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Qubit lattice coherence induced 
by electromagnetic pulses in 
superconducting metamaterials
Z. Ivić1,2,3, N. Lazarides1,3,4 & G. P. Tsironis1,3,4,5

Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, 
solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for 
being the building blocks of viable quantum computers, since they exhibit relatively long coherence 
times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence 
in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was 
demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum 
effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of 
superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that 
was followed by the construction of multiple-qubit logic gates and the implementation of several 
algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable 
quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, 
may occur during light-pulse propagation in quantum metamaterials comprising superconducting 
charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that 
propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects 
in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum 
computing.

Quantum simulation, that holds promises of solving particular problems exponentially faster than any classical 
computer, is a rapidly expanding field of research1–3. The information in quantum computers is stored in quantum 
bits or qubits, which have found several physical realizations; quantum simulators have been nowadays realized 
and/or proposed that employ trapped ions4, ultracold quantum gases5, photonic systems6, quantum dots7, and 
superconducting circuits1,8,9. Solid state devices, and in particular those relying on the Josephson effect10, are 
gaining ground as preferable elementary units (qubits) of quantum simulators since they exhibit relatively long 
coherence times and extremely low dissipation11. Several variants of Josephson qubits that utilize either charge 
or flux or phase degrees of freedom have been proposed for implementing a working quantum computer; the 
recently anounced, commercially available quantum computer with more than 1000 superconducting qubit CPU, 
known as D-Wave 2XTM (the upgrade of D-Wave TwoTM with 512 qubits CPU), is clearly a major advancement in 
this direction. A single superconducting charge qubit (SCQ)12 at milikelvin temperatures behaves effectively as 
an artificial two-level “atom” in which two states, the ground and the first excited ones, are coherently superposed 
by Josephson coupling. When coupled to an electromagnetic (EM) vector potential, a single SCQ does behave, 
with respect to the scattering of EM waves, as an atom in space. Indeed, a “single-atom laser” has been realized 
with an SCQ coupled to a transmission line resonator (“cavity”)13. Thus, it would be anticipated that a periodic 
structure of SCQs demonstrates the properties of a transparent material, at least in a particular frequency band. 
The idea of building materials comprising artificial “atoms” with engineered properties, i.e., metamaterials, and 
in particular superconducting ones14, is currently under active development. Superconducting quantum metama-
terials (SCQMMs) comprising a large number of qubits could hopefully maintain quantum coherence for times 
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long enough to reveal new, exotic collective properties. The first SCQMM that was only recently implemented 
comprises 20 flux qubits arranged in a double chain geometry15. Furthermore, lasing in the microwave range has 
been demonstrated theoretically to be triggered in an SCQMM initialized in an easily reachable factorized state16.

Results
Superconducting Quantum Metamaterial Model. Consider an infinite, one-dimensional (1D) peri-
odic SCQ array placed in a transmission line (TL) consisting of two superconducting strips of infinite length17,18 
(Fig. 1a,b); each SCQ, in the form of a tiny superconducting island, is connected to each bank of the TL by a 
Josephson junction (JJ). The control circuitry for each individual SCQ (Fig. 1c), consisting of a gate voltage source 
Vg coupled to it through a gate capacitor Cg, allows for local control of the SCQMM by altering independently 
the state of each SCQ19. The SCQs exploit the nonlinearity of the Josephson effect and the large charging energy 
resulting from nanofabrication to create artificial mesoscopic two-level systems. A propagating EM field in the 
superconducting TL gives rise to nontrivial interactions between the SCQs, that are mediated by its photons20. 
Those interactions are of fundamental importance in quantum optics, quantum simulations, and quantum infor-
mation processing, as well. In what follows, it is demonstrated theoretically that self-induced transparency21 and 
Dicke-type superradiance (collective spontaneous emission)22 occur for weak EM fields in that SCQMM struc-
ture; the occurence of the former or the latter effect solely depends on the initial state of the SCQ subsystem. 
Most importantly, self-induced transparent (SIT) or superradiant (SRD) pulses induce quantum coherence effects 
in the qubit subsystem. In superradiance (resp. self-induced transparency), the initial conditions correspond 
to a state where the SCQs are all in their excited (resp. ground) state; an extended system exhibiting SRD or 
SIT effects is often called a coherent amlpifier or attenuator, respectively. These fundamental quantum coherent 
prosesses have been investigated extensively in connection to one- and two-photon resonant two-level systems. 
Superradiant effects have been actually observed recently in two-level systems formed by quantum dot arrays23 
and spin-orbit coupled Bose-Einstein condensates24; the latter system features the coupling between momentum 
states and the collective atomic spin which is analogous to that between the EM field and the atomic spin in the 
original Dicke model. These results suggest that quantum dots and the atoms in the Bose-Einstein condensate 

Figure 1. Schematic drawing of a charge qubit superconducting quantum metamaterial (SCQMM). (a) The 
SCQMM comprising an infinite chain of identical charge qubits in a superconducting transmission line. Each 
qubit consists of a superconducting island that is connected to the electrodes of the transmission line through 
two Josephson junctions, formed in the regions of the dielectric layers (blue). The propagating electromagnetic 
vector potential pulse is also shown schematically out of scale. (b) The side view of the SCQMM in which the 
relevant geometrical parameters and the field orientations are indicated. (c) A unit cell of the superconducting 
quantum metamaterial which also shows the control circuitry of the charge qubit, consisting of a gate potential 
Vg applied to it through the gate capacitor Cg.
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can radiatively interact over long distances. The experimental confirmation of SIT and SRD in extended SCQMM 
structures may open a new pathway to potentially powerful quantum computing. As a consequence of these 
effects, the value of the speed of either an SIT or SRD propagating pulse in a SCQMM structure can in principle 
be engineered through the SCQ parameters25, which is not possible in ordinary resonant media. From a technolog-
ical viewpoint, an EM (light) pulse can be regarded as a “bit” of optical information; its slowing down, or even its 
complete halting for a certain time interval, may be used for data storage in a quantum computer.

In the following, the essential building blocks of the SCQMM model are summarized in a self-contained man-
ner, yet omitting unnecessary calculational details which are presented in the Supplementary Information. The 
energy per unit cell of the SCQMM structure lying along the x–direction, when coupled to an EM vector potential 

=
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ˆA A x t z( , )z , can be readily written as17,18
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in units of the Josephson energy EJ =  Φ 0Ic/(2πC), with Φ 0, Ic and C being the magnetic flux quantum, the critical 
current of the JJ, and the capacitance of the JJ, respectively. In equation (1), ϕn is the superconducting phase on 
the nth island, β =  (8πdEJ)−1/2(Φ 0/2π), with d being the separation between the electrodes of the superconducting 
TL, and the overdots denote differentiation with respect to the temporal variable t. Assuming EM fields with 
wavelengths λ � � d, , with  being the distance between neighboring qubits, the EM potential is approximately 
constant within a unit cell, so that in the centre of the nth unit cell 

A x t A t( , ) ( )z z n, . In terms of the discretized 
EM potential Az,n(t), the normalized gauge term is an =  2πdAx,n/Φ 0. The classical energy expression equation (1) 
provides a minimal modelling approach for the system under consideration; the three angular brackets in that 
equation correspond to the energies of the SCQ subsystem, the EM field inside the TL electrodes, and their inter-
action, respectively. The latter results from the requirement for gauge-invariance of each Josephson phase.

Second Quantization and Reduction to Maxwell-Bloch Equations. The quantization of the SCQ 
subsystem requires the replacement of the classical variables ϕn and ϕ

 n by the corresponding quantum operators 
ϕ̂n and ϕ− ∂ ∂ ˆi ( / )n , respectively. While the EM field is treated classically, the SCQs are regarded as two-level sys-
tems, so that only the two lowest energy states are retained; under these considerations, the second-quantized 
Hamiltonian corresponding to equation (1) is
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where p, p′  =  0, 1, E0 and E1 are the energy eigenvalues of the ground and the excited state, respectively, the oper-
ator †an p,  (an,p) excites (de-excites) the nth SCQ from the ground to the excited (from the excited to the ground) 
state, and ∫ ϕ ϕ ϕ ϕ= Ξ Ξ′

⁎V d ( )cos ( )p p p p,  are the matrix elements of the effective SCQ-EM field interaction. The 
basis states Ξ p can be obtained by solving the single-SCQ Schrödinger equation (− ∂ 2/∂ ϕ2 −  Ep +  2 cos ϕ)Ξ p =  0. 
In general, each SCQ is in a superposition state of the form Ψ = ∑ Ψ †t a( ) 0n p n p n p, , . The substitution of |Ψ n〉  into 
the Schrödinger equation with the second-quantized Hamiltonian equation (2), and the introduction of the Bloch 
variables = Ψ Ψ + Ψ ΨR n( ) * *x n n n n,1 ,0 ,0 ,1, = Ψ Ψ − Ψ ΨR n i( ) ( * * )y n n n n,0 ,1 ,1 ,0 , Rz(n) =  |Ψ n,1|2 −  |Ψ n,0|2, provides the 
re-formulation of the problem into the Maxwell-Bloch (MB) equations
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that are nonlinearly coupled to the resulting EM vector potential equation

α χ µ α β δ+ Ω + + =̈ R n DR n a{ [ ( ) ( )]} sin , (6)n x z n n
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where δαn =  αn−1 −  2αn +  αn+1, D =  (V11 −  V00)/(2χ), Ω2 =  (V00 +  V11)/2, μ =  V10/χ =  V01/χ, and 
Δ  =  ε1 −  ε0 ≡  (E1 −  E0)/χ, with χ =  ωJ/EJ. In the earlier equations, the overdots denote differentiation with 
respect to the normalized time t →  ωJt, in which ωJ =  eIc/(C) is the Josephson frequency and e,  are the electron 
charge and the Planck’s constant devided by 2π, respectively.

Approximations and Analytical Solutions. For weak EM fields, the approximation α αsin n n can be 
safely used. Then, by taking the continuum limit αn(t) →  α(x, t) and Ri(n; t) →  Ri(x; t) (i =  x, y, z) of equa-
tions (3–6), a set of simplified, yet still nonlinearly coupled equations is obtained, similar to those encountered in 
two-photon SIT in resonant media27. Further simplification can be achieved with the slowly varying envelope 
approximation (SVEA) by making for the EM vector potential the ansatz α(x, t) =  ε(x, t)cos Ψ (x, t), where Ψ (x, 
t) =  kx −  ωt +  φ(x, t) and ε(x, t), φ(x, t) are the slowly varying pulse envelope and phase, respectively, with ω and 
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ω β= ± − Ωk /2 2  being the frequency of the carrier wave of the EM pulse and its wavenumber in the supercon-
ducting TL, respectively. In the absence of the SCQ chain the EM pulse is “free” to propagate in the TL with speed 
β. At the same time, equations (3–5) for the Bloch vector components are transformed according to Rx =  rx cos (2Ψ 
) +  ry sin (2Ψ ), Ry =  ry cos (2Ψ ) −  rx sin (2Ψ ), and Rz =  rz. Then, collecting the coefficients of sinΨ  and cosΨ  while 
neglecting the rapidly varying terms, and averaging over the phase Ψ , results in a set of truncated equations (see 
Supplementary Information). Further manipulation of the resulting equations and the enforcement of the 
two-photon resonance condition Δ  =  2ω, results in

ε ε χ µ ε+ = −
∆

 c r , (7)x y

φ φ χ+ = −
∆

 c D r2 , (8)x z

where c =  β2k/ω =  2β2k/Δ , and the truncated MB equations
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2 2 2 . In equation (9), the n–dependence of the ri (i =  x, y, z) is 

suppressed, in accordance with common practices in quantum optics.
The ri can be written in terms of new Bloch vector components Si using the unitary transformation 

rx =  Sx cos Φ  −  Sz sin Φ , ry =  Sy, and rz =  Sz cos Φ  +  Sx sin Φ , where Φ  is a constant angle to be determined. Using a 
procedure similar to that for obtaining the ri, we get =S 0x , ε= −S W Sy z
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2 , where 
µ= +W D(4 )2 2  and tan Φ  ≡  γ =  4D/μ. The combined system of the equations for the Si and equations (7,8) 

admits exact solutions of the form ε =  ε(τ =  t −  x/v) and Si =  Si(τ =  t −  x/v), where v is the pulse speed. For the 
slowly varying pulse envelop, we obtain
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where ε σ ω= −v c v(4 / )[ /( )]0
2  is the pulse amplitude and τp =  {χ(σμ/ω)[v/(c −  v)]}−1 its duration, with 

σ µ γ= = +W/ 1/ 1 2. The decoherence factor γ can be expressed as a function of the matrix elements of the 
SCQ-EM field interaction, Vij, as γ =  2(V11 −  V00)/V10 that can be calculated when the latter are known. Such 
Lorentzian propagating pulses have been obtained before in two-photon resonant media28,29; however, SIT in 
quantum systems has only been demonstrated in one-photon (absorbing) frequency gap media, in which soli-
tonic pulses can propagate without dissipation30. The corresponding solution for the population inversion, Rz, 
reads
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where ε ω= −v c v2 (1/ )[ /( )]M , and the plus (minus) sign corresponds to absorbing (amplifying) SCQMMs; 
these are specified through the initial conditions as Rz(− ∞ ) =  − 1, ε(− ∞ ) =  0 and Rz(− ∞  =  + 1), ε(− ∞ ) =  0 for 
absorbing and amplifying SCQMMs, respectively (with Rx(− ∞ ) =  Ry(− ∞ ) =  0 in both cases). The requirement 
for the wavenumber k being real, leads to the SCQ parameter-dependent condition 2χ2(V11 +  V00) <  (E1− E0)2 for 
pulse propagation in the SCQMM. Thus, beyond the obtained two-photon SIT or SRD, the propagating EM pulse 
plays a key role in the interaction processes in the qubit subsystem: it leads to collective behavior of the ensemble 
of SCQs in the form of quantum coherent probability pulses; such pulses are illustrated here through the popula-
tion inversion Rz.

The corresponding velocity-amplitude relation of the propagating pulse reads

χ
σ
ωε

=




 ±





 .
−

v c 1 4

(12)

2

0
2

1

Equation (12) can be also written as a velocity-duration expression, since the pulse amplitude and its duration 
are related through ε τ χ= W4/( )p0

2 . The duration of SRD pulses cannot exceed the limiting value of 
τM =  ω(c −  v)/(χμv). From equation (12), the existence of a critical velocity c, defined earlier, can be immediately 
identified; that velocity sets an upper (lower) bound on the pulse velocity in absorbing (amplifying) SCQMM 
structures. Thus, in absorbing (amplifying) SCQMM structures, pulses of higher intensity propagate faster 
(slower). That limiting velocity is generally lower than the corresponding one for two-photon SIT or SRD in ordi-
nary media, β, which here coincides with the speed of the “free” pulse in the TL (Fig. 2). As can be inferred from 
Fig. 2, the increase of decoherence through γ makes the velocity to saturate at its limiting value c at lower ampli-
tudes ε; that velocity can be reduced further with increasing the ratio of the TL to the pulse carrier wave frequency 
Ω/ω through proper parameter engineering. Moreover, effective control of v in SCQMMs could in principle be 
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achieved by an external field31 or by real time tuning of the qubit parameters. That ability to control the flow of 
“optical”, in the broad sense, information may have technological relevance to quantum computing25. Note that 
total inversion, i.e. excitation or de-excitation of all qubits during pulse propagation is possible only if γ =  0, i.e., 
for V00 =  V11; otherwise (V00 <  V11) the energy levels of the qubit states are Stark-shifted, violating thus the reso-
nance condition. Typical analytical profiles for the EM vector potential pulse ε(τ) and the population inversions 
Rz(τ) both for absorbing and amplifying SCQMMs are shown in the insets of Fig. 2. The maximum of ε(τ) reduces 
considerably with increasing γ, while at the same time the maximum (minimum) of Rz decreases (increases) at 
the same rate.

The system of equations  (7–9) can be reduced to a single equation using the parametrization 
rx =  R0γσ2[1 −  cos θ], ry =  − R0σ sin θ, and rz =  R0{1 −  σ2[1 −  cos θ]}, of the Bloch vector components. Then, a rela-
tion between the Bloch angle θ ≡  θ(x, t) and the slow amplitude ε can be easily obtained, that leads straightfor-
wardly to the equation θ θ χ θ+ = − µ

ω
∂
∂

̈ c R cosx t0 .  Time integration of  that equation yields 
χ θ= −θ µ
ω

∂
∂

R (1 cos )
x c0 , that conforms with the famous area theorem: pulses with special values of “area” 

θ(x) =  2πn conserve that value during propagation.
Here we concentrate on the interaction of the SCQs with the EM wave and we are not concerned with deco-

herence effects in the SCQs due to dephasing and energy relaxation. This is clearly an idealization which is justi-
fied as long as the coherence time exceeds the wave propagation time across a relatively large number of unit cell 
periods. In a recent experiment26, a charge qubit coupled to a strip line had a dephasing time in excess of 200 ns, 
i.e., a dephasing rate of 5 MHz, and a photon loss rate from the cavity of 0.57 MHz. Those frequencies are very 

Figure 2. The velocity-amplitude relation in two-photon superradiant (TPSRD, amplifying) and two-
photon self-induced transparent (TPSIT, absorbing) superconducting quantum metamaterials (SCQMMs) 
& quantum coherent pulse profiles. In all subfigures, the pulse velocity v in units of β as a function of the 
electromagnetic vector potential pulse amplitude ε0 is plotted and compared with the corresponding curves 
for ordinary (atomic) amplifying and absorbing media (brown- and green-dotted curves, respectively). 
The horizontal magenta-solid (resp. black-solid) lines indicate the limiting velocity in ordinary amplifying 
and absorbing media, v/β =  1 (resp. amplifying and absorbing SCQMMs, v =  c <  β). (a) V00 =  V11 =  1, 
V01 =  V10 =  0.8, χ =  1/5, E1 −  E0 =  3 (γ =  0 and Ω/ω =  0.3). Left Inset: The electromagnetic vector potential pulse 
envelop (ε/εM)2 and the population inversion function Rz(n) profiles as a function of the slow variable (τ/τM in 
a frame of reference that is moving with velocity v, for TPSIT (absorbing) SCQMMs. Right Inset: Same as in 
the left inset for TPSRD (amplifying) SCQMMs. (b) V00 =  0.6, V11 =  1.4, V01 =  V10 =  0.8, χ =  1/5, E1 −  E0 =  3 
(γ =  2 and Ω/ω =  0.3). Left Inset: The electromagnetic vector potential pulse envelop (ε/εM)2 and the population 
inversion function Rz(n) profiles as a function of the slow variable (τ/τM in a frame of reference that is moving 
with velocity v, for TPSIT (absorbing) SCQMMs in the presence of relatively strong decoherence (γ =  2). 
Right Inset: Same as in the left inset for TPSRD (amplifying) SCQMMs. (c) V00 =  V11 =  3, V01 =  V10 =  0.8, 
χ =  1/5, E1 −  E0 =  3 (γ =  0 and Ω/ω =  0.52). (d) V00 =  3, V11 =  3.8, V01 =  V10 =  0.8, χ =  1/5, E1 −  E0 =  3 (γ =  2 
and Ω/ω =  0.52). The effect of non-zero decoherence (γ ≠  0) become apparent by direct comparison of (a) with 
(b,c) with (d). The pulse velocity v in SCQMMs saturates with increasing ε0 to vm/β, that can be significantly 
lower than that achieved in ordinary TPSIT and TPSRD media, i.e., β. The parameters of the SCQMM can be 
engineered to slow down the pulse velocity v at the desired level for high enough amplitudes ε0. Note that v is 
also the velocity of the coherent qubit pulse.
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small compared with the transition frequency of the considered SCQs which is of the order of the Josephson 
energy (i.e., a few GHz)17,18. Therefore, we have neglected such decoherence effects in the present work. The deco-
herence factor γ, which in Fig. 2b,d has been chosen according to the parameter values in ref. 17, is not related to 
either dephasing or energy relaxation. That factor attains a non-zero value whenever the matrix elements of the 
effective SCQ-EM field interaction, V11 and V00, are not equal.

Numerical Simulations. In order to confirm numerically the obtained results, the equations (3–6) are inte-
grated in time using a fourth order Runge-Kutta algorithm with constant time-step. For pulse propagation in 
absorbing SCQMMs, all the qubits are initially set to their ground state while the vector potential pulse assumes 
its analytical form for the given set of parameters. A very fine time-step and very large qubit arrays are used to 
diminish the energy and/or probability loss and the effects of the boundaries during propagation, respectively. 
The subsequent temporal evolution in two-photon SIT SCQMM, as can be seen in Fig. 3a,b, in which several 
snapshots of the population inversion Rz(n; t) and the vector potential pulses an(t), respectively, are shown, reveals 
that the latter are indeed capable of inducing quantum coherent effects in the qubit subsystem in the form of 
population inversion pulses! In Fig. 3a, the amplitude of the Rz(n; t) pulse gradually grow to the expected max-
imum around unity in approximately 60 time units, and they continue its course almost coherently (although 
with fluctuating amplitude) for about 160 more time units, during which they move at the same speed as the 
vector potential pulse (Fig. 3b). However, due to the inherent discreteness in the qubit subsystem and the lack of 
inter-qubit coupling, the Rz(n; t) pulse splits at certain instants leaving behind small “probability bumps” that get 
pinned at particular qubits. After the end of the almost coherent propagation regime, the Rz(n; t) pulse broadens 
and slows-down until it stops completely. At the same time, the width of the an(t) pulse increases in the course 
of time due to discreteness-induced dispersion. A comparison with the corresponding analytical expressions 
reveals fair agreement during the almost coherent propagation regime, although both the Rz(n; t) and an(t) pulses 
travel slightly faster than expected from the analytical predictions. The temporal variable here is normalized to 
the inverse of the Josephson frequency ωJ which for typical parameter values is of the order of a few GHz17. Then, 
the almost coherent induced pulse regime in the particular case shown in Fig. 3 lasts for ~160 ×  10−9 s, or ~160 ns, 
which is of the same order as the reported decoherence time for a charge qubit in ref. 26 (i.e., 200 ns).

Figure 3. Numerical validation of the analytical expressions for two-photon self-induced transparent 
(TPSIT) and superradiant (TPSRD) propagating pulses. (a) Snapshots of the population inversion pulse  
Rz(n; t), excited by the induced quantum coherence in the qubit subsystem by the electromagnetic vector 
potential pulse, in the absence of decoherence (γ =  0); the pulse propagates to the right (time increases 
downwards) in TPSIT (absorbing) superconducting quantum metamaterials (SCQMMs). The snapshots are 
taken at intervals of 20 time-units starting at t =  20 and they are displaced vertically to avoid overlapping (blue 
pulses). The corresponding pulses from the analytical expression equation (11) at the same time-instants are 
shown in red. (b) Snapshots for the corresponding evolution of the electromagnetic vector potential pulse an(t), 
that exhibits significant broadening as time passes by; the numerical and analytical pulses are shown in blue and 
red color, respectively. (c) The same as in a in TPSRD (amplifying) superconducting quantum metamaterials. 
The resulting propagation is not as simple as expected from the theoretical analysis; instead of a population 
inversion pulse, it is observed a rather kink-like front propagating to the the right (blue) with a velocity 
considerably less than that predicted analytically for the pulse, which analytical form is shown in red. (d) The 
same as in (b) in TPSRD (amplifying) superconducting quantum metamaterials. The velocity of the an(t) 
pulse (blue) is the same as that of the propagating population inversion front, Rz(n; t); however, it exhibits less 
broadening with time in comparison with the corresponding numerical an(t) pulse in b. The predicted analytical 
form is shown in red. Parameter values: χ =  1/5, β =  6, V00 =  V11 =  1, V01 =  V10 =  0.8, E1 −  E0 =  3, and v/c =  0.7 
(for (a,b)); v/c =  1.25 (for (c,d)).
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The situation seems to be different, however, in the case of two-photon SRD pulses, as can be observed in 
the snapshots shown in Fig. 3c,d for Rz(n; t) and an(t), respectively. Here, the lack of the inter-qubit interaction 
is crucial, since the SCQs that make a transition from the excited to their ground state as the peak of the an(t) 
pulse passes by their location, cannot return to their excited states after the an(t) pulse has gone away. It seems, 
thus, that the an(t) pulse creates a type of a kink-like front that propagates at the same velocity. It should be 
noted that the common velocity of the Rz(n; t) and an(t) pulses is considerably different (i.e., smaller) than the 
analytically predicted one, as it can be inferred by inspection of Fig. 3c,d. Even more complicated behavioral pat-
terns of two-photon SRD propagating pulses and the effect of non-zero decoherence factor are discussed in the 
Supplementary Information.

Conclusion
An SCQMM comprising SCQs loaded periodically on a superconducting TL has been investigated theoretically 
using a minimalistic one-dimensional model following a semiclassical approach. While the SCQs are regarded 
as two-level quantum systems, the EM field is treated classically. Through analytical techniques it is demon-
strated that the system allows self-induced transparent and superradiant pulse propagation given that a par-
ticular constraint is fulfilled. Most importanty, it is demonstrated that the propagating EM pulses may induce 
quantum coherent population inversion pulses in the SCQMM. Numerical simulation of the semiclassical equa-
tions confirms the excitation of population inversion pulses with significant coherence time in absorbing media. 
The situation is slightly different in amplifying media, in which the numerically obtained, induced population 
inversion excitations are kink-like propagating structures (although more complex behaviors discussed in the 
Supplementary Information also appear). Moreover, the limiting pulse velocity in both amplifying and absorbing 
SCQMMs is lower than the corresponding one in two-photon resonant amplifying and absorbing ordinanary 
(atomic) media. That limiting velocity in SCQMMs can in principle be engineered through the SCQ parameters.
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