletis chlorideae (Hym., Ichneumonidae)
Charops bicolor (Hym., Ichneumonidae)
Chelonus curvimaculatus (Hym., Braconidae)
Eriborus spp. (Hym., Ichneumonidae)
Goniophtalmus halli (Dipt., Tachinidae)
Senometopia illota (Dipt., Tachinidae)
Voria ruralis (Dipt., Tachinidae)

Predators 2,3

Chrysopa sp. (Neur., Chrysopidae)
Coccinella septempunctata (Col., Coccinellidae)
Calosoma indicum (Col., Carabidae)
Dorylus labiatus (Hym., Formicidae)
Polistes olivaceus (Hym., Vespidae)
spiders (Arachnida, Araneae)

Aphis craccivora
Parasitoids
?

Honeydew
feeding insects

Helicoverpa armigera

Callosobruchus spp.

Predators
?

Flower visiting insects 5,6,7

bees (Hym., Apidae)

Predators 3,4

Chrysopa sp. (Neur., Chrysopidae)
Coccinella septempunctata (Col., Coccinellidae)
Ischiodon scutellaris (Dipt., Syrphidae)
Pantala sp. (Odon., Libellulidae)
spiders (Arachnida, Araneae)

Parasitoids 8,9

Anisopteromalus calandrae
(Hym., Pteromalidae) 

Dinarmus basalis (Hym., Pteromalidae)

 

Fig. 1. Trophic interactions in the chickpea crop in India (1—Romeis and Shanower, 1996; 2—Singh et al., 1990; 3—Mehto et al., 1986; 4—Saxena

et al., 1970; 5—Ayyar, 1935; 6—Niknejad and Khosh-Khui, 1972; 7—Reed et al., 1987; 8—Devi, 1996; 9—Verma, 1991).
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other crops for risk assessment studies. Parasitoids
reported to attack A. craccivora in India have been listed
by Waterhouse (1998). Indigenous parasitoids that
might be suitable test species are the well studied
Trioxys indicus Subba Rao and Sharma (Hymenoptera:
Aphidiidae) (Singh and Agarwala, 1992) and Aphidius

colemani Viereck (Hymenoptera: Braconidae) (Star"y,
1975). In general, little is known about the arthropods
attacking bruchids in storage (Van Huis, 1991). The
only parasitoid that has been reported from chickpea
samples collected in storage systems in India is
Anisopteromalus calandrae (Howard) (Hymenoptera:
Pteromalidae) (Devi, 1996). Another parasitoid species
that could be deployed in risk assessment studies is
Dinarmus basalis (Rondani) (Hymenoptera: Pteromali-
dae). This species is reported to occur in India and has
successfully been reared on chickpea seeds infested with
different Callosobruchus spp. (Verma, 1991). Furthe-
more, both parasitoid species can easily be reared and
are well described.
5. Conclusions

Insect-resistant GM chickpeas have the potential to
reduce current gaps between attainable and actual
yields, especially in subsistence farming systems, and
to decrease the dependency on pesticides in some
circumstances. Benefits will be maximum in the control
of H. armigera since this pest is difficult to control with
conventional methods usually requiring numerous
pesticide applications. However, it appears that no
single approach will suffice in itself to control H.

armigera. Pyramiding different insecticidal genes (e.g.
Zhang et al., 2000; Burgess et al., 2002) and the
integration of transgenics with other components of
pest management have to be envisaged (Waage, 1996;
Fitt, 2000). The expression of the a-amylase inhibitor
a-AI-1 in chickpea seeds has the potential to give good
protection against bruchid attack. But this single
resistant gene will need to be supplemented by other
methods of pest control since it poses a high selection
pressure that is likely to cause the rapid emergence of
bruchid strains that are not affected by the inhibitor. It
remains to be seen whether aphid-transmitted viral
diseases can be controlled by regulating the aphid
vector, for example by the deployment of plants that
express lectins such as ASAL. The success of this
approach will largely depend on the effectiveness of the
transgene product and on the nature of the virus such as
virulence and the speed at which it is transmitted.
One major obstacle to the deployment of transgenic

chickpeas expressing cry genes from Bacillus thuringien-

sis for the control of H. armigera might be the
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development of resistance in the target pest. Susceptible
larvae of H. armigera are already not very sensitive to
Bt-toxins such as Cry1Ac (Akhurst et al., 2003) when
compared to other Lepidoptera and strains with high
levels of resistance to this particular Bt-toxin have
already been selected (Kranthi et al., 2000; Akhurst
et al., 2003). But despite the fact that the deployment of
cry1Ac expressing Bt-cotton in China increased from
10,000 ha in 1997 to 1 million ha in 2000, no increase in
the resistance of H. armigera to Cry1Ac was detected
(Wu et al., 2002). Implementing a resistance manage-
ment plan in a country such as India may be difficult.
Since H. armigera is a polyphagous pest with a reported
number of at least 181 host plants from 45 families in
India alone (Manjunath et al., 1989), other hosts that do
not produce Bt-toxins could act as refuges and
continuously produce susceptible insects. However, this
effect will be lessened when the same Cry toxins (or
those with cross-resistance) are expressed in different
food plants of this pest. This is for example the case for
cry1Ac and cry1Ab that are expressed in the commer-
cialised Bt-cotton variety and currently engineered not
only in chickpea, but in a number of other crops
including pulses, vegetables and cereals (Sharma et al.,
2003a). The deployment of these crops would increase
the selection pressure on H. armigera requiring a more
adaptive strategy including effective and sensitive
resistance monitoring (Andow, 2002). A preventive
measure to delay the development of resistance could
be the pyramiding of dissimilar Bt-toxin genes (Zhao
et al., 2003).
Another concern related to the deployment of GM

crops is the possible gene flow to non-transformed
varieties and wild relatives. However, this risk is low
since chickpea is a strong self-pollinator. Pollination
occurs when the keel is still closed, 12–24 h before the
flower is fully expanded (Ayyar, 1935; Eshel, 1968). In
addition, viability of the pollen is decreased when the
flowers are fully expanded (Eshel, 1968). Field studies
have established that natural out-crossing to other
varieties occurs at levels below 1%, probably due to
pollen being transported by flower visiting insects (Van
Rheenen et al., 1990; Tayyar et al., 1995). Based on this
knowledge, an isolation distance of 5m for certified
seed crops in India has been established (Chowdhury
et al., 1991).
Besides concerns relating to environmental and health

risks, issues relating to the intellectual property rights
and corporate dominance have led to limited acceptance
of GM crops among the public and policy-makers in
developing countries (Paarlberg, 2001). This could
partly be overcome when GM crops are developed in
public research institutions. Currently, a number of
active plant transformation programmes are in progress
in public research institutions in India including
ICRISAT. The latter can also play an important role
in facilitating technology transfer by fostering North–
South partnerships in developing countries (Morris and
Hoisington, 2000; Sharma et al., 2003a).
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