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Abstract 

Very few efforts have been made to improve the nutritional quality of groundnut, as biochemical estimation 

of quality traits is laborious and uneconomic; hence, it is difficult to improve them through traditional breeding 

alone. Identification of molecular markers for quality traits will have a great impact in molecular breeding. An 

attempt was made to identify microsatellite or simple sequence repeat (SSR) markers for important nutritional traits 

(protein content, oil content and oil quality in terms of oleic acid, linoleic acid and oleic/linoleic acid ratio) in a 

mapping population consisting of 146 recombinant inbreed lines (RILs) of a cross TG26 x GPBD 4. Phenotyping 

data analysis for quality traits showed significant variation in the population and environment, genotype x 

environment interaction and high heritability was observed for all the traits. Negative correlation between protein 

content and oil content, oleic acid and linoleic acid indicated their antagonistic nature. After screening >1000 SSR 

markers, a partial genetic linkage map comprising of 45 SSR loci on 8 linkage groups with an average inter-marker 

distance of 14.62 cM was developed. QTL analysis based on single marker analysis (SMA) and composite interval 

mapping identified some candidate SSR markers associated with major QTL as well as several minor QTLs for the 

nutritional traits. Validation of these major QTLs using a wider genetic background may provide the markers for 

molecular breeding for improving groundnut for nutritional traits. 
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1. Introduction 

Groundnut also called peanut is one of the principal oil seed as well as economic crops of the world. It is 

utilized for human consumption as a vegetable oil and protein, as fodder for livestock and as green manure. With 

about 26 per cent protein, 48 per cent oil and 3 per cent fiber and high content of calcium, thiamine, and niacin, it 

has all the potential to be used as an economic food supplement to fight malnutrition. Thus, groundnut is nature’s 

gift to man in general and to children, pregnant, nursing women and the poor in particular (Misra, 2006).  

About 80 % of total groundnut production in India is crushed for oil extraction, thus improvement in oil 

content and quality is of interest to plant breeders and millers. Development of cultivars in groundnut varies with the 

purpose for which it is put to use (Bandyopadhyay and Desai, 2000). For example, the most important quality 

requirements of groundnut as a source of oil are high protein and oil content in seed and high oleic acid resulting in 

high oleic/linoleic acid (O/L) ratio for longer oil stability. Cultivars with high O/L ratio, low oil/fat and high protein 

are suitable for confectionary purpose. Nutritional quality of oil is determined by its fatty acid composition. In 

groundnut, there are mainly eight fatty acids viz. palmitic (16:0), stearic (18:0), oleic (18:1), linoleic (18:2), 

arachidic (20:0), eicosenoic (20:1), behenic (22:0) and lignoseric (24:0). Among them, oleic acid, a 

monounsaturated fatty acid and linoleic acid, a polyunsaturated fatty acid account for 75 to 80 per cent of the total 

fatty acids in peanut oil. The remaining 20% is contributed by other fatty acids, among them; palmitic acid (10%) 

has the largest proportion (Kaveri 2008). From the nutritional point of view, oleic acid lowers bad cholesterol (LDL) 

as effectively as linoleic acid, but does not affect good cholesterol (HDL) levels (Kris-Eterton et al., 2001) hence it 

balances cholesterol, which is desirable for healthy heart. Saturated fatty acids are hyper-cholesterolemic, 

polyunsaturated fatty acids are hypo-cholesteromic, but monounsaturated fatty acids are neutral in this regard (Groff 

et al., 1996;). Oils with higher proportion of unsaturated fatty acids can be heated to high temperatures without 

smoking, leading to faster cooking time and absorption of less oil (Miller et al., 1987).   

Larger genetic variation is available for these quality traits in the groundnut germplasm (Norden et al., 

1987; Branch et al., 1990; Upadhyaya et al., 2005). However, selection for seed quality is practiced only in 

advanced breeding lines, as biochemical estimation for these traits in segregating populations is high resource 

requiring, cumbersome and time consuming. Biochemical analysis of most of these traits is postmortem and is also 

substantially influenced by genotype (G) x environment (E) interaction. Thus, it seems very complex and 
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challenging to the breeders to undertake quality improvement in large-scale breeding programs through conventional 

breeding approaches. 

Molecular markers offer great scope for improving the efficiency of conventional plant breeding. With the 

advent of molecular markers, by using segregating populations for trait of interest for breeders, it has now become 

routine to map gene or quantitative traits loci (QTLs) and identify valuable alleles for the corresponding traits. Once 

the trait is mapped, the markers associated with them are efficiently employed in breeding programmes through 

marker-assisted selection (MAS). Markers not only eliminate the need of chemical analysis and phenotypic 

evaluation in the early generation breeding program, but also minimize the time required to develop new genotypes 

with desirable traits in the seedling stage itself, instead of waiting until harvest.  

Molecular mapping studies have been conducted in past in groundnut for several traits, eg. rust resistance 

(Mace et al., 2006; Varma et al., 2005, Mondal et al., 2007, Khedikar et al. 2010), nematode resistance (Burrow et 

al., 1996 , Garcia et al., 1996), resistance to aphid vector causing groundnut rosette disease (Herselman et al., 

2004),resistance to seed infection by Aspergillus flavus (Yong et al., 2005), drought tolerance traits (Varshney et al., 

2009, Ravi et al., 2011). For the oil quality traits, some studies have been undertaken. For instance, based on 

conventional genetics and breeding studies, two recessive alleles ol1and ol2 were identified for high and low oleic 

acid genotypes (Lopez et al., 2000). Loss of function of oleoyl-PC desaturase activity has been reported being solely 

responsible for the high oleic/linoleic acid (O/L) trait (Ray et al., 1993). Two homeologous genes, ahFAD2A and 

ahFAD2B have been found to control the oleolyl-PC desaturase activity(Jung et al., 2000) and cleaved amplified 

polymorphic sequences (CAPS) markers were developed to differentiate mutant and wild-type ahFAD2A alleles 

(Chu et al., 2007).  Recently some efforts have been maded to tag oil content, 100-seed weight and other yield 

contributing traits based on bulk segregate analysis by using SSR markers (Gomez et al., 2009). However, to the 

best of our knowledge, not much effort has been made to locate genes/QTLs responsible for protein content, oil 

content, oleic acid, linoleic acid and O/L ratio in groundnut. Therefore the present study has been undertaken to 

develop a genetic map and identify the QTLs for the above traits by using SSR markers and TG26 x GPBD 4 

mapping population of groundnut. 
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2. Material and methods 

2.1 Plant material 

 The F9:F10 generations of 146 recombinant inbred lines (RILs) obtained from a cross TG 26 x GPBD 4 by 

single seed descent method from F2 onwards developed at U.A.S. Dharwad, Karnataka (India) was used for the 

study. TG 26 is an improved Spanish bunch variety, it is a semi dwarf, erect with high pod growth rate, high harvest 

index, greater partitioning efficiency, tolerance to bud necrosis and has high linoleic acid content but it is susceptible 

to rust and late leaf spot (Kale et al., 1997;  Badigannavar et al., 2002). GPBD 4 is an improved Spanish bunch 

groundnut variety developed at University of Agricultural Sciences, Dharwad, it is popular in Karnataka and 

Southern states of India (Gowda et al., 2002). It has a desirable combination of early maturity, high yield, high pod 

growth rate, desirable pod and kernel features, high oil and protein content, optimum oleic/linoleic acid (O/L) ratio 

and resistant to late leaf spot and rust.  

2.2  Experimental design and Phenotyping  

A total of 146 recombinant inbred lines (RILs) were sown in a randomized block design (RBD) in two 

replications at U.A.S. Dharwad. Ten seeds of each RIL were planted in one meter row with 30 cm and 10 cm inter 

and intra-row spacing, respectively. Two parental genotypes (TG 26 and GPBD 4) were sown as controls after every 

50 rows. Phenotyping was done for protein content, oil content, oleic acid, linoleic acid and O/L ratioin two 

experiments viz., Kharif 2007 (1
st
 environment-E1) and summer 2007 (2

nd
 environment-EII). Observations were 

recorded in two replications for each line in both the experiments. 

 Phenotyping for protein content (%), oil content (%), oil quality with respect to oleic acid, linoleic acid 

were estimated using Near Infrared (NIR) spectroscopy model 6500 (Foss NIR systems, France) and O/L ratio was 

calculated as the ratio of oleic acid and linoleic acid.  15-20grams sample seed from each RIL and parents in two 

replications was used for analysis. The calibration equations were developed using principle component regression 

(PCR), partial least square and modified partial least square (mPLS) regression models. Wavelengths at interval of 8 

nm across the entire visible-plus-near-infrared spectrum (visible: 408-1092 nm;near infrared: 1108-2492 nm) were 

used for calibration. The standard error of calibration (SEC), standard error of cross-validation (SECV), correlation 

coefficient (r), and 1-VR statistics were used to select the best calibration equations. The performance of the 

calibration equations were monitored using the cross validation and external validation of set of samples (n=100). 



6 

 

SECV, standard error of prediction (SEP) and r were used to determine the accuracy of prediction (Kavera 2008). 

The best equation for determining the protein content, oil content and fatty acid composition were developed and 

used for the subsequent analysis of fatty acid profile for parents and 146 RILs of the mapping population. 

2.3  Molecular marker analysis  

 For DNA extraction, young leaf tissues were collected from parents and RILs at F10 generation from two 

weeks old plants. SIGMA Genelute plant genomic DNA extraction kit was used to isolate DNA as per the 

manufacturer’s recommendations. DNA quality and quantification was checked on 0.8% agarose gel with known 

concentrations of uncut lambda DNA standard.  

Polymerase chain reactions (PCRs) with SSR markers on DNA of parental genotypes or RILs were 

performed in five µl reaction mixture using GeneAmp® PCR system ABI 9700 (Applied Biosystems, USA) as 

mentioned in Khedikar et al.(2010).Amplified products were tested on 1.2% agarose gel to check for amplification 

before the size separation. TPCR annealing temperature varied between 60
0
C to 65

0
C depending on the primers.  

Separation of amplified DNA fragments were performed on 6% polyacrylamide gel electrophoresis 

(PAGE) and capillary electrophoresis i.e ABI 3700 Genetic Analyzer (Applied Biosystems, USA) depending on the 

use of normal and florescent dyes labeled primers respectively as mentioned in Khedikar et al.(2010). Allele sizing 

and scoring based on capillary electrophoresis data was carried out using Genescan 3.1 and Genotyper 3.1 softwares 

(Applied Biosystems, USA) while manual scoring was done on PAGE data. In summary, alleles obtained were 

scored as A, B, H and O, where, A represents homozygosity for the allele from female parent (TG 26), B indicates 

the homozygosity for the allele from male parent (GPBD 4), H represents the heterozygotes i.e the presence of both 

A and B alleles and O represents off types (neither A nor B) or missing values.  

 

2.4  Statistical analysis 

2.4.1  Phenotypic data 

The replicated phenotypic data obtained for protein content, oil content, oleic acid, linoleic acid and O/L 

ratio was used for analysis of variance (ANOVA) pooled over environments (PE).  Mean and range among the RILs 

in comparison with parents and genetic variability components such as, phenotypic coefficient of variation (PCV), 

genotypic coefficient of variation (GCV) and heritability in broad sense (h
2
b.s.) were estimated in individual (EI and 

EII) as well as pooled across environments (PE). Correlation coefficients (r) among these traits and the frequency 
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distributions were also estimated using pooled data (PE) only as there was no difference in the pattern of correlation 

and distribution in individual seasons All the necessary computation for the field trial was performed with the 

software packages, Genstat 10
th

 edition (Payne et al., 2007) and SPSS 16
th

 version.  

2.4.2  Construction of Linkage map 

 The Chi-square test was used to assess goodness of fit to the expected 1:1 segregation ratio for each 

marker. All the markers including those with distorted segregation were employed for linkage analysis using 

MAPMAKER Macintosh version 3.0 (Lander et al., 1987) as mentioned in Khedikar et al. (2010). Recombination 

fraction was converted into map distances in centiMorgans (cM) using Kosambi mapping function (Kosambi 1944). 

The inter-marker distances calculated from MAPMAKER were used to construct linkage map using MAPCHART 

version 2.2 (Voorrips 2006). 

2.4.3 Marker-trait association  

Marker trait association was conducted by using single marker analysis (SMA) and composite interval mapping 

(CIM). For SMA, the mean phenotypic data of all the traits in individual environments and the genotypic data of 53 

markers pertaining to 146 RILs were analysed using simple linear regression method with help of Genstat (10
th

 

edition) programme (Haley and Knott 1992). The phenotypic variance explained was expressed in adjusted R
2 

values. For CIM analysis (Zeng 1994; Jansen and Stam 1994), the software package PLABQTL version 1.1w (Utz 

and Melchinger, 1996) was used to identify QTLs and to estimate the additive effects with their phenotypic 

variance.The phenotypic data for the traits in two individual environments (EI and EII) and pooled data over two 

environments (PE) were combined with marker genotyping data to identify QTLs in individual environment and 

QTL x Environment respectively. 



8 

 

3. Results  

3.1 Phenotypic data analysis 

Analysis of variance in individual environments revealed significant variation within the population (data 

not shown) and analysis of variance pooled over the environments revealed significant variation among the 

genotypes, environments and significant G x E interaction for protein content, oil content, oleic acid, linoleic acid 

and O/L ratio indicating the existence of environmental interaction (Table 2).  

The mean protein content was high in EI for both parents and RILs compared to EII but broader range was 

observed in EII (21.12-37.51%) compared to EI (24.02-36.64 %) and hence, the magnitude of variation (PCV, 

GCV) was higher in EII as compared to EI. Very high heritability (>80%) was observed in both the environments 

but in the pooled data the heritability was lower (<50 %). The male parent GPBD 4, was a higher value parent for all 

the favorable traits i.e for protein content, oil content, oleic acid and O/L ratio and TG 26 was higher value parent 

for linoleic acid.  Higher mean oil content was observed for EI compared to EII in both parents and RILs but unlike 

protein content, the range was high in EI (40.76-49.03) compared to EII (42.40-49.55). For oil content, magnitude of 

variation was very low but the heritability was high in both the environments and pooled across the environments. 

Among the oil quality traits, broader range was observed in EII for oleic acid (29.96-65.11), linoleic acid (16.57-

47.63) and for O/L ratio (0.63-3.93) hence, the magnitude of variation was also high in that environment compared 

to EI. The heritability was very high in individual environments compared to pooled data. Frequency distribution of 

pooled data for all the traits revealed a typical normal distribution indicating their quantitative nature of inheritance. 

For all the traits, majority of the RILs were within the parental limit and few transgressive segregants were observed 

in both the directions (Table 3, Fig 1). 

Association analysis between protein content and oil content (r=-0.294) revealed a significant negative 

correlation. Among the oil quality traits, strong negative correlation was observed between oleic and linoleic acids 

(r=-0.987) and linoleic acid with O/L ratio (r=-0.970). As far as protein content and oil quality are concerned there 

was a negative correlation between protein content with oleic acid (-0.302) and O/L ratio (-0.350) and positively 

correlated with linoleic acid (0.316) but the correlation pattern between oil content and oil quality was exactly 

inverse to that  of protein content and oil quality (Table 4).  
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3.2 Marker polymorphism and linkage analysis 

Initially a total of 1043 SSR markers, listed in Table 1, were screened on the parental cultivars (TG 26 and 

GPBD 4). Out of these, 894 primers produced scorable bands and 53 markers showed polymorphism between the 

parents. These polymorphic markers were used for generating the marker genotyping data on the population. Of 

these data, 15 markers, however, showed segregation distortion, which does not fit the 1:1 ratio based on the chi-

square analysis. Nevertheless, due to availability of less marker genotyping data, both distorted and non-distorted 

markers were utilized for linkage analysis. As a result, a total of 45 markers were mapped on eight linkage groups 

with the total map distance of 657.90cM, with an average inter-marker distance of 14.62 cM. Eight markers, 

however, remained ungrouped. The length of the linkage group varied from 29.00 cM (LG5) to 145.30 cM (LG1) 

and the number of markers on each linkage group varied from 4 (LG2, LG6, LG7 and LG8) to 8 marker 

(LG1){Fig.2}. 

 

3.3     Marker-Trait association (SMA and CIM analyses)  

3.3.1 Protein content 

A total of seven markers were identified for protein content based on SMA (Table 5) with the phenotypic 

variance ranging from 2.54 - 9.78%, the highest contribution was from TC6H03 (9.78 %). QTL analyses identified 

six QTLs (1.50 to 10.70%) for protein content, among them two QTLs viz., TC6H03-TC11A04 on LG1 and 

TC2E05-TC3E2 on LG 4 showed significant contribution (>10.0 R
2
) to variance. One QTL near TC6H03 on LG1 

had highest contribution as revealed by both single marker analysis (9.78 %) and QTL analysis (10.70 %). The 

favorable allele for this QTL was contributed by TG 26 and for other QTL, contribution was from GPBD 4 parent 

(Table 6, Fig 2).  

For analyzing QTL x Environment interaction, individual environments data and mean data across the 

environments was pooled with genotypic and mapping data to identify QTLs across environments for all the above 

traits. Two QTLs were identified across the environments (also detected in EI) with the phenotypic variance ranged 

from 6.2 to 8.9 % in the marker interval of TC1D12-pPGSSeq19D6 and TC2E05-TC3E2 but the favorable allele has 

come from different parents i.e. TG26 and GPBD 4 respectively (Table6, Fig 3).  
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3.3.2 Oil content  

For oil content, a total of four QTLs with the phenotypic variance ranging from 1.5 to 9.1 % were identified 

from two environments and among them one QTL in the marker interval IPAHM103-PM36 on LG3 was common 

between environments with the phenotypic variance of 7.1- 9.1 % and SMA also supported this with 5.72 and 6.98 

% adjusted R
2
 also supported this. One QTL near TC2E05 on LG 4 was common for oil and protein but the 

direction of favorable allele was different for oil (TG 26) and protein (GPBD 4) with the additive effect of 0.199 and 

1.030, respectively. Another minor QTL near TC2B09 was also common between oil (6.80 %) and protein (1.50 %) 

with TG 26 contributing the favorable allele for both the traits (Table 5 and 6, Fig 2).  

Across the environment, three QTLs were detected on LG1, LG3 and LG4 with the phenotypic variance 

ranging from 2.2 to 10.2 % and the LOD was 3.47 to 5.27. Here also, as in individual environments, the contribution 

of IPAHM103 was highest and the favorable allele was from GPBD 4 but the contribution of other two QTLs was 

from TG26 parent (Table 6, Fig 3).  

3.3.3. Oil quality 

In the present study, all the three QTLs (TC6H03-TC11A04, TC5A07-IPAHM395 and TC3A12-PM433) 

identified for oil quality traits were common for oleic acid and linoleic acid which is also supported by their strong 

negative correlation (Table6, Fig 2).  Among these, a QTL flanked by TC6H03-TC11A04 had a significant 

contribution to variance for oleic acid (9.70%), linoleic acid (9.00 %) and O/L ratio (6.80%). GPBD 4 contributed 

the favorable allele for this QTL for all the three traits. The contribution of other two QTLs (TC5A07-IPAHM395 

and TC3A12-PM433) was minor for both oleic (5.60 and 7.20%) and linoleic acids (5.10 and 7.20 %). Single 

marker analyses identified three common markers for oleic acid, linoleic acid and O/L ratio (PM137, TC6H03 and 

IPAHM395). In EI, SMA detected six markers each for oleic acid (2.2-3.6), linoleic acid (2.6-5.2) and five markers 

for O/L ratio (2.86-5.09) (Table 5). No QTLs were identified in EI for oil quality, but when the pooled data was 

considered, three common QTLs were identified for oleic acid and linoleic acid (PM137-TC6H03, TC5A07-

IPAHM395 and TC3A12-PM433 on LG1, 7 and 8 respectively). The phenotypic variance was highest by PM137-

TC6H03 for both oleic (6.1 %) and linoleic acid (6.8 %) and the favorable allele was from GPBD 4parent for both. 

For O/L ratio also the same QTL contributed maximum phenotypic variance (5.1 %) across the environments and 

the other QTLs were minor QTLs (Table6, Fig 3). 
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3. Discussion 

Traits associated with seed quality are difficult and uneconomic to measure in large segregating generations and 

are substantially influenced by genotype x environment interaction. Thus, breeding progress in these traits by 

conventional techniques has had a limited success. Therefore, MAS is highly justified option for indirect selection of 

these traits in groundnut. Not much information pertaining to the studies on tagging of molecular markers for 

nutritional quality is available in groundnut. The present study, therefore, was undertaken to identify the SSR 

markers linked with most important quality traits of groundnut. Although large numbers of SSR markers were used, 

due to very low polymorphism, only a partial linkage map was constructed. On the other hand, a good variation was 

observed for the traits examined in the RIL population. Detailed analysis has identified some QTLs for several 

nutritional quality traits.  

 

4.1 Phenotypic evaluation 

The population consisting of 146 RILs showed significant variation among the lines and significant G x E 

interaction for all the traits indicating the sufficient variation within the population and existence of environmental 

interaction. The maximum protein content observed in the parent GPBD 4 and in few RILs of the population (> 

34.0%) can be considered best among the groundnut germplasm for protein content reported till now. The range of 

protein content in groundnut was earlier reported between 16.0 and 34.0 (Dwivedi et al., 1993; Singh et al., 1998) 

hence, these lines may be useful in improving the protein content of groundnut. Although there was not much 

improvement in the oil content in the population, the parent GPBD 4 was favorable for combination of traits as 

shown by its high mean value for various traits. The highest oleic acid observed in the population was in the RIL no. 

95 (65.90) with highest O/L ratio (4.06) and lowest linoleic acid (16.11) (data not shown).  Hence, this line may be 

useful for improvement of fatty acid/oil quality in the future breeding programmes. Although, many RILs have 

shown transgressive segregation in positive direction for various traits, none of them had an improved version for all 

the combination of traits like GPBD 4. Hence, it is difficult to improve all these favorable traits in a single line 

through conventional breeding approaches, thus justifying the identification of molecular markers for improvement 

of nutritional quality of groundnut. 

A typical normal distribution for all the nutritional traits indicates their quantitative nature of inheritance. 

The magnitude of variation was lower for protein content and oil content, moderate for oleic acid and linoleic acid, 
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high for O/L ratio and the heritability was high for all the five traits. Hence, phenotypic selection alone may be 

effective for these traits but biochemical estimation of fatty acid composition is not economic and mostly 

quantitatively inherited, hence, identification of efficient markers helpsin marker-assisted introgression.  

Antagonistic nature of protein content and oil content as revealed by their negative correlation indicates 

difficulty in simultaneous improvement of both traits and one can be increased at the expense of the other (Table 4). 

This relationship is more helpful for developing cultivars for confectionary purpose where high protein but low 

oil/fat is preferred. However, for developing cultivars for oil content this relationship poses a problem. Negative 

relationship between oil and protein has also been observed in earlier studies (Kale et al., 1998; Parmer et al., 2002; 

Yashoda 2005 and Kavera 2008). Among the oil quality traits, strong negative correlation existed between oleic acid 

and linoleic acids in the present study, which is in accordance with earlier reports (Sekhon et al., 1980; Bovi, 1983; 

Anderson et al., 1998 and Kavera, 2008). Linoleic acid is unstable at higher temperature and has an inverse 

relationship with oil stability (Braddock et al., 1995; O’Keefe et al., 1993 and Holley and Hammons 1968). Hence, 

increased oleic acid normally resulted in reduced linoleic acid, which is desirable from the point of health and oil 

stability. The correlation for all the traits between the environments was significantly positive (data not shown) 

indicating their consistent performance across the environments. 

From the phenotypic data analysis, it can be concluded that, although heritability was high for the traits in 

the present study, their negative correlation, quantitative nature of inheritance, G x E interaction and the cost and 

difficulty involved in phenotyping makes them difficult to improve by conventional breeding techniques.  

 

4.2. Marker polymorphism and a partial genetic map  

Construction of genetic linkage map is necessary to apply marker assisted selection tool in crop 

improvement program. Very few reports on the construction of genetic linkage map based on SSR markers are 

available in groundnut (Moretzsohn et al., 2005; Gobbi et al., 2006; Varshney et al., 2009; Khedikar et al., 2010, 

Hong et al., 2010). The per cent polymorphism obtained in the present study is very less compared to earlier reports 

e.g. 23% by Hopkins et al. (1999); 33.9% by He et al.(2003) (33.90%); 70.80- 81.00% by Ferguson et al.(2004); 

29.23% by He et al.(2005); 52% by Mace et al. (2006); 47.10% by Moretzsohn et al.(2005); 52.08% by 

Nimmakayala et al. (2007),12.60% by Varshney et al. (2009) and 6.15% by Khedikar et al. (2010). In general, being 

a highly self-pollinated plant and its origin by single event hybridization followed by polyploidization, cultivated 



13 

 

peanut exhibits limited polymorphism (Halward et al., 1991; Young et al., 1996). The parents used in developing 

the mapping population in the present study are only two cultivars and limited polymorphism could be due to 

narrow genetic base of the parents compared to the reports based on the wider germplasm used in other studies. As a 

result, even after screening >1000 SSR markers, a partial genetic map with only 45 SSR loci could be developed. 

Hence, it becomes imperative to select the diverse parents for developing the mapping population so that good 

genetic maps can be developed.  

Some markers (e.g. IPAHM103) identified with QTLs in the present study also showed association with 

rust resistance QTLs in another study (Khedikar et al., 2010).  Hence, to know the marker orientation and possible 

markers used for further saturation of the rust QTL region on LG3 of this population, linkage maps of other reports 

(Varshney et al., 2009; Khedikar et al.,2010; Hong et al., 2010) were compared with the help of MAPCHART. As a 

result, four markers (PM183, IPAHM103, seq19D6 and IPAHM272) of LG3 of the present study were found 

syntenic to LG6 of TAG 24 x GPBD 4 population and LG7, LG5 and LG1 of present study were homologous to 

LG13, LG12 and LG2 of TAG 24 x GPBD 4 mapping population respectively (Khedikar et al., 2010). Similarly, 

two markers on LG 3 (PM183 and pPGSSeq19D06) of the present study were syntenic to the LG IV of the TAG 24 

x ICGV 86031 population (Varshney et al., 2009) but the order was inversed. Three markers (PM36, pPGSseq19D6 

and TC1D12) of LG19 from composite linkage map of three RIL populations (Yueyou 13 × Zhenzhuhei, Yueyou 13 

× J11 population, Yueyou 13 × Fu 95-5) from the report of Hong et al. (2010) were also found syntenic to the 

corresponding markers on LG3 in the present population (Fig 4). In summary, the markers present in the same 

genomic regions in the other genetic maps, as mentioned above, can be used to saturate the QTL regions of the 

linkage groups of this study. 

 

4.3 Marker-Trait association  

As QTLs identified in one season/location may not express in the other as the expression of QTL is 

influenced by environments (Khedikar et al., 2010), hence, in the present study, QTL analysis was carried out both 

in individual environments (EI and EII) and pooled across the environments (PE). For protein content, two QTLs 

contributed substantial phenotypic variance of >10.0 % such as TC2E05-TC3E2 on LG4 in EI and TC6H03-

TC11A04 on LG1 in EII. None of the QTLs was common between environments but the two QTLs identified across 

the environments (PE) for protein content were identified for EI (TC1D12-TC9B08 on LG3 and TC2E05-TC3E02 
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on LG4) and together both accounted for a total of 14.2% of phenotypic variance in EI and 15.1% in PE. Validating 

these markers across the locations will have a role in MAS for selection of high protein content varieties stable 

across the seasons/locations. Seasonal variation for protein content has been reported earlier (Dwivedi et al., 1996).  

For oil content, a QTL in the marker interval IPAHM103-PM36 on LG3 was common in both individual 

(EI and EII) as well as PE with the phenotypic variance of 7.1- 10.2%. The position of the QTL was 2.5 cM away 

from the marker IPAHM103.  The same marker has been  associated with a major QTL for rust resistance in TAG24 

X GPBD 4 mapping population (6.9-55.2 %) (Khedikar et al., 2010). For rust resistance, this marker is located at 

0.5cM downstream of IPAHM 103 on LG3 in this population. It can be inferred that the QTL identified for oil 

content and the rust resistance is only 2.0cM away from each other indicating probable pleiotropic effect or tight 

linkage, which could be confirmed by fine mapping of this region. The incidence of rust was very high in both the 

seasons in which the oil content was estimated, indicating the impact of rust resistant QTL on oil accumulation, 

which is also supported by negative correlation between higher incidences of disease with oil content (Sarvamangala 

and Gowda 2010). Although, identified QTLs for oil content are minor but a QTL near IPAHM103 is consistent and 

it is also identified as major QTL for rust resistance, so, the use of this marker in MAS could simultaneously 

improve the oil content while developing the cultivars for rust resistance. It is interesting to note that, the SSR 

marker PM36 identified for oil content (16.60 %) by Gomez et al. (2009) based on bulk segregate analysis and in 

the present study based on single marker analysis (2.24 %) is linked with IPAHM103 with 8.5cM distance. PM36 is 

reported to be located on fifth linkage group in the AA genome (Moretzsohn et al., 2005) which indicates the 

probable location of IPAHM103 on the same linkage group. It has also been suggested in the study of Gomez et al. 

(2009) that because of the availability of less polymorphic markers, BSA allows identification of markers up to 

20cM from a gene in either direction.  

One QTL in the marker interval of TC2E05-TC3E02 on LG 4 was common for oil content and protein but 

the direction of favorable allele was different for oil content (TG 26) and protein content (GPBD 4) with the additive 

effect of 0.199 and 1.030, respectively. Such QTLs can lead to antagonistic relations between the traits as revealed 

by their negative correlation and it could be important for developing confectionary groundnut where, low oil and 

high protein are preferred. Another minor QTL (TC2B09-RN16F05) was also common between oil content (6.80 %) 

and protein content (1.50 %) with TG 26 contributed the favorable allele for both the traits indicating the possible 

role of genomic region near TC2B09 in reducing the negative correlation between oil and protein. Similar findings 
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on common QTLs for oil and protein has given by Panthee et al. (2005) in soybean population. The favorable 

positive association of this QTL for oil content and protein content is useful for simultaneous improvement of both 

the traits. Although these two QTLs were common between protein and oil, the difference in the position of these 

QTLs on linkage groups once again indicates the necessity of saturation of the linkage map to confirm their 

significance.  

As for the oil quality traits are concerned, all the three QTLs (TC6H03-TC11A04, TC5A07-IPAHM395 

and TC3A12-PM433) were common for oleic acid and linoleic acid which is also supported by their strong negative 

correlation. Among them, a QTL flanked by TC6H03-TC11A04 had a significant contribution to variance for oleic 

acid (9.70%), linoleic acid (9.00 %) and O/L ratio (6.80%). GPBD 4 contributed the favorable allele for this QTL 

for all the three traits. The same QTL was also identified for protein with substantial contribution to variance 

(10.70%) thus revealing its major impact on nutritional quality. The genomic clone contributing the SSR marker 

TC6H03 was found associated with “Ras related GTP binding protein” in Arabidopsis and with GTP-binding 

protein in Fabaceae (David Bertioli, personal comm.), thus it could be an important candidate gene associated with 

nutritional traits. Further validation in different genetic backgrounds may prove the efficiency of this QTL. No 

QTLs were identified in rainy season for the oil quality, indicating their sensitiveness to the environment. But across 

the environments, one QTL on LG1 (PM137-TC6H03) had a substantial contribution to all the three oil quality traits 

with the significant phenotypic variance and again the location of this QTL is near to TC6H03 indicating the 

importance of this marker.  

 

Conclusion  

Although the present study is a preliminary study for identification of SSR markers for nutritional quality in 

groundnut, it was possible to identify few candidate markers for these traits. Assuming the criteria of major QTLs 

(>10% R
2
), the identified QTLs for oil content (IPAHM103) and protein content (TC6H03) are considered as major 

QTLs. As shown by the frequency distribution, all the above traits are polygenic in nature; hence, the identified 

QTLs had phenotypic variance of <20.0 %. Validation of the identified QTLs, however, is required in the wider 

genetic background before they can be recommended to use it in MAS.  
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Table 1: Summary on marker polymorphism study on TG 26 x GPBD 4 population 

Source No. of markers screened 
No of polymorphic 

markers identified 

Hopkins et al.(1999) 26 0 

He et al.(2003) 158 4 

Ferguson et al. (2004) 226 10 

Moretzshon et al.(2004, 2005) 338 20 

Mace et al. (2006) 79 0 

Proite  et al. (2007)  46 3 

Cuc et al. (2008) 170 16 

Total 1043 53 
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Table 2: Pooled ANOVA for protein content, oil content, oleic acid, linoleic acid and O/L ratio in TG 26 x 

GPBD 4 mapping population 

Mean sum of squares 

Traits/Source of variation Environment Replication E x R Genotypes E X  G Error 

Df 1 1 1 145 145 290 

Protein content (%) 65.31** 2.5 2.19 26.69** 13.66** 1.45 

Oil content(%) 38.87** 0.63 0.06 9.23** 5.96** 1.18 

Oleic acid 292.63** 0.38 0.63 82.84** 35.81** 2.13 

Linoleic acid 1678.63** 0.06 0.06 59.68** 27.03** 1.72 

O/L ratio 3.36** 0 0.01 0.01* 0.26** 0.01 

** indicates significance at 1% level of probability, df- Degrees of Freedom, ExR-Environment x Replication, E x G-  

Environment x Genotype 
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Table 3: Mean, range and variability components in individual and pooled across two 

environments for protein content, oil content, oleic acid, linoleic acid and O/L ratio 

in TG26 X GPBD 4 mapping population  

Parental means Recombinant Inbred Lines 
Traits 

Environment TG26 GPBD 4 Mean Range PCV GCV 
h2 

Kharif 2007 (EI) 26.03 34.79 30.12 24.02-36.64 8.76 8.23 88.3 

Summer 2007 (EII) 23.96 32.57 29.45 21.12-37.51 11.05 9.9 80.3 Protein content (%) 

Pooled (PE) 24.99 33.68 29.79 23.44-34.50 6.35 4.92 49.1 

Kharif 2007 (EI) 44.17 49.68 45.31 40.76-49.03 3.14 2.67 72.6 

Summer 2007 (EII) 43.59 46.27 46.02 42.40-49.55 2.59 2.04 62.2 Oil content (%) 

Pooled (PE) 43.88 47.98 45.67 43.11-48.00 2.88 1.62 66.9 

Kharif 2007 (EI) 40.15 51.35 46.88 34.68-59.98 9.08 8.74 92.6 

Summer 2007 (EII) 33.99 51.94 45.51 29.96-65.11 14.48 13.99 93.2 Oleic acid 

Pooled (PE) 37.07 51.65 46.17 33.37-58.88 8.07 7.43 84.6 

Kharif 2007 (EI) 38.03 28.98 30.41 19.72-40.56 11.73 11.24 91.9 

Summer 2007 (EII) 44.76 28.83 33.8 16.57-47.63 16.83 16.19 92.6 Linoleic acid 

Pooled (PE) 41.39 28.90 32.11 21.25-42.81 9.79 8.9 82.6 

Kharif 2007 (EI) 1.06 1.77 1.58 0.85-3.04 22.05 21.28 93.2 

Summer 2007 (EII) 0.76 1.80 1.43 0.63-3.93 37.07 35.78 93.1 O/L ratio 

Pooled (PE) 0.91 1.79 1.51 0.78-2.98 18.78 17.08 82.7 

PCV-phenotypic coefficient of variation, GCV-Genotypic coefficient of variation, h2-broad sense 

heritability 
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Table 4: Correlation coefficients for protein content, oil content and oil quality traits in the mapping 

population pooled over two environments 

Traits Protein content Oil content Oleic acid Linoleic acid O/L ratio 

Protein content 1.000     

Oil content -0.294** 1.000    

Oleic acid -0.302** 0.334** 1.000   

Linoleic acid 0.316** -0.311** -0.987** 1.000  

O/L ratio -0.350** 0.298** 0.983** -0.970** 1.000 

**significant 1% level of probability respectively,  O/L-Oleic/Linoleic acid, -indicates negative correlation 
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Table  5: Marker-trait association using single marker analysis (SMA)  

Environments Kharif 2007 (EI) Summer 2007 (EII) 

Traits Marker adjR
2
 Marker adjR

2
 

TC1D12 5.42** TC1D12 2.54* 

TC1B04 4.63** TC6H03 9.78** 

TC3E2 5.87** TC1B02 8.05** 
Protein content (%) 

TC2C07 5.88** PM36 4.31** 

TC3A12 2.87* IPAHM475 2.77* 

TC2B09 2.18* pPGSSeq7H6 3.26* 

TC6E01 2.56* TC3A12 2.44* 

TC2C07 6.43** PM36 2.24* 

IPAHM103 5.72** TC2B09 4.18* 

Oil content (%) 

    IPAHM103 6.98** 

PM137 2.24* PM137 3.46* 

IPAHM176 2.88* TC6H03 3.42* 

pPGSSeq11G7 2.48* IPAHM395 3.54* 

IPAHM295 2.2*     

IPAHM395 3.1*     

Oleic acid 

TC5A07 3.6*     

TC3E05 5.2** PM137 3.81* 

IPAHM176 2.60* TC6H03 3.5* 

pPGSSeq 11G7 2.62* IPAHM395 3.29* 

IPAHM295 2.61*     

IPAHM395 3.59**     

Linoleic acid 

TC5A07 3.36**     

TC3E05 5.09** PM137 2.89* 

IPAHM176 3.37* TC11A04 2.37* 

pPGSSeq 11G7 3.09* IPAHM176 2.33* 

IPAHM395 2.86* TC6H03 3.22* 

TC5A07 4.07* IPAHM395 2.17* 

    pPGSSeq 17F06 2.74* 

O/L Ratio 

    TC2B09 2.53* 

*, ** Significance at 5%  and 1% level of probability respectively  

 

 

 

 



29 

 

Table 6: Features of QTLs identified through composite interval mapping (CIM) 

Traits Environments LG Marker interval 
Position 

(cM) 
LOD 

R
2
 

(%) 

Additive 

effect* 

3 TC1D12-TC9B08 36 3.33 4.0 -0.594 

4 TC2E05-TC3E02 56 3.62 10.2 1.03 

7 IPAHM395-TC2C07 110 2.87 3.9 -0.609 
EI 

8 TC2B09-RN16F05 24 2.89 1.5 -0.552 

1 TC6H03-TC11A04 12 3.42 10.7 -1.249 
EII 

6 pPGSSeq15C12-IPAHM105 28 3.04 7.1 1.053 

3 TC1D12-TC9B08 36 2.99 8.9 -0.67 

Protein 

content 

PE 
4 TC2E05-TC3E02 52 2.95 6.2 0.684 

3 IPAHM103-PM36 28 3.38 7.9 0.499 
EI 

4 TC2E05-TC3E02 42 3.01 1.5 -0.199 

1 pPGSSeq7H6-IPAHM475 80 3.2 5.2 -0.434 

3 IPAHM103-PM36 28 3.53 9.1 0.408 EII 

8 TC2B09-RN16F05 6 3.12 6.8 -0.28 

1 pPGSSeq7H6-IPAHM475 62 3.49 2.3 -0.152 

3 IPAHM103-PM36 28 5.27 10.2 0.428 

Oil content 

PE 

4 TC2E05- TC3E02 42 3.47 2.2 -0.18 

EI - - - - - - 

1 TC6H03-TC11A04 14 3.75 9.7 2.749 

7 TC5A07-IPAHM395 36 4.32 5.6 1.799 EII 

8 TC3A12-PM433 4 3.6 7.2 1.885 

1 PM137-TC6H03 4 2.74 6.1 1.423 

7 TC5A07-IPAHM395 24 2.65 3.8 1.363 

Oleic acid 

PE 

8 TC3A12-PM433 4 2.8 3.3 0.905 

EI - - - - - - 

1 TC6H03-TC11A04 14 3.04 9.0 -2.28 

7 TC5A07-IPAHM395 32 4.84 5.1 -1.665 EII 

8 TC3A12-PM433 4 5.06 7.2 -1.641 

1 PM137-TC6H03 4 3.04 6.8 -1.271 

7 TC5A07-IPAHM395 24 2.57 3.6 -1.119 

Linoleic acid 

PE 

8 TC3A12-PM433 4 2.61 3.3 -0.759 

EI - - - - - - 

EII 1 TC6H03-TC11A04 14 3.48 6.8 0.192 

1 PM137-TC6H03 4 2.54 5.1 0.11 

4 IPAHM171c-IPAHM352 58 2.89 1.9 -0.052 

O/L ratio 

PE 

8 TC3A12-PM433 4 2.57 1.4 0.05 

*negative value indicates favorable allele from TG 26 and positive value indicates favorable allele from GPBD 4 

parent,  LG-Linkage group, LOD-Log of odds, R
2
-Phenotypic variance, cM- centi Morgan, EI-Kharif 2007, EII-

Summer 2007, PE-pooled across environments 

 



Figure legends 

Figure 1: The normal distribution curve for protein content, oil content, oleic acid, linoleic acid 

and O/L ration in 146 RILs of TG 26 x GPBD 4 population pooled over two 

environments (EI and EII). Arrows represent the position of parental types (TG26 

and GPBD4). 

Figure 2: Linkage map depicting QTLs for protein content, oil content, oleic acid, linoleic acid 

and O/L ratio identified in individual environments (EI and EII) in TG26 x GPBD 4 

mapping population. Vertical bars adjacent to corresponding linkage groups (LG) 

with annotations of traits name and respective environments in brackets represent 

QTLs.  

Figure 3: QTLs identified across environments (PE) for protein content, oil content, oleic acid, 

linoleic acid and O/L ratio in TG26 x GPBD4 mapping population of groundnut. 

Vertical bars with diagonal lines inside indicates the QTLs identified across 

environments. 

Figure 4. Comparison of LG3 of TG26 x GPBD4 population and LG19 of composite linkage map 

of Hong et al., 2010 and LG3 of TG26 x GPBD4 aligned through common markers 

of LG_AhIV of TAG 24 x ICGV86039 tetraploid reference map of Varshney et al., 

2009 
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