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Abstract

Accuracy and cost of direct crop area measurement are compared with those of farmers�
estimates after visual inspection, in this methodological study conducted in southern Mali.

The observational error, the difference between the area measured and the area estimated,

was first studied at the plot level. Average observational error or bias was �11% of the average

area measured, indicating an average underestimation of plots by 11%. This observational

error is strongly related to plot size, with smaller plots being overestimated and larger plots

underestimated, in an approximately negative linear relationship. The observational error is

also smaller for cotton fields than for cereals. The analysis was repeated at the farm level,

where the bias in estimating the total area per farm was �8%. At this level, total error or ac-

curacy was calculated by the relative total error (RTE), the square root of the mean square

error, divided by the mean. The farmers� estimate was found to be less accurate

(RTE=9.4% of the mean) than physical measurement (RTE=6.6%), but at a cost of only

$370 as compared with $2328 (for a sample of 96 farms in 11 villages). The coefficient of var-

iation (CV) of most surface variables was found to lie between 60% and 100%, and their rel-

ative bias (average observational error divided by the mean area) between 2% and 10%. For

crop area per farm, the physical measurement of plots resulted in a gain of accuracy of 2–4%,

as compared with the farmers� estimate after visual inspection. A general model was developed

in which these calculated parameters are used to predict the accuracy in future surveys and to

compare the accuracy with the survey�s cost. It is shown how the survey design can be

optimized based on acceptable error, sample size and cost for each measurement technique.
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1 Previously Institut d�Economie Rural, Sikasso, Mali.

https://core.ac.uk/display/211009499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:h.degroote@cgiar.org 
mailto:o.traore@icrisatml.org 
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Simulations demonstrate that the total error for biased estimators, even for variables with

small CVs, hardly decreases above sample sizes of 100–150 farmers.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Good crop area estimates are of major importance to agricultural statistics and

to natural resource management. Precise agricultural statistics, in particular surface

area and production data, are essential to the understanding of rural communities,

and necessary for developing agricultural policy as well as agricultural research

strategy (Kelly et al., 1995; FAO, 1982). The management of natural resources,

of which land is one of the most important, is receiving increasing attention of de-
velopment agencies and decision makers. To develop and to evaluate natural re-

source management, the monitoring of land use and therefore the measuring of

surface areas are essential.

Several manuals treat the estimation of agricultural areas, among others those by

the Food and Agricultural Organization (FAO, 1982) and the World Bank (Idaikka-

dar, 1979; Casley and Lury, 1981; Poate and Casley, 1985). One of the simplest and

cheapest estimation methods described here is the farmer interview, in which a rep-

resentative sample of farmers is asked to estimate the area of their fields. This
method, however, faces several problems in developing countries. Farmers can be

very suspicious of enumerators, especially when they perceive that the solicited infor-

mation could be used for tax purposes. Moreover, in many areas where land markets

are just emerging, there has been no need for area units until recently, and therefore

precise local measurement units have not yet been developed. Finally, farmers gen-

erally have little access to formal education or agricultural education, where they can

acquire measurement techniques and quantitative skills. Given all these difficulties,

the accuracy of statistics obtained through farmers� estimates of land area is often
considered to be insufficient (FAO, 1982). The FAO�s experience with farmers� area
estimations was not very satisfying and they recommend physical measurement

(FAO, 1982), although methodological studies on the topic are scarce. On the other

hand, evidence is growing that farmers� production estimates are quite accurate, and

their errors similar to those of crop cutting methods (Poate, 1988; Murphy et al.,

1991; Ajayi and Waibel, 2000). The World Bank ordered a methodological study

in five African countries (Verma et al., 1988), which confirms the accuracy of farm-

ers� production estimates, but shows that the quality of their area estimates depends
on their familiarity with the concept and therefore varies greatly between countries.

This quality is also greatly affected by the size of the unit used (e.g. m2 versus ha) and

the resulting rounding error. Ajayi and Waibel (2000) note that the accuracy of farm-

ers� estimates decreases with plot size, an observation also made by Smith et al.

(1988) (cited by Ajayi and Waibel, 2000).
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The alternative to farmers� estimates is to measure areas directly, either by geo-

graphic methods such as remote sensing or sampling based on maps, or by agricul-

tural surveys based on a representative sample of farms. In this last method, the

fields of each farm of the sample are measured and the results extrapolated for the

regions under consideration. In Mali, the agricultural statistics are gathered this
way by the Direction Nationale de la Statistique et Informatique (DNSI, 1996)

and by the cotton marketing board, the Compagnie Malienne du Developpement

des Textiles (Giraudy, 1994). Similar surveys take place in most West-African coun-

tries.

For several years now, the Farming System Research team (Equipe Systèmes de

Production et Gestion des Ressources Naturelles, ESPGRN) of the Malian Institut

d�Economie Rurale (IER) has been conducting action research in eleven villages of

the Sikasso region. A field worker is based permanently in each village to monitor
field trials and to conduct farm surveys. These surveys are conducted on a regular

basis to analyze major constraints and set research priorities, as well as to monitor

trends in the farming system. These surveys are quite labour intensive and, given

the work load of the field workers, extra enumerators are hired to measure crop

areas. External funding for the Farming Systems Research (FSR) team is likely

to decrease in the near future, so the team is reviewing the relevance of its wide

variety of activities, in particular the farm surveys that take a considerable amount

of resources. The present study compares the currently used physical area measure-
ment method with a much cheaper, but probably less accurate method, in which

the farmer was assisted by the enumerator, and both visited the fields together

to estimate the area of each plot. Although these visits increased the cost of the

survey, they did ensure that all fields were included. Moreover, they allowed the

enumerator to point out inconsistencies in the farmers� estimates and thus improve

accuracy.

The objectives of this study are therefore: (i) to compare the accuracy of area

measurement with the accuracy of farmers� estimates, assisted by enumerators, (ii)
to compare the costs of the two methods, and (iii) to analyze the relationship be-

tween accuracy and cost and make appropriate recommendations.
2. The model

2.1. A general error model for linear estimators

A natural and intuitive measure of estimation error is the expected value of the

difference between the estimate and the estimated parameter, squared so that positive

and negative errors do not cancel each other out. This measure is called the mean

squared error (MSE); it can also be seen as a loss function, and is commonly used

as such (Cochran, 1977). Mathematically, the MSE of an estimator T for a popula-

tion statistic h can be decomposed as

MSEðT Þ ¼ EðT � hÞ2 ¼ V ðT Þ þ ½h� EðT Þ�2: ð1Þ
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The MSE can thus be regarded as the combination of the variance V(T) and the bias

B=h�E(T), which makes it a useful criterion to compare biased estimators (Coch-

ran, 1977). The MSE can therefore also be interpreted as the total survey error

(Groves, 1989) and is a measure of the accuracy of the estimator. The variance

around the sample mean V(T) is usually referred to as precision, and does not in-
clude the bias (but it does include other non-sampling errors). Although precision

is often used as a criterion for the quality of survey designs, MSE is a superior cri-

terion because it evaluates both sampling and non-sampling errors, including bias.

Non-sampling errors include errors such as the measurement error of the measuring

instruments used, the difference between real and observed values, and the errors

made by estimation. These are all very common errors in field surveys.

In order to develop a practical model, each variable in the survey data can be de-

noted by a vector y, containing one observation for each sample element. This vector
can be separated into a vector of true values of the measured characteristic x and a

vector of observational errors e

y ¼ xþ e: ð2Þ
Let x be distributed around a vector of means l and with a variance–covariance ma-

trix R, or x� (l,R), and let e� (b,X). The matrix of covariances between the elements

of x and e can be denoted as the matrix Uxe, and the matrix of covariances between e
and x as Uex. Assuming covariance (xi,ej)=covariance(xi,ej), Uex=Uxe. This is a gen-

eralization of the basic additive error model (Cochran, 1977, p. 377; Groves, 1989) in

vector notation. Most estimators in survey statistics are a linear function of a sample

of observations, in vector notation

T ¼ h0y; ð3Þ
where h is a vector of weights. It follows from the general formula (1) that

MSEðT Þ ¼ h0ðRþ 2UxeÞhþ ðh0lþ h0b� hÞ2: ð4Þ
This model can encompass most sampling and non-sampling errors, and unlike other

models it makes the study of their combined effects possible (De Groote, 1996).
2.2. A simple error model

For the purpose of this methodological study, we can use a simpler model. As-

sume a sample of n observations, grouped in a vector y. Each element yi is the

sum of the true value xi and the observation error ei, and the elements of each vector
are identically and independently distributed, but there is a correlation between true

value xi and error ei. Mathematically, the true values xi have a mean l (so all ele-

ments of the vector l have the same value l), and variance of each xi is r2
x (so the

diagonal elements of the variance covariance matrix R have the value r2
x , while the

other elements are equal to 0). Similarly, each error element ei has a mean B or bias

(so all elements of the vector b have the same value B, conventionally the symbol for

bias) and a variance of r2
e (diagonal elements of X). The covariance between true

value and error of each element is rxe (diagonal elements of the matrix Uxe) but it
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is assumed there is no correlation between true values and errors of different ele-

ments (so the other elements of the matrices are zero). Formally, each pair is now

equally and independently distributed, following the same bivariate distribution

ðxi; eiÞ � ðl;B; r2
x ; r

2
e ; rxeÞ: ð5Þ

A characteristic of the population is estimated with a linear estimator T, in our case

the sample mean

T ¼ �y ¼ h0y; where y ¼

y1
�
yi
�
yn

0
BBBBBB@

1
CCCCCCA

and h ¼

1=n

�
1=n

�
1=n

0
BBBBBB@

1
CCCCCCA
: ð6Þ

The total error or accuracy of the sample mean as an estimator of the population

mean can now be derived from the general formula (4), by entering the specifications

into the vectors and matrices, resulting in the simple formula

MSEð�yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2

x þ r2
e þ 2rxeÞ
n

þ B2

r
: ð7Þ

We would like to introduce a new and convenient concept, the relative total error

or RTE, analogous to the coefficient of variation (CV). To calculate the CV, one

divides the square root of the variance by the mean to obtain a relative measure of

variance, free of units. Similarly, we can define the relative total error as the square

root of the MSE (which represents total error) divided by the mean of the popu-

lation

RTEð�yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
x þ r2

e þ 2rxe

nl2
þ B2

l2

s
: ð8Þ

Expressing the total error as a percentage of the mean makes its interpretation much

easier, as well as comparison of methods used in different circumstances. In similar

fashion, the bias B can be divided by the mean to obtain the relative bias BR. The

standard deviations, the covariance and the bias can also be expressed as percentages
of the population mean, and represented by, respectively, SRx, SRe, and SRxe. The

formula for RTE becomes

RTE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SR2

x þ SR2
e þ 2SRxe

n
þ BR2

s
: ð9Þ

The standard deviation divided by the mean, SRe, is normally called the coefficient of

variation or CV, but was renamed here for consistency in notation. As will be shown

next, these four elements can be collected through a methodological study, resulting

in the calculation of the total error. Because all elements are unit free, their values are

particularly attractive to be used as approximations for future surveys or surveys in

other regions.
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The empirical section of this paper only deals with the RTE of the sample mean,

generally the most important statistic in sample surveys. However, many surveys

also seek to quantify relationships, most often through the calculation of regression

coefficients. The general formula of Eq. (4) holds for all linear estimators, including

regression coefficients for non-stochastic independent variables. The optimization of
panel data surveys to estimate an evolution over time is another straight-forward ap-

plication (De Groote, 1992).
3. Study area, data and methods

The FSR team of Sikasso is active in the administrative region of Sikasso, which

has an average yearly rainfall of 800–1200 mm. The agricultural system is based on
cereal production, mostly for home consumption, and cotton as a cash crop. Popu-

lation is estimated at 21.4 people/km2, with an annual population growth of 2.3%

(DNSI, 1996). Farm households consist on average of 14 members, and cultivate

9.5 ha, of which 6.6 ha is in cereals and 1.7 ha is in cotton (Kébé et al., 1997). Surplus

revenue is generally invested in livestock, and, on average, 9 cattle and 8 small rumi-

nants buffer the household against the highly variable crop production.
Fig. 1. Map of the Farming Systems Research zone with research villages.
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At the time of the survey, the FSR team was working in 11 research villages (see

map in Fig. 1), with a field worker or enumerator in each of these villages. Every year

these field workers collect data on 96 farms, between 8 and 12 per village. During

1994, a new area estimation technique was tested. For this test, each enumerator vis-

ited all the fields of the sample farms in his or her village, together with the farmer, to
obtain the farmers� estimate of their size, in ha. After visual inspection by the enu-

merator, the initial estimate of the farmer was discussed if needed, and a consensus

estimate retained.

During the same season, another team of two enumerators visited all the fields of

the 96 sample farms and measured each plot, following an FAO procedure (FAO,

1982, p. 58). An outline of each plot was drawn on a special surveyor�s board ‘‘Chaix’’

(Ministère de la Coopération, 1980, p. 179). The length of each polygon side was

measured by an instrument called ‘‘topofil’’ (Ministère de la Coopération, 1980, p.
173), which unwinds a disposable line from a spool between two points, while meas-

uring and indicating its length on a precision counter. The orientation of the polygon

side was measured in geographic degrees with a compass. From the length and the

orientation of all sides, the polygon�s surface area was calculated with a programma-

ble pocket calculator according to standard calculation methods (FAO, 1982).

For each plot, the area measurement and the visual estimation was entered in a

computer data base, together with an identification code and other plot data such

as crop rotation and input use. In total, the areas of 1168 plots were measured, and
those of 1098 plots estimated after visual inspection. After an initial cleaning of the

data, 18 more observations were discarded: the difference between observed andmeas-

ured was larger than 6 times the measured value, and it was assumed that this discrep-

ancy was due to a writing or typing error. This left a database of 1080 observations.

The observational error for each plot was calculated as the difference between the

area resulting from the physical measurement (by the topofil method, of which the

measurement error was assumed to be negligible), and the area resulting from

estimation after visual inspection. This observational error is distinct from the
commonly used term ‘‘recall error’’, which indicates errors due to an inaccurate

memory of an event or a quantity. Since farmers and enumerators actually visited

the field, the term recall would not be appropriate.

To analyze the data, first the errors in estimating plot size were calculated and the

effect of the major factors analyzed. Because most data of interest are situated at the

farm level, however, the plot data were aggregated by farm and by current season

crop. Subsequently, the observational errors were recalculated at this aggregated level,

and the factors influencing the observational error were analyzed again at this level.
The observational errors were then combined with the sampling error in the cal-

culation of the total survey error, as expressed by the RTE. The RTE was analyzed

for both the physical measurement method and for the visual estimation method, at

the plot level as well as at the farm level, and for all major crops. Finally, the costs of

both methods of quantifying agricultural areas were calculated and compared with

their accuracy. The results were then used to construct a general but simple model,

that calculates the accuracy of measurement error based on a few essential, unit-free

parameters.
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4. Average observational errors or bias

4.1. Bias in estimating plot size

The physical measurement of the plots, through the topofil method, resulted in an
average surface area of 0.816 ha. Plot size varies between 0.01 and 8.78 ha, with a

coefficient of variation of 124% (first line in Table 1). The farmers� estimates of

the same plots, after visual inspection, resulted in an average plot size of 0.723 ha.

The difference between the physical measurement and the farmers� estimate produces

a value for the observational error (ei from Eq. (5)). The mean of those observational

errors is an estimate of the bias, and equals �0.093 ha (second line in Table 1). Di-

viding this bias by the average measured plot size results in the relative bias (BR) of

�11.4%, indicating that on average plot sizes are underestimated by 11%. Although
the observational error is relatively small on average, it is highly variable, ranging

from an underestimation of 4.25 ha to an overestimate of 2.17 ha.

The observational error is clearly related to plot size, as well as to the crop grown

on this plot. Fig. 2 shows that the bias is positive for plots smaller than 1 ha, meaning

that farmers show a tendency to overestimate small plots. Larger plots, on the other

hand, are underestimated, and the underestimation increases with plot size. The ob-

servational error is clearly smaller in cotton fields. These fields have often been meas-

ured in the past by an enumerator of the cotton company, and its area is important
to calculate fertilizer and pesticide applications.

As Fig. 2 demonstrates, this relationship between estimation error and surface

area, both expressed in ha, is approximately linear. Estimated by regression analysis,

using individual plots as observations but allowing for a different slope for cotton

plots, the relationship becomes (standard deviation of the coefficients in brackets)

observational error ¼ 0:14ð0:016Þ � 0:31ð0:014Þareaþ 0:14ð0:022Þ cotton
� area ðR2 ¼ 0:33; std: error ¼ 0:42; N ¼ 1080Þ:

This equation indicates that with every ha of plot size, the surface area is underesti-

mated by a third of a hectare (0.31) for crops other than cotton. For plots under cot-
ton, the underestimation increases by 0.17 ha per hectare (�0.31+0.14). Coefficients

for other crops were not significantly different from zero.

The average observational error or bias was also calculated by crop. The results

are presented in Table 2 and show again that the absolute value of the relative bias

for cotton fields, �7.8%, is smaller than for cereals, �14%. The bias in legumes is
Table 1

Observational errors, plot level results

Variable Mean Min Max SD N

Measured plot size (ha) 0.816 0.01 8.78 1.06 1080

Estimated plot size (ha) 0.723 0.01 8.00 0.88 1080

Observational error (ha) �0.093 �4.25 2.17 0.50 1080

Relative observational error (% of the average plot size) �11.4



Fig. 2. Observational error in estimating field areas, by plot size and crop.

Table 2

Observational error in plot size, by crop

Crop Area measured

(ha)

Observational error

(ha)

Relative bias BR (bias/mean) N

Mean SD Mean (bias) SD

Cereals 0.86 1.07 �0.121 0.57 �0.141 735

Cotton 1.67 1.38 �0.130 0.49 �0.078 110

Legumes 0.34 0.35 �0.003 0.18 �0.008 169

Other crops 0.15 0.14 0.039 0.13 0.254 66

Total 0.82 1.06 �0.093 0.50 �0.114 1080
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particularly small, not even �1%. All other crops, typically grown on small plots,

show an overestimation of 25% on average. The difference between crops can largely

be explained by the difference in average plot size, except for cotton. The absolute

value of the bias for cotton, with an average plot size of 1.24 ha, is smaller than that

for cereals, with an average plot size of 0.48 ha, but this is understandable since

farmers usually know the size of their cotton plot as measured by the extension
agents.

Because all plots in one village were estimated with the help of the same enumer-

ator, the error differences between villages give an indication of the human factor or

enumerator error. Although differences between villages were observed, multiple



30 H. De Groote, O. Traoré / Agricultural Systems 84 (2005) 21–38
regression analysis showed that they were not significant once the differences in plot

size were taken into account. The interpretation is that certain villages just have a

better balance between small plots (and their overestimation) and bigger plots (with

underestimates).

4.2. Bias in the estimation of total area

So far, only plot size was treated. In practice, however, we are usually interested in

variables such as total farm area under cultivation, or cotton area per farm. These

farm-level data are the backbone of agricultural statistics: they are used to extrapo-

late and calculate regional or national cultivated areas and, in combination with

yield estimates, production.

For each farm in the sample, the total area measured was calculated by summing
up the plot sizes measured, and similarly the total area estimated. The results, pre-

sented in Table 3, show that the aggregation of overestimated small plots and under-

estimated large plots decreases total error at the farm level. Overall, total area per

farm is underestimated by 8%. The relative bias is similar for area per farm under

cotton (�7.8%) and for cereals (�9.5%). The bias is again small for legumes and very

large for all other crops combined.
5. Cost versus accuracy

5.1. Calculating the accuracy through the total survey error

To calculate total survey error, we have to combine the observational errors (ei
from formula (5)) treated in the previous section, with sampling errors. This can con-

veniently be achieved by using the relative total error (RTE), calculated with Eq. (9).

The components of this formula are the relative standard deviation of the area var-
iable SRx (standard deviation/mean or coefficient of variation), the relative standard

deviation of the observational error SRe, their relative covariance SRxe (covariance/

mean2), and relative bias BR.
Table 3

Observational error in estimating farm area, total and by crop

Crop Area measured

(ha/farm)

Observational

error (ha/farm)

Relative bias BR (bias/mean) N

Mean l SD rx Mean B SD re

Cereals 6.7 4.48 �0.64 244 �0.095 94

Cotton 1.91 1.95 �0.15 48 �0.078 96

Legumes 0.61 0.68 0.01 29 0.016 96

Other crops 0.11 0.19 0.04 14 0.364 96

Total area 9.38 6.03 �0.74 268 �7.89 94
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The different components were calculated for several surface area variables, lead-

ing to the RTE of the different methods. Table 4 presents their values calculated for

different area variables such as plot size and average crop area per farm. The first

three columns present the mean of the different surface area variables (l), the mean

error or bias (B, as calculated in the previous section), and BR. The fourth and fifth
columns present the relative standard deviation of the area variable (SRx) and of the

observational error (SRe), while the next column presents the relative covariance

between area and error (SRxe). Assuming area measurement has no observational

errors, the total error for measuring equals the sampling error SRx=
ffiffiffi
n

p
or RTEx.

The total survey error for estimating surface area, on the other hand, needs to in-

clude variance and covariance of the observational error, according to Eq. (9), which

results in RTEy, presented in the last column of Table 4.

The results for the plot size are presented in the first row of Table 4. The standard
deviation is higher than the mean (SRx=130%), but the sample size at the plot level

is very large (n=1080), resulting in a small sampling error (RTEx) of just 4% of the

mean plot size. The mean observational error is also substantial (BR=11%) and

highly variable (SRe=61%), but the covariance is negative. All these elements, com-

bined in Eq. (9), result in a relative total error, (RTEy) of 12%.

For the total area per farm, the bias (BR) as well as the standard deviation (SRx)

are much smaller, but so is the sample size. The total survey error from measuring

(RTEx), equal to the sampling error, is 6.6%. The bias is relatively small (8%), as
is the standard deviation (64%), and the covariance between area and observational

error is again negative. As a result, the total error of the estimation, RTEy, is 9.4%:

not much higher than the total error of measuring RTEx, which is just the sampling

error of 6.6%. For the three principal groups of crops, similar results were obtained:

the observation bias falls somewhere between 10% and 13% of the mean, which is

slightly higher than the sampling error of 7–11%. The measurement of plots results

in a gain of accuracy of 2–4% as compared with farmers� estimate after visual

inspection.

5.2. Comparing cost and accuracy of the two measuring methods

During the survey, enumerators visited on average four farms per day to estimate

all their fields in collaboration with the head of the household. The physical meas-

urement of those same fields, on the other hand, required a team of two enumerators,

who would on an average day measure the fields of one and a half farms. The salaries

and per diems of the enumerators were about US $7 per person per day, while the
transportation cost were about US $4 per motorcycle per day. The team of measur-

ers used one motorcycle for two enumerators, while the FSR village workers, who

did the estimation, all used an individual motorcycle. The difference in grade and

compensation package between temporary and long-contract workers can be ig-

nored here, and overhead cost, data entry and analysis costs can be considered equal

for both methods.

Table 5 shows the difference in variable costs of the two methods. For 1068 plots

on 96 farms in 12 villages, physical measurements cost $2328 and result in a precision



Table 4

Components of relative total error, calculated for measuring (RTEx) and estimating (RTEy) for several key area variables

Variable Mean

l (ha)

Bias

B (ha)

Relative

bias BR (B/l)
Relative

SD SRx(r/l)
Relative SD of

observational

error SRe

Relative

covariance SRxe

n Relative total error

Measuring RTEx Estimating RTEy

Plot size 0.82 �0.093 �0.114 1.30 0.61 �0.45 1080 0.040 0.119

Total area/farm 9.38 �0.074 �0.079 0.64 0.29 �0.12 94 0.066 0.094

Area in cotton 1.91 �0.15 �0.078 1.02 0.25 �0.11 96 0.104 0.124

Area in cereals 6.70 �0.64 �0.095 0.67 0.36 �0.18 94 0.069 0.107

Area in legumes 0.61 0.01 0.024 1.11 0.47 �0.14 96 0.114 0.114

Area in other crops 0.11 0.04 0.374 1.76 1.29 �0.14 96 0.180 0.432
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Table 5

The cost of measuring and estimating the fields of 96 farms in 12 villages in Mali

Measuring Estimating

Number of farms 96 96

Number of plots 1068 1068

Man days needed for the survey 248 32

Salary cost ($/man day) 7.22 7.22

Transport cost ($/man day) 2.17 4.35

Total variable costs ($) 2328 370

Total variable cost/farm ($) 24.25 3.85

Total error for farm size (RTE as % of mean) 6.6 9.4

Total error for plot size (RTE as % of mean) 4.0 11.9
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of 6.6%. Estimating the same areas after visual inspection only costs $370, but the

resulting error is 9.4%. Does the extra accuracy of 2.6% justify the extra cost of

$1958? Decision theory suggests that the information cost be compared with the pos-

sible losses caused by taking the wrong decision based on faulty information. In

practice, however, it is more relevant to compare the extra 2.4% accuracy to the

use of the survey results with alternative allocations of the money for the research

institute, such as hiring an analyst or buying a computer.

5.3. Minimizing error under research budget constraints

As an alternative, the money saved by the cheaper estimation method can be used

to increase the sample size. Therefore, we should compare the two methods, not at

equal sample sizes, but at equal budgets. For ease of reasoning and calculation, as-

sume simple random sampling and only consider variable costs. The maximum sam-

ple size for a given budget is then calculated by dividing the budget by the cost per

farm, $24 for measuring and $4 for estimating after visual observation. Using the
data from Table 5 in Eq. (9), the RTE can now be calculated for both methods at

the given budget. By repeating the calculations at different budget levels, the

trade-off between costs and accuracy can be quantified, as demonstrated in Fig. 3

for the estimation of total farm area. It shows how, at low budgets, the estimation

method is actually more accurate than physical measurement because of the very

low cost per farm ($4). A total error of less then 10% can be obtained with a sample

of 67 farms at a cost of $260. Increasing the sample size reduces the sampling error,

but not the bias, which is quite large (7.9%). Therefore, once the sample size has
reached 200, obtaining a total error of 8.6% with budget of $800, increasing its size

can hardly reduce the total error any further.

Since measuring is more expensive, small budgets only permit small samples with

high sampling errors. Bias, however, is independent of sampling size. Therefore,

cheaper methods with a higher bias can be more interesting for low budgets, since

the sampling error of the expensive method will be higher than the bias of the cheap

method. If the available budget increases, the more expensive method can be used

on a larger scale, and the sampling error becomes less than the bias of the cheaper



Fig. 3. The cost of accuracy in estimating total farm area.
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method. In our example, starting at a budget of $1500, the sampling error of measur-

ing becomes less then the bias of estimating, so from here on, physical measurement is
more cost efficient. Because the method is in principle unbiased, the total error keeps

decreasing with increasing budget and sample size. However, since the total error

is inversely proportional to the square root of sample size, this effect decreases

gradually. At a budget of $4000, a sample of 160 farms results in an RTE of 6%.

To reduce the error to 5%, however, 100 more farms are needed at an extra cost of

$2400.

Although all variables follow curves similar to Fig. 3, their particular shape

depends on their variance and bias parameters. Cotton area per farm, for example,
has a substantially higher variance than total area, so to obtain a 10% error the cot-

ton areas of 180 farms needs to be estimated, at a cost of $700. Similarly, the budget

point at which the lines cross and where physical measurement becomes more cost

efficient than the estimation method, depends on those variance and bias elements

that constitute total error, as presented in Table 5. For cotton area per farm, for

example, physical measurement only becomes more cost efficient at a $3500 budget,

and to reach 6% accuracy, 1800 farms are needed, at a cost of $7000.

5.4. Towards a general formula for relative total error

The RTE calculated here depend on the parameters used, which are specific to the

survey. Unfortunately, few methodological studies are available to provide the pa-

rameters needed to use the methodology presented. Still, simpler and more approx-



Table 6

Decomposition of the variance of the estimated values

Variable Mean l (ha) Relative standard error Relative covariance

SRxeEstimating SRy Measuring SRx Error SRe

Plot size 0.82 1.08 1.30 0.61 �0.45

Total area/farm 9.38 0.50 0.64 0.29 �0.12

Area in cotton 1.91 0.94 1.02 0.25 �0.11

Area in cereals 6.70 0.47 0.67 0.36 �0.18

Area in legumes 0.61 1.08 1.11 0.47 �0.14

Area in other crops 0.11 2.12 1.76 1.29 �0.14
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imate methods can easily be derived. From the assumptions of the linear error model

(Eqs. (2) and (5)) it follows that:

V ð�yÞ ¼ V ðxþ eÞ ¼ r2
x þ r2

x þ rxe: ð10Þ
By dividing all terms by the mean of the variables, we obtain

SRy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SR2

x þ SR2
e þ 2SRxe

q
: ð11Þ

The values of those four parameters are represented in Table 6 for all the variables

previously treated. It shows that for the major variables (plot size, farm size, and

area under the major crops), the relative standard deviation of the estimated values

(SRy) is smaller than the relative standard deviation of the real values SRx, usually

called coefficient of variation (CV). The reason is that the variance of the error (SRe)

is usually small, and the correlation of the error with the real value (SRxe) is large

and negative. We can now use this effect to simplify the total error formula:

RTEð�yÞ ¼ 1
�X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð�yÞ þ B2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
y

n�X 2
þ B2

�X 2

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SR2

y

n
þ BR2

s
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SR2

x

n
þ BR2

s
: ð12Þ

Therefore, the CV of the surface area variable and the relative bias of the method

used are sufficient for a conservative estimate of accuracy with the RTE

RTEð�yÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SR2

x

n
þ BR2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV2

n
þ BR2

s
: ð13Þ

The values for this last formula are easily calculated and tabulated in a spreadsheet,

to visualize the effect of the relative variance, the sample size and the relative bias on
relative total error. The calculations presented in Table 4 indicate that CVs (or SRx)

for total farm area and the area in the most important crops fall somewhere between

67% and 111%. For the same variables, the bias for area estimation falls between

2.4% and 9.5%.



Fig. 4. Accuracy of a biased estimator.
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Fig. 4 shows the RTE for the benchmark CVs of 50% and 100% and for relative

biases of 0%, 5% and 10%. It shows that a variable with a CV of 50%, measured

without bias, can be estimated with an accuracy of 5% from a sample size of
n=100. The curves show how increasing the sample size makes the relative total

error converge towards the relative bias. It also demonstrates that the total error

for biased estimators, even for variables with small CVs, hardly decreases any more

above sample sizes of 100.
6. Conclusion

The results of the present study show the potential of a new surface area estima-

tion method, which combines surface area estimation by the farmer with visual in-

spection by the enumerator. The accuracy of this method is reasonably good, or

at least much better than the farmers� estimates reported by FAO (1982), and

considerably cheaper than measuring the same plots using the topofil method. The

method�s observational error is relatively small, with an average relative bias of

�11% for the estimation of plot size. The observational errors have a distinct nega-

tive covariance with the plot size, so when plot sizes are aggregated into surface area
per farm, either by crop or total farm area, average errors are very reasonable, with

an average or bias of between 2% and �9% for the most important variables. How-

ever, if plot size information is important, the large observational error of farmers�
estimate might be of concern, especially for the smaller plots.
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The accuracy of the method, as measured by RTE, is 9.4% for estimating av-

erage farm size with a sample of 96 farms, higher than the RTE of 6.6% for phys-

ical measurement. However, the estimation method saves more than US$2000,

making it well suited for low-budget surveys or surveys where accuracy is not that

important.
Taking advantage of the fact that the variance of estimated values is lower than

the variance of actual values, a simple general formula can be derived, using only an

estimate of the coefficient of variation CV and of the relative bias BR. The formula,

with parameters calculated for a number of surface area variables, can be used to

predict the accuracy of different options for future surveys. This, we hope, will help

to make rational decisions based on comparing accuracy with cost.

The generalization of Eq. (11) only holds for similar variables with low variance

of the observational error, and negative correlation between error and true values.
Secondary data can provide approximations of CVs of those variables, although un-

fortunately these variances or CVs are unfortunately rarely published in reports on

agricultural statistics. The bias of measurement methods is also rarely estimated, but

some reports exist. An overview of methods for measuring crop production is given

by Poate (1988), while Murphy et al. (1991) summarize the available studies on farm-

ers� estimates of crop production. The results of the present study, however, show

that the whole variance-covariance matrix of errors and true values needs to be es-

timated to make useful comparisons through an accuracy measure such as the RTE.
Once estimates for this variance-covariance matrix become available, the same

methodology can be applied for similar analysis to more complex sampling schemes

or estimators. More general formulas for RTE can be developed based on formula

(4), which are applicable to most sampling schemes and all linear estimators (De

Groote, 1996).

Finally, this study confirmed that farmers, within a proper framework and follow-

ing a well-defined methodology, can provide reasonably accurate estimates at very

low costs. The analysis shows, however, that these surveys need to be accompanied
by methodological studies to assess the accuracy of new methods used. In particular,

the methodology should now be used to estimate the accuracy of global positioning

systems (GPSs) for area estimation. Unfortunately, at the time of this study, these

instruments were not yet available in Mali, but the example presented here clearly

shows the convenience of the RTE to assess their accuracy.
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