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A b s t r a c t

In coronary artery disease the G protein related kinases (GRKs) play a role in
desensitization of β-adrenoreceptors (AR) after coronary occlusion. Targeted
deletion and lowering of cardiac myocyte GRK-2 decreases the risk of post-
ischemic heart failure (HF). Studies carried out in humans confirm the role
of GRK-2 as a marker for the progression of HF after myocardial infarction (MI).
The level of GRK-2 could be an indicator of β-AR blocker efficacy in patients with
acute coronary syndrome. Elevated levels of GRK-2 are an early ubiquitous con-
sequence of myocardial injury. In hypertension an increased level of GRK-2 was
reported in both animal models and human studies. The role of GRKs in vagal-
ly mediated disorders such as vasovagal syncope and atrial fibrillation remains
controversial. The role of GRKs in the pathogenesis of neurocardiological dis-
eases provides an insight into the molecular pathogenesis process, opens poten-
tial therapeutic options and suggests new directions for scientific research.

KKeeyy  wwoorrddss::  autonomic, sympathetic, vagal, molecular signaling pathway.

Neurocardiovascular pathophysiology: sympathetic versus vagally
mediated disorders

Neural control of the cardiovascular (CV) system is an integral part of CV
physiology and consequently a part of CV pathological mechanisms. Two
fundamental parts of the autonomic nervous system – the sympathetic
and parasympathetic (vagal) components – play a role in the development
and initiation of the pathological process. The classification of neurocar-
diological disorders by Goldstein [1] is as follows: 1) Sympathetic disorders
– diseases in which activation of the catecholamine system worsens an
independent pathological state (coronary artery disease, arrhythmias as
long QT syndrome, sudden death, heart failure (HF)) as well as diseases
in which abnormal catecholaminergic function is etiologic (sympathetic
neurocirculatory failure, hypertension, cardiac necrosis and cardiomyopa-
thy), and 2) Vagally mediated disorders – both neurally mediated syncope
(vasovagal syncope, carotid sinus hypersensitivity) and vagally mediated
atrial fibrillation. Neural regulation of the CV system can be studied by
using different techniques [2-8]. G protein related kinases (GRKs) exist in
7 isoforms – GRK 1-7. They are serine-threonine protein kinases that are 
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ubiquitously expressed [9]. G protein related kinas-
es are highly selective, mostly cytosolic proteins
which phosphorylate G protein coupled receptors
(GPCRs) [10]. GPCRs phosphorylation desensitizes
these receptors [10]. G protein related kinases
modulate both sympathetic [11] and vagal molec-
ular signaling pathways [12]. Advances in both ani-
mal and human studies may lead to novel thera-
peutic approaches, especially through inhibition
of GRKs [10].

In this narrative review we consider data from
recent studies which focus on GRKs as a potential
novel neurocardiovascular approach to various con-
ditions, such as coronary artery disease (CAD). 

G protein related kinases – general overview

The molecular signaling pathway of the sympathe -
tic nervous system also involves GPCRs, α (α1-α2)

and β (β1-β3) [13]. More than half of the drugs cur-
rently in clinical use target GPCR by either mimick-
ing endogenous GPCR ligands, blocking ligand
access to the receptor or by modulating ligand pro-
duction [14], which also represents the mechanism
of action of sympatholytic and sympathomimetic
drugs. Agonist-dependent desensitization of GPCR
is caused by the phosphorylation of the specific
receptor by the GRK family [15-18]. GRKs have a cen-
tral catalytic domain flanked by amino-terminal and
carboxyl-terminal domains which contain specific
regulatory sites (Figure 1) [10].

In the heart, GRK-2 is the most abundant iso-
form [19]. After ligand binding to the specific recep-
tor and dissociation of G protein to Gs and Gβγ sub-
units, Gs stimulates adenyl cyclase (AC), leading to
cAMP synthesis and subsequent cAMP-dependent
kinase (PKA) activation, while GRK-2 interacts with
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the Gβγ subunit, and translocates to the plasma
membrane where GRK-2 phosphorylates the intra-
cellular domain of GPCR (Figure 1 A) [20]. Further-
more, PKA beside other cell functions also phos-
phorylates serine and threonine residues on GRK-2
which enhances the association of GRK-2 with a
β-AR (Figure 1 A) [21]. The phosphorylation of GPCR
enhances the affinity of the β-AR for binding to
adapter proteins such as β-arrestin (Figure 1 B). In
addition, β-arrestin sterically prevents G protein
binding to the β-AR and further transduction of sig-
naling [19]. Also, β-arrestin recruits PDE4, which
attenuates local cAMP levels (Figure 1 B) and con-
sequently the ability of PKA to further phosphory-
late GRK-2, resulting in the attenuation of receptor
desensitization and internalization [22]. It is impor-
tant to note that GRK-2 participates not only in
desensitization of β-AR, but also in desensitization
of other GPCRs in the cell, such are the adrenergic
and muscarinic receptor family [23]. 

Role of G protein related kinase in coronary
artery disease – evidence from animal studies

Neurohormonal activation occurs early in
the progression to HF, as reflected by increased cat-
echolamine levels and adrenergic drive immedi -
ately after myocardial infarction (MI) and before 
progression to end-stage HF [24]. Therefore, sym-
pathetic nervous activity has been investigated as
a possible early trigger for increasing GRK activity
in the failing myocardium. Excessive catecholamine
stimulation modulates β-AR signaling and damps
sympathetic signaling [24]. This is considered to be
an adaptive mechanism to sympathetic overstim-
ulation. With the progression of HF, chronic expo-
sure to increased levels of catecholamines results
in pathologic desensitization of β-AR and their
down-regulation [23].

Mice have been engineered to overexpress
myocardial GRK-2 [25], GRK-3 [26] and GRK-5 [27].
Left ventricular function in response to a β-AR ago-
nist was significantly decreased [25]. This was
the first time that this GRK was shown to func-
tionally uncouple β-ARs in the heart [23, 25]. In
the same study, the effect of low level of GRK-2 was
investigated by targeting GRK-2 derived peptide, 
β-ARKct, the protein inhibitor of GRK-2 transloca-
tion and activation. In these mice, the heart had an
improved function both in baseline conditions as
well as in response to adrenergic stimulation [25]. 

Besides using transgenic mice to investigate
the role of GRK-2 in cardiac development and func-
tion, the knockout mice model has also been used.
The investigations have shown that embryos lack-
ing the GRK-2 gene develop major cardiac anom-
alies incompatible with life [28].

Furthermore, it has been reported that β-AR sen-
sitivity increases 30 min after coronary artery liga-

tion (CAL) [29]. There are few studies of β-AR trans-
duction sensitivity in animal models of MI during
the sub-acute period extending from 6 h to 24 h
after CAL [30, 31]. This period roughly coincides with
an observed second peak for susceptibility and
development of β-AR-sensitive ventricular arrhyth-
mias and sudden cardiac death in animal models
[30]. GRK-2, but not GRK-5, activity in the sub-epi-
cardial border zone was reduced 24 h after CAL
compared with the non-ischemic subepicardial tis-
sue [30]. This corresponds with the fact that in
the ischemic tissue there is a loss of the ability to
desensitize to β-AR stimulation 24 h after CAL. This
is in temporal correspondence with a second peak
in sudden cardiac death observed between 6 h and
24 h in dog and rat models of MI [30]. Raake et al.
[31] generated a mouse model where cardiac
myocyte GRK-2 was ablated after birth or after
application of tamoxifen and the consequences
of GRK-2 ablation before and after CAL on cardiac
remodeling after MI were observed. GRK-2 ablation
was beneficial for survival, enhanced cardiac con-
tractile performance and preserving effect on car-
diac remodeling. Their results confirmed the causal
role of GRK-2 in generation of HF and the potential
importance of targeting of this protein in order to
prevent or slow down cardiac remodeling [31].

Transgenic and adenoviral expression of a pep-
tide inhibitor of GRK-2 translocation, β-ARKct, has
proved useful in experimental HF models [27, 32].
The genetic manipulations at different levels of
β-AR signaling demonstrate that the right point
of intervention is important to the function of the
heart and suggest that it is more desirable to cir-
cumvent β-AR desensitization than to simply facil-
itate β-AR activation [33]. Results [33] show that
targeted deletion and lowering of cardiac myocyte
GRK-2 activity by β-ARKct gene therapy leads to
a novel protective and inotropic phenotype, which
prevents post-ischemic HF and rescues a pheno-
type of established HF. The same authors reported
that the inhibition of GRK-2 by β-ARKct had a ben-
eficial effect, not only on the hemodynamic param-
eters of heart function, but also on normalization
of the catecholaminergic neurohormonal axis [33]. 

Role of G protein related kinase in coronary
artery disease – evidence from human studies

Increased cardiac GRK-2 levels have been
described in chronic HF and are associated with 
elevated sympathetic activity [23, 31]. Moreover,
Metaye et al. [34] and Santulli et al. [35] reported
that GRK-2 could be a marker for the progression
of HF after acute MI. It is important to point out
that β-blocker therapy reduces the GRK-2 levels and
then improves cardiac function [35]. Therefore,
the levels of GRK-2 in early stages of acute MI
might serve as a biological marker of progression
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towards HF, and could be an indicator of β-AR
blocker efficacy in patients with acute coronary syn-
drome. In addition, it has been shown that the
application of β-ARKct could inhibit the GRK-2 and
consequently improve β-AR signaling and contrac-
tile function of failing human myocytes [36]. In
the study reported by Williams et al. [36] the
β-ARKct was expressed via adenovirus-mediated
gene transfer in ventricular myocytes isolated from
hearts explanted from 10 patients with end-stage
HF undergoing cardiac transplantation. Compared
with uninfected failing myocytes, the velocities
of both contraction and relaxation in transfected
cells were increased in response to isoproterenol.
The fractional shortening was enhanced, as was
the activity of adenylyl cyclase [36]. This finding con-
firmed the results, previously reported from animal
studies [33], that the expression of β-ARKct can also
improve contractile function of failing human my -
ocytes. 

Role of G protein related kinase 
in arrhythmias and sudden death – evidence
from human studies

Patients with HF have an increased plasma 
concentration of catecholamines, probably due to
down regulation of β-AR and depression of the
β-AR-mediated signal transduction axis [34]. Pro-
longed sympathetic stimulation could result in 
electrophysiological and metabolic disturbances
of the myocardium due to disturbed intracellular
calcium homeostasis, resulting in tachyarrhythmia
and sudden death [37-39]. It seems that prolonged
exposure to catecholamines induces changes in
both expression and activity of components of the
β-AR signaling pathway [34]. More detailed studies
about the impact of GRKs in arrhythmias with
a potential fatal outcome are still needed.

Role of GRKs in heart failure – evidence from
human studies 

Different diseases of the CV system (hyperten-
sion, CAD, cardiomyopathy) have a common clini-
cal endpoint – HF [10, 23]. Dilated cardiomyopathy
is a disease of left ventricular dysfunction accom-
panied by impairment of targets of the β1-AR 
signal cascade [10]. This disturbed β-AR function
could be based on an elevated sympathetic tone
observed in patients with HF [40, 41]. In these
patients, the plasma concentration of catechola -
mines is elevated, providing evidence of sympa-
thetic stimulation [42]. In patients with dilated 
cardiomyopathy β-AR responsiveness of the myo c-
ardium is diminished [42]. It has been reported [43]
that in these patients the expression of β1-AR is
reduced at the mRNA and protein level. In addition,
the expression of the inhibitory G-protein Gi is

found to be increased [43]. In addition, in HF pa -
tients the expression of GRK is elevated and it is
upregulated [10, 44]. Taken together, studies report-
ed by Ungerer et al. [44], Petrofski et al. [10] and
Leineweber et al. [43] suggest that elevated levels
of GRK-2 are an early, ubiquitous consequence
of myocardial injury that leads, ultimately, to clini-
cal HF. Also, GRK-2 upregulation often precedes
the development of measurable HF and may rep-
resent both a novel indicator for cardiac injury and
potential therapeutic intervention prior to clinical
dysfunction [10]. In addition, GRK changes appear
centered on GRK-2 although GRK-5 may also con-
tribute to the pathophysiology seen in HF. GRK-5
expression and activity have been shown to be ele-
vated in some animal models of HF, although its
role in human HF remains unclear [45]. Restoration
of β-AR signaling through selective myocardial 
GRK-2 inhibition represents a form of molecular
ventricular assistance and a possible therapeutic
approach to the failing heart. This may ultimately
constitute a valuable treatment modality for pa -
tients with chronic HF [46].

Role of G protein related kinases in sympathetic
neurocirculatory failure

Sympathetic neurocirculatory failure (SNF) fea-
tures orthostatic hypotension and abnormal beat-
to-beat blood pressure responses to the Valsalva
maneuver [1]. This pathophysiological phenomenon
is present in pure autonomic failure (or Bradbury-
Eggleston syndrome or idiopathic orthostatic hypo -
tension), Shy-Drager syndrome (multiple system
atrophy with sympathetic neurocirculatory failure),
and Parkinsonism with peripheral autonomic fail-
ure [1]. Several features of idiopathic orthostatic
hypotension have been attributed to hypoactive or
hyperactive states of adrenergic receptors of the
sympathetic nervous system. Recent data indicate
that autoimmune lesions of the β-AR signaling
pathway could be one of the contributing factors
to orthostatic intolerance [47, 48], but still there are
no available data about the contribution of GRK to
this syndrome.

HHyyppeerrtteennssiioonn

Although the pathophysiology of high blood
pressure is undeniably complex, increased vascu-
lar resistance [49] and increased plasma norepi-
nephrine [50] are likely to be involved. The patho-
physiology of various stages of hypertension is
different. In early hyperkinetic borderline hyper-
tension, the sympathetic drive to the heart and
blood vessels is increased, while the parasympa-
thetic cardiac inhibition is decreased [49]. The ele-
vated cardiac output, vascular resistance, and blood
pressure at that stage can be fully normalized by
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autonomic blockade [51]. The release of norepi-
nephrine, the major sympathetic neurotransmitter,
at the vascular level induces the activation of α1-
AR, which mediates vasoconstriction, and β-ARs,
which cause vasodilatation [52]. In hypertension,
the balance between α1-AR and β-AR systems is
shifted towards vasoconstriction, probably due to
the defective vasodilatation in response to β-adren-
ergic stimulation. β-AR agonist administration in
the human brachial artery causes vasodilatation,
with this response attenuated in hypertension [49,
52]. GRK-2, the enzyme responsible for fast desen-
sitization of β-AR, is abundantly expressed in
the heart and vessels [53]. This significant increase
has been observed in both heart and vessels of ani-
mal models of hypertension [54] and in genetical-
ly modified animals [55]. An increased level of
GRK-2 was also observed in spontaneously hyper-
tensive rats, as part of a more complex picture
of the imbalance between vasoconstrictor and
vasodilator systems of AR signaling [56]. In trans-
genic mice directing vascular smooth muscle expres-
sion of GRK-2, the mice showed elevated blood 
pressure with vascular thickening, hypertrophy
of the myocardium and reduced vascular relaxation
with the β-AR agonist isoproterenol [55]. These data
imply that the primary abnormality of β-AR signal-
ing pathway is GRK-2 overexpression in vascular
smooth muscle causing β-AR desensitization and
decreased vasodilatation [57]. Also, the desensiti-
zation of β-ARs and an increase in GRK-2 is con-
firmed in hypertensive patients [52, 58]. Although
GRK-2 polymorphisms have not been associated
with essential hypertension [59], increased GRK-2
expression (but not GRK-5) has been reported in
lymphocytes of African Americans with hyperten-
sion, where hypertension occurs with higher preva-
lence and morbidity [60]. Whether increased GRK-2
expression is a predictor of increased CV risk
remains to be determined, having in mind that
GRK-2 upregulation occurs with progression of
hypertension to HF [43]. Novel and optimistic data
suggest that morphine-mediated reduction of
GRK-2 expression as a hypertension-associated
gene could open a new line of hypertension thera-
py [61]. One of the crucial physiological roles of the
morphine-mediated molecular pathway is the main-
tenance of normal vascular tone [62].

CCaarrddiiaacc  nneeccrroossiiss  aanndd  ccaarrddiioommyyooppaatthhyy

Stress (tako-tsubo) cardiomyopathy is a condi-
tion afflicting older women, characterized by acute
left ventricular systolic dysfunction, triggered by
emotionally and physically stressful events, and
occurring without significant coronary obstruction
[63]. Infusion of catecholamines, stimulation of
the central nervous system, the combination of
stress and steroids, myocardial reperfusion and

pheochromocytoma, all could produce contraction
band necrosis, observed in cases of sudden cardiac
death [1]. The combination of subendocardial dam-
age and arrhythmogenic action of catecholamines
may explain the high frequency of sudden death in
patients with stroke, epilepsy, head trauma, intracra-
nial hypertension, and severe emotional distress
[64]. Single nucleotide polymorphisms involving
the β1-AR (amino acid positions 389 and 49) and
α2C (deletion 322-325) have been investigated for
susceptibility to stress cardiomyopathy [65], but
the role of GRK in this necrotic process of cardio -
myocytes is still not defined.

Role of G protein related kinases in neurally
mediated syncope and vagally induced atrial
fibrillation 

While much is known about the sympathetic reg-
ulation of cardiac function in health and disease,
less interest has been paid to the parasympathet-
ic branch of the autonomic nervous system [66].
Parasympathetic control over the heart is per-
formed by the vagal nerve, and the receptors 
for acetylcholine (AChR) at the heart level are of
the muscarinic type [27]. These receptors are 
also GPCRs [66], which are desensitized by the
phosphorylation by GRK. M1-, M2- and M3-ChR
have been found to be phosphorylated in vivo by
GRK-2, GRK-3 and GRK-5 [67] but only sparsely by
GRK-1 and GRK-6 [68]. The role of receptor phos-
phorylation and β-arrestin binding in the internal-
ization of M2 AChR and other muscarinic receptor
subtypes remains controversial [66].

NNeeuurraallllyy  mmeeddiiaatteedd  ssyynnccooppee  ((vvaassoovvaaggaall  ssyynnccooppee,,
ccaarroottiidd  ssiinnuuss  hhyyppeerrsseennssiittiivviittyy))

Vasovagal syncope (VVS) is a common clinical
problem, characterized by transient episodes of loss
of consciousness due to abnormal autonomic activ-
ity [69]. Classical VVS is mediated by emotional
and/or orthostatic stress. The pathophysiology
of VVS is still unclear [70]. G-protein signal trans-
duction pathways play a basic role in CV reflexes
[71]. The predisposition to reflex-mediated syncope
is associated with genetic variations in G-protein
genes, but the relevance of GRK in this pathophys-
iological condition still remains hypothetical [71].

VVaaggaallllyy  mmeeddiiaatteedd  aattrriiaall  ffiibbrriillllaattiioonn

Experimental studies have indicated that in atri-
al fibrillation vagal activity may have a decisive influ-
ence on the electrophysiological properties of the
atrial myocardium [72]. It is considered to represent
a form of atrial fibrillation particularly affecting
males aged 40 to 50 years. The arrhythmic episodes
manifest themselves most often during the night,
when parasympathetic predominance occurs [73]
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preceded by bradycardia, is not triggered by stress
and lasts from minutes to hours [74, 75]. It has been
reported that vagally mediated atrial fibrillation is
present in normal, pathologically unchanged heart,
whereas patients with structural heart diseases
more often have sympathetically induced atrial fib-
rillation [73, 76]. Pathogenesis of vagally induced
atrial fibrillation is probably through downregu -
lation of the inward potassium current [72] but
the role of GRK in the proposed molecular mecha-
nism is still not defined.

Therapeutic implications of G protein related
kinases molecular signaling pathway

Neurocardiovascular diseases, such as hyper-
tension, HF, and CAD, represent common causes
of morbidity and mortality in developed countries
“and will remain so by the year 2020” [77]. Currently
used therapy is unable to cure these diseases [57,
78]. Therefore, research efforts should be focused
at the molecular level and explore GRK molecular
signaling pathways for treatment purposes. β-ARKct
is a potential therapeutic candidate, especially for
hypertension, HF and CAD [20].
β-ARKct is designed from the carboxyl-terminus

of GRK-2, which is the domain that physically inter-
acts with the βγ subunits of the activated G protein
[25, 57]. β-ARKct is an effective inhibitor of AR phos-
phorylation and a potential option to prevent HF,
MI and hypertension [57].

The available literature also suggests that 
GRK-2 could be beneficial in the setting of acute
ischemic injury and hypertension. In contrast to
the global knockout of GRK-2 that was found to be
embryonically lethal [28], when GRK-2 was ablated
in the heart after post-MI HF was recognized,
the function of cardiac muscle was significantly
improved [31]. In addition, 3 months after MI, β-AR
responsiveness was preserved and cardiac hyper-
trophy was diminished [31]. These data support
the fact that GRK-2 is important in the development
of post-MI and HF. Elevated levels of GRK-2 are pres-
ent both in human hypertension [52, 58] and ani-
mal models of hypertension [54, 56]. Therefore,
the inhibition of GRK may prove to be a therapeu-
tic approach for the treatment of hypertension [57],
opening new perspectives for modern hypertension
management [79].

GRK-2 is among potential candidate molecules
for future gene therapy of HF [78]. The fascinating
possibility offered by inhibiting GRK-2 activity is
the reduction of sympathetic nervous system hyper-
activity specifically acting on the adrenal gland [78].
This approach was successful in animal models
of HF [80], where specific inhibition, via adenovirus
mediated β-ARKct adrenal gene delivery, reduced
circulating catecholamine levels, downregulating
adrenal function and improving cardiac function

[78, 80]. These results offer a promising therapeu-
tic strategy for all neurocardiological diseases where
sympathetic nervous activity is increased (e.g. HF,
CAD and hypertension). Also, interesting results
have come from a study of the interaction of the
sympathetic nervous system and immune system
in pathogenesis of HF [81]. Molecular structures,
such as Toll-like receptors, their biochemical path-
ways and their potential influence on GRK-2 might
shed light on the interactive role of the neural and
immune system in the genesis of HF [82].

In addition, recently new inhibitors of GRK-2
were designed by Takeda Pharmaceuticals with
the specific intention of being a new therapeutic
agent for HF [76]. These compounds induce slight
closure of the kinase active site, to a degree that
corresponds to the level of inhibitory capacity
of these agents [76]. Both approaches, gene thera-
py and GRK-2 inhibitors, open promising lines for
treatment of neurocardiological diseases. 

Conclusions

In this review we present the latest data from
recent animal and clinical studies, which focus on
the role of GRKs in neurocardiovascular physiology
and pathophysiology. It is essential to understand
the molecular mechanisms underlying the regula-
tion of GRKs, during both normal function and
pathological states. The role of GRKs in pathogen-
esis of neurocardiological diseases provides a new
insight into potential therapeutic options. 
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