
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

A Model-driven Approach to Trace
Checking of Temporal Properties with

Aggregations

Chaima Boufaieda Domenico Biancullia Lionel Brianda

a. SnT Centre - University of Luxembourg, Luxembourg, Luxembourg

Abstract The verification of complex software systems often requires to
check quantitative properties that rely on aggregation operators (e.g., the
average response time of a service). One way to ease the specification of
these properties is to use property specification patterns, such as the ones
for “service provisioning”, previously proposed in the literature.

In this paper we focus on the problem of performing offline trace check-
ing of temporal properties containing aggregation operators. We first
present TemPsy-AG , an extension of TemPsy—an existing pattern-based
language for the specification of temporal properties—to support service
provisioning patterns that use aggregation operators. We then extend an
existing model-driven procedure for trace checking, to verify properties
expressed in TemPsy-AG . The trace checking procedure relies on the ef-
ficient mapping of temporal properties written in TemPsy-AG into OCL
constraints on a meta-model of execution traces. We have implemented
this procedure in the TemPsy-Check-AG tool and evaluated its perfor-
mance: our approach scales linearly with respect to the length of the input
trace and can deal with much larger traces than a state-of-the-art tool.

Keywords Temporal properties; Offline trace checking; Aggregation op-
erators; Specification patterns; OCL.

1 Introduction

Trace checking is a run-time verification (RV) [LS09] technique that checks whether
a property holds over a log (i.e., a trace) of recorded events. Since the log of events is
obtained and checked after the execution of a system terminates, this technique is also
called offline trace checking or post-mortem analysis, in order to distinguish it from
online techniques that check the correctness of a system while it is executing [FHR13],
possibly by processing a stream of events [DSS+05, Hal16]. The two main aspects
characterizing trace checking approaches are: 1) the type of properties to verify (as
well as the specification language used to express them), and 2) the actual checking
procedure to use.

Chaima Boufaied, Domenico Bianculli, Lionel Briand. A Model-driven Approach to Trace Checking of
Temporal Properties with Aggregations. Licensed under Attribution-NonCommercial-NoDerivatives 4.0
International (CC BY-NC-ND 4.0). In Journal of Object Technology, vol. 18, no. 2, 2019,
pages 15:1–20. doi:10.5381/jot.2019.18.2.a15

http://www.jot.fm/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.5381/jot.2019.18.2.a15
http://dx.doi.org/10.5381/jot.2019.18.2.a15

2 · Chaima Boufaied, Domenico Bianculli, Lionel Briand

The system properties verified in the context of trace checking can be specified us-
ing different specification languages and formalisms, such as a temporal logic (e.g., lin-
ear temporal logic, metric temporal logic, signal temporal logic), regular expressions,
state machines, or a combination of them [BFFR18], possibly using domain-specific
languages (DSLs). In this paper, we consider a specific class of temporal properties:
the ones containing operators that aggregate events. An example of such a property
is: “the average number of client requests per hour computed over the daily business
hours (from 7.30AM to 7PM) should be less than 10000”, where the operator “aver-
age” is used to aggregate the number of events of type “client request” over one-hour
intervals, in an observation time window ranging “from 7.30AM to 7PM”. This class
of temporal properties was identified in a field study [BGPS12], which analyzed more
than 900 requirements specifications written in the context of service-based applica-
tions, extracted from research papers and industrial data (in the domain of banking
service provisioning). More specifically, the study identified a new class of property
specification patterns (inspired by Dwyer et al.’s seminal work [DAC99]) called service
provisioning patterns, which matched the majority of the requirements specifications
stated in industrial settings. More than 80% of the industrial specifications analyzed
in the study could be written as temporal properties using aggregation operators
such as average, maximum, and average response time. To the best of our knowledge,
the only specification language supporting the service provisioning patterns identified
in [BGPS12] is SOLOIST [BGS13], a language based on first-order metric temporal
logic extended with aggregating modalities.

In terms of checking procedure, in this paper we consider a model-driven trace
checking approach [DBB17a]. Such an approach consists in reducing the problem
of checking a property ρ over an execution trace λ to the problem of evaluating an
OCL (Object Constraint Language) constraint (semantically equivalent to ρ) on an
instance (equivalent to λ) of a meta-model of the trace. Model-driven trace check-
ing has been proposed in the literature [DBB17a] as a viable solution to the trace
checking problem, to be adopted in software development contexts that rely on a model-
driven engineering (MDE), a common practice in many domains [BCW17]. TemPsy-
Check [DBB17b] is a state-of-the-art tool implementing model-driven trace checking;
it has been shown [DBB17a] to be highly scalable with respect to the length of the
trace, exhibiting performance that is comparable to (and in some cases better than)
state-of-the-art alternative technologies based on temporal logic. The properties to
verify with TemPsy-Check are expressed in TemPsy (Temporal Property made
easy) [DBB17a], a pattern-based DSL for the specification of temporal properties.
This language is based on the catalogue of property specification patterns by Dwyer et
al. [DAC99], with new constructs derived from a field study performed in the domain
of business processes for eGovernment. TemPsy is suitable for adoption by practi-
tioners, since it is a high-level specification language that does not require a strong
theoretical and mathematical background. Furthermore, TemPsy is pattern-based
and inherits the benefits of pattern-based languages: for example, a recent empirical
study [CZss] has shown that pattern-based temporal property specifications are easier
to understand than specifications written using Linear Temporal Logic and the Event
Processing Language.

The work proposed in this paper is motivated by two observations. On one hand,
though requirements specifications based on temporal properties with aggregation
operators (i.e., those based on the “service provisioning” specification patterns) are
common, the support provided in terms of verification (more specifically, trace check-

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

A Model-driven Approach to Trace Checking of Temporal Properties with Aggregations · 3

ing) of such properties is limited. Indeed, the two non-distributed1 trace checking
algorithms for SOLOIST proposed in the literature [BGKSP14, BBG+14] do not
scale well in terms of the length of the trace [BGK14]. On the other hand, there is
TemPsy-Check, a scalable and effective model-driven trace checking solution, which
only supports temporal properties based on Dwyer et al.’s specification patterns.

The goal of this paper is to provide a solution for scalable model-driven trace
checking of temporal properties with aggregation operators. The main idea is to bridge
the gap between property specifications based on service provisioning patterns and
model-driven trace checking. More specifically, we extend the approach presented
in [DBB17a] by proposing: 1) an extension of the TemPsy language called TemPsy-
AG , which supports the most used service provisioning patterns identified in the
study in [BGPS12]; 2) an extension of the TemPsy trace checking procedure, realized
through an optimized mapping into OCL constraints (on a meta-model of execution
traces) of the new types of properties included in TemPsy-AG .

We have implemented our approach in TemPsy-Check-AG, a prototypical ex-
tension of TemPsy-Check. We evaluated its scalability (in terms of execution time)
with respect to the length of the trace and other parameters used in the specification of
TemPsy-AG properties; we also compared its performance with respect to SOLOIST -
translator, the state-of-the-art tool for (non-distributed) trace checking of SOLOIST
specifications [BGKSP14, BBG+14]. The results show that TemPsy-Check-AG
scales linearly with respect to the parameters considered in the analysis; in particular
its execution time for processing a large trace with one million events ranges between
6250ms and 15339ms, depending on the aggregation operator used in the property.
Furthermore, it can deal with much larger traces than SOLOIST-Translator , which
could only handle traces up to 1500 events.

To summarize, the two main contributions of the paper are: i) a model-driven
approach for trace checking of temporal properties with aggregation operators; ii) an
evaluation of the scalability of such an approach when implemented in the TemPsy-
Check-AG tool, and the comparison with a state-of-the-art alternative technology.
In addition, this paper can be seen as a successful case study on the feasibility and
viability of extending model-driven trace checking [DBB17a], i.e., a verification tech-
nique enabled by MDE technologies, with support for a larger class of properties,
while retaining acceptable performance from a practical standpoint.

The rest of the paper is structured as follows. Section 2 provides some background
concepts on TemPsy , model-driven trace checking, and service provisioning patterns.
Section 3 presents TemPsy-AG . Section 4 illustrates our approach for model-driven
checking of temporal properties based on service provisioning patterns. Section 5
reports on the evaluation of the scalability of our implementation. Section 6 discusses
related work. Section 7 concludes the paper, giving directions for future work.

2 Background

In this section, we first give a short overview of the TemPsy language and of the
corresponding model-driven trace checking procedure realized by TemPsy-Check;
afterwards, we present the specification patterns for service provisioning.

1The issue of distributed trace checking using Big Data technologies is out of the scope of this
paper (which restricts itself to the non-distributed case) and is left for future work; a distributed
algorithm for SOLOIST has been presented in [BGK14].

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

4 · Chaima Boufaied, Domenico Bianculli, Lionel Briand

〈TemPsyExpression〉 ::= [‘temporal’ 〈Id〉 ‘:’]
〈Scope〉 〈Pattern〉

〈Scope〉 ::= ‘globally’
| ‘before’ 〈Boundary1 〉
| ‘after’ 〈Boundary1 〉
| ‘between’ 〈Boundary2 〉 ‘and’ 〈Boundary2 〉
| ‘after’ 〈Boundary2 〉 ‘until’ 〈Boundary2 〉

〈Pattern〉 ::= ‘always’ 〈Event〉
| ‘eventually’ 〈RepeatableEventExp〉
| ‘never’ [‘exactly’ 〈Int〉] 〈Event〉
| 〈EventChainExp〉 ‘preceding’

[〈TimeDistanceExp〉] 〈EventChainExp〉
| 〈EventChainExp〉 ‘responding’

[〈TimeDistanceExp〉] 〈EventChainExp〉
〈Boundary1 〉 ::= [〈Int〉] 〈Event〉 [〈TimeDistanceExp〉]
〈Boundary2 〉 ::= [〈Int〉] 〈Event〉 [‘at least’ 〈Int〉 ‘tu’]
〈EventChainExp〉 ::= 〈Event〉

(‘,’ [‘#’ 〈TimeDistanceExp〉] 〈Event〉)*
〈TimeDistanceExp〉 ::= 〈ComparingOp〉 〈Int〉 ‘tu’
〈RepeatableEventExp〉 ::= [〈ComparingOp〉 〈Int〉] 〈Event〉
〈ComparingOp〉 ::= ‘at least’ | ‘at most’ | ‘exactly’
〈Event〉 ::= 〈Id〉

traceElements*{ordered}

Trace

TraceElement

event : EString
timestamp : EInt

Figure 1 – Syntax (fragment) of TemPsy (left) and meta-model for execution traces (right)

2.1 The TemPsy language

TemPsy (Temporal Property made easy) [DBB17a] is a pattern-based, domain-specific
language for the specification of temporal properties. It has been designed based on
the catalogue of property specification patterns by Dwyer et al. [DAC99], with new
constructs derived from a field study performed in the domain of business processes
for eGovernment.

The main elements of the syntax of TemPsy are shown on the left of Figure 1:
terminals are enclosed in single quotes, non-terminals in angle brackets, optional el-
ements in brackets; character ‘*’ indicates zero or more occurrences of an element;
〈event〉s are denoted by alphanumeric strings. Temporal properties in TemPsy are
represented through the concept of 〈TemPsyExpression〉, which is composed of a
scope and a pattern: the latter represents a high-level abstraction of a formal spec-
ification while the former indicates the portion(s) of a system execution in which a
certain pattern should hold. TemPsy supports all the patterns (“absence”, “univer-
sality”, “existence”, “bounded existence”, “precedence”, “response”, “precedence chain”,
“response chain”) and scopes (“globally”, “before”, “after”, “between-and”, “after-until”)
introduced in [DAC99]; patterns and scopes are denoted by an intuitive syntax.

The new constructs added in TemPsy on top of the original patterns definitions
in [DAC99] include: the possibility, in the definition of a scope boundary, of i) referring
to a specific occurrence of an event, and of ii) indicating a distance from the scope
boundary; iii) the support for indicating a time distance between occurrences in the
precedence and response patterns (as well as their chain versions); iv) additional
variants for the bounded existence and absence patterns. Notice that time distances

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

A Model-driven Approach to Trace Checking of Temporal Properties with Aggregations · 5

are expressed with an integer value, followed by the ‘tu’ keyword, which represents a
generic system time unit (i.e., any denomination of time) as suggested in [KC05]).

For example, the property “Event A shall happen at least 2 time units after the
fifth occurrence of event X” is expressed as “after 5 X at least 2 tu eventually A”.

2.2 Model-driven trace checking with TemPsy -Check

Model-driven trace checking [DBB17a] is an approach that reduces the problem of
checking a temporal property ρ over an execution trace λ to the problem of evalu-
ating an OCL constraint (semantically equivalent to ρ) on an instance (equivalent
to λ) of a meta-model of the trace. This reduction enables the use of standard con-
straint checking technology to perform trace checking; standard OCL checkers, such
as Eclipse OCL2, can be used to evaluate OCL constraints on model instances in a
practical and scalable way. This trace checking technique has been proposed for adop-
tion in contexts that rely on a model-driven development process, in which solutions
must be engineered by using standard MDE technologies that are already in place in
the targeted development environment.

In the case of TemPsy , the model-driven trace checking approach has been im-
plemented in the TemPsy-Check tool [DBB17b]. This tool relies on an optimized
mapping of TemPsy properties into OCL constraints on the meta-model of execu-
tion traces depicted in the UML class diagram shown on the right of Figure 1. The
meta-model contains a Trace class composed of a sequence of TraceElements accessed
through the association traceElements. Each TraceElement contains an attribute
event of type string, which represents an event recorded in the trace, and an attribute
timestamp of type integer, which indicates the time at which the event occurred.

In a nutshell, TemPsy-Check works as follows: given a trace and a TemPsy prop-
erty (represented by a scope s and a pattern p), the tool evaluates an OCL invariant
defined based on the type of s and p. This evaluation conceptually corresponds to
applying the semantics of pattern p on a set of sub-traces; the latter is determined by
the semantics of scope s. The output of the invariant evaluation is then returned as
Boolean verdict of the trace checking procedure.

2.3 Specification Patterns for Service Provisioning

Specification patterns for service provisioning were identified in a field study [BGPS12],
which analyzed more than 900 requirements specifications written in the context
of service-based applications, extracted from research papers and industrial data.
The study classified the requirements specifications according to four systems of
property specification patterns: three of them were already defined in the litera-
ture [DAC99, KC05, GL06] whereas the fourth class included patterns that emerged
during the study. Indeed, the majority of the requirements specifications stated in
industrial settings (in the domain of banking service provisioning) could be expressed
through this new set of patterns, which consists of: “average response time” (S1),
“counting the number of events” (S2), “average number of events” (S3), “maximum
number of events” (S4), “absolute time” (S5), “unbounded elapsed time” (S6), and
“data awareness” (S7). Among these, patterns S1-S3-S4 were used in almost 82% of
the specifications.

2https://projects.eclipse.org/projects/modeling.mdt.ocl

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

6 · Chaima Boufaied, Domenico Bianculli, Lionel Briand

c

2

b

5

a

8

b

14

c

17

a

18

b

22

a

25

b

28

a

30

Figure 2 – Sample trace

In the following, we provide an explanation of patterns S1-S3-S4 (which are the
ones considered in this paper), based on the semantics adopted by the SOLOIST
language [BGS13], which is a temporal logic tailored to the specification of properties
based on the service provisioning patterns. Figure 2 depicts a sample trace (where
letters in the upper part of the timeline correspond to events, and numbers in the
lower part of the timeline indicate time-stamps in seconds) that will be used to explain
the patterns.

Average response time (S1). This pattern (also known as average elapsed time)
is a variant of the bounded response time proposed in [KC05], in which the distance
between pairs of events (i.e., the response time) is aggregated over a time window
of length K using the average operator. It can be used to express a property like
“P1: The average distance between events a and b in the last 20 seconds should be less
than 3 ”, where K = 20. The evaluation of this property, when done in the position
corresponding to the last element of the trace in Figure 2 (with timestamp τend = 30),
will consider the time window of length K that includes the events with a time-stamp
τ such that τend − K < τ ≤ τend : (b, 14), (c, 17), (a, 18), (b, 22), (a, 25), (b, 28),
(a, 30). The average distance is then computed by summing the differences between
the time-stamps of each pair3 of events (a, b) and dividing the result by the number
of the selected events pairs (2 in the example). In this case the average elapsed time is
(22−18)+(28−25)

2 = 3.5, which is greater than the bound 3, thus violating the property.
Average number of events (S3). This pattern aggregates (using the average

operator) the number of events that occurred in an observation interval h within
a time window K. It can be used to express a property like “P3: Within the last
20 seconds, in each 6-second interval, the average number of occurrences of event a
should be less than 3 ”, where K = 20, h = 6. The evaluation of this property, when
done in the position corresponding to the last element of the trace in Figure 2 (with
timestamp τend = 30), will consider the time window that includes the events with a
time-stamp τ such that τend−

⌊
K
h

⌋
h < τ ≤ τend . Notice that the left boundary of the

time window is determined by taking into account the possibility that K may not be
an exact multiple of h; if this is the case, the tail interval (with length shorter than the
observation interval) is discarded. This time window is then split in

⌊
K
h

⌋
adjacent,

non-overlapping observation intervals (open to the left and closed to the right) of
length h = 6; in the example, we have

⌊
20
6

⌋
= 3 observation intervals, delimited

by the following time-stamp boundaries: (12, 18], (18, 24], and (24, 30]. The average
number of occurrences is then computed by summing all the occurrences of event
a in each observation interval, and dividing the result by the number of observation
intervals. In the example, the average number of occurrences of a is 1+0+2

3 = 1, which
is less than the bound 3: the property is satisfied.

3Based on the semantics in [BGS13], the event (a, 30) is ignored for computing the (average)
distance, since it is not matched by a corresponding b event within the selected time window; a
similar reasoning applies to event (b, 14), which does not follow any event a in the selected time
window. Furthermore, as proposed in [BGS13], we require that between two occurrences of event
a (respectively, event b), there is an occurrence of event b (respectively, event a); because of this
assumption, fragments of traces of the form aabb will be collapsed into ab in a pre-processing step.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

A Model-driven Approach to Trace Checking of Temporal Properties with Aggregations · 7

Maximum number of events (S4). This pattern is a variant of the previous
one, in which the events are aggregated using the maximum operator. It can be used
to express a property like “P4: Within the last 20 seconds, in each 6-second interval,
the maximum number of occurrences of event a should be less than 3 ”; also in this
case, K = 20 is the time window considered for the aggregation, and h = 6 is the
observation interval. Differently from the case of pattern S3, the semantics of this
pattern (as defined in [BGS13]) takes also into account the events occurring in the tail
interval, even if its length is shorter than the one of the observation interval h. The
evaluation of property P4, when done in the position corresponding to the last element
of the trace in Figure 2, will thus consider

⌈
20
6

⌉
= 4 observation intervals, delimited

by the following time-stamp boundaries: (10, 12], (12, 18], (18, 24], and (24, 30]. The
application of the maximum operator will yield the value 2, which is less than the
bound 3: the property is satisfied.

3 Specifying temporal properties with aggregation operators through
TemPsy-AG

As a preliminary step towards our model-driven approach for trace checking of tem-
poral properties with aggregations, we extended the TemPsy language to support the
most used service provisioning patterns (i.e., S1, S3, and S4); the new version of the
language is called TemPsy-AG . We modified the syntax of TemPsy by adding new
rules corresponding to the constructs needed for the new patterns; the main addi-
tions to the grammar are shown in Figure 3. More specifically, TemPsy-AG sports
three new, intuitive keywords (‘avgRT’, ‘average’, ‘maximum’) indicating, respectively,
patterns S1, S3, and S4. In all these patterns, the time window used for aggrega-
tion is denoted through the ‘within’ keyword; the observation interval for patterns S3
and S4 is represented with the ‘every’ keyword; the bound is expressed through the
non-terminal 〈Bound〉, supporting the usual relational operators.

The example properties presented in section 2.3 can be written in TemPsy-AG as
follows (assuming a globally scope):

• P1 : globally avgRT(a,b) within 20 tu < 3

• P3 : globally average a within 20 tu every 6 tu < 3

• P4 : globally maximum a within 20 tu every 6 tu < 3

In the same spirit as TemPsy , by design TemPsy-AG does not aim at being as
expressive as a full-fledged temporal logic. Instead, its goal is to make as easy as
possible the specification of common types of temporal properties through a pattern-
based language.

〈Pattern〉 ::= . . .
| ‘avgRT’ ‘(’〈Event〉 ‘,’ 〈Event〉‘)’ ‘within’ 〈Int〉 ‘tu’ 〈Bound〉
| ‘average’ 〈Event〉 ‘within’〈Int〉 ‘tu’ ‘every’〈Int〉 ‘tu’ 〈Bound〉
| ‘maximum’ 〈Event〉 ‘within’〈Int〉 ‘tu’ ‘every’〈Int〉 ‘tu’ 〈Bound〉

. . .
〈Bound〉 ::= (‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘==’ | ‘!=’) 〈Int〉

Figure 3 – Syntactic extension included in TemPsy-AG

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

8 · Chaima Boufaied, Domenico Bianculli, Lionel Briand

1 context Trace
2 inv: self.properties->forAll(property:TemPsy::TemPsyExpression |
3 let scope:TemPsy::Scope = property.scope, pattern:TemPsy::Pattern = property.

pattern in
4 if scope.type = TemPsy::GLOBALLY then
5 let subtraces:Sequence(OrderedSet(TraceElement)) = applyScopeGlobally(scope) in
6 [...code related to the other patterns omitted...]
7 if pattern.type = TemPsy::MAX then
8 subtraces->forAll(subtrace | checkPatternMAX(subtrace, pattern))
9 else if pattern.type = TemPsy::AVG then

10 subtraces->forAll(subtrace | checkPatternAVG(subtrace, pattern))
11 else if pattern.type = TemPsy::AVGRT then
12 subtraces->forAll(subtrace | checkPatternAVGRT(subtrace, pattern)
13 endif endif endif
14 else if scope.type = TemPsy::BEFORE then [...])

Figure 4 – OCL invariant for checking TemPsy-AG properties on a trace

The formal definition of the semantics of TemPsy-AG (not included here for space
reasons) extends the one of TemPsy (available in [Dou16]), and is based on the con-
cept of temporal linear traces. The semantics of the new three operators added in
TemPsy-AG largely mirrors the formalization of the corresponding service provision-
ing patterns provided in [BGS13]. The main difference from the definitions in [BGS13]
is that the operators corresponding to the service provisioning patterns are always
evaluated in correspondence of the last element of a (sub-)trace; in other words, the
time window defined by the parameter K is always computed with respect to the
timestamp of the last element of the (sub-)trace (as done in section 2.3).

4 Model-driven trace checking of TemPsy-AG properties

Our approach for model-driven trace checking of temporal properties with aggregation
operators is based on the existing trace checking procedure available in TemPsy-
Check [DBB17b, DBB17a]. In this section we present the extension of this procedure
to support the new types of properties included in TemPsy-AG .

Our main contribution is the operationalization, in OCL, of the semantics of the
service provisioning patterns included in TemPsy-AG . This is a challenging task since
this mapping has to be optimized, based on the structure of the properties to check,
in order to achieve better performance.

As mentioned in section 2.2, the idea at the basis of model-driven trace checking,
given as input a TemPsy-AG property represented by a scope s and a pattern p, is
to evaluate an OCL invariant defined based on the type of s and p. This evaluation
conceptually corresponds to applying the semantics of pattern p on the set of sub-
traces that is determined by the semantics of scope s.

We extend the definition of this invariant to support the aggregation operators
available in TemPsy-AG ; a snippet of its OCL pseudocode is shown in Figure 4. The
body of the invariant expression is a multi-way branch, which selects a certain branch
based on the specific scope type used within the property (line 4 shows the case for the
“globally” scope). In each branch, after determining the collection of sub-traces (as
determined by the scope semantics) with a call to a function of the form applyScope*

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

A Model-driven Approach to Trace Checking of Temporal Properties with Aggregations · 9

(as in line 5, invoking applyScopeGlobally), there is another multi-way branch, which
selects a certain branch based on the specific pattern type used within the property.
Lines 7–13 show the branches corresponding to the three new aggregation operators
of TemPsy-AG . In each branch there is a function of the form checkPattern* that
checks whether the pattern used in the property holds on each sub-trace. The core of
our extension lies in the definition of three new OCL functions—checkPatternAVGRT
(for pattern S1, “average response time”), checkPatternAVG (for pattern S3, “aver-
age number of events”), and checkPatternMAX (for pattern S4, “maximum number of
events”)—that contain the operational definition (in OCL) of the semantics of each
pattern. The rest of the invariant definition (e.g., returning the verdict) is the same
as in the original version [DBB17a].

In the rest of this section we illustrate the definition of the three new checkPat-
tern* aforementioned functions, corresponding to the S1, S3, S4 service provisioning
patterns; to ease readability, the algorithms are written using OCL pseudocode.

4.1 Checking the “average response time” pattern

Function checkPatternAVGRT, whose pseudocode is shown in Algorithm 1, takes as
input a sub-trace and the parameters of an object representing an average response
time pattern in TemPsy-AG : the pair of events (a, b), the length of the time window
K, and a bound expressed with a relational operator ./ and a numeric constant n.
The function returns a Boolean value indicating whether the pattern holds on the
input sub-trace, i.e., whether the cumulative sum (over all pairs of events (a, b) in
the time window) of the time distance between each occurrence of event b and the
corresponding occurrence of event a, divided by the number of (a, b) events pairs in
the time window, satisfies the given bound.

The algorithm uses four auxiliary variables: accDist represents the cumulative
sum (over all pairs of events (a, b)) of the time distance between each occurrence of
event b and the corresponding occurrence of event a; numPairs is a counter keeping
track of the number of (a, b) events pairs found; inPair is a Boolean flag that is true
when the event a has been seen and the corresponding event b has not been seen yet;
lastSeenTS is the timestamp of the last-seen occurrence of event a.

First (line 2), the function determines the timestamps corresponding to the left
and right boundaries of the sub-trace to consider. The right boundary RB is the
timestamp of the last element of the sub-trace, whereas the left boundary LB is
determined by the value of the time window and is equal to RB − K; notice that
parameter K is assumed to be greater than the sub-trace length.

The central block of the function is a loop (lines 3–11) that iterates over all el-
ements of the input sub-trace whose timestamp is comprised between the left and
the right boundaries of the time window4. For each element, we check whether the
corresponding event is a match for either a or b. If we match an occurrence of event
a, we set the flag inPair to true and save the corresponding timestamp in variable
lastSeenTS . Notice that, as discussed in the footnote on page 6, we assume that
between two occurrences of event a there is an occurrence of event b. If we match an
occurrence of event b, if the flag inPair is true it means that this event is the one
corresponding to the last occurrence of event a previously matched. In this case, we
compute the distance between this element and the timestamp of the last-seen oc-
currence of event a, update the value of accDist accordingly, increase by 1 the value

4We consider the time window interval closed to the right, open to the left.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

10 · Chaima Boufaied, Domenico Bianculli, Lionel Briand

Algorithm 1: checkPatternAVGRT
Input: a trace segment subtrace and the parameters of an instance of the

average response time pattern of the form avgRT(a,b) within K tu ./ n:
Output: true if the pattern holds on subtrace; false otherwise

1 accDist ← 0, numPairs ← 0
inPair ← false, lastSeenTS ← null

2 RB ← subtrace.last().timestamp, LB ← RB − k
3 foreach elem ∈ subtrace such that

LB < elem.timestamp ≤ RB do
4 if elem.event = a then
5 inPair ← true
6 lastSeenTS ← elem.timestamp

7 else if elem.event = b then
8 if inPair = true then
9 accDist ← accDist + (elem.timestamp − lastSeenTS)

10 numPairs ← numPairs + 1
11 inPair ← false

12 return evalBound
(

accDist
numPairs , ./, n

)

of the numPairs counter, and reset the value of inPair to false. By construction,
following the informal semantics of the pattern presented in section 2.3, the algorithm
will ignore the occurrences of event a that are not matched by a corresponding b event
within the time window, as well as the occurrences of event b that do not follow any
event a in the time window.

The average response time is then computed by dividing the value of the variable
accDist (i.e., the cumulative time distance) by the value of variable numPairs (i.e.,
the number of matched pairs). This value is passed to function evalBound , together
with the value of parameters ./ and n. This function evaluates the bound stated in
the property, according to the relational operator ./ and the numeric constant n; the
result is then returned by the algorithm, representing the Boolean verdict of the trace
checking procedure.

4.2 Checking the “average number of events” pattern

Function checkPatternAVG, whose pseudocode is shown in Algorithm 2, takes as input
a sub-trace and the parameters of an object representing an average number of events
pattern in TemPsy-AG : the event a, the length of the time window K, the length
of the observation interval h, a bound expressed with a relational operator ./, and
a numeric constant n. The function returns a Boolean value indicating whether the
pattern holds on the input sub-trace, i.e., whether the average number of occurrences
of event a, aggregated over the observation intervals that are included in the time
window, satisfies the given bound.

First, the algorithm computes the temporal boundaries of the sub-trace to con-
sider: the right boundary RB is the timestamp of the last element of the sub-trace;
the left boundary LB depends on the value of the time window and on the value of
the observation interval and is equal to RB − bKh c.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

A Model-driven Approach to Trace Checking of Temporal Properties with Aggregations · 11

Algorithm 2: checkPatternAVG
Input: a trace segment subtrace and the parameters of an instance of the

average number of events pattern of the form
average a within K tu every h tu ./ n:

Output: true if the pattern holds on subtrace; false otherwise
1 RB ← subtrace.last().timestamp, LB ← RB − bKh c
2 totalOccurrences ← count(subtrace,(LB ,RB),a)
3 numIntervals ← bKh c
4 return evalBound

(
totalOccurrences
numIntervals , ./, n

)
Algorithm 3: checkPatternMAX
Input: a trace segment subtrace and the parameters of an instance of the

maximum number of events pattern of the form
maximum a within K tu every h tu ./ n

Output: true if the pattern holds on subtrace; false otherwise
1 RB ← subtrace.last().timestamp
2 intervals ← getIntervals(RB ,K,h)
3 foreach itv ∈ intervals do
4 numOccurrences.append(count(subtrace,itv ,a))

5 return evalBound (max (numOccurrences) , ./, n)

Then the algorithm computes two values:
• the number of occurrences of event a occurring in the interval (LB ,RB], com-
puted using the auxiliary function count and stored in variable totalOccurrences;

• the number of observation intervals over which to compute the aggregate value,
which is equal to bKh c according to the semantics of the pattern (see section 2.3);
this value is stored in variable numIntervals.

The average number of events is then computed by dividing the value of totalOc-
currences by the value of numIntervals. The resulting value is passed to function
evalBound , together with the value of parameters ./ and n, to evaluate the bound
stated in the property and determine the verdict of the trace checking procedure.

4.3 Checking the “maximum number of events” pattern

Function checkPatternMAX, whose pseudocode is shown in Algorithm 3, takes as input
a sub-trace and the parameters of an object representing a maximum number of events
pattern in TemPsy-AG : the event a, the length of the time windowK, the length of the
observation interval h, a bound expressed with a relational operator ./, and a numeric
constant n. The function returns a Boolean value indicating whether the pattern holds
on the input sub-trace, i.e., whether the maximum number of occurrences of event
a, aggregated over the observation intervals that are included in the time window,
satisfies the given bound.

First, the algorithm computes in variable RB the temporal right boundary of
the trace, i.e., the timestamp of the last element. Then it determines—by calling
the auxiliary function getIntervals—the left and right temporal boundaries of each
observation interval in the sub-trace, based on the values of RB , K, and h. Function

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

12 · Chaima Boufaied, Domenico Bianculli, Lionel Briand

getIntervals will return a list with
⌈
K
h

⌉
intervals; these intervals are open to the left

and closed to the right. In this list, stored in variable intervals, the first
⌈
K
h

⌉
−

1 intervals have length h and have the form (RB − (m+ 1)h,RB −mh] for 0 ≤
m ≤

(
bKh c − 1

)
h; the last interval (i.e., the left-most on the timeline) in the list

will be
(
max

(
RB −K,RB −

⌈
K
h

⌉)
,RB − bKh ch

]
, to take into account the possibility

of having a tail interval shorter than h, according to the semantics of the pattern
described in section 2.3.

Afterwards, the loop at lines 3–4 computes (through the auxiliary function count),
for each interval itv in the list intervals, the number of occurrences of event a in itv
and stores this value in the set numOccurrences.

The maximum number of events is then determined by computing the maximum
value over the set numOccurrences. This value is passed to function evalBound ,
together with the value of parameters ./ and n, to evaluate the bound stated in the
property and determine the verdict of the trace checking procedure.

4.4 Tool implementation

We have implemented our approach in TemPsy-Check-AG, as an extension of the
publicly available TemPsy-Check [DBB17b] tool. The extension includes the OCL
code to deal with the service provisioning patterns; we have also extended the TemPsy
DSL editor to support the new expressions in the TemPsy-AG language.

Our extension uses the same toolchain as TemPsy-Check: it takes as input a
trace in CSV format and a text file following the DSL syntax, with the properties to
check on the trace; the evaluation of the OCL constraints corresponding to the input
properties to check is performed using the OCL checker included in the Eclipse OCL
distribution.

5 Evaluation

We evaluated the scalability of our approach—in terms of the execution time—with
respect to the length of the trace and other parameters used in the specification of
TemPsy-AG properties. We also compared the performance of our approach with
SOLOIST-Translator , the state-of-the-art tool for (non-distributed) trace checking of
SOLOIST specifications [BGKSP14, BBG+14]. More specifically, we evaluated our
approach implemented in TemPsy-Check-AG by answering the following research
questions:

RQ1: How does TemPsy-AG scale with respect to the trace length when checking
properties expressed using the three main service provisioning patterns (S1, S3,
S4)? (section 5.2.1)

RQ2: How does TemPsy-AG scale with respect to the number of observation intervals
induced by the values of the parameters K and h, when checking properties
expressed using patterns S3 and S4? (section 5.2.2)

RQ3: How does TemPsy-AG fare with respect to SOLOIST-Translator, a state-of-
the-art tool for checking properties expressed using the three main service pro-
visioning patterns (S1, S3, S4)? (section 5.2.3)

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

A Model-driven Approach to Trace Checking of Temporal Properties with Aggregations · 13

5.1 Evaluation Settings

5.1.1 Temporal Properties

We used the three following property templates to answer all three research questions,
one for each type of service provisioning pattern:

• P1 : globally avgRT(a,b) within K tu < 5 (for pattern S1)

• P3 : globally average a within K tu every h tu < 5 (for pattern S3)

• P4 : globally maximum a within K tu every h tu < 5 (for pattern S4)

where a and b are event names andK,h are parameters that are varied according to the
evaluation methodology (described below). Notice that all properties are expressed
using the “globally” scope: we made this choice following the evaluation methodology
proposed in existing work on model-driven trace checking [DBB17a]. Indeed, proper-
ties with the “globally” scope are the most challenging in terms of scalability, since the
semantics of this scope guarantees that the pattern (used in the property to check)
will be evaluated throughout the entire length of the trace.

5.1.2 Trace Generation Strategy

Following the evaluation guidelines proposed in existing work [BBG+16, DBB17a] on
trace checking, we used synthesized traces for the evaluation. The use of synthesized
traces over real ones allows us to systematically control the factors (e.g., the trace
length, the number of intervals) that are relevant for our research questions, while
setting other factors randomly, to avoid any bias.

We extended the trace generator program included in the TemPsy-Check distri-
bution with new generator strategies specific to the service provisioning patterns. The
generator program takes as input a TemPsy-AG property, the desired length of the
trace to generate, and additional parameters depending on the type of property given
in input and the factors one wants to control. The position and the order of events
are generated randomly taking into account the temporal and timing constraints pre-
scribed by the semantics of the pattern used in the input property. Positions in the
trace that are deemed not relevant for the evaluation of the property are filled with a
dummy event, so that the number of events in the trace is equal to the parameter K
used in patterns S1, S3, S4. In other words, between two adjacent events in the trace
we assume a time difference of 1 time unit, possibly indicated by the presence of a
dummy event. Given the semantics of the service provisioning patterns and taking
into account their formalization in TemPsy-AG (see section 3), this case corresponds
to the worst-case scenario (from a scalability point of view), in which the time window
over which the properties with aggregations are evaluated includes all the elements of
the trace. Below we sketch the trace generation strategies for the three new patterns.

Average response time (P1). For a given value of the parameter K we gen-
erate a trace of length K, containing X pairs of events (a, b), where X is a random
value between 2 and K

2 . We require that these pairs are distributed over the trace
such that the average time distance between the individual occurrences of events a
and the corresponding occurrences of b satisfies the bound indicated in the property.
We use the Z3 constraint solver [DMB08] to get the value of the X distances (one for
each events pair) that satisfy the property bound. Then we randomly allot the pairs
of (a, b) events over the trace according to a uniform distribution, while maintaining
for each pair the distance determined by the solver.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

14 · Chaima Boufaied, Domenico Bianculli, Lionel Briand

Average number of events (P3). For a given value of the parameters K and
h, we generate a trace of length K; the number of observation intervals I is computed
as I = bKh c. We then need to determine the number of occurrences of event a in each
of these I intervals, such that their distribution on the trace satisfies the property
bound. We use the Z3 constraint solver to find an assignment for the I variables
that represent the number of event occurrences in each interval. Finally, within each
interval, we randomly generate (with a uniform distribution on the range induced by
h) the required number of occurrences of events a in that interval.

Maximum number of events (P4). For a given value of the parameters K
and h, we generate a trace of length K; the number of observation intervals I is
computed as I = dKh e. We then need to determine the number of occurrences of
event a in each of these I intervals, such that their distribution on the trace satisfies
the property bound. For example, if the bound used in the property is “< n”, in each
observation interval we will generate occurrences of event a with a uniform distribution
on the range [0, n].

5.1.3 Computer Settings

The results reported in this section have been measured using the Unix time program
on a desktop computer with a 2.5GHz Intel Core i7 CPU and 16GB of memory, run-
ning Eclipse DSL Tools v. 4.6.2 (Neon Milestone 2), JavaSE-1.7 (Java SE v. 1.8.0_121,
Java HotSpot (TM) 64-Bit Server VM v. 25.121-b13, mixed mode), Eclipse OCL
v. 6.1.2, and SOLOIST-Translator (most recent version, commit 65684d1). All mea-
surements reported correspond to the average value over 5 runs of the trace checking
procedure (on the same trace, for the same property).

5.2 Evaluation Results

5.2.1 Scalability with respect the to trace length

Methodology. To answer RQ1, we ran TemPsy-Check-AG on traces of different
length (i.e., value of the parameter K in the input property), ranging from 100K to
1M in steps of 100K; on each trace, we checked the three properties shown above. For
P3 and P4 properties, we varied h so that the number of intervals was fixed to 10.

Results. The execution time measured for our approach is shown in Figure 5a.
Overall, the execution time varies from 2218ms, for checking property P1 (with the
“average response time” pattern) on a 100K trace, to 15339ms, for checking property
P3 (with the “average number of events” pattern) on a 1M trace. We also notice that
checking properties with the “average/maximum number of events” patterns requires
longer than checking properties with the “average response time” pattern.

The answer to RQ1 is that our approach scales linearly with respect to the length
of the trace for all three types of service provisioning patterns.

5.2.2 Scalability with respect to the number of observation intervals

Methodology. To address RQ2, we generated traces with length varying from 100K
to 500K in steps of 100K; for each of these trace lengths, we considered 10 different
values for the number of observation intervals (used in the context of patterns S3
and S4), ranging from 10 to 100 in steps of 10. In practice, to vary the number of
observation intervals, we varied the value of parameter h in properties P3 and P4
such that, when combined with the value of parameter K, it yields the desired value

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

A Model-driven Approach to Trace Checking of Temporal Properties with Aggregations · 15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

2,500

5,000

7,500

10,000

12,500

15,000

trace length

cp
u
(m

s)
P4
P3
P1

(a)

10 20 30 40 50 60 70 80 90 100

10,000

20,000

30,000

40,000

50,000

#Time intervals

cp
u
(m

s)

100K
200K
300K
400K
500K

(b)

10 20 30 40 50 60 70 80 90 100

10,000

20,000

30,000

40,000

50,000

#Time intervals

cp
u
(m

s)

100K
200K
300K
400K
500K

(c)

500 600 700 800 900 1,000 1,100

5,000

10,000

trace length
cp
u
(m

s)

SOLOIST-Translator
TemPsy-Check-AG

(d)

Figure 5 – Scalability in terms of execution time with respect to the trace length (a); scal-
ability in terms of the number of observation intervals for P3 properties (b) and P4
properties (c); comparison between the execution time of TemPsy-Check-AG and of
SOLOIST-Translator for checking P1 properties (d)

for the number of observation intervals. For example, in the case of a property with
the “average number of events” pattern, the value of h for obtaining 30 intervals on
a 100K long trace is h = b 10000030 c = 3333. Notice that in the case of the “maximum
number of events” pattern, when K mod h 6= 0, the tail interval will have a length
shorter than h and there is a range of values for h that yield the same number of
observation intervals; in this case, we chose the lowest value for h to get the largest
possible tail interval. We executed TemPsy-Check-AG on all the generated traces,
for the different values of K and h, to check properties P3 and P4.

Results. The execution time for checking properties with pattern S3 “average num-
ber of events” and with pattern S4 “maximum number of events” is shown in Figure 5b
and Figure 5c, respectively. Overall, the execution time ranges from 3138ms, for
checking a property with pattern S3 on a 100K long trace with 10 time intervals, to
53183ms, for checking a property with pattern S3 on a 500K long trace with 100 time
intervals. In line with the results discussed for RQ1, the execution time for checking
properties P3 and P4 is similar, i.e., checking patterns S3 and S4 has a similar cost.

The answer to RQ2 is that TemPsy-Check-AG scales linearly with respect to
the number of time intervals for patterns S3 and S4. With the same number of
observation time intervals, the higher the length of the trace, the longer it takes to
complete the trace checking procedure.

5.2.3 Comparison with SOLOIST-Translator

Methodology. To answer RQ3, we compared the performance (in terms of exe-
cution time) of TemPsy-Check-AG with SOLOIST-Translator , the only publicly

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

16 · Chaima Boufaied, Domenico Bianculli, Lionel Briand

available tool for non-distributed trace checking of properties written in SOLOIST ,
a language that supports the same service provisioning patterns as TemPsy-AG .

However, the two non-distributed trace checking algorithms for SOLOIST pro-
posed in the literature [BGKSP14, BBG+14], implemented in SOLOIST-Translator ,
do not scale well in terms of the length of the trace [BGK14]. A preliminary set of ex-
periments that we conducted reported similar results to those published in [BGKSP14,
BBG+14]: SOLOIST-Translator cannot handle traces longer than 1500 for checking
properties with patterns S3 and S4, and traces longer than 1200 for checking proper-
ties with pattern S1. This is due to the internal translation of input properties done
by the tool, which takes into account the granularity of the timestamps of the trace
elements. For these reasons, we could only use small traces to compare the two tools:

• For properties with pattern S1, we generated traces with length varying from
500 to 1100 in steps of 100.

• For properties with patterns S3 and S4, we generated traces with length varying
from 1000 to 1500 in steps of 100, and varied the number of observation intervals (by
setting the parameter h) through the values 2, 10, 50, 100.

Results. The results indicate that SOLOIST-Translator displays a steep linear
growth of the execution time for traces with a short length, whereas our approach
takes almost a constant time. For space reasons, we only show (in Figure 5d) the
results for the case of properties with pattern S1 “average response time”. For a
trace with length 1100 (the largest length we considered), SOLOIST-Translator took
12864ms, whereas TemPsy-Check-AG took 1243ms. We remark that the execu-
tion time taken by SOLOIST-Translator for checking pattern S1 on a trace with
length 1100 is more than twice the time (6250ms) taken by TemPsy-Check-AG for
checking a similar property on a 1M trace (see Figure 5a).

For the case of properties with the “average number of events” pattern, when
varying the number of time intervals from 2 to 100, the execution time of SOLOIST-
Translator ranges from 7929ms to 8285ms for a trace with length 1000, and from
17614ms to 18 254ms for a trace with length 1500. On the other hand, TemPsy-
Check-AG takes from 1260ms to 1446ms for a trace with length 1000, and from
1247ms to 1574ms for a trace with length 1500. We observed similar values for the
case of properties with the “maximum number of events”.

The answer to RQ3 is that TemPsy-Check-AG can handle much larger traces
than SOLOIST-Translator (with up to a 1000x increase in length) and exhibits faster
execution times.

5.3 Discussion

The results presented above indicate that the execution time of TemPsy-Check-AG
is acceptable from a practical standpoint: temporal properties with aggregation oper-
ators can be checked on a trace with millions of events within seconds. Furthermore,
the comparison with SOLOIST-Translator , a state-of-the-art tool that supports the
same service provisioning patterns (S1, S3, S4) as TemPsy-Check-AG, shows that
our approach can handle much larger traces than SOLOIST-Translator (with up to
a 1000x increase in length) and exhibits faster execution times. Overall, these results
show that extending a model-driven trace checking approach [DBB17a] with support
for a larger range of properties yield a scalable and viable solution for verifying, in
offline settings, temporal properties with aggregation operators.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

A Model-driven Approach to Trace Checking of Temporal Properties with Aggregations · 17

Threats to validity. One of the main threats is the use of synthesized traces in the
evaluation. Real execution traces might be different, in terms of events occurrences
and time distances. However, this threat does not affect our research questions on
scalability, as we want to analyze the execution time as a function of a number of
parameters (e.g., trace length), while varying randomly other aspects. Another threat
is the representativeness of the properties templates used for the evaluation. These
property templates, although simple, represent the type of properties (with service
provisioning patterns) that can be written in realistic scenarios, since they are based
on those extracted in a study [BGPS12] of specifications written in industrial settings;
furthermore, similar templates have been used in existing work [BGKSP14, BBG+14,
BGS13] on trace checking of the same service provisioning patterns. Another threat is
given by the use of Eclipse OCL; one could get different results by using another OCL
checker, with lower performance. We chose Eclipse OCL for its scalability. Finally,
as for the comparison with SOLOIST-Translator , we remark that its specification
language (SOLOIST) is more expressive than TemPsy-AG (e.g., by supporting first-
order quantification and the full set of metric temporal logic modalities); hence the
performance of SOLOIST-Translator could have been negatively affected by the more
complex implementation needed to support a richer specification language.

6 Related work

Besides the work revolving around the SOLOIST language [BGKSP14, BBG+14,
BGS13], there are other approaches that focus on run-time verification of properties
with aggregation operators [SW95, FSS05, DSS+05, Rap16, BKMZ15]. Among the
most recent, Basin et al. [BKMZ15] present an extension of the MFOTL logic that
supports aggregation on data, i.e., terms used in the logical predicates, and the cor-
responding monitoring algorithm; Rapin [Rap16] proposes a dense-time specification
language (and the monitoring algorithm), in which aggregation operators can be used
to specify invariants of hybrid, signal-based systems. The main difference of these
approaches from ours is the specific type of aggregation operators considered: in all
the aforementioned approaches, the aggregation is done on the values of data/signals
whereas the service provisioning patterns supported by TemPsy-AG aggregate events.
LarvaStat [CGP10] is an extension of the Larva monitoring tool [CP17] with support
for collecting statistical data of the execution, through point- and interval-statistics
operators; however, the definition of these operators is quite operational, requiring
explicitly to specify the update rules for the aggregations and the conditions char-
acterizing the intervals. In contrast, TemPsy-AG provides high-level aggregation
operators, with pre-defined semantics.

One of the key features of Complex Event Processing (CEP) systems [Luc01] is
to aggregate data from multiple sources, using aggregating operators similar to those
included in TemPsy-AG . One of the main difference between CEP approaches and
RV ones is that the former compute the result of a query on a event trace, whereas
the latter evaluate a property on a trace [Hal16]. Approaches like BeepBeep [Hal16]
combine CEP and RV, allowing the evaluation of properties (possibly temporal) over
event streams processed (e.g., by means of aggregating operators) through a CEP-
like pipeline. Conceptually, TemPsy-AG adopts a similar approach, since in the OCL
constraints the events are aggregated according to the pattern semantics before the
evaluation of the relational expression in the property.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

18 · Chaima Boufaied, Domenico Bianculli, Lionel Briand

7 Conclusion and Future Work

The verification of complex software systems often requires to check temporal proper-
ties that contain aggregation operators. When specifying such properties, a software
engineer can leverage an existing catalogue of property specification patterns, called
“service provisioning patterns” [BGPS12]. Nevertheless, existing solutions for trace
checking of these properties suffer from scalability limitations. In this paper we have
presented our solution for scalable trace checking of temporal properties with aggrega-
tion operators, extending an existing model-driven approach for trace checking. Our
approach is based on an optimized mapping into OCL constraints (on a meta-model
of execution traces) of the main service provisioning patterns. We have implemented
our approach in the tool TemPsy-Check-AG and evaluated its performance: the
results show that our approach can check temporal properties with aggregation oper-
ators on a trace with millions of event within seconds, scales linearly with respect to
the length of the input trace, and can deal with much larger traces than a state-of-the-
art tool. Furthermore, the results indicate the feasibility and viability of extending
model-driven trace checking [DBB17a], a promising run-time verification approach
enabled by MDE technologies, with support for a larger class of properties, while
retaining acceptable performance from a practical standpoint.

As part of future work, we plan to collaborate with an industrial partner, to
apply (and extend) TemPsy-AG for the verification of properties of cyber physical
systems. We will also investigate how to leverage Big Data technologies to paral-
lelize our trace checking approach, inspired by the existing work on distributed trace
checking [BBG+16, BGK14, BCE+14, BKSB+12].

References

[BBG+14] Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srđan
Krstić, and Pierluigi San Pietro. SMT-based checking of SOLOIST
over sparse traces. In FASE2014, volume 8411 of LNCS, pages 276–290.
Springer, 2014.

[BBG+16] Marcello M. Bersani, Domenico Bianculli, Carlo Ghezzi, Srđan
Krstić, and Pierluigi San Pietro. Efficient large-scale trace checking
using mapreduce. In Proc. ICSE2016, pages 888–898. ACM, 2016.

[BCE+14] David Basin, Germano Caronni, Sarah Ereth, Matúš Harvan, Felix
Klaedtke, and Heiko Mantel. Scalable offline monitoring. In Proc.
RV2014, volume 8734 of LNCS, pages 31–47. Springer, 2014.

[BCW17] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice: Second Edition. Morgan & Claypool
Publishers, 2nd edition, 2017.

[BFFR18] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. In-
troduction to runtime verification. In Lectures on Runtime Verification
- Introductory and Advanced Topics, volume 10457 of LNCS, pages 1–
33. Springer, 2018.

[BGK14] Domenico Bianculli, Carlo Ghezzi, and Srđan Krstić. Trace checking
of metric temporal logic with aggregating modalities using MapReduce.
In Proc. SEFM2014, volume 8702 of LNCS, pages 144–158. Springer,
2014.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a15

A Model-driven Approach to Trace Checking of Temporal Properties with Aggregations · 19

[BGKSP14] Domenico Bianculli, Carlo Ghezzi, Srdan Krstic, and Pierluigi
San Pietro. Offline trace checking of quantitative properties of service-
based applications. In Proc. SOCA2014, pages 9–16. IEEE, 2014.

[BGPS12] Domenico Bianculli, Carlo Ghezzi, Cesare Pautasso, and Patrick
Senti. Specification patterns from research to industry: a case study
in service-based applications. In Proc. ICSE2012, pages 968–976. IEEE,
2012.

[BGS13] Domenico Bianculli, Carlo Ghezzi, and Pierluigi San Pietro. The tale
of SOLOIST: a specification language for service compositions inter-
actions. In Proc. FACS2012, volume 7684 of LNCS, pages 55–72.
Springer, 2013.

[BKMZ15] David Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zălinescu.
Monitoring of temporal first-order properties with aggregations. Formal
methods in system design, 46(3):262–285, 2015.

[BKSB+12] Benjamin Barre, Mathieu Klein, Maxime Soucy-Boivin, Pierre-Antoine
Ollivier, and Sylvain Hallé. MapReduce for parallel trace validation of
LTL properties. In Proc. RV2012, volume 7687 of LNCS, pages 184–
198. Springer, 2012.

[CGP10] Christian Colombo, Andrew Gauci, and Gordon Pace. Larvastat:
Monitoring of statistical properties. In Proc. RV2010, volume 6418
of LNCS, pages 480–484. Springer, 2010.

[CP17] Christian Colombo and Gordon Pace. Runtime verification using larva.
In Proc. RV-CuBES2017, volume 3 of Kalpa Publications in Comput-
ing, pages 55–63. EasyChair, 2017.

[CZss] C. Czepa and U. Zdun. On the understandability of temporal proper-
ties formalized in linear temporal logic, property specification patterns
and event processing language. IEEE Transactions on Software Engi-
neering, in press. doi: 10.1109/TSE.2018.2859926.

[DAC99] Matthew B Dwyer, George S Avrunin, and James C Corbett. Pat-
terns in property specifications for finite-state verification. In Proc.
ICSE1999, pages 411–420. ACM, 1999.

[DBB17a] Wei Dou, Domenico Bianculli, and Lionel Briand. A model-driven ap-
proach to trace checking of pattern-based temporal properties. In Proc.
MODELS2017, pages 323–333. IEEE Computer Society, 2017.

[DBB17b] Wei Dou, Domenico Bianculli, and Lionel Briand. TemPsy-Check: a
tool for model-driven trace checking of pattern-based temporal prop-
erties. In Proc. RV-CuBES2017, volume 3 of Kalpa Publications in
Computing, pages 64–70. EasyChair, September 2017.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In Proc. TACAS2008, volume 4963 of LNCS, pages 337–340. Springer,
2008.

[Dou16] Wei Dou. A Model-Driven Approach to Offline Trace Checking of Tem-
poral Properties. PhD thesis, University of Luxembourg, 2016. URL:
http://hdl.handle.net/10993/29184.

Journal of Object Technology, vol. 18, no. 2, 2019

10.1109/TSE.2018.2859926
http://hdl.handle.net/10993/29184
http://dx.doi.org/10.5381/jot.2019.18.2.a15

20 · Chaima Boufaied, Domenico Bianculli, Lionel Briand

[DSS+05] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson,
B. Finkbeiner, H.B. Sipma, S. Mehrotra, and Z. Manna. Lola: run-
time monitoring of synchronous systems. In Proc. TIME 2005, pages
166–174. IEEE, june 2005.

[FHR13] Yliès Falcone, Klaus Havelund, and Giles Reger. A tutorial on runtime
verification. In Engineering Dependable Software Systems, volume 34
of NATO Science for Peace and Security Series, D: Information and
Communication Security, pages 141–175. IOS Press, 2013.

[FSS05] Bernd Finkbeiner, Sriram Sankaranarayanan, and Henny Sipma. Col-
lecting statistics over runtime executions. Formal Methods in System
Design, 27:253–274, 2005.

[GL06] Volker Gruhn and Ralf Laue. Patterns for timed property specifica-
tions. Electron. Notes Theor. Comput. Sci., 153(2):117–133, 2006.

[Hal16] Sylvain Hallé. When RV meets CEP. In Proc. RV2016, volume 10012
of LNCS, pages 68–91. Springer, 2016.

[KC05] Sascha Konrad and Betty H. C. Cheng. Real-time specification pat-
terns. In Proc. ICSE2005, pages 372–381. ACM, 2005.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime
verification. Journal of Logic and Algebraic Programming, 78(5):293–
303, May/June 2009.

[Luc01] David C. Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[Rap16] Nicolas Rapin. Reactive property monitoring of hybrid systems with
aggregation. In Proc. RV2016, volume 10012 of LNCS, pages 447–453.
Springer, 2016.

[SW95] A Prasad Sistla and Ouri Wolfson. Temporal conditions and integrity
constraints in active database systems. In ACM SIGMOD Record, vol-
ume 24, pages 269–280. ACM, 1995.

About the authors

Chaima Boufaied is a PhD student at the SnT Centre of the University of Luxem-
bourg. Contact her at chaima.boufaied@uni.lu.

Domenico Bianculli is a research scientist at the SnT Centre of the University of
Luxembourg. Contact him at domenico.bianculli@uni.lu.

Lionel Briand is a professor at the SnT Centre of the University of Luxembourg.
Contact him at lionel.briand@uni.lu.

Acknowledgments This work has received funding from the European Research
Council under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 694277) and from the University of Luxembourg (grant
“MOVIDA”).

Journal of Object Technology, vol. 18, no. 2, 2019

mailto:chaima.boufaied@uni.lu
mailto:domenico.bianculli@uni.lu
mailto:lionel.briand@uni.lu
http://dx.doi.org/10.5381/jot.2019.18.2.a15

	Introduction
	Background
	The TemPsy language
	Model-driven trace checking with TemPsy-Check
	Specification Patterns for Service Provisioning

	Specifying temporal properties with aggregation operators through TemPsy-AG
	Model-driven trace checking of TemPsy-AG properties
	Checking the ``average response time'' pattern
	Checking the ``average number of events'' pattern
	Checking the ``maximum number of events'' pattern
	Tool implementation

	Evaluation
	Evaluation Settings
	Temporal Properties
	Trace Generation Strategy
	Computer Settings

	Evaluation Results
	Scalability with respect the to trace length
	Scalability with respect to the number of observation intervals
	Comparison with SOLOIST-Translator

	Discussion

	Related work
	Conclusion and Future Work
	References
	About the authors

