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RESEARCH

Breeders and gene-bank curators face a typical multivariate 
problem when classifying genotypes or gene-bank accessions 

for forming core subsets, studying genetic diversity, classifying 
landraces, and grouping genotypes for specifi c environmental 
conditions, among other tasks. In these cases, the researcher typi-
cally has a set of n genotypes (or gene-bank accessions) on which 
p attributes (traits or variables) have been measured. A numeri-
cal classifi cation problem arises when the researcher attempts to 
partition the genotypes (or gene-bank accessions) into homoge-
neous, non-overlapping groups of diff erent sizes and use all the 
available information (i.e., phenotypic and genetic data) with the 
aim of grouping breeding genotypes into, for example, diff er-
ent maturity and grain yield clusters and/or when attempting to 
form core subsets for genetic resource conservation. The prob-
lem is how to partition the original heterogeneous population 
into homogeneous subpopulations. A set of n observations, each 
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ABSTRACT

A numerical classifi cation problem encountered 

by breeders and gene-bank curators is how to 

partition the original heterogeneous population 

of genotypes into non-overlapping homoge-

neous subpopulations. The measure of distance 

that may be defi ned depends on the type of vari-

ables measured (i.e., continuous and/or discrete). 

The key points are whether and how a distance 

may be defi ned using all types of variables to 

achieve effective classifi cation. The objective of 

this research was to propose an approach that 

combines the use of hierarchical multiple-factor 

analysis (HMFA) and the two-stage Ward Modi-

fi ed Location Model (Ward-MLM) classifi cation 

strategy that allows (i) combining different types 

of phenotypic and genetic data simultaneously; (ii) 

balancing out the effects of the different pheno-

typic, genetic, continuous, and discrete variables; 

and (iii) measuring the contribution of each original 

variable to the new principal axes (PAs). Of the two 

strategies applied for developing PA scores to be 

used for clustering genotypes, the strategy that 

used the fi rst few PA scores to which phenotypic 

and genetic variables each contributed 50% (i.e., 

a balanced contribution) formed better groups 

than those formed by the strategy that used a 

large number of PA scores explaining 95% of 

total variability. Phenotypic variables account for 

much variability in the initial PA; then their contri-

butions decrease. The importance of genetic vari-

ables increases in later PAs. Results showed that 

various phenotypic and genetic variables made 

important contributions to the new PA. The HMFA 

uses all phenotypic and genetic variables simulta-

neously and, in conjunction with the Ward-MLM 

method, it offers an effective unifying approach 

for the classifi cation of breeding genotypes into 

homogeneous groups and for the formation of 

core subsets for genetic resource conservation.
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one with p variables, may be represented by a Y
n×p

 matrix 
formed by n row vectors of size 1 × p. This representation 
is related to a p-dimensional Euclidean space in which 
each individual is represented by a point. If the set is struc-
tured into groups, the cloud of points will display high- 
and low-density areas; the “natural groups” may then be 
defi ned as high-density areas, separated by others having 
low density.

Because the aim of classifi cation is to identify homo-
geneous groups of individuals, it is necessary to defi ne and 
calculate the distance (dissimilarity) between individuals 
or between groups of individuals. The aim of ordination 
is the same as that of classifi cation, except that a similar-
ity measure (one minus dissimilarity) between individuals 
or groups is used. The measure of distance that may be 
defi ned between any two individuals or groups depends 
on the type of variables measured (the word “variable” is 
used interchangeably with “trait” or “attribute”; all refer 
to phenotypic or genotypic characteristics measured on 
diff erent genotypes, possibly under diff erent environmen-
tal conditions). The important point is to defi ne a distance 
using all types of variables to achieve an eff ective classifi -
cation. Researchers usually measure several diff erent types 
of attributes on each individual, and variables may be clas-
sifi ed as phenotypic (i.e., agro-morphological) or genetic 
(i.e., molecular markers). Phenotypic variables can be 
classifi ed into continuous and discrete variables, whereas 
genetic variables can be classifi ed into molecular markers 
that are characterized solely by whether they are present 
or absent, or into markers characterized by their allele fre-
quencies. The type of variable determines the kind of dis-
tance measure used, and the numerical classifi cation and 
ordination that can be performed. When all variables are 
continuous, the most commonly used distances between 
two individuals (observations) are the Euclidean distance 
and the Manhattan distance. The issue is that classifi cation 
and ordination multivariate techniques should be based on 
a mixture of diff erent types of variables and therefore an 
appropriate distance measure is required.

When a mixture of variables is used for classifi cation, 
Gower (1971) proposed balancing the eff ect of continu-
ous and categorical variables for calculating the distance 
between two observations that have continuous and dis-
crete variables measured simultaneously. Wishart (1986) 
generalized Gower’s distance to be used with geomet-
ric clustering methods. Podani (1999) extended Gower’s 
distance to ordinal variables. However, for a mixture of 
phenotypic and genetic data, diff erent types of distance 
measures must be employed, and various classifi cation and 
ordination methods can be applied. For example, for a 
set of quantitative variables, principal component analysis 
(PCA) is used as ordination. Correspondence analysis (CA) 
is used for frequency variables and multiple correspondence 
analysis (MCA) is used for a set of categorical variables. In 

general, results have shown that groups formed based on 
continuous and categorical variables separately achieve very 
poor consensus for clustering genotypes.

An important issue when classifying individuals is how 
diff erent phenotypic and genetic variables infl uence clas-
sifi cation and/or ordination. Furthermore, how much do 
these variables contribute to classifi cation? When using a 
mixture of phenotypic and genetic data in plant breed-
ing and genetic resource conservation, diff erent variables 
have diff erent eff ects on the classifi cation and ordination 
of individuals. Therefore, there is a need for constructing 
global multiple tables that place all the diff erent types of 
variables in a common background and balance their infl u-
ence on the classifi cation and/or ordination of individuals.

Multiple factor analysis (Escofi er and Pagès, 1994, 
1988–1998; Pagès, 2002) standardizes the results of PCA and 
MCA for continuous and categorical variables, and balances 
their infl uence on classifi cation. When a nested structure 
of groups and subgroups of variables is present, it permits 
the hierarchical multiple-factor analysis (HMFA) proposed 
by Le Dien and Pagès (2003) as an extension of MFA. The 
HMFA is useful for combining multiple tables of quantitative 
and categorical variables and for fi nding common ground 
for balancing the diff erent eff ects of all the diff erent types of 
variables by generating a common, nonstandardized princi-
pal axes analysis as a step before clustering.

The underlying idea of applying the two-stage clus-
tering Ward Modifi ed Location Model (MLM) is that the 
initial groups are formed based on a geometric technique 
(such as Ward minimum variance within groups) that 
includes all continuous and discrete variables. A mixture 
of distribution models, the MLM then acts on the previ-
ous cluster (Franco et al., 1998, 2002; Franco and Crossa, 
2002). Franco et al. (2001) applied the Ward-MLM 
approach for classifying genotypes using phenotypic and 
genetic information and found relevant marker informa-
tion with available morpho-agronomic attributes that 
form compact and well-diff erentiated groups.

The main objective of this research was to propose an 
approach that combines the use of HMFA and the two-stage 
Ward-MLM classifi cation strategy for classifying genotypes 
and/or gene-bank accessions while balancing the eff ects of 
many diff erent types of continuous and categorical pheno-
typic variables, as well as diff erent types of molecular marker 
information. The HMFA results given by the principal axes 
contributed by the diff erent types of variables are then used 
as input data in the two-stage Ward-MLM strategy for clas-
sifying observations and forming core subsets. Four data sets 
are used to illustrate the use of this approach.

MATERIALS AND METHODS
Data Sets
To illustrate the use of the proposed method for grouping breed-

ing genotypes and/or classifying gene-bank accessions for genetic 
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fi le for QU-GENE should contain the genetic structure of the 

genotypes for each specifi c trait, for example, number of genes 

(or quantitative trait loci [QTLs]); gene eff ect for each trait, 

including additivity, dominance, and epistasis; linkage among 

the genes in one chromosome; and trait heritability. Compo-

nents of QU-GENE can generate genotypes making up popu-

lations of cross-pollinated or self-pollinated species, or create 

diff erent environmental conditions in which the simulated 

genotypes will be evaluated. On the other hand, the input fi le 

for QuCim must have the type of crosses and selection method 

to be used in each breeding strategy.

Original data on the fi ve traits mentioned above repre-

sented an actual doubled-haploid, maize QTL mapping popu-

lation made up of 236 genotypes; QTLs for all fi ve traits were 

mapped (Cerón-Rojas et al., 2008). This data was used to gen-

erate the 200 doubled-haploid genotypes that form the popula-

tion used in this study. A total of 257 (0,1) SNP markers was 

evenly distributed across the 10 chromosomes.

Conceptual Framework for Grouping 
Variables and Balancing their Infl uence 
When Classifying Genotypes
Groups and subgroups of variables are created based on their bio-

logical and/or agronomic characteristics (e.g., phenotypic and 

genetic or continuous and discrete variables measured in diff er-

ent environments or at diff erent plant parts). Note that groups 

and subgroups of variables can be formed based on diff erent bio-

logical rationalities, as will be explained later for the four data 

sets used in this study. Because the diff erent variables used to 

classify the individuals are measured in diff erent units of scale, 

the proposed method needs to simultaneously convert all avail-

able variables at the group and subgroup levels to a common unit 

of measurement by means of transformation. Because of transfor-

mation, the infl uence of diff erent variables at the diff erent hierar-

chies was better balanced.

The proposed method is applied in two steps: (i) after 

defi ning a hierarchy of groups and subgroups of variables, 

HMFA is used to balance the infl uence of the diff erent groups 

and subgroups of variables across the hierarchy on the classi-

fi cation of individuals (next step); this step can be regarded as 

data transformation in the sense that a new set of variables are 

derived from the original ones; (ii) transformed data from the 

previous step are used to classify individuals; in this step, we 

propose using the Ward-MLM approach of Franco et al. (1998) 

since this method has been proven to be useful and effi  cient for 

forming well-defi ned and cohesive clusters; nevertheless, any 

classifi cation method could be employed at this stage.

First Step: Balancing the Effects of Different 
Groups and Subgroups of Variables
The idea underlying this fi rst step is to balance the importance 

of the diff erent groups and subgroups of attributes based on their 

internal variability, by employing diff erent PA geometrical meth-

ods depending on the type of variables. For example, for continu-

ous variables the PCA is used, whereas for frequency variables and 

categorical variables the CA and the MCA are used, respectively.

When classifying individuals by use of phenotypic and 

genetic information simultaneously, phenotypic data may 

resource conservation and forming core subsets, four diff erent 

data sets were employed with the purpose of covering most sce-

narios a researcher would encounter. We included data sets with 

phenotypic variables that comprise continuous and categorical 

attributes, and genetic data with molecular markers measured 

for their presence or absence, or their frequencies. The four data 

sets contain morpho-agronomic fi eld information with continu-

ous and categorical variables as well as three diff erent kinds of 

molecular markers: diversity array technology (DArT), simple 

sequence repeats (SSRs), and single nucleotide polymorphisms 

(SNPs). The DArT and SNP markers are typically binary vari-

ables (0 = absence of the marker and 1 = presence of the marker), 

whereas SSR markers for a diploid species may have three values, 

0 (absence of the marker, mm), 0.5 (marker with a frequency of 

0.5, Mm) and 1 (marker with a frequency of 1, MM).

Wheat-DArT Data Set
This wheat (Triticum aestivum L.) data set contains 46 entries, 12 

continuous phenotypic attributes, and 75 DArT molecular mark-

ers. The 12 continuous variables were percentage of leaf rust 

(LR; caused by Puccinia triticina Eriks.), stem rust (SR; caused by 

P. graminis Pers.:Pers. f. sp. tritici Eriks. and E. Henn.), and 1000-

grain weight (GW), measured in four diff erent environments. The 

DArT markers have two values: 0 = absence and 1 = presence.

Wheat-SSR Data Set
This data set contains the same morphological data as the 

Wheat-DArT data set, with continuous variables LR, SR, and 

GW measured in four environments, but the genetic variables 

correspond to frequencies of 12 SSR markers, for 49 alleles. 

Because the genotypes are wheat lines, the SSRs only have val-

ues of 0 and 1; however, alleles are grouped per marker.

Sorghum-SSR Data Set
This data set for sorghum [Sorghum bicolor (L.) Moench] contains 

90 entries involving six morphological variables, three continu-

ous variables (time to 50% fl owering counted in days, DF; plant 

height, PH; and percent glume cover, PGC), and three discrete, 

nominal scale variables (panicle type, PT; glume color, GlC; 

and grain color, GrC). Marker data include the frequencies of 

46 SSR markers totaling 336 alleles. The SSR allele frequencies 

have only three values (0, 0.5, and 1).

Simulated Maize Data Set
A simulated maize (Zea mays L.) data set containing 200 entries 

and fi ve morphological, continuous variables (days to silking, 

DS; days to anthesis, DA; ear height, EH; plant height, PH; 

and grain yield, GY) were measured in three environments. 

The fi ve traits and three environments were combined into 15 

variables. In addition, 257 SNP markers covering 10 chromo-

somes were simulated. The original purpose of this simulation 

was to generate a doubled haploid maize population that was 

phenotyped for various traits in diff erent environments with 

the objective of assessing the performance of diff erent selection 

indices that include phenotypic and genotypic information ( J. 

Jesús Cerón-Rojas, personal communication, 2008). The simu-

lator system used on the maize data was developed by Wang et 

al. (2004) and has two engines, QU-GENE and QuCim, which 

require diff erent input data. To simulate a population, the input 
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comprise continuous and/or discrete variables (sometimes mea-

sured in diff erent environments), whereas genetic data may 

include discrete and/or frequency information. Therefore, dif-

ferent hierarchies of variables can be defi ned. For example, a 

high level of hierarchy may involve defi ning two main groups 

of variables—phenotypic (morphological and/or agronomic) 

and genetic (molecular markers)—and a low level of hierarchy 

can then be achieved by creating subgroups of phenotypic vari-

ables based on biological criteria (e.g., agronomic traits mea-

sured in diff erent environments). Subgroups of genetic variables 

can also be defi ned (e.g., alleles from a polymorphic SSR could 

be a subgroup within the main group of genetic information). 

Diff erent criteria for grouping variables and defi ning hierar-

chies correspond to diff erent biological hypotheses and refer 

to diff erent types of inquiries; thus the researcher should use 

a hierarchical structure of the variables that is in close agree-

ment with the natural structure of the biological data at hand. 

Therefore, although the hierarchical grouping of variables may 

seem somewhat arbitrary, in reality it is not because it is done 

following natural biological, agronomic, and genetic patterns 

that will facilitate testing diff erent hypotheses.

In HMFA, MFA is performed at diff erent stages to account 

for the diff erent hierarchies (i.e., groups and subgroups of 

variables); the aim is to achieve a balance among groups and 

subgroups of variables in the fi nal classifi cation result. Math-

ematical and geometrical details of MFA and HMFA can be 

found in Escofi er and Pagès (1988–1998), Pagès (2002), Le Dien 

and Pagès (2003), and Bécue-Bertaut and Pagès (2008). Here 

we give a few details of both the methods.

A Geometrical Approach for Balancing 
the Infl uence of Groups of Variables in 
a Mixture: Multiple Factor Analysis
Following the ideas and notation of Bécue-Bertaut and Pagès 

(2008), MFA can be used to solve a classifi cation problem in a data 

set matrix X that contains a mixture of continuous and categor-

ical variables. The matrix X = [X
1
|X

2
|…|X

jq
|Z

1
|Z

2
|…|Z

Jc
] is 

formed by I rows (entries) and K columns (variables). Each X
j
 

matrix ( j = 1,2,…, J
q
) contains a set of K

j
 quantitative (continu-

ous) variables and is composed of K
j
 columns (each column rep-

resents one variable). Each Z
j
 matrix ( j = 1,2,…, J

c
) represents a 

set of categorical variables, each of which is expressed as a group 

of indicator (0,1) variables (a binary variable has two columns, a 

nominal three-level variable has three columns, etc., each col-

umn representing one category from one variable). Thus, we 

have J tables formed by J
q
 sets of continuous (or quantitative) 

variable tables and J
c
 sets of categorical variable tables; the total

number of columns is 
= +
==∑ q c

1

j J J
jj

K K .

The problem can be addressed using a PA geometrical frame 

in which diff erent methods are proposed for diff erent kinds of 

variables: PCA is used when only continuous variables are stud-

ied, whereas MCA is the appropriate method if variables are all 

categorical; CA is used for frequency variables. In this research, 

we have a mixture of variables: phenotypic (continuous and/or 

categorical) and genetic (categorical {0, 1} or {0, 0.5, 1}).

Originally, MFA was proposed for combining data sets with 

continuous variables only. The idea of bringing a mixture of 

continuous and categorical variables into the MFA framework 

was fi rst proposed by Escofi er and Pagès (1988–1998) and Pagès 

(2002). These authors demonstrated that results obtained from 

MCA could also be obtained by a nonstandardized weighted PCA 

on the indicator matrices Z
j
 = {z

ikj
} transformed into Y

j
 = {y

ijk
} 

by means of 
( )ikj ikj

ikj
kj

z w
y

w

−
= , where ∈=∑kj i ikji I

w p z  

is the proportion of entries belonging to the column k
j
 

(k
j
 = 1,2,…,K

j
, number of columns in the Y

j
 matrix), p

i
 is the 

weight associated with each entry (in our case, p
i
 = 1/I for all 

iÎI ; i.e., equal weight is given to each entry), and w
kj
/Q

j
 (where

∈
= ∑

j

j kj
k K

Q w ) is used as column weight. The steps for doing an 

MFA can be summarized as follows:

Step 1. The MFA performs an individual PCA analysis on 

each X
j
 (a group of continuous, standardized, or nonstan-

dardized variables) and a weighted nonstandardized PCA 

on each Y
j
 ( j = 1,2,…, J

c
) matrix, thus obtaining the J

q
+ J

c
 

fi rst eigenvalues λ j
1
, j = 1,2,…, J

q 
+ J

c
, corresponding to 

the directions of maximum variance (or maximum inertia, 

where inertia is defi ned as the variability of a set of points 

in a Euclidean space) within each group of variables.

Step 2. A nonstandardized weighted PCA is then per-

formed on the X = [X
1
|…|X

Jq
|Y

1
|…|Y

Jc
] matrix, where 

(1/ λ j
1 
) from step 1 is used as the column weight for the X

j
 

matrices, and w
kj

/Q
j
λ j

1
 is used as the column weight for the 

Y
j
 matrices; the proportion (1/I) is used as the weight for 

every row. In this manner, the maximum inertia explained 

for each group of variables is equal to one, and all groups 

of variables are equally important (because they were stan-

dardized to have the maximum inertia equal 1).

Step 3. The scores for each entry and the contribution to the 

total inertia of each entry, variable, and group of variables 

are the results obtained from the MFA.

A Geometrical Approach for Balancing the 
Infl uence of Groups of Variables in a Nested 
Structure: Hierarchical Multiple-Factor Analysis
The HMFA method (Le Dien and Pagès, 2003) extends the 

ideas of the MFA with the objective of accounting for any 

nested structure among variables. The HMFA uses MFA analy-

ses in a sequential fashion to obtain a set of column weights to 

be used in a weighted and nonstandardized PCA global analysis 

that will balance the eff ects of diff erent groups of variables at 

every level of the hierarchy and within hierarchies. The steps 

for doing HMFA analyses are as follows:

Step 1. At the lowest level of the hierarchy, HMFA performs 

step 1 of MFA. The fi rst eigenvalues at this step are named 

λh
1
( j), where h = 1 and j = 1,2,…,g

1
 (where g

1
 = J

q
 + J

c
 is 

the number of groups of variables at this level).

Step 2. At the next higher level of the hierarchy, HMFA per-

forms step 1 of MFA again within each of the high level 

groups, obtaining a new set of g
2
 (number of groups at the 

high level) eigenvalues λh
1
( j) , where h = 2 and j = 1, 2,…, 

g
2
, g

2
 being the number of groups at the second level. If 

the hierarchy includes more than two levels (for example, 

p levels), this step is repeated to obtain p sets of eigenval-

ues according to the number of groups at each level.
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Step 3. A global weighted and nonstandardized PCA on 

the whole X = [X
1
|…|X

Jq
|Y

1
|…|Y

Jc
] matrix is then 

performed using 1/I as every row weight (each entry 

has equal weight) and the product of calculated col-

umn weights across the hierarchy as the weight column:

( )
1 1

1p

h j
h= λ∏ , for columns in the X

j
 matrices [1]

( )
1 1

1p
kj

h j
j h

w

Q = λ∏ for columns in the Y
j
 matrices [2]

We used HMFA to produce new coordinates (scores from the 

global PCA) for each entry by considering diff erent levels of 

the groups and subgroups of variables. This is equivalent to 

transforming variables (phenotypic-discrete, phenotypic-con-

tinuous, and genetic) into PA scores that can be treated as con-

tinuous variables at the classifi cation stage.

The Contribution of Each Variable 
to the New Principal Axis in HMFA
Pagès (2004) proposed a procedure for measuring the contribu-

tion of one original variable ( j
q
 if continuous, j

c
 if categorical) 

to the variability of a new axis υ. This author showed that the 

total variability explained by one variable (from the mixture of 

continuous [ j
q
] and categorical [ j

c
] variables) on the new axis υ 

could be expressed as

q c

2 2( , ) ( , ) 1
j J j J

r j j
∈ ∈

υ + η υ =∑ ∑  [3]

where r is the correlation coeffi  cient between each original vari-

able and the new axis, and η is the correlation coeffi  cient between 

the set of k
j
 indicator variables associated with each categorical 

variable and the new axis. Dagnièle (1998) (vol 1, page 133; ref-

erenced by Pagès, 2004) demonstrated that the coeffi  cient of cor-

relation η between the set of transformed indicator variables y
ikj

 

and the principal axis (or factor) F
s
 could be written as

( )
( , )

1

kj s k
ikj s

kj s

w F j
y F

w
η =

− λ
 [4]

where F
s
( j

k
) is the projection on the axis of range s of the cen-

ter of gravity of individuals with the kth modality of the jth 

categorical variable, λ
s
 is the eigenvalue associated with F

s
, and 

w
kj
 was defi ned above. Using these concepts, HMFA allows 

measuring the contribution of each variable and each group of 

variables to each of the new PAs obtained in the fi nal result. 

We will use this approach for measuring the contribution of 

the various original phenotypic and genetic variables to the PA 

obtained using the MFA and HMFA methods.

Second Step: The Ward-MLM 
Classifi cation Method under 
Two Strategies for HMFA Scores
Classifi cations using transformed data obtained from HMFA 

were done in all cases using the two-stage Ward-MLM method 

(Franco et al., 1998). The method starts by applying a hier-

archical Ward (1963) minimum variance-clustering algorithm 

using the scores from the PA previously obtained by HMFA 

using the Gower (1971) distance. PseudoT2 and pseudo F sta-

tistics are then used to select a set of possible optimal number 

of groups. Then the mixture of multinormal and multinomial 

variables model (MLM) is applied to the Ward grouping at each 

of the possible number of groups, and the maximum likelihood 

is obtained at convergence for each possible number of groups. 

The “optimal” number of groups is selected as the smallest 

number showing the highest increment in likelihood. Once 

a convenient number of groups is defi ned, the MLM method 

attempts to improve the composition of the original Ward 

groups by maximizing the likelihood of the sample.

When the method is applied to HMFA scores, the PA 

coordinates can be treated as normal variables; therefore, the 

MLM method works on a mixture of multinormal distribu-

tions assumed to have homogeneity within group variance-

covariance matrices. We compared two classifi cation strategies:

1.  Ward-MLM using PA scores that explain 95% of total 

variability (total inertia), called STR-95, and

2. Ward-MLM using PA scores to which the contribution of 

the original phenotypic and genetic variables is approxi-

mately 50% for each; it is called STR-50.

The fi rst classifi cation strategy uses more information (a 

higher number of PAs) than the second, because almost all the 

original information (95%) is expressed in PA scores used in 

classifi cation. However, the second strategy implies a better 

balance between the eff ects contributed by both types of vari-

ables: phenotypic and genetic.

Distance Measures
The two-stage Ward-MLM cluster strategy is used with the 

Gower (1971) distance on the Ward within-cluster, minimum 

variance algorithm and the Mahalanobis distance for the MLM 

stage. When using Ward-MLM on the continuous scores of the 

axes obtained from HMFA, the distance for the fi rst stage (Ward) 

is the Manhattan distance (which is the Gower distance for con-

tinuous variables), and the distance for the second stage (MLM) is 

the Mahalanobis distance. The Mahalanobis distance is a Euclid-

ean distance weighted by the variance-covariance within-group 

matrix, so we are working in a Euclidean metric space.

When calculating the Euclidean distance between entries, 

HMFA induces a distance corresponding to a weighted sum of 

the separate distances from every group of variables. Following 

the Bécue-Bertaut and Pagès (2008) notation, the squared dis-

tance between any two entries i and l is
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where all terms are defi ned for previous equations. This dis-

tance can be replaced by the Euclidean distance between i and 

l individuals using all the PAs, or approximated if only some of 

the PAs are used.

Criteria Used for Comparing Strategies
To evaluate and compare the diff erent classifi cation strategies, we 

used six criteria: (i) the average distances between entries within 

a cluster using the Euclidean distance based on HMFA scores; (ii) 

the average distances between observations within a group using 

the Gower (1971) distance based on the original phenotypic and 

genetic variables; (iii) and (iv) the reduction in the Euclidean and 
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Gower distance, respectively, obtained by comparing the average 

distance between observations within a group with the average 

distance between observations for the entire unclassifi ed data set 

(population), expressed as a percentage of the population average 

distance; (v) the Mahalanobis distance between groups using only 

continuous (phenotypic in all cases) variables; and (vi) reduction in 

the genetic diversity or expected heterozygosity index (He) within 

a group with respect to the He of the entire data set.

When forming well-diff erentiated and homogeneous 

groups, a strategy is regarded as better than another if it shows 

smaller values of within-group average distance, higher val-

ues of average distance reduction with respect to the unclas-

sifi ed population, higher values for the Mahalanobis distance, 

and greater reduction in within-group genetic diversity. When 

selecting a core subset, a strategy is better if it generates a core 

subset with higher values for all distance and diversity measures.

Creating the Variables Hierarchy 
for HMFA for Each Data Set
For the four data sets, we defi ned two hierarchical levels of 

variables; we will call them subgroups (or low-level groups) and 

groups (or high-level groups). For each data set, the hierarchy 

of variables was defi ned in a particular way, as explained in the 

following sections.

Wheat-DArT
We defi ned four low-level subgroups of variables by joining 

attributes measured in diff erent environments: subgroup 1 has 

four columns corresponding to values of continuous attribute 

LR measured in four environments; subgroup 2 contains values 

of continuous variable SR measured in four environments; sub-

group 3 includes values of continuous variable GW measured in 

four environments; and subgroup 4 contains 75 (0,1) columns 

corresponding to DArT markers.

At the higher level, we formed two groups of variables 

by joining previously defi ned low-group variables: group 1 

has three subgroups (1–3) of continuous variables and group 2 

comprises 75 DArT columns. In this case, the fi rst HMFA step 

(the PCA) within each of the three subgroups of continuous 

variables was performed with no standardization, so that the 

expression of each genotype in each environment within each 

variable would refl ect genotype × environment interaction.

Wheat-SSR
At the low hierarchical level, we defi ned 15 subgroups of variables: 

subgroups 1 to 3 are similar to the Wheat-DArT data set, and sub-

groups 4 to 15 contain a set of alleles corresponding to each of the 

12 SSR markers. At the high level, we defi ned two groups of vari-

ables: group 1 containing three low-level subgroups of continuous 

variables and group 2 containing 47 SSR columns grouped into 

12 SSR markers at the lower level. In this case, PCA within each 

of the fi rst three low-level subgroups of continuous variables was 

done with no standardization, allowing genotypic expression in 

each environment within each subgroup of variables.

Sorghum-SSR
At the low level, we defi ned 46 subgroups of variables: sub-

group 1 containing three continuous phenotypic variables (DF, 

PH, and PGC); subgroup 2 containing the three discrete nomi-

nal variables (PT, GIC, and GrC); and subgroups 3 to 46 com-

prising 336 SSR columns grouped into 44 SSR markers. At the 

high hierarchical level, we defi ned two groups: group 1 formed 

by two subgroups of phenotypic variables and group 2 formed 

by 44 SSR markers. In this case, PCA of the low-level subgroup 

of continuous variables was done using standardization to cor-

rect for diff erences in scale eff ects.

Maize-SNP Simulation
At the low level, we defi ned 15 subgroups of variables: sub-

groups 1 to 5 containing the response of the continuous traits 

(DS, DA, EH, PH, and GY) in three environments; subgroups 

6 to 15 comprising 257 (0,1)-SNP columns grouped by chro-

mosome (10 chromosomes). At the high level, we used two 

groups: group 1 formed by fi ve low subgroups of phenotypic 

variables, and group 2 formed by the 10 chromosomes. In this 

case, PCA within each of the fi ve low-level continuous sub-

groups was performed with no standardization, allowing the 

expression of each environment within each group of variables.

Selecting Core Subsets
The process used to select the core subset (of a size equal to 20% 

of the population) for each data set (Wheat-DArT, Wheat-SSR, 

Sorghum-SSR, Maize-SNP) and each classifi cation strategy (PA 

scores that explain 95% of total inertia and PA scores with 50% 

contribution from phenotypic variables and 50% contribution 

from genetic variables) involved (i) calculating the Euclidean dis-

tance between genotypes within a group defi ned by the Ward-

MLM strategy when using PA scores from the HMFA for each 

strategy; (ii) defi ning the number of genotypes to be selected 

from each group using the D-method (Franco et al., 2005) with 

the Euclidean distance; (iii) forming 100 independent core sub-

sets; and (iv) from those 100 core subsets, selecting the one show-

ing the maximum Gower distance between genotypes.

Software
The HMFA analysis was performed step by step using mul-

tivariate procedures from SAS (SAS Institute, 2006) and R 

Development Core Team (2008) software. In addition, HMFA 

was run using the package FactoMineR from Lê et al. (2008). 

Cluster analysis was done using a code written by Franco et 

al. (1998) using the IML procedure from SAS (SAS Institute, 

2006). Genetic diversity analysis was performed using Power-

Marker software (Liu and Muse, 2005).

RESULTS
Hierarchical Multiple Factor 
Analysis using Two Strategies

The two proposed strategies were (i) classifi cation of 
entries by the Ward-MLM clustering method using PA 
scores that explain 95% of total inertia in HMFA (STR-
95); and (ii) classifi cation of entries by the Ward-MLM 
clustering method using PA scores to which the contribu-
tion of the original phenotypic and genetic variables is 
approximately 50% each (STR-50).
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There were no important diff erences in the optimal 
number of groups using the two classifi cation strategies 
(g95 vs. g50, Table 1); on the other hand, there were strong 
diff erences in the number of principal axes used at the 
clustering stage (PA95 vs. PA50). Figures 1a to 1d reveal 
the importance (accumulated percentage of contribution 
to total inertia) of the two types of variables in each of the 
fi rst 25, 25, 49, and 77 PAs for the Wheat-DArT (d25, Fig. 
1a), Wheat-SSR (d25, Fig. 1b), Sorghum-SSR (d49, Fig. 
1c), and Maize-SNP (d77, Fig. 1d) data sets, respectively, 
and the cumulative inertia explained by those axes.

For the four data sets, phenotypic variables made a 
greater contribution to the fi rst PAs, reaching a 50 to 50% 
equilibrium with the contribution of genotypic variables 
at dimensions d7, d2, d7, and d4 PAs for Wheat-DArT 
(Fig. 1a), Wheat-SSR (Fig. 1b), Sorghum-SSR (Fig. 1c), 
and Maize-SNP (Fig. 1d), respectively. Because the ratio 
between the number of phenotypic traits to the number of 
genetic traits (columns) was 12:75, 12:49, 6:336, and 15:257 
for Wheat-DArT, Wheat-SSR, Sorghum-SSR, and Maize-
SNP, respectively, the eff ect of each column on the fi rst 
PAs depends on its own discriminatory ability. The genetic 

variables increased their contributions to later PAs, whereas 
the phenotypic variables had greater infl uence on earlier PAs. 
This is a very important characteristic of MFA and HMFA 
by which the set of variables formed by a greater number of 
components (columns) will explain more of the total inertia, 
but the contribution will be distributed along all axes, and 
will not necessarily be concentrated in the fi rst PA.

Table 1. Data set name, number of entries (accessions in the 

collection, N), number of phenotypic variables (nph), number 

of molecular markers (nm), number of alleles (na), total num-

ber of columns in the analysis (ncols), number of principal 

axes explaining 95% of the inertia (PA95), number of groups 

obtained using PA95 (g95), number of principal axes for 

which phenotypic and genetic variables contribute 50% each 

(PA50), and number of groups obtained using PA50 (g50).

Data set† N nph nm na ncols PA95 g95 PA50 g50

Wheat-DArT 46 12 75 75 87 25 4 7 4

Wheat-SSR 46 12 12 49 61 25 5 3 4

Sorghum-SSR 90 6 46 336 342 50 5 7 5

Maize-SNP 200 15 257 257 272 78 13 4 13

†DArT, diversity array technology; SSR, simple sequence repeat; SNP, single nucle-

otide polymorphism.

Figure 1. Contribution (%) of phenotypic and genetic variables to the principal axes scores used in the classifi cation of genotypes and 

percentage of total inertia explained by the principal axes of the global principal components analysis. The data sets are (a) Wheat-DArT, 

(b) Wheat-SSR, (c) Sorghum-SSR, and (d) Maize-SNP. The number of principal axes on the x axis is represented by the letter ‘d’ referring 

to dimension and a number denoting the number of axes. DArT, diversity array technology; SSR, simple sequence repeat; SNP, single 

nucleotide polymorphism.
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For all data sets, the average Euclidean distance between 
entries within a group (E-mean) was smaller than the average 
Euclidean distance between entries of the entire population 
(POP) using both strategies (Table 2); similar results were 
obtained using the Gower distance (G-mean). The reduction 
(gain) in average Euclidean distance between entries within a 
group with respect to the average distance between entries of 

the entire population showed values within the 2.7 to 16.7% 
interval for the STR-95 strategy, and values within the 36.6 
to 49.3% interval for the STR-50 strategy.

For all data sets and both distance measures (except 
for Gower’s distance in the Sorghum-SSR data set), the 
STR-50 strategy produced greater reductions in the dis-
tance between genotypes within a group (%E-gain and 
%G-gain) than the STR-95 strategy; similar behavior was 
observed for the Mahalanobis distance (MD) used only on 
continuous variables (Table 2). Furthermore, Table 3 indi-
cates that for all data sets (except the Sorghum-SSR data 
set), the groups formed using the STR-50 strategy had 
lower He values within groups, higher He values between 
groups, and higher values for the proportion of genetic 
diversity among groups (G

ST
) (Nei, 1973) than the STR-

95 strategy. These results indicate that by using the scores 
of the few fi rst axes, to which the contribution of pheno-
typic and genetic variables is similar (50 to 50%), we can 
obtain more compact, better defi ned, and more cohesive 
groups of genotypes than those obtained using a large 
number of axes accounting for 95% of total variability.

Distances between genotypes measured using the 
Euclidean distance based on PA scores from HMFA show 
high correlation coeffi  cients with distances measured 
using Gower’s distance on the original variables (data not 
shown). All correlation coeffi  cients were high and signifi -
cant (P < 0.001) using Fisher’s transformation and the t 
test, which is the appropriate test for large sample sizes 
(Bhattacharyya and Johnson, 1977).

Contribution of Phenotypic and 
Genetic Variables to New Principal Axes
The contributions of phenotypic and genetic variables to 
the PAs obtained from HFMA for the four data sets are 
shown in Table 4 (for Wheat-SSR, Wheat-DArT, and 
Maize-SNP data sets) and Table 5 (for the Sorghum-SSR 
data set). The contribution of the groups of phenotypic 
and genetic variables to the PA explaining 95% of the iner-

tia showed values from 14 to 86% in the 
Maize-SNP data set (15 phenotypic col-
umns, 257 genetic columns) to 25 to 75% 
in the Wheat-SSR data set (12 phenotypic 
columns, 49 genetic columns). The rank 
of the contribution of each phenotypic 
variable or group of phenotypic variables 
to the fi nal PA was diff erent in each data 
set and for each strategy within each data 
set, but the most important variable (or 
group of variables) was the same for both 
strategies (STR-50 and STR-95) within 
each data set: (i) for the Wheat-DArT and 
Wheat-SSR data sets, the most important 
phenotypic variable was LR in both strate-
gies; (ii) for the Sorghum-SSR data set, the 

Table 2. Average Euclidean (E-mean) and Gower (G-mean) dis-

tances within groups; standard error of the means (SE); reduc-

tion in Euclidean (E-gain) and Gower (G-gain) distances with 

respect to the entire population, and Mahalanobis distance 

(MD) between groups for continuous variables. The Ward Modi-

fi ed Location Model used two types of principal axes scores: 

(i) those from the principal axes that explain 95% of the inertia 

(STR-95); and (ii) those from the principal axes to which phe-

notypic and genetic variables contributed 50% each (STR-50).

Strategy E-mean SE
E-gain 

(%)
G-mean SE

G-gain 
(%)

MD

Wheat-DArT

STR-95 2.88 0.035 13.6 0.252 0.005 15.4 4.2

POP† 3.33 0.034 0.298 0.005

STR-50 1.71 0.029 37.3 0.198 0.004 33.4 39.9

POP 2.73 0.039 0.298 0.005

Wheat-SSR

STR-95 3.18 0.024 16.7 0.209 0.002 13.0 9.1

POP 3.82 0.033 0.240 0.003

STR-50 1.13 0.021 49.3 0.166 0.002 31.1 22.8

POP 2.23 0.039 0.240 0.003

Sorghum-SSR

STR-95 4.66 0.024 12.5 0.135 0.001 22.0 3.9

POP 5.32 0.027 0.174 0.001

STR-50 2.07 0.018 36.6 0.149 0.001 14.3 3.9

POP 3.26 0.026 0.174 0.001

Maize-SNP

STR-95 6.56 0.019 2.7 0.471 0.001 2.87 5.4

POP 6.74 0.004 0.485 0.001

STR-50 1.75 0.005 42.9 0.447 0.001 7.73 11.4

POP 3.06 0.007 0.485 0.001

†POP, distances and standard errors using the entire (unclustered) data sets.

Table 3. Genetic diversity (He) of the entire population (total), averaged within 

groups (within), and between groups (between); G
ST

 statistic, and level of dif-

ferentiation between groups following Wright (1951) for four data sets: Wheat-

DArT, Wheat-SSR, Sorghum-SSR, and Maize-SNP. The Ward Modifi ed Location 

Model used two types of principal axes scores: (i) those from the principal axes 

that explain 95% of the inertia (STR-95); and (ii) those from the principal axes to 

which phenotypic and genetic variables contributed 50% each (STR-50).†

Source Wheat-DArT Wheat-SSR Sorghum-SSR Maize-SNP

STR-50 STR-95 STR-50 STR-95 STR-50 STR-95 STR-50 STR-95

Total 0.309 0.309 0.474 0.474 0.593 0.593 0.497 0.497

Within 0.199 0.254 0.292 0.341 0.492 0.432 0.425 0.448

Between 0.110 0.055 0.182 0.133 0.101 0.161 0.072 0.049

G
ST

0.356 0.178 0.384 0.281 0.170 0.272 0.145 0.099

Level‡ Very large Large Very large Very large Large Very large Moderate Moderate

†DArT, diversity array technology; SSR, simple sequence repeat; SNP, single nucleotide polymorphism.

‡Genetic differentiation between groups, following Wright (1951).
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group of categorical phenotypic variables (and inside this 
group, the glume color variable, GlC) was more impor-
tant than the group of continuous phenotypic variables for 
both strategies (Table 5); and (iii) for the simulated Maize-
SNP data set, the most important phenotypic variable was 
plant height for both strategies; the other variables showed 
diff erent rankings (Table 4).

The contribution of molecular marker variables to the 
PA did not show a pattern similar to that of phenotypic 
variables, but some interesting observations were noted: in 
the Wheat-SSR data set, markers SSR10 and SSR12 were 
within the fi ve most important markers in both strate-
gies (Table 4); in the Sorghum-SSR data set, there were 
15 molecular markers in the set of the 20 most important 
molecular markers in both strategies that contributed to 
the PA (Table 5); in the Maize-SNP data set, chromo-
somes CHR3 and CHR1 were among the fi ve variables 
that contributed most in both strategies; in the Wheat-
DArT data set, only 1 of the 12 most important markers 
(out of 75) was shared by both strategies (Table 4).

The above results indicate that some phenotypic and 
genetic variables that turned out to be important under 
both strategies are in fact the most relevant variables in 
each data set, for they contributed the most to genotypes 
classifi cation. These variables are most important for 
forming the diff erent groups at the clustering stage.

Further Examination and Interpretation 
of the Results of the Wheat-SSR Data Set
In this section, we examine and interpret in more detail 
the groups formed in the Wheat-SSR data set. For the 
Wheat-SSR data set, the STR-50 strategy formed better 
groups than the SRT-95 strategy relative to E-mean (1.13 
in STR-50 vs. 3.18 in STR-95), G-mean (0.166 in STR-50 
vs. 0.209 in STR-95), E-gain (%) (49.3% in STR-50 vs. 
16.7% in STR-95), G-gain (%) (31.1% in STR-50 vs. 13.0% 
in STR-95), and MD (22.8 in STR-50 vs. in 9.1 STR-95) 
(Table 2). Concerning He, STR-50 formed better groups 
than SRT-95 within groups (0.292 in STR-50 vs. 0.341 in 
STR-95) and between groups (0.182 in STR-50 vs. 0.133 
in STR-95), and also produced higher G

ST
 values (0.384 in 

STR-50 vs. 0.281 in STR-95) (Table 3).
As for continuous variables of the Wheat-SSR data 

set, reductions in average variances within groups with 
respect to variances in the entire data set for STR-50 and 
STR-95 were 11.2% and 6.1% for LR, 37.7 and 34.9% 
for GW, and 51.8 and 8.2% for SR, respectively (data 
not shown). These results show that groups of genotypes 
formed by STR-50 are less variable and more compact and 
cohesive than those formed by the STR-95 strategy.

The eff ect of the genetic variables was studied using 
the genetic diversity or He (Weir, 1996) calculated for each 
marker in the entire Wheat-SSR data set and compared 
with the weighted average within-group He calculated for 

Table 4. Results of Wheat-SSR, Wheat-DArT, and Maize-SNP data sets: contribution (%) of each variable (Var) using the fi rst 

principal axes (three for Wheat-SSR, seven for Wheat-DArT, four for Maize-SNP) for the case in which phenotypic and genetic 

variables contribute 50% each to the principal axes (STR-50), and the contribution of each variable to the principal axes (25 for 

Wheat-SSR, 25 for Wheat-DArT, 78 for Maize-SNP) explaining 95% of the inertia (STR-95).

Wheat-SSR† Wheat-DArT‡ Maize-SNP§

STR-50 STR-95 STR-50 STR-95 STR-50 STR-95

Var % Var % Var % Var % Var % Var %

LR 16.4 LR 9.5 LR 23.4 LR 10.3 PH 13.9 PH 3.5

SR 12.8 GW 8.4 GW 15.1 SR 8.7 GY 11.8 EH 3.1

GW 11.6 SR 6.7 SR 13.6 GW 7.3 DA 8.4 GY 2.9

SSR11 11.3 SSR12 11.1 D15 1.23 D22 2.01 DS 7.3 DA 2.5

SSR3 7.7 SSR10 10.5 D39 1.21 D03 1.89 EH 7.3 DS 2.2

SSR6 6.3 SSR4 9.6 D73 1.2 D63 1.85 CHR4 9.3 CHR1 10.9

SSR10 5.7 SSR7 6.7 D12 1.17 D73 1.69 CHR2 8.9 CHR7 9. 8

SSR12 5.2 SSR5 6.5 D40 1.15 D11 1.6 CHR3 6.8 CHR3 9

SSR1 4.8 SSR1 6.5 D59 1.09 D16 1.49 CHR8 5.4 CHR5 8.6

SSR7 4.3 SSR9 5.4 D45 1.05 D35 1.43 CHR1 5 CHR9 8.5

SSR4 3.9 SSR11 5.4 D13 1.02 D34 1.42 CHR10 4.6 CHR8 8.5

SSR2 3.7 SSR3 4.6 D41 1.01 D56 1.38 CHR5 3.2 CHR4 8

SSR5 2.5 SSR8 4.6 D69 0.99 D70 1.38 CHR7 3 CHR10 7.9

SSR9 2.4 SSR6 2.9 D10 0.95 D60 1.37 CHR9 2.9 CHR2 7.5

SSR8 1.4 SSR2 1.7 D42 0.91 D44 1.33 CHR6 2 CHR6 7.3

Total phenotypic 40.8 – 24.6 – 52.2 – 26.3 – 48.7 – 14.1

Total Genetic 59.2 – 75.4 – 47.8 – 73.7 – 51.3 – 85.9

†LR, leaf rust, SR, stem rust, GW, 1000-grain weight; SSR1-SSR12, microsatellite molecular markers.

‡DArT, Diversity Arrays Technology markers D1-D75.

§PH, plant height; GY, grain yield; DA, days to anthesis; DS, days to silking; EH, ear height; CHR1 to CHR10, chromosomes 1–10.
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the groups formed by the STR-50 and STR-95 strategies 
(using the number of genotypes per group as a weight). For 
all markers and both strategies, the He index was smaller 
within groups than for the entire population (Table 6). 
Percentages of He reductions were within the interval 
(9.6, 69.3) for the STR-50 strategy and within the interval 
(16.0, 49.7) for the STR-95 strategy, the mean reduction 
in He being 38.3 and 28.0% for the STR-50 and STR-95 
strategies, respectively. Again, STR-50 proved to be more 
effi  cient than STR-95 for forming fi nal groups of geno-
types that are more homogeneous, compact, and cohesive 
with respect to genetic variables.

Molecular marker SSR11 showed the highest contribu-
tion with the STR-50 strategy (11.3%, Table 4) and was the 
marker showing the smallest value of He for the entire data 
set (0.0841, Table 6). This marker has three alleles with fre-
quencies of 0.95, 0.02, and 0.02 (representing 44, 1, and 1 
genotypes, respectively). On the other hand, marker SSR12 
showed the highest contribution with the STR-95 strategy 
(11.1%, Table 4), and the largest He in the entire data set 
(0.6904, Table 6). This marker has six alleles with frequen-
cies of 0.044, 0.174, 0.022, 0.022, 0.413, and 0.304 (repre-
senting 2, 8, 1, 1, 19, 14 genotypes and a missing value). 
Marker SSR12 is more polymorphic and has a more bal-
anced allelic distribution across genotypes than SSR11.

In summary, the most diverse marker showed the 
greatest eff ect on the groups when using the 25 PAs 
explaining 95% of total inertia, and the least diverse marker 
showed the greatest eff ect on the groups when using the 
fi rst three PAs explaining phenotypic and genetic vari-
ables (50% each). This result was to be expected because, 
as mentioned before, the weights of the columns (markers) 
of rare alleles were greater than the weights of markers 
with more evenly distribution alleles. On the other hand, 
more diverse markers showed more columns (alleles), and 
their eff ect on the groups was increased as more PAs were 
included in the classifi cation (STR-95 case).

A researcher could expect groups separated mainly by 
markers with rare alleles (lower diversity values) when using 
a few PAs, and groups separated mainly by markers with a 
greater number of more evenly distributed alleles when using 
a larger number of principal axes at the cluster analysis stage.

Comparing Results of the Wheat-SSR Data 
Set with Those of the Sorghum-SSR Data Set
It is interesting to note that in contrast to results for the 
Wheat-SSR data set, for the Sorghum-SSR data set, 
the STR-95 strategy formed more compact and cohe-
sive groups than the STR-50 strategy for Gower distance 
within group (0.135 for STR-95 vs. 0.149 for STR-50) 
(Table 2), gain in Gower distance within group (22.0 for 
STR-95 vs. 14.3 for STR-50) (Table 2), and genetic diver-
sity (0.432 STR-95 vs. 0.492 STR-0.50 for within group; 
0.161 for STR-95 vs. 0.101 STR-50 for between groups; 
0.272 G

ST
 for STR-95 vs. 0.170 G

ST
 for STR-50) (Table 3).

The eff ects of diff erent groups of variables and the two 
strategies on the formation of the fi nal groups can be stud-
ied by calculating the distance among genotypes using all 
the variables together (phenotypic and genetic), or each 
one of them separately, and separating the phenotypic-
continuous from the phenotypic-discrete variables (in the 
Sorghum-SSR data set). For the Wheat-SSR data set when 
using all variables, the gain in distance reduction within 
groups was greater with the STR-50 strategy than with the 
STR-95 strategy (31 vs. 13%, respectively) (Table 7); the 
result was similar when using only the phenotypic or only 

Table 5. Results of Sorghum-SSR data set for the case where 

phenotypic and genetic variables contribute 50% each to the 

principal axes (STR-50), and the contribution of each variable 

to the principal axes explaining 95% of the inertia (STR-95).

STR-50 STR-95

Variable % Variable %

Phenotypic†

1 Categorical 32.9 1 Categorical 13.4

1 GlC 16.1 1 GlC 4.8

2 GrC 11.8 2 PT 4.7

3 PT 5.0 3 GrC 3.9

2 Continuous 16.7 2 Continuous 4.3

1 PH 6.1 1 PGC 1.6

2 PGC 5.7 2 PH 1.5

3 DF 4.9 3 DF 1.2

Genetic‡

1 SSR39 2.5 1 SSR44 4.9

2 SSR33 2.4 2 SSR36 4.4

3 SSR44 2.3 3 SSR40 4.3

4 SSR31 2.2 4 SSR39 3.6

5 SSR25 2.0 5 SSR6 3.4

6 SSR38 1.9 6 SSR35 3.4

7 SSR6 1.8 7 SSR33 3.4

8 SSR9 1.7 8 SSR31 3.3

9 SSR36 1.6 9 SSR37 2.9

10 SSR42 1.6 10 SSR25 2.6

11 SSR27 1.6 11 SSR13 2.5

12 SSR43 1.5 12 SSR1 2.3

13 SSR41 1.4 13 SSR27 2.3

14 SSR35 1.4 14 SSR41 2.3

15 SSR28 1.4 15 SSR9 2.3

16 SSR1 1.4 16 SSR29 2.2

17 SSR10 1.3 17 SSR7 2.2

18 SSR29 1.3 18 SSR38 2.2

19 SSR17 1.3 19 SSR30 2.1

20 SSR37 1.2 20 SSR22 1.9

Total phenotypic 49.7 17.7

Total genetic 50.3 82.3

†Continuous: three continuous variables (DF, time to fl owering in days; PH, plant 

height; PGC, percentage of glume coverage); categorical: three categorical, nomi-

nal variables (PT, panicle type; GlC, glume color; GrC, grain color); SSR1 to SSR44: 

microsatellite molecular markers.

‡Highest 20 (out of 46) contributions.
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the genetic groups of variables. On the other 
hand, for the Sorghum-SSR data set, STR-95 
was better than STR-50 (gain of 22% vs. 14%, 
respectively), but this advantage was based 
only on genetic variables (Table 7). Based only 
on phenotypic variables, the gains for STR-
50 were 37 vs. 26% given by the STR-95 
strategy. In general, groups generated by the 
STR-50 strategy were better than those gener-
ated by the STR-95 strategy in both data sets 
with respect to phenotypic variables and with 
respect to genetic and phenotypic variables in 
the wheat data set. The groups were better for 
STR-95 only with respect to genetic variables 
in the sorghum data set. Thus, the diff erence 
in performance between the strategies applied 
to both data sets could be attributed to the dif-
ferent numbers of columns defi ned by pheno-
typic and genetic variables in both data sets: 
the wheat data set had 12 phenotypic and 49 
genetic columns, whereas the sorghum data 
set had only 6 phenotypic but 336 genetic col-
umns. This diff erence produced an important 
genetic columns eff ect when using a greater 
number of PAs in the classifi cation step, that is, when using 
the STR-95 strategy.

Characteristics of the core subsets of the four data sets 
and for each strategy (STR-95 and STR-50) for genetic 
diversity measured by He and the Gower distance (Gd) are 
shown in Table 8. For the four data sets, the He-core and the 
Gd-core in the core subsets were greater or equal to their 
respective distances between genotypes of the unclustered 
population (He-POP and Gd-POP). In the Maize-SNP data 
set, He-core and Gd-core values were smaller than He-POP 
and Gd-POP values, but only in 1% of the 
entire population. Therefore, the core sub-
sets satisfi ed the requirement of reducing the 
number of genotypes while maintaining the 
diversity of the entire population. In addi-
tion, core subsets obtained using a smaller 
number of PAs with STR-50 strategy were 
equal to or better than those obtained with 
the STR-95 strategy, which uses more PAs 
and does not balance phenotypic and geno-
typic eff ects. This result indicated that the 
balance between phenotypic and genetic 
variables captured in the fi rst few PAs pro-
duced better cores than those obtained using 
a large number of PAs.

DISCUSSION
The HMFA method was useful for classify-
ing breeding genotypes and/or gene-bank 
accessions using all available information 

simultaneously. There was a natural imbalance in the traits 
used to classify the genotypes; whereas the number of phe-
notypic columns was much smaller than the number of 
genetic columns and the phenotypic traits were much more 
variable than the molecular markers (which usually have 
two or three diff erent values). The HMFA method allowed 
balancing out this situation by using classifi cation strate-
gies that consider diff erent contributions of phenotypic and 
genetic variables to the scores of the new PAs. The STR-
50 strategy is an approach to the problem of balancing the 

Table 6. Ranking of each marker in the Wheat-SSR data set contributing to 

the fi rst principal axis of each of the classifi cation strategies (STR-50 and 

STR-95).† Genetic diversity in the entire population (He-all), average He within 

group (He-mean), and percentage of He reduction obtained by grouping the 

genotypes based on both strategies (STR-50 and STR-95) with respect to He 

of the entire population.

Marker

Ranking STR-50 STR-95

STR-50 STR-95 He-all
He-

mean
He 

reduction (%)
He-

mean
He 

reduction(%)

SSR12 5 1 0.6904 0.529 23.4 0.498 27.8

SSR9 11 7 0.6900 0.392 43.3 0.485 29.7

SSR7 7 4 0.6607 0.465 29.6 0.515 22.0

SSR10 4 2 0.6021 0.185 69.3 0.367 39.0

SSR1 6 6 0.5424 0.409 24.7 0.430 20.7

SSR6 3 11 0.4679 0.300 36.0 0.235 49.7

SSR2 9 12 0.4537 0.196 56.7 0.325 28.4

SSR8 8 10 0.4357 0.344 21.0 0.283 35.1

SSR3 2 9 0.3563 0.118 66.9 0.294 17.5

SSR5 10 5 0.3563 0.241 32.3 0.298 16.4

SSR4 8 3 0.3512 0.255 27.4 0.294 16.4

SSR11 1 8 0.0841 0.076 9.6 0.071 16.0

Mean 0.4742 0.292 38.3 0.341 28.0

†Phenotypic and genetic variables contribute 50% each to the principal axes (STR-50), and principal 

axes explaining 95% of the inertia (STR-95).

Table 7. Average and standard errors for the Gower distances (Gd) between 

individuals in the entire population (POP), and between individuals within group 

in the groups formed by applying the two strategies (STR-50 and STR-95) using 

all variables, only phenotypic variables, and only genetic variables for Wheat-

SSR and Sorghum-SSR data sets. In the sorghum data set, the phenotypic 

distance is separated into two components: distance using only the continuous 

variables and distance using only the categorical variables.†

Data set Variables
POP STR-50 STR-95

Gd SE Gd SE Gain Gd SE Gain

Wheat-SSR All 0.240 0.09 0.166 0.06 31 0.209 0.07 13

Phenotypic 0.252 0.004 0.238 0.003 5 0.306 0.004 –21‡

Genetic 0.237 0.003 0.140 0.002 41 0.180 0.002 24

Sorghum-SSR All 0.174 0.05 0.149 0.05 14 0.135 0.05 22

Phenotypic 0.448 0.003 0.283 0.002 37 0.329 0.003 26

Continuous 0.225 0.002 0.254 0.002 –13† 0.209 0.002 7

Categorical 0.671 0.005 0.278 0.003 58 0.367 0.004 45

Genetic 0.169 0.001 0.138 0.001 18 0.131 0.001 23

†Phenotypic and genetic variables contribute 50% each to the principal axes (STR-50), and principal axes 

explain 95% of the inertia (STR-95). SSR, simple sequence repeat.

‡Only in those cases where the distance between individuals within groups is greater than the respective 

distance in the whole data set.



116 WWW.CROPS.ORG CROP SCIENCE, VOL. 50, JANUARY–FEBRUARY 2010

eff ects between two kinds of variables (phenotypic and 
genotypic); this problem has not been tackled for forming 
core groups within the context of genetic resources con-
servation. Although 50:50 is only one of several possibili-
ties (e.g., we could use 30:70 or any other ratio), (i) this 
strategy selects a small set of markers and phenotypic vari-
ables with which the biologist can work when interpret-
ing the resulting classifi cation; this avoids having to look 
at irrelevant markers or phenotypic variables; and (ii) by 
balancing the eff ects, the classifi cation concentrates on the 
most discriminatory variables (phenotypic and genetic) and 
does not allow any of them to dominate others. It has been 
clearly shown that when more columns of genetic variables 
are included in the analysis, their contribution to the new 
PA starts to appear in the later axes.

Second, the HMFA allows the researcher to decide 
whether to standardize a continuous variable or a set of 
continuous variables. For example, on the Wheat-DArT 
data, the variable hierarchy for HMFA defi ned four low-
level subgroups of variables by joining traits measured in 
diff erent environments (e.g., subgroup 1 has four columns 
corresponding to values of leaf rust measured in four envi-
ronments). Because diff erent environments had diff erent 
potentials and, therefore, diff erent variabilities for diff erent 
variables, the HMFA was performed on nonstandardized 
data within each subgroup so that traits could be expressed 
diff erently in each environment. The HMFA gives the 
researcher freedom to perform the classifi cation without 
masking possible environmental eff ects that may aff ect the 
traits diff erently; this facilitates the natural expression of 
traits under diff erent environmental conditions.

Third, the HMFA gives the researcher the opportunity 
to use PA scores to which the contributions of the original 
phenotypic and genetic variables may vary. As shown in 
this study, a well-balanced contribution produces the most 
cohesive and best defi ned groups of genotypes. Finally, the 
consistency of the HMFA across diff erent data sets with dif-
ferent types of variables and under diff erent circumstances, 
such as using data from multienvironment trials, diff erent 

types of markers, and diff erent numbers of 
phenotypic and genetic traits.

The HMFA is useful for combining 
multiple tables of quantitative and cate-
gorical variables, and for fi nding common 
ground for balancing the diff erent eff ects 
of all the diff erent types of variables. A 
general guideline for the proper use of the 
introduced method is to form groups and 
subgroups of variables based on biologi-
cal rationalities, such as joining attributes 
measured in diff erent environments and/
or defi ning hierarchy of variables based on 
continuous and discrete variables. Further-
more, if diff erent types of markers are used, 

a logical grouping will be to join markers of the same type 
in one hierarchy.

Results of this study show that the HMFA in conjunc-
tion with the Ward-MLM method is useful for breeders who 
need to form homogeneous groups of breeding genotypes 
with similar performance across diff erent response variables 
measured in diff erent scale and in diff erent environmen-
tal conditions. The approach presented in this article shows 
how all available information can be used to form homoge-
neous groups. Also, the HMFA allows balancing the eff ect 
of the diff erent variables on the transformed dimensions 
represented by the new principal axes. Furthermore, the 
HMFA and the Ward-MLM can be useful for gene-bank 
managers that usually form core subsets based only on phe-
notypic traits or genetic (molecular marker) traits but never 
using both types of variables simultaneously.
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