Development of Computer-aided
Concepts for the Optimization of
Single-Molecules and their
Integration for High-Throughput
Screenings

Entwicklung Computergestiitzter Konzepte im Hinblick auf die Optimierung von
Einzelmolekiilen sowie deren Integration fiir Hochdurchsatzverfahren

TECHNISCHE
UNIVERSITAT
DARMSTADT

Dem Fachbereich Biologie der Technischen Universitat Darmstadt zur Erlangung des
akademischen Grades eines Doctor rerum naturalium vorgelegte Dissertation von

M.Sc. Sven Frederik Jager aus Berlin

Darmstadt 2019
D17

1. Gutachten: Prof. Dr. Kay Hamacher
2. Gutachten: Prof. Dr. Beatrix Sii3




Jager, Sven Frederik: Development of Computer-aided Concepts for the Opti-
mazation of Single-Molecules and their integration

for High-Throughput Screenings

Darmstadt, Technische Universitat Darmstadt

Jahr der Veroffentlichung der Dissertation auf TUprints: 2019

Tag der miindlichen Priifung: 13.03.2018

Veroffentlicht unter CC BY-SA 4.0 International:
https://creativecommons.org/licenses/


https://creativecommons.org/licenses/

Contents

(I Zusammenfassung] 5
[2__Abstractl 9
(3__Introduction| 13
[4  Structure and Dynamics of Biomolecules| 21
[4.1  Important Biomolecules: Proteins and Nucleic Acids| . . . . . . 21
4.2 On the Structure of RNA and Proteins| . . . . .. ... ... .. 23
[4.2.1 Protein Structuref . . . . . . ..o 23

[4.2.2 Nucleic Acid Structurel . . . . . . ..o oL 24

[4.2.3  Secondary Structure Prediction ot RNA| . . . . . .. .. 27

[4.3  Molecular Dynamics Simulations| . . . . . ... ... ... ... 31
[4.3.1 An Introduction to Molecular Dynamics Simulations] . . 31

[4.3.2  Technical Introductionl . . . . . . . ... .. .. ... .. 32

[4.4  Graph-based Analysis and Representation ot Biomolecules| . . . 37
[4.4.1 Motits, Graphs and Dynamic Graphs| . . . . . . . . . .. 37

[4.4.2  Conversion of MD Simulations to Dynamic Graphs . . . 38

[4.4.3 Comparison ot Protein Structures| . . . . . . . . ... .. 39

[4.4.4  Advanced Representation and Comparison of RNA Sec- |

[ ondary Structures|. . . . . . .. ... 40
5 Protein Engineering] 43
[>.1  Cleavage Product Accumulation Decreases the Activity of Cuti- |
[ masel . o 43
[5.2  Statistical Evaluation of HT'S Assays for Enzymatic Hydrolysis [

| of p-Keto Esters|. . . . . . ... ... o000 100
[6 Graph-based Analysis of MD Simulations] 121
(6.1  StreaM - a Stream-based Algorithm for Counting Motifs in Dy- |

[ namic Graphs| . . . . . ... oo oo 121
[6.2  Motit Based Analysis of MD Simulations| . . . . . . .. .. ... 139
621 Results. . . ... ... ... 144

[6.2.2  Dynamics of Water in Confinement of Minerals| . . . . . 147

[6.2.3  Structural Dynamics of a Protein Complex| . . . . . . .. 155

6.3  StreAM-Tg: algorithms for analyzing coarse grained RNA dy- |

[ namics . .. ... e e e e 158




Contents

raph-based Analysis o - 199
[7.1 Riboswitching with ciprofloxacin|. . . . . . . . . . .. ... ... 199
[7.2  SICOR: Subgraph Isomorphism Comparison of RNA Secondary |
[ Structures . . . .. L 228
(7.3 Motit Based Analysis of NGS Datal . . . . ... ... ... ... 246
8 Contributionsl 251
[8.1 Puplications| . . . . . . ... ... .. oL 251
.2 Conference Posterl . . . . . . . .. . ... .. ... .. ... ... 252
8.3 Invited Talksl . . . . ... ... . 253
[8.4  Supervised Workl . . ... 253
[9 Summary and Discussion| 255
10 Appendix I
10.1 Material to Gromacs GPU Benchmarks . . . . .. ... ... .. IIT
[10.2 Material to Graph-based Analysis of MD Simulations| . . . . . . 111
[[0.3 E-vertex Motif Visualizationl . . . . . . .. ... ... ... ... VII
[[0.4 Abbreviations . . . . . . . . . ... XV
[List of Tables . . . . . . . . . . . . .. XVII
[List of Figures|. . . . . . . . . . ... XIX
[References for Introduction, Discussion and Summary| XXI
[Curriculum Vitael XLI
[Ehrenwortliche Erklarung] XLI
Danksagung XLV



1 Zusammenfassung

Im Fachgebiet der synthetischen Biologie haben sich in den letzten Jahrzehnten
interdisziplindre Herangehensweisen fiir das Design und die Modellierung funk-
tioneller Molekiile durch computergestiitzte Methoden etabliert. Diese com-
putergestiitzten Methoden finden vor allem Anwendung, wenn Experimentelle-
Ansétze an ihre Grenzen stoflen, da Computermodelle in der Lage sind beispiel-
sweise durch Einzelmolekiil-Simulationen das zeitliche Verhalten von Nuklein-
sdurepolymeren oder Proteinen aufzukléren, sowie die funktionelle Beziehung
der Aminosdurereste oder Nukleotide zueinander darzustellen. Das mittels
Computermodellierung erhobene Wissen kann fortfithrend genutzt werden,
um den weiteren experimentellen Verlauf (z.B. Screening), sowie die Gestalt
beziehungsweise die Funktion (Rational Design) des betrachteten Molekiils zu
beeinflussen.

Eine solche vom Menschen durchgefithrte Optimierung der Biomolekiile ist
oftmals notwendig, da die betrachteten Substrate fiir die Biokatalysatoren,
beziehungsweise die Enzyme meist synthetisch sind (,,man-made materials“ wie
z.B. PET) und die Evolution noch keine Zeit hatte, effiziente Biokatalysatoren
dafiir bereit zu stellen.

In Bezug auf das computerbasierte Design von Molekiilen, teilen sich zwei
fundamentale Paradigmen die Vorherrschaft im Fachgebiet der synthetischen
Biologie. Die in dieser Arbeit gewonnenen wissenschaftlichen Erkenntnisse
lassen sich dementsprechend in diese zwei Bereiche unterteilen. Auf der einen
Seite finden probabilistische experimentelle Methoden (z.B. evolutionére De-
signprozesse wie z.B. die gelenkte Evolution) in Kombination mit Hochdurchsatz-
Screenings Anwendung, auf der anderen Seite werden meistens rationale, com-
putergestiitzte Einzelmolekiil-Designmethoden verwendet.

Fiir beide Themenbereiche wurden Computermodelle/Verfahren entwickelt,
evaluiert und veroffentlicht.

Der erste Beitrag in dieser Arbeit beschreibt einen computergestiitzten Des-
ignansatz der Fusarium Solanie Cutinase (FsC). Hier wurde im Detail (moleku-
lar) der Aktivitdtsverlust des Enzyms bei langerer Inkubationszeit mit PET
untersucht. Dafiir wurden Molekular Dynamik (MD) Simulationen von der
rdumlichen Struktur der FsC und einem wasserloslichen Abbauprodukt des
synthetischen Substrates PET (Ethylenglycol) berechnet. Das bestehende
Modell wurde zusatzlich durch die Kombination mit Reduzierten-Modellen er-
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weitert. Durch diese Simulations-Studie konnten bestimmte Bereiche der FsC
identifiziert werden, welche sehr stark mit PET (Ethylenglycol) wechselwirken,
und dadurch einen signifikanten Einfluss auf die Flexibilitat sowie Struktur des
Enzyms nehmen.

Die darauffolgende Originalpublikation etabliert ein neues Verfahren zur
Auswahl von Hochdurchsatz-Assays fir den Einsatz in der Proteinchemie. Die
Auswahl geschieht iiber eine Meta-Optimierung, der zu analysierenden Assays.
Hierfiir werden Kontrollreaktionen fiir den jeweiligen Assay durchgefithrt. Die
Distanz der Kontrollverteilungen wird unter zu Hilfenahme von klassischen
statistischen Methoden wie z.B. dem Kolmogorov-Smirnov-Test evaluiert. An-
schliefend wird jedem Assay eine Performance zugewiesen. Die beschriebenen
Kontroll-Experimente werden vor dem eigentlichen Experiment (Screening)
durchgefiihrt und der Assay mit der héchsten Performance wird fiir das weitere
Screening genutzt. Durch Anwendung dieses generischen Verfahrens kénnen
hohe Erfolgsraten bei einem solchen Screenings erzielt werden. Dies konnten
wir experimentell am Beispiel von Lipasen und Esterasen zeigen.

Im Rahmen der griinen Chemie helfen die oben genannten verfahren, En-
zyme fiir den Abbau von z.B. synthetischen Materialien schneller zu finden
oder nattrlich vorkommende Enzyme dahingehend zu verédndern, sodass diese
Enzyme nach erfolgreicher Optimierung synthetische Substrate effizient um-
setzten konnen. Hierfiir wird bei der praktischen Durchfiithrung der experi-
mentelle Aufwand (Verbrauch an Materialien) moglichst geringgehalten. Ins-
besondere bei grofl angelegten Screening kann eine vorherige Betrachtung oder
Einschrankung des méglichen Losungsraum (i.e. Sequenzraums) einen entschei-
denden Beitrag liefern, die Erfolgsquote zu maximieren, sowie den gesamten
Zeitaufwand des Screenings zu minimieren.

Neben der Durchfithrung klassischer Methoden wie MD Simulationen in
Kombination mit Reduzierten-Modellen wurden auch neue Graphen-basierte
Methoden fiir die Darstellung sowie Analyse von MD-Simulationen entwick-
elt. Hierfiir wurden Simulationen in distanzabhingige dynamische Graphen
konvertiert. Ausgehend von dieser reduzierten Darstellung wurden effiziente
Algorithmen zur Analyse entwickelt und getestet. Dabei wurden insbeson-
dere Netzwerk-Motive untersucht, um festzustellen, ob diese spezielle Art der
Semantik geeignet ist molekulare Strukturen und Wechselwirkungen, inner-
halb von MD Simulationen, besser zu beschreiben als rdumliche Koordinaten.
Dieses Konzept wurde fiir die verschiedensten MD Simulationen von Molekiilen
wie zum Beispiel Wasser, synthetische Poren, Proteine, Peptide sowie RNA
Strukturen evaluiert. Es konnte gezeigt werden, dass sich diese neuartige Form
der Semantik ausgezeichnet eignet, (bio)molekulare Strukturen sowie deren
Dynamik zu beschreiben. Des Weiteren wurde ein Algorithmus (StreAM-T})
fiir das Erstellen von Motiv basierten Markov-Modellen, speziell fiir die Anal-



yse von Einzelmolekiil-Simulationen von Nukleinsduren, entwickelt. Dieser
Algorithmus findet seinen FEinsatz im RNA-Design. Die aus der Analyse
mit StreAM-T}, gewonnenen Erkenntnisse (Markov-Modelle) kénnen hilfreiche
Vorschlége fiir das (Re)Design von funktioneller RNA liefern.

In diesem Zusammenhang wurde eine neue Methode entwickelt, um die
Umgebung (i.e. Wasser; Losungsmittel-kontext) und deren Einfluss auf ver-
schiedene Molekiile in MD Simulationen zu quantifizieren. Hierfiir wurden
drei-Vertex-Motive verwendet, um die Struktur der einzelnen Wassermolekiile
zu beschreiben. Diese neue Methode bietet viele Vorteile. Mittels dieser Meth-
ode kann die Struktur sowie die Dynamik von Wasser akkurat beschrieben wer-
den. Beispielsweise konnten wir die thermodynamische Entropie von Wasser in
der Fliissig- und Dampfphase entlang der Dampf-Fliissig-Gleichgewichtskurve
vom Tripelpunkt bis zum kritischen Punkt reproduzieren.

Ein weiteres grofies Themengebiet, welches im Rahmen dieser Arbeit be-
handelt wurde, ist die Entwicklung von neuen computergestiitzten Ansétzen
fiir ein Hochdurchsatzverfahren fiir das Design von funktioneller RNA. Fiir
die Herstellung von funktioneller RNA wird in der Regel ein experimentelles,
runden-basiertes Hochdurchsatzverfahren (SELEX) verwendet. Durch An-
wendung von Next Generation Sequencing (NGS) in der Kombination mit
dem SELEX-Verfahren kann dieser Designprozess erstmals auf Nukleotidebene
sowie auf Sekundérstrukturebene verstanden werden. Die Besonderheit bei
kleinen RNA-Molekiilen im Vergleich zu Proteinen ist, dass die Sekundéarstruk-
tur (Topologie), welche die minimale freie Energie aufweist, direkt aus der
Nukleotidsequenz, mit hoher Sicherheit, ermittelt werden kann.

Somit gelang es mittels der Kombination von M. Zukers und P. Stieglers Al-
gorithmus, NGS und dem SELEX-Verfahren die strukturelle Diversitéat einzel-
ner RNA-Molekiile unter Beriicksichtigung des genetischen Kontextes zu quan-
tifizieren. Diese Kombination der Methoden, erlaubten die Rundenvorher-
sagen, in denen unteranderem der erste Ciprofloxacin-Riboswitch hervorging.

In diesem Beispiel wurde lediglich ein einfacher, struktureller Abgleich fiir
die Quantifizierung (Levenshtein-Distanz; LD) der Diversitét jeder einzelnen
Runde vorgenommen. Um dies zu verbessern wurde eine neue Darstellung
der RNA-Struktur als gerichteter Graph modelliert, welche anschliefend mit
einem probabilistischen Subgraph-Isomorphismus verglichen wurde.

Zuletzt wurde der NGS-Datensatz (Ciproflozacin-Riboswitch) als dynamis-
cher Graph modelliert und nach dem Auftreten definierter Sieben-Vertex-
Motiven analysiert. Es wurde die motiv-basierte Semantik erstmals fiir die
Anwendung in Hochdurchsatz-Screenings fiir RNA Molekiile integriert. Die
dadurch identifizierten Motive konnten Sekundérstrukturelementen (RNA),
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die in R10k6 (Ciprofloxacin-Aptamer) experimentell bestimmt wurden, zu-

geordnet werden.
Abschlieend wurden alle vorgestellten Algorithmen in einer R Bibliothek

integriert, veroffentlicht und Wissenschaftlerlnnen aus der ganzen Welt zur

Verfiigung gestellt.



2 Abstract

In the field of synthetic biology, highly interdisciplinary approaches for the de-
sign and modelling of functional molecules using computer-assisted methods
have become established in recent decades. These computer-assisted methods
are mainly used when experimental approaches reach their limits, as computer
models are able to e.g., elucidate the temporal behaviour of nucleic acid poly-
mers or proteins by single-molecule simulations, as well as to illustrate the
functional relationship of amino acid residues or nucleotides to each other.
The knowledge raised by computer modelling can be used continuously to
influence the further experimental process (screening), and also shape or func-
tion (rational design) of the considered molecule. Such an optimization of
the biomolecules carried out by humans is often necessary, since the observed
substrates for the biocatalysts and enzymes are usually synthetic (“man-made
materials”, such as PET) and the evolution had no time to provide efficient
biocatalysts.

With regard to the computer-aided design of single-molecules, two funda-
mental paradigms share the supremacy in the field of synthetic biology. On
the one hand, probabilistic experimental methods (e.g., evolutionary design
processes such as directed evolution) are used in combination with High-
Throughput Screening (HTS), on the other hand, rational, computer-aided
single-molecule design methods are applied. For both topics, computer mod-
els/concepts were developed, evaluated and published.

The first contribution in this thesis describes a computer-aided design ap-
proach of the Fusarium Solanie Cutinase (FsC). The activity loss of the enzyme
during a longer incubation period was investigated in detail (molecular) with
PET. For this purpose, Molecular Dynamics (MD) simulations of the spatial
structure of FsC and a water-soluble degradation product of the synthetic sub-
strate PET (ethylene glycol) were computed. The existing model was extended
by combining it with Reduced Models. This simulation study has identified
certain areas of FsC which interact very strongly with PET (ethylene glycol)
and thus have a significant influence on the flexibility and structure of the
enzyme.

The subsequent original publication establishes a new method for the selec-
tion of High-Throughput assays for the use in protein chemistry. The selection
is made via a meta-optimization of the assays to be analyzed. For this pur-
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pose, control reactions are carried out for the respective assay. The distance
of the control distributions is evaluated using classical static methods such
as the Kolmogorov-Smirnov test. A performance is then assigned to each
assay. The described control experiments are performed before the actual ex-
periment (screening), and the assay with the highest performance is used for
further screening. By applying this generic method, high success rates can be
achieved. We were able to demonstrate this experimentally using lipases and
esterases as an example.

In the area of green chemistry, the above-mentioned processes can be useful
for finding enzymes for the degradation of synthetic materials more quickly
or modifying enzymes that occur naturally in such a way that these enzymes
can efficiently convert synthetic substrates after successful optimization. For
this purpose, the experimental effort (consumption of materials) is kept to
a minimum during the practical implementation. Especially for large-scale
screenings, a prior consideration or restriction of the possible sequence-space
can contribute significantly to maximizing the success rate of screenings and
minimizing the total time they require.

In addition to classical methods such as MD simulations in combination with
reduced models, new graph-based methods for the presentation and analysis
of MD simulations have been developed. For this purpose, simulations were
converted into distance-dependent dynamic graphs. Based on this reduced
representation, efficient algorithms for analysis were developed and tested. In
particular, network motifs were investigated to determine whether this type of
semantics is more suitable for describing molecular structures and interactions
within MD simulations than spatial coordinates. This concept was evaluated
for various MD simulations of molecules, such as water, synthetic pores, pro-
teins, peptides and RNA structures. It has been shown that this novel form of
semantics is an excellent way to describe (bio)molecular structures and their
dynamics. Furthermore, an algorithm (StreAM-T,) has been developed for
the creation of motif-based Markov models, especially for the analysis of sin-
gle molecule simulations of nucleic acids. This algorithm is used for the design
of RNAs. The insights obtained from the analysis with StreAM-T, (Markov
models) can provide useful design recommendations for the (re)design of func-
tional RNA.

In this context, a new method was developed to quantify the environment
(i.e. water; solvent context) and its influence on biomolecules in MD simula-
tions. For this purpose, three vertex motifs were used to describe the structure
of the individual water molecules. This new method offers many advantages.
With this method, the structure and dynamics of water can be accurately de-
scribed. For example, we were able to reproduce the thermodynamic entropy
of water in the liquid and vapor phase along the vapor-liquid equilibrium curve
from the triple point to the critical point.
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Another major field covered in this thesis is the development of new computer-
aided approaches for HTS for the design of functional RNA. For the produc-
tion of functional RNA (e.g., aptamers and riboswitches), an experimental,
round-based HTS (like SELEX) is typically used. By using Next Generation
Sequencing (NGS) in combination with the SELEX process, this design pro-
cess can be studied at the nucleotide and secondary structure levels for the
first time. The special feature of small RNA molecules compared to proteins
is that the secondary structure (topology), with a minimum free energy, can
be determined directly from the nucleotide sequence, with a high degree of
certainty.

Using the combination of M. Zuker’s algorithm, NGS and the SELEX method,
it was possible to quantify the structural diversity of individual RNA molecules
under consideration of the genetic context. This combination of methods
allowed the prediction of rounds in which the first ciproflozacin-riboswitch
emerged.

In this example, only a simple structural comparison was made for the quan-
tification (Levenshtein distance) of the diversity of each round. To improve
this, a new representation of the RNA structure as a directed graph was mod-
eled, which was then compared with a probabilistic subgraph isomorphism.

Finally, the NGS dataset (ciprofloxacin-riboswitch) was modeled as a dy-
namic graph and analyzed after the occurrence of defined seven-vertex mo-
tifs. For this purpose, motif-based semantics were integrated into HTS for
RNA molecules for the first time. The identified motifs could be assigned
to secondary structural elements that were identified experimentally in the
ciprofloxacin aptamer R10k6.

Finally, all the algorithms presented were integrated into an R library, pub-
lished and made available to scientists from all over the world.

11






3 Introduction

It’s okay not to know all the answers. It’s better to admit our
tgnorance than to believe answers that might be wrong. Pretending
to know everything, closes the door to finding out what’s really

there.

—Neil deGrasse Tyson

The design of functional molecules by computational means have become
a major paradigm to support synthetic biology; still the methodological ap-
proaches are anything but complete (7). The quest to close these gaps in

available computational approaches is the guiding principle of this thesis.

Functional optimization (e.g., increase substrate turnover, thermo-stability,
binding small molecules), as well as the de novo (re-)design of biomolecules are
dominated by two main paradigms: on the one hand, probabilistic methods
(e.g., evolutionary design processes or "[rrational Design" (2))) in combination
with High- Throughput Screening (HTS), and on the other hand, computer-
aided, rational in silico molecular design methods are used (%)). However,
boundaries between these two principles become increasingly blurred. For
structure prediction, such combination of the two algorithmic approaches are
already successfully applied (4H8)), while parameters typical are derived from
experimental data (9-11)). In turn, computer-aided modeling is then used to
optimize directed evolution. In HTS all data (such as sequences, readouts,
parameters) can be used for training of Machine Learning Models or Markov
State Models (MSM) (12H14)). Experimental parameters are increasingly be-
ing extended by simulation results on the molecular level, such as in Molecular
Dynamics (MD) (15). Furthermore, Next-Generation Sequencing (NGS) can

support this endeavour (16]). These predictive models can in concert evaluate

13



3 Introduction
existing designs (12}, 117)).

This work is placed on the interface of the two design paradigms described
above. In the following, the ideas, their implementation and validation, as well

as their application are laid out in detail.

High-Throughput Screenings and directed Evolution

HTS is the process of testing a large library of molecules for a desired pur-
pose to identify 'Hits’ that fulfill certain characteristics, e.g., for industrial
bio-catalytic processes (18]). Biomolecular libraries can, e.g., contain purified
enzymes, microorganisms from the environment or protein variants from di-
rected evolution or randomization at the gene level. Here, the limiting factor
is the fast and reliable identification of the best suited molecule for the given
purpose. HTS typically enables simultaneous screenings of samples in 96- to
1536-well plates so that 10° to 107 samples can be screened per day (19-21)
— even more so on fully automatized robotic platforms (22).

An unique and efficient type of directed evolution in combination with
HTS is the Systematic Evolution of Ligands by exponential enrichment (SE-
LEX) (23)). This method was developed to create de novo RNA or DNA de-
vices (aptamers) and in some rare cases Riboswitches. To discover the latter,
it is practical to apply a system that involves selection, library screening and
in addition rational design to yield the desired structures (24)). SELEX leads
to an enrichment of aptamers, starting from a synthetic, combinatorial library
of up to 10'% individual sequences. SELEX has made it possible to create de
novo RNA devices capable of recognizing almost any ligand of choice.

Due to this progress, aptamers were found and engineered for a high
affinity against different small organic molecules like Tetracycline, Neomycin
and Isoleucin, etc. (25H28)). Still, the discovery of small molecule-binding RNA
aptamers with high affinity binding and specificity remains challenging (29)).
In particular, there is the difficulty that the aptamers found should also work
in vivo. So far, in vivo active structures rely only on a small set of ligands (50)).
The combination of directed evolution and NGS makes it possible to extract
and mine all randomized sequences from experiments (12|, |16]). A curse and
a blessing, however, are the amounts of data generated by such experiments.

Additionally, it is difficult to identify models and data structures that are best

14



suited for this task.

Despite the power and success of HTS, it comes along with many dis-
advantages. First, biological libraries cannot contain every possible variant
compound, simply due to the combinatorial complexity of the solution-space.
Second, the choice of the perfect assay in regards to finding the (bio)molecule
with the desired function is crucial for the success of HTS. For example, if a
substrate needs to be modified for the screening process, the difference between
the properties of the original substrate to the substrate used for screening can
lead to false positives (31-34). At last, HTS is preparative expensive and

requires highly skilled experimental researchers.

Computational and Rational Design

The computational ("rational") design paradigm is the biochemical equivalent
to computer-aided design concepts in modern mechanical engineering. While
HTS methods allowed for great breakthroughs over the last years, a rational
design success is still rare in the field (35)).

Frequently, mainly numerical simulation such as MD methods are used
to understand the structure as well as the dynamics of the system under
scrutiny (3}, 36H39)). In order to perform simulations, like in mechanical engi-
neering (e.g., Finite-Elements (40)) simulations), structural knowledge in the
form of three-dimensional coordinates are required to model the system. Un-
fortunately, experiments typically reveal for proteins and RNAs only static
structures in most cases as stored in the Protein Data Bank (PDB) (41) with
some 150000 entries. In addition, few NMR structures are deposited there
— frequently, however, only giving some dozen of snapshots of the dynamics
which is typically to few data to understand the full dynamics. Alternatively,
structure prediction directly from the sequence could be a feasible alternative.
The structure prediction problem for proteins is still not fully solved. The
success of modeling via homology or by evolutionary constrains strongly de-
pends on the available templates (42, |/3) and includes three-body contacts
as well (44)), while ab inito from physical principles alone gained traction in
recent years (45|, 46). While, here, the computational burden is many times
greater than the amount used for homology modeling (47, 48)). In contrast
to proteins, nucleic acids have a much smaller variety of building blocks (e.g.,

nucleotides). Additionally, RNA has a modular structure and the nucleotides
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have more explicit interaction rules like base pairing (49)). This chemical sim-
plicity ultimately suggests a structural simplicity. However, this is clearly not
the case in nature.

Single-strand RNA show a remarkable spectrum of structural diversity,
while established algorithms for accurate structure prediction (50) were early
on reported. For example, the secondary structure of RNA — namely, the base
pairing — can be modeled with a high accuracy in shorter time directly from the
sequence. Among the first approaches is Zuker’s algorithm (51, |52). However,
for the determination of dynamic properties of RNA an advanced simulation
approach is still required to gain detailed knowledge about the structure and
function of the respective domains (53)).

While all these simulations and computations (6} |54, |55) produce data
for rational molecular design (56)), the data analysis afterwards requires ex-
tensive knowledge of biophysics, computer science, and structural biology is

also required to perform and analyses the results of MD simulations.
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Figure 3.1: Benchmarks of an MD simulation for a large system using stan-
dard desktop computers with GPU and Xeon boards. Plotted is
the simulation performance for the different models. The system
simulated was the always the same

A major contribution the wide-spread use of MD is its acceleration by
Graphics Processing Units (GPU) and moreover, algorithmic improvements (57
60). Take, for example, the Gromacs project, which involves new algorithms

targeting SIMD /streaming architectures as well as new parallelization schemes

16



for inhomogeneous hardware of both CPUs and GPUs (57). Thus, we can as-
sess larger biomolecular complexes like channel proteins in cell membranes or
micelles on an atomistic scale (4}, |5,|61). In Figure I illustrate the achieved
performance of MD simulations. Clearly, new low-cost consumer GPU cards
can outperform well designed cards for HP(]| just one generation from the
past. As the molecular processes have time scales ranging from femtoseconds
to hours, we sometimes might still encounter a “lack of resources” situation.
In this theses, however, short to medium timed simulations turned out to be
sufficiently long enough to estimate essential dynamics of a system (|6}, |62)).

For predicting movements on larger time scales reduced Coarse-Grained
(CG) models can be used ((6). The trade-off in these models is that accuracy
and resolution are exchanged to assess longer time scales. CG models combine
groups of atoms to form pseudo atoms or beads (63-65]). The connections
of these beads reflect the underlying molecular interactions (06)). By such a
representation the model naturally loses resolution, but also degrees of freedom
and thus computational complexity. In combination with simple potentials,
even larg assembly processes such as the one of the ribosome can be understood
(67).

The major challenge in order to use CG models, is to find an adequate
representation of the interactions between these particles, which reflects the
underlying physical principles. The modeling to static interaction graphs offers
an efficient approach to solving this problem, since half a century of established
methods, discrete algorithms and fast heuristics can be used. Especially for
the modeling of static RNA structures a large number of graph-based rep-
resentations have been successfully applied (6). However, when it comes to
integrating dynamic aspects into graph modeling or using dynamic graphs as
a data structure, there exist very few examples so far. Reduced models are
much faster to compute and offer the possibility of a time-resolved behav-
ior (e.g., Martini or RedMD) in addition to the classical multi-scale analysis
using simple harmonic potentials (68| 69). Furthermore, the quality of CG
models can be improved if the harmonic potential is parameterized with the
help of nuclear resonance spectroscopy (e.g., s_dENM) or MD simulations (e.g.,
Reach) (62}, |70). Thus CG has proven to be a powerful tool to probe the
spatial and temporal evolution of systems on the micro scale, beyond what

is feasible with traditional all-atom (AA) models. Considering this technical

! =High-Performance-Computing

17



3 Introduction

and methodological innovation, simulations and reduced models will become

an integral part of synthetic biology in the future.
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Readers Digest

Chapter |4 will give a theoretical introduction of (bio)molecules and the struc-
tures they adopt. Thereby, three key concepts, namely Molecular Dynamics,
structure prediction of RNA and graph-based representations of molecules are

introduced.

Section introduces basic concepts of nucleic acids and proteins struc-
tures followed by a short motivation of Zuker’s algorithm for the RNA struc-
ture prediction. Section [4.3| gives a brief introduction to MD simulations in
combination with technical aspects. Afterwards, Section [4.4] gives an intro-
duction as well as a introduction to graph-based representations of molecules.
The Chapter presents two manuscripts Chapter [5| presents two manuscripts
of modern computer-assisted protein engineering approaches for HTS as well
as single molecule simulations. The first manuscript shows an approach were
classical MD simulations were used to address rational design opportunities of
the Fusarium Solani Cutinase (FsC). The second paper deals with the devel-
opment of a pre-screening procedure for suitable Esterase/Cutinase Assays for
HTS.

Chapter [6] deals with manuscripts and research regarding the concept of rep-
resenting MD trajectories as dynamic graphs and its promising application to
RNA, proteins, protein complexes, water and confined minerals. As a result
of this, a new motif-based semantic is introduced. Here, Section depicts
a 4-vertex motif-based approach which aims to describe secondary structure
dynamics of proteins. Section [6.2] generalizes this concept regarding vertex
size and extended the application to a wide range of molecules (e.g., on a toy
model, mineral confinement) as well as thermodynamics of water. As an appli-
cation scenario for this manuscript, the motif-based semantics concept is also
transferred to RNA as well. Here, a novel concept and algorithm for motif-
based representations to derive RNA based MSM’s is introduced and applied
in Section [6.3] At last, in Section [6.4] all the above introduced and motivated

algorithms were combined in a software paper.

Chapter[7]depicts theory and applications of advanced statistics and graph
theory to improve screening procedures for HT'S-SELEX. Section two displays
a successful combination of SELEX with NGS and structure prediction that
supported the discovery of the first cirpoflozacin (CFX) riboswitch.

Section describes a novel (sub)graph-based approach for RNA struc-
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ture comparison with regard to the application in HTS-SELEX. At last, Sec-
tion[7.3]illustrates a novel methodology of motif-based semantics to RNA struc-
tures in order to improve selection for the NGS data set of the experiments.

At last, the results above will be summarized and discussed in Chapter [0
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4 Structure and Dynamics of

Biomolecules

This chapter gives a brief conceptual introduction into proteins, RNA, and
DNA. Section explains the structural composition of proteins and RNA. In
addition, the secondary structure prediction of RNA by Zuker’s algorithm is
described in detail. Section gives a short introduction of the methodology
of MD simulations followed by technical details. At last, an introduction to

graph-based analysis and molecular representation can be found in Section [4.4]

4.1 Important Biomolecules: Proteins and

Nucleic Acids

Biomolecules are the foundation of life because they are responsible for almost
every biochemical function in our body as well as everywhere in nature. Among
(bio)molecules proteins and nucleic acids play the key role. Nucleic acids like
Deozyribonucleic (DNA) and Ribonucleic acid (RNA) act as the blueprints of
proteins.

DNA is processed to RNA by a DNA-dependent RNA-Polymerase and af-
terwards translated into amino acid polymers (proteins) by the Ribosome (71)).
The genetic code is generated by the sequence of bases in the DNA. Here, 64
base triplets coding for 20 proteinogenic amino acids. The genetic code thus
looks degenerated at first glance because the 64 possible codons eventually code
for less information than would maximally be possible. Proteins are involved
in a large number of regulatory processes in the cell. Enzymes are proteins
that are capable of catalyzing chemical reactions. In this way, enzymes also
work highly specifically in the aqueous phase at room temperature.

The chemical industry relies on enzymatic processes in the sense of sus-

tainable chemistry and the recycling industry (e.g., in Germany) (72)). It is
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4 Structure and Dynamics of Biomolecules

desirable that enzymatic reactions completely replace chemical processes. Par-
ticularly due to the lower energy consumption as well as high yields and selec-
tivity involved, there are many advantages in comparison with classic chemical
reactions (72)). For this reason, proteins are of great interest to the chemical
industry. In addition to the economic benefits just mentioned, proteins are
macro molecules that perform and control various metabolic functions within
every cell. Their biological functions include catalysis (i.e. enzymes), muscle
contraction (e.g., titin), the transport of ions (e.g., hemoglobin), the transmis-
sion of information between specific cells and organs (e.g., hormones), activities
in the immune system (e.g., antibodies), the passage of molecules (e.g., ions)
across cell membranes, etc. (71]). For a long time, it was assumed that the
only function of RNA was passing on the genetic information stored in the
DNA so that it can be translated into proteins. In this picture, the RNA,
therefore, represents only one step on the way from DNA to protein. The as-
sumption that this is the only task of RNA was refuted in the mid-1980s when
Thomas Cech found out that RNA molecules can also act as enzymes and form
stable spatial structures, just like proteins (73)). Some of these structures have
impressive properties such as the highly specific recognition and binding of low-
molecular chemicals. These so-called aptamers are short, single-stranded DNA
or RNA oligonucleotides that can bind a specific molecule via structural mo-
tifs. Aptamers or their binding sensory motifs are often found in riboswitches
or ribozymes. The latter molecules can additionally change their conformation
by binding a ligand or even catalyzing chemical reactions such as proteins(74)).
The fact that RNA is not only an information carrier but also one of the few
molecules that can catalyze chemical reactions even led to the idea of an RNA-
world hypothesis (73). In this hypothesis, it is assumed to be that the origin
of life is in self-replicating RNA molecules, from which molecular Darwinian
evolution, complex, and more complex systems have been evolved. Due to the
possibility of producing RNA de novo as well as a large number of accurate
algorithms for structural prediction, RNA became molecules with a high po-
tential regarding industrial applications. During the past years, customized
gene network design has become of interest among various disciplines in life
science (13),|75)). Here, RNA/DNA aptamers serve as highly specific detectors
in sensors or therapeutic drugs and are used for bio-computing devices (13,
241 153)). Proteins and RNA hold a broad range of applications in our society,

and the potential is far from being exhausted.
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4.2 On the Structure of RNA and Proteins

4.2 On the Structure of RNA and Proteins

4.2.1 Protein Structure

Proteins E| are chemical polymers consisting of 20 different types of amino
acids . For each of these 20 amino acids, several triple sets of nucleic
acid bases are encoded on DNA level (i.e. codons). Proteins occur in a wide
variety of different forms and structural levels in nature. The computation of
the most favorable molecular energy conformation is not feasible due to the
many possibilities.

Hence, the structure prediction of proteins faces two major problems. One
of them is a prediction of a native conformation for a given sequence of amino
acids. This is referred to as the protein folding. The latter one is an inverse
folding problem, where a target conformation is given, and one has to find
which sequence(s) would fold into this particular conformation.

In biochemistry, four hierarchi-

Tertiary Structure

cally arranged structural levels are
differentiated among proteins .
First the Primary structure - the
amino acid sequence (sequence of
amino acids) of the peptide chain.
Secondary structure - the spatial
structure of a local area in the pro-
tein (e. g. helix, loops, sheet).

The next level is the tertiary
structure, the spatial (3D) structure
of a subunit. Figure illustrates

elements of the secondary structure

such as a helix or beta sheet and al-

low the tertiary structure to be dis-
played. Figure 4.1: Proposed tertiary structure
of the pNB-Estl3 repre-

sented in pymol

The structural elements men-
tioned stabilize the structure due to
intramolecular interactions and unique spatial arrangements of the participat-

ing amino acids. At last, the Quaternary structure - the spatial structure of

1Small Proteins (molecular weight < 10000 Da) are referred as peptides
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4 Structure and Dynamics of Biomolecules

the entire protein complex with all subunits. Secondary structural elements
can be determined by advanced experimental spectroscopic methods such as
circular dichroism spectroscopy (CD) (71). On the opposite, 3D structures can
only be solved experimentally by NMR or X-ray crystallography (71)). Both
techniques are experimentally complex and limited by the size of proteins. In
addition to the two established methods single-particle electron cryomicroscopy
methods like CryoEM are also used ((78)). Unfortunately, the resolution range
with 0.6-2.4 nm of these methods is still too low to serve as a template for
modelling (78]).

The prediction of spatial protein structures yields good results if proteins
with similar sequence and known structure already exist (79)).

This enables homology modeling, whereby the new sequence is mapped
to the target sequence whose structure is known, and thus "fitted" into the
structure (80)). This technique is similar to sequence alignment. The prediction

is more difficult if no structures of similar amino acid sequences are known.

4.2.2 Nucleic Acid Structure

In nature, DNA is almost always present in the form of double-stranded DNA,
whereas the majority of RNAs are present as single-stranded DNA. Hybrid
double-stranded molecules are only intermediate products in transcription.
RNA is a single-stranded, long-chain nucleic acid molecule. It is composed
of four building blocks, the nucleotides. Each of these nucleotides consists of
a ribose molecule (i. e. a sugar with 5’ carbon atoms), a phosphate residue
and one of the four organic bases adenine (A), guanine(G), cytosine (C) and
uracil (U) (DNA: thymidin (T)). An example of this is given in Figure [1.2]
The phosphate residue serves as a linker between the sugar molecules of two
susceptible nucleotides. It combines the 3’ carbon atom of the ribose molecule
of a nucleotide with the 5 carbon atom of the ribose molecule of the other
nucleotide. This basic structure is also known as the backbone of RNA.

The nucleotides of the double-stranded DNA or single-stranded RNA can
form stable spatial structures through base pairing. This kind of interaction
is defined as the specific bond between guanine and cytosine or adenine and
thymine (DNA) or adenine and uracil (RNA) fixed by hydrogen bonds.

The particularbase pairing (Watson-Crick binding) is a necessary prereq-

uisite for the formation of the double helix structure of DNA from two comple-
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Figure 4.2: Chemical structures of the four nucleotides of DNA/RNA. The
bases of cytosine (C), adenine (A), guanine(G) uracil (U) (from left
to right). thymidin (T) has methyl group at the marked position

of (U).

mentary single strands. However, there are also exceptions such as the A — T

pairing, in which the N; atom of the purine ring system does not act as a H-

bond acceptor in the sense of the Watson-Crick geometry, but rather the Ny

atom performs this function. This structural type of interaction is also called

Hoogsteen base pairing and is more stable from a chemical point of view than

a Watson-Crick pairing (81)). However, the latter occur much more frequently

in nature. However, if an interaction scheme deviates from Watson-Crick, it is
often referred to as wobble pairing (cf. Figure (82).

. e
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|
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A—-U

| Watson-Crick
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| Hoogsteen

Figure 4.3: Chemical structures of different interaction schemes.
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Aptamers and Riboswitches and SELEX

Aptamers (aptus, fit and large meros, region) are single-stranded DNA or RNA
molecules that, due to their three-dimensional structure and the ability to form
stable interactions, such as hydrogen bonds, bind target molecules with high
affinity and specificity. Riboswitches often have an aptamer or its binding motif
as the main component . Aptamers can be used, similar to monoclonal
antibodies, in various fields, from diagnostics to affinity chromatography up
to therapeutic applications . These molecules can be discovered by an
iterative version of directed evolution (e.g., SELEX) (26] (28] [84).

During this process, a
library of randomized RNA
molecules is combined with a
target structure. The target
structure is usually immobi-
lized on a matrix from which
the unbound RNA species
can be washed off after incu-
bation. Species that bind the
target structure remain in the
matrix. As a next step, non-
binding RNA is eluted and
binding RNA molecules are

enriched and amplified in the
later process. The last step is Figure 4.4: Schematic representation of the in
the most challenging one. vitro selection, SELEX
After eluting, this frac-

tion is converted into the RNA pool of the next selection round by reverse
transcription and polymerase chain reaction (PCR). It is obvious that in the
course of a multi cyclic SELEX experiment the evolution pressure shifts from
the side of high affinity sequences to sequences which are just better amplify-
ing. The most potent sequences are not necessarily those with high frequencies.
Underrepresented sequences might be the aptamers with the most preferred

properties.
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There exists many different strategies for performing the selection (30}
85-87). In addition, there are also many methods that are advanced like
Counter SELEX. Compared to traditional SELEX, counter SELEX adds an
additional step using structurally-similar targets to incubate with aptamers to
effectively discriminate non-specific oligonucleotides (88)). Furthermore there
are SELEX protocols for in vivo and in vitro screening. For Synthetic Biology,
it is especially important, that newly developed aptamers function also in
experiment, in vivo (29, |88). This is not always the case due to cellular
context dependencies. Nowadays, the SELEX process is still a “black box” at
the molecular level. Nevertheless, the application of NGS offers a possibility
to reveal some of its mysteries (16)).

To conclude, the SELEX process is time consuming, and the success rates
remain low and most of the current aptamers are obtained in vitro, and whether
they can function in vivo needs to be elucidated — up to now — experimen-
tally (88)).

4.2.3 Secondary Structure Prediction of RNA

Derivation of the RNA secondary structure supports assessing its function.
This renders secondary structure prediction from RNA-sequences as one of
the important problems in the filed of Bioinformatics (89). To address this
problem, various solutions have been proposed so far. These solutions include
a variety of theoretical concepts such as e.g.: machine learning (90)), dynamic
programming (51)), base pair maximization (91]), genetic algorithms (92)), cal-
culation of the partition function with minimum free energy (MFE) (93)), con-
text free grammar (51)), algebraic dynamic programming (94), evolutionary

constrains (99 etc.

Zuker and Stiegler Algorithm

One major milestone in the filed of Bioinformatics was the RNA secondary
structure prediction algorithm by Michael Zuker and Peter Stiegler (51)). The
following part explains Zuker’s example of structure prediction using dynamic

programing to compute the MFE E]

2based on Hofacker et al. (96)
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Technical Details The idea behind this algorithm is that each RNA structure
with n nucleotides can only be modeled in two different ways from shorter

structures:

1. The first nucleotide 7 is unpaired with a second nucleotide k
2. The first nucleotide 7 is paired with a second nucleotide k
with £ — 2 > 1.

However, this is only valid under the assumption that the nucleotides
form independent secondary structures (e.g., base pairs does not cross). If the
pairs or arcs are crossed in this representation, one speaks of a Pseudo-node
(e.g.,pseudoknot) in the structure. The term pseudoknots thus covers many
essential interactions of nucleic acids. They occur rarely, but are important
for the spatial configuration of the RNA. For this reason, the knowledge about
pseudoknots is essential for predicting the structure of an RNA molecule in
space (97). However, these prediction models are not accurate and the under-
lying models are far too complex | A well-known example is the algorithm
of Rivas and Eddy with a run-time complexity of O(n®) and a memory re-
quirement of O(n*) (99). The algorithm of Zuker, on the other hand, has a
run-time complexity of O(n?®). This is still very expensive, but acceptable for
the integration in high throughput applications.

In this model, the free energy of each substructure F;; (cmp. Equa-
tion (4.1])) between base ¢ and j is composed of the states when ¢ and j are not
paired or paired. The recursions for computing the MFE of an RNA molecule

in the loop-based energy model can be summarized as follows:

Fi,j = miH{Fi+17j, mln{Cl’k -+ FkJrl,j}} (41)
1<k<j

F; ;, denotes for the free energy of the optimal substructure on the sub se-

quence from i to j.
Ci;= min{Hi,j, i<11£1<i§1<l{ck,l + Liju}, Z,glggj{Mi—&-l,m + Dm+1,j—1}} (4.2)

C j, is the free energy of the optimal substructure on the subsequence subject

to the constraint that ¢ and j form a base pair. C' consists of three different

3Lyngsg and Pedersen et al. proven that the problem is NP-complete (98)
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Figure 4.5: Decomposition of RNA secondary structure used for the structure
prediction. Here, Feynman Diagrams of the recursion grammar are
used for further visualization. Unpaired nucleotides are represented
by either an individual unconnected dot or a dashed line. Figure
is adapted from Hofacker et al.

types of complex structures. H describes a hairpin and I an induced complex

structure I or a complex structure consisting of a multi-loop M or one with
only one component D (cf. Equation (4.2))).

My = min{ min {(m — i+ 1)+ Cousry}, min (Mg + Couiig), Migoa |

(4.3)
M ; denotes for the free energy of the optimal substructure on the subse-
quence subject to the constraint that that the structure is part of a multi-loop
and has at least one component. In the case of a multi-loop, the calculation of
energy becomes somewhat more difficult because the energy depends on the
number of substructures it consists of (cf. Equation (4.4)). For this reason,

the structure is decomposed and the individual components are listed.

Di,j = min{Dml, Clv]} (44)

Here D;; depicts the free energy of the optimal substructure on the subse-
quence 17, j subject to the constraint that that ¢, 7 is part of a multi-loop and
has exactly one component, which has the closing pair i, m for some m satis-

fying i < m < j.
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For the calculation of MFE or AG values for a given (sub)structure, the
Zuker algorithm uses experimental enthalpy values for every nearest neigh-
bor combination. These parameter sets exist for DNA and RNA and can be
found in the Nearest Neighbor Data Bank (NNDB) (100H102). These param-
eters also allow the computation of thermodynamic parameters such as the
entropy S or melting temperature 7}, of a basepair stack directly from the

sequence (103)).
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4.3 Molecular Dynamics Simulations

This section deals with the concept of Molecular Dynamics (MD) simulations
and its application followed by some technical details. The first part will give
a brief introduction of common simulation methods and the second part tech-

nical insights about MD.

4.3.1 An Introduction to Molecular Dynamics Simulations

Single molecule simulation techniques (|75)) can help to understand macroscopic
molecular observable’s (obtained by an assay, spectroscopy or spectrometry)
with microscopic insights into the time dependent behavior of a single molecule.

MD simulations yield in a trajectory of every single atom in the system,
and thus allow for very detailed analyses of dynamics and structure. Hence MD
is just one out of many simulation methods, it is probably the most frequently
used beside Monte Carlo (MC) simulations for molecules in general (104). MC
Simulations are often applied for the 3D structure prediction of RNA (105,
106)), peptides or small proteins (107, 108)). This simulation method is based
on sampling multiple configurations (random trial steps) in combination with
an physical energy/scoring function. One advantage of random sampling of
molecular configurations is that MC simulations does not require a continuous
energy function likewise in MD ((109)).

MD simulations are an extremely powerful tool when dealing with systems
where quantum effects can be well parameterized. There also exist many
hybrids methods combining some of the simulation aspects (e.g., QM-MM,
Quantum Mechanics in combination with Molecular Mechanics) (110)).

MD is based on the theory that the de Broglie wavelength is very small
compared to next-neighbour lengths and it is assumed electrons adjust in-
stantaneously to the motion of nuclear cores (112-114). Hence, a major
drawback of MD is that chemical reactions or electron tunneling can not be
simulated until now. The main advantage of MD is to provide a trajectory of
every atom, enabling comparison with the results from experiments like NMR.
However, the limit for comparing experiments and MD simulations is the time
scale and the size of the given system. Furthermore, the considered systems
are very small compared to the number of particles in a typical biochemical

asssay. One can imagine that the small system size evokes boundary effects,
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Figure 4.6: Different time-scales for simulations and the according experimen-
tal methods. Biomolecular movement is annotated below the black
arrow. Figure is adapted from (711])

but this problem is solved by applying periodic boundary conditions (PBC).
Figure shows the time scales for selected experiments and for MD simula-
tions. In summary, MD simulations are a powerful tool as they provide access
to an amagzing variety of dynamical and structural analyses and thus help to

bridge the gap between macroscopic observables and microscopic assumptions.

4.3.2 Technical Introduction

MD is one of the frequently used methods applied for single molecule modeling
in this work. Several MD simulation suites are available, where Gromacs (115
117) is one of the most commonly used. The following part gives a short

technical introduction as well as a brief description of the methodology and the
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underlying physics behind MD ﬁ In general, MD simulations solve Newton’s
equations of motion, describing the forces on the i-th out of N particles with
m; as the atomic mass and and H;.y as the applied potential resulting from
the applied Force Field (FF) (e.g., potential). |

2 = — —
= - md T o _aHtotal{rb ,..,’f‘N}
" dt? or; ’

MD simulations aim at solving the latter equation with an numerical

(4.5)

approach due to the interaction of too many particles for an analytic treatment.
Therefore, the chosen integrator solves Equation (4.5)) using discrete time steps
At for integration. Usually the time-step is in a range from 0.5 to 2 femto
seconds. Notice that the potential function Hy. considers the positions of
atomic nuclei only. Thus, electrons are assumed to be in the ground state
and |E| instantaneously adjust for center of mass motions of the atom. The
potential consists of two parts, the bonded (Equation ) and the non-
bonded (Equation (4.7])) interactions.

Htotal = Hbonded + Hnonbonded (46)

The Lennard-Jones potential is one method for describing non-bonded Long-
range interactions and the Coulomb for non bonded short range interactions,

and reads as follow,

N-1 N o\ .\ 4
Hn(m onde. B y s T = 7 Y -2 Y 2 4.
bonded 7 Z:: —Z {g’JKﬁj) <n-j> ] +47T€07“v:j} (47)

with the coefficients 6’12 and CS.

5
This description is only valid if particles of the same atom type interact with

determined when developing the FF.

each other. The coefficients are modified when calculating the interactions

between different atom types (« and /), using the following mixing rulesﬂ

€8 s = (5,08, (4.8)

o2, = (crcz)”. (4.9)

? 1,

“based on the Gromacs manual (114)

Saccording to the Born-Oppenheimer approximation

8 Gromacs supports further mixing rules or it is possible to specify the parameters directly
by way of a matrix.
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where « and [ are used as indicator functions for the atom type of atoms 7
and j, respectively.

Long-range electrostatic interactions are calculated with the help of the
Ewald summation algorithm. This algorithm is also called Ewald summation
and rewrites the interaction potential as a sum of a short range and long range
interaction term. This unique feature makes Ewald summation very efficient
(e.g., run-time complexity O(N log(/N))). An harmonic oscillator with quan-
tum corrections is used in order to describe bond-angle and bond-stretching
motions (see Equation (4.7)). Here, K, describes spring constant in order to
describe bonds and Kj to describe bond angles (with angle ). Here, r depicts
the distance between atom ¢ and j. Further, constrains are used to handle
motion of bonded particles. LINCS is usually used for solving this kind of
constraint molecular dynamics (e.g., LINear Constraint Solver; LINCS algo-
rithm) (718)).

Hbonded{Fl7~~ TN} - Z K Teq)

bonds

+ Z K@(& - eeq)2 (41[))
angle

+ Y 1 + cos(ng — )]
dihedral 2

The standard integration scheme of Gromacs is the leap-frog algorithm.
This algorithm evaluates positions and velocities at different times and has
a accuracy up to the third-order in the position for an expansion in a Taylor
series. Here, positions are calculated at time ¢, whereas velocities are evaluated

at time t — %At, reading

Bt + ;At) it — 5&) + fntF(t) (4.11)
and
Flt + At) = F(t) + Ati(t + ;At). (4.12)

One advantage of MD is to provide the opportunity to use different ther-
modynamic ensembles. In all performed simulations, only two ensembles have
been used for this work, isobaric-isothermal (NpT, constant number of par-

ticles, pressure, and temperature) and Canonical (NVT, constant number of

34



4.3 Molecular Dynamics Simulations

particles, volume, and temperature). In this work the NpT ensemble is used
for equilibration and the NVT ensemble for production runs.

MD simulations temperature is adjusted with an external heat bath. One
frequently used example of an heat bath is the Nosé-Hoover temperature cou-
pling algorithm (719). This algorithm is frequently used in MD in order to
study protein as well as water dynamics. Nosé-Hoover modifies the equation
of motion given by Equation by adding a heat-bath term, reading

S A < 4.1
a2 m;  Q dt (4.13)
and 4
143
— = (T —1Tp). 4.14
Y r-m) (1.14)

The coupling strength Qﬂ and the heat-bath parameter determined by the
equation of motion depends on the oscillation period 7r between the system
and the heat bath. Accordingly, the current simulation temperature of the sys-
tem is given by T" whereas Tj denotes for the desired temperature. Hence, these
equations allow the temperature to fluctuate while on average Ty is obtained.

The drawback of the Nosé-Hoover scheme is that phase space is only par-
tially sampled even for infinitely long times. Extensions, which attempt to
solve this problem by coupling many heat baths, could not be used, as these

so-called Nosé-Hoover chains are not supported by the integration algorithm.

Constant-pressure simulations is done by using a barostat (commonly
Parrinello-Rahman) (120H122)). This temperature coupling scheme resem-
bles the Nosé-Hoover temperature coupling and adds an additional term to
Equation (4.13)) with the Nosé-Hoover contribution included and reads as fol-

lows -
Pri_ Fi_pedfi _dii
dt? m;  Q dt dt

The scheme is similar to the previously introduced Nosé-Hoover approach,

(4.15)

but much more complex due to several matrix operations. Parrinello-Rahman
takes a single 3 = 4.5-107° 1/bar in case of isotropic pressure coupling, and
the pressure time constant 7, in ps (likewise 77 in Equation ) value and
physical meaning to 7 for the temperature coupling. The main advantage

of this kind of pressure coupling is that it is flexible and allows for slightly

2
T . _ 1770
with Q =
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changing the shape of the box during simulations.

The output of an MD simulation is an MD trajectory. It is commonly
represented as a list of frames X = (¥, 7, ...) that describe the snapshot
of the simulated system at consecutive points in time t¢g,t1,..., e.g., every
pico second. Each frame #; contains the three-dimensional, spatial coordi-
nates 7(7),7 € [1,n] of the simulated system of n representative atoms at the

corresponding time t, i.e., Z; = (7(1),7(2),...,7(n)).
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4.4 Graph-based Analysis and Representation of

Biomolecules

Graph Theory is a field of discrete mathematics that deals with combinatorial
structured of nodes and edges. Extensive application of graphs can be found
in electrical and mechanical engineering, transportation and communication
systems (123)). In biology, graphs are used to model biological networks such
as protein-protein, DNA regulation and cellular networks (124} 125)). How-
ever, graphs can also be used to model biomolecular structures (126)). This
methodology is mainly been applied in various contexts to study RNA struc-
ture and function (727)). While the analysis of static graphs is important, time
evolving networks recently gained a lot of attention. The following sections
will give a short background to graph-based representations of proteins and

RNA as well as corresponding notations.

4.4.1 Motifs, Graphs and Dynamic Graphs

A graph G = (V, E) is an ordered pair, consisting of a set of edges E and a
set of vertices V = {v1,va,...vjy|} . In this thesis, we only consider undirected
graphs without self-loops, i.e., E C {{v,w} :v,w € V,v # w}. For a graph G,
its adjacency matriz A(G) is a |V| x |V| matrix. A graph is called connected
in case any two vertices v, w € V are connected. Accordingly ,a dynamic graph
G(V;, E;) can be defined as a list of graphs (e.g., Gy, Gi1, Gia, - . .). Two graphs
G = (V,FE) and G' = (V', E') are called isomorphic if they contain the same
number of vertices, i.e., |V| = |V’|, and there exists a so-called edge-preserving
bijection f : V' — V' such that {v,w} € V <= {f(v), f(w)} € V'. Hence,
graphs are considered to be isomorphic if they express the same topology. A
motif is defined as the equivalence classes of isomorphic, connected k-vertex
graphs. The motifs of size k is also called or k-motifs is defined as M, =
{my,ma,...}. Accordingly, the set of all k adjacency matrices is defined as

Ay, with a size of |Ag| = 25 An example of adjacency matrices and graph

topology is given for As = {A° A' ... A"} the set of all eight adjacency
matrices of 3-vertex graphs, in Figure [4.7]

While there exist |Az| = 8 different adjacency matrices, only four of them
are connected (cf. Figure . All three connected adjacency matrices with

two edges are isomorphic to each other and can be represented by a motif

37



4 Structure and Dynamics of Biomolecules
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Figure 4.7: Aj; - all adjacency matrices of 3-vertex graphs (| 43| =272  =38).
Figure is adapted from Schiller 2016 (128)

(equivalence class) my, i.e., A* ~ A® ~ A% ~ m;. Here A", the only adjacency
matrix with three edges, forms the second motif mo, i.e., A" ~ my. Hence,
there exist |A3z| = 2 different 3-vertex motifs. We describe the counts of the
k-vertex motifs m € My, in a snapshot G; as a function Fu, (m) : My — N,
where Fyy, (m) is the number of (k-vertex subgraphs of G that are isomorphic
to m). These motif counts in dynamic graphs were efficiently computed using
the StreaM, algorithm. StreaM} is defined and also motivated in Section
and details regarding the number of different k-vertex counts can be found in
Table[10.2] A Y is defined as a SELEX set. This set consists of |)| different
sequences Y = {S° S', ..., SPI}. Figure|4.7|is created with Benjamin Schillers
LaTeX-Graphs ﬂ

4.4.2 Conversion of MD Simulations to Dynamic Graphs

Schiller et al. showed that MD simulations can be represented as a dynamic
graph that specify the connections between the vertices at consecutive points
in time (126, 129)). The graph-based representations of protein structures
have proven to be very useful in computational biology (130-133). A point in
time can be defined as a frame, which contains the positions of all n simulated
atoms ;. Therein, each representative atom i € [1,n] is represented as a
vertex v; € V.

These components are assumed to interact with each other if their L,
norm is below a spatial distance cutoff d. In that case, an undirected edge

is created between the corresponding vertices {v;,v;}. Using this unit-sphere

Shttps://github.com/BenjaminSchiller/LaTeX-Graphs
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fto = (Ffu(l)’ LR 7_‘}0(7’1.)) ftl = (Fﬁl(l)’ ce ‘rﬁl (n))
d(re(i), 7 (5)) < d :
= {v;,v;} € B4

Gto = (‘/f-mEtn)

Figure 4.8: Representation as a dynamic graph. The graphic shows a small
synthetic peptide in complex with its receptor. The first row shows
the side chain representations whereas the second row the dynamic
graph representation. The unit sphere graph is obtained with a
distance threshold of d = 0.8nm. Figure is created together with
Benjamin Schiller.

model, we can model each frame ;, t € T as a unit-sphere graph G, for a
given distance threshold d. Thereby, we obtain a dynamic graph Gy, Gy, . ..
that describes the interaction of the simulated atoms over time. An example

of a graph obtained using the unit sphere model is given in Figure 4.8

4.4.3 Comparison of Protein Structures

Structure comparison is also an important aspect regarding the analysis of
protein simulations. Hence, this knowledge serves as a classifier in order to
identify different configurations during the course of a simulation. Commonly,
the configuration of a set of atoms is expressed using the Root-Mean-Square
Deviation (RMSD, e.g., Equation (4.16))) (134-136). It expresses the Eu-

clidean distance (Lo norm) of each atom’s position 7;(i) in a frame Z; to its

initial position 7, (7) or an time-averaged position (). Thus, the RMSD of
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an MD trajectory X at a point in time ¢ is defined as follows:

RMSD(X, 1) = J = gnldm(z'), Fiol0))2 (4.16)

Here, d(...) is a distance function using the Ly norm. The RMSD is also
frequently used to classify transition states of a protein and is extensively
applied for the creation of MSM form simulations (14} 137).

Unfortunately, it has been shown that RMSD is not even accurate enough
for an intuitive determination of proteins equilibrium configuration (in MD
simulations) (158)).

4.4.4 Advanced Representation and Comparison of RNA

Secondary Structures

RNAs highly modular and hierarchical structure makes it perfect for advanced
representations as undirected, directed or tree graphs (1, |759). Graph-based
concepts (e.g., frequent subgraph mining) are promising and highly relevant
in order to identify RNA patterns from NGS experiments (74, 14/0-142).
The first approaches of connecting graph theory dated back in the early 1970
by Waterman, Nussinov and Shapiro et al., followed by the first comparison
schemes for RNA tree graphs (143},|144)). Over time, various additional graph-
based representations have been proposed so far. However, these are almost
always reduced models (CG). These models include all tree representations
except for the full tree representation from Lorenz and Hofacker (145, 140).
Yet, this does not represent the entire RNA structure, as nucleotides are also
combined here. For example, one internal node of the tree corresponds to a
base pair, a leaf node corresponds to a single unpaired nucleotide, and the root
node is a virtual parent to the external structure elements (96).

A more condensed representation of the secondary structure is proposed by
Fontana et al., the homomorphically irreducible tree (HIT) representation (147,
148). Some of the algorithms even combine structural elements or motifs.
Shapiro as well as Schlicks coarse grained tree representations use multi-loops
and other complex secondary structures as leafs and internal nodes (143, 144)).
The frequently used way of representing RNA secondary structure is the dot-
bracket (DB), where matching brackets symbolize base pairs and unpaired

bases are represented as dots. Hence, this encoding converts an RNA structure
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Figure 4.9: Different types of RNA structures representations. Graph repre-
sentations as strings and illustrated using Reingold and Tilfords
layout algorithm (749)). (a)(1) Hofackers Dot Bracket and undi-
rected Graph representation. (a)(2) Schlicks coarse grained tree
representation (1} [139). (a)(3) Shapiros coarse grained tree rep-
resentation 1144). (a)(4) Fontanas HIT trees (147] [148)).
(a)(5) Hofackers and Lorenz full tree representation (145} [146]).
(b) 3D NMR structure of 2KXM (27). The first illustration rep-
resents the molecular surface and the second image the ribbon rep-
resentation. From the third molecule on, the representation of a
distance-dependent graph, which is derived from the RNA, begins.
For this modeling different d are used and in addition the structure
is reduced to its C'3" atoms. Connections are shown in red and C'3’
atoms in gray.

to a vector S consisting of three characters (S € {., (,)}). Due to its simplicity,
the DB encoding is one of the mostly used schemes for the representation of
RNA molecules 1145, 1146, 150). DB can be converted to an adjacency
matrix A by adding trivial edges (i.e. backbone contacts and nearest neighbor)
and matching brackets as edges (hydrogen bonds). Figure shows all the

different representations of a single RNA molecule introduced in the previous

paragraph.

Here, the structure of one of the smallest synthetic aptamers ever discov-
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ered was used as an example (e.g., 2KXM (27)); cf. Figure (b). Accord-
ingly, Figure (a) depicts the graphs in their nested string representation.
In the second part, the topology of the considered graphs is additionally drawn.
Figure (b) depicts the unit-sphere CG scheme form Jager et al.. An ad-
ditional very interesting concept offers the transformation of RNA structures
into dual graphs from Schlick et al. (89, 151)). This particular representation

is mainly used for motif mining (142)).
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5.1 Cleavage Product Accumulation Decreases
the Activity of Cutinase during PET
Hydrolysis.

Fusarium Solanie Cutinase (FsC) loses activity during prolonged incubation
with PET. The reason for this behavior is widely unknown. Therefore, compu-
tational methods were carried out to describe the interactions between degra-

dation product and the molecular mechanics of the enzyme. The following

paper:

o Gross, C*., Hamacher, K., Schmitz, K., & Jager, S. (2017) Cleavage
Product Accumulation Decreases the Activity of Cutinase during PET
Hydrolysis. Journal of Chemical Information and Modeling, 57(2),243-
255.

describes the use of MD simulations in combination with Reduced Models (i.e.
CG), to show accumulations (PET degradation products and water) and their
molecular impact on the enzyme. The simulations in combination with CG
thus formed a good model, which explained at the molecular level why the loss
of activity occurred. After the evaluation of the simulations and the reduced
models, design proposals for the FsC were derived. In the course of this, a
software package was also created. This package includes an extension of the
method: Linear Response Theory by Ikeguchi et al. (152)).

Contributions In order to find the reason for decreasing activity of FsC dur-
ing the process of PET degradation, the initial concept of studying the in-

fluences of degradation products on the enzyme activity was given by me.
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Together with Christine Grof3, the concept of this study was further specified
and reasonable evaluation methods were defined. Within the context of this
work, I have performed and evaluated eight MD simulations. For the evalu-
ation of these simulation trajectories, I used a variety methods (e.g. DSSP,
RMSD, MSD, RMSF, SDC, Tetrahedral Order Parameter etc.). Some of the
evaluation methods were known methods (e.g. RMSD, RMSF) but I also de-
rived own solutions, which include the SDC and accumulation calculations.
This method follows the accumulation of degradation products on the molec-
ular surface (e.g., Protein or RNA SASA) during an MD simulation. In the
course of this manuscript, I helped Christine Grof3 to publish the used scripts
of the LRT null model as an R package: R library LRTNullModel. I was also
responsible for creating Figures 2,3,5 and 6, and I created Figures 1 and 4 to-
gether with Christine Grofl. For the Supporting Information I created Figures:
S4, S5, S6, S7 and S8. Furthermore, I helped to motivate the paper and wrote
parts of the manuscript. In this article, I am senior author. Kay Hamacher

and Katja Schmitz helped to write the manuscript and improved it.
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Cleavage Product Accumulation Decreases the

Activity of Cutinase during PET Hydrolysis

Christine GroR,*T Kay Hamacher, Katja Schmitz,} and Sven Jager* T

T Department of Biology, Computational Biology € Simulation Group, Technische
Unwversitat Darmstadt, Schnittspahnstrafle 2, 64287 Darmstadt, Germany
T Department of Chemistry, Biological Chemistry Group, Technische Universitit Darmstadt,
Alarich-Weiss-Strafie 8, 64287 Darmstadt, Germany

E-mail: c.gross@bio.tu-darmstadt.de; jager@bio.tu-darmstadt.de

Phone: +49 6151 16 20372. Fax: +49 6151 16 72772

Abstract

The Fusarium solani cutinase (FsC) is a promising candidate for the enzymatic
degradation of the synthetic polyester polyethylene terephthalate (PET), but still suf-
fers from a lack of activity. Using atomic MD simulations with different concentrations
of cleavage product ethylene glycol (EG), we show influences of EG on the dynamic of
FsC. We observed accumulation of EG in the active site region reducing the local flexi-
bility of FsC. Furthermore, we used a coarse-grained mechanical model to investigate
whether substrate binding in the active site causes an induced fit. We observed this
supposed induced fit or "breath-like" movement during substrate binding indicating
that the active site has to be flexible for substrate conversion. This guides rational
design: mutants with an increased flexibility near the active site should be considered

to compensate the solvent-mediated reduction in activity.
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Introduction

To reduce the worldwide increasing environmental pollution by plastic waste, new methods
to convert polymers back into monomers are needed. For the degradation of synthetic poly-
mers, like polyethylene terephthalate (PET) or polyamide (PA), enzymatic degradation is to
be favored over chemical or mechanical methods that suffer from the use of environmen-
tally harmful chemicals or high energy costs.! In this context, the use of hydrolytic enzymes
called cutinases, which are secreted by plant pathogenic fungi or bacteria, is a quite promis-
ing approach.? Due to their ability to degrade the natural high-molecular weight polyester
cutin, the main component of the plant cuticle, some cutinases are also able to degrade syn-
thetic polyesters.?® Cutinases have been subject to numerous activity and mutation studies
regarding the degradation of several synthetic polymers.?™

PET, the synthetic polymer most commonly used worldwide, is a main target of enzy-
matic polymer degradation studies. PET waste causes environmental damage worldwide,
while the overall PET production steadily increases.® The great interest to find a sustain-
able solution for PET waste treatment is underlined by the growing number of publications
regarding this topic during the last decade. In Google Scholar we obtain 965 hits for the
combined keywords "polyethylene terephthalate" and "cutinase" for the last decade, 683 of
them for the last five years. A number of comprehensive studies have been undertaken for
the Fusarium solani Cutinase (FsC; EC: 3.1.1.74) by combining experimental studies on
enzyme kinetics with experimental and computational studies on structure and dynamics® -
especially since the molecular structure of the FsC has been solved at a resolution of 1 AT
The good quality of the X-ray structure allowed for the detailed analysis of the time depen-
dent behavior of FsC via molecular dynamics (MD) simulations, at timescales up to 15 ns.®
As opposed to other cutinases requiring extreme conditions, the catalytic optimum of FisC
lies at 40 °C, which makes it the ideal candidate for an environmentally sustainable process.

PET hydrolysis leads to oligomeric fragments as well as to monomeric terephthalic acid

(TPA) and ethylene glycol (EG). FsC is able to catalyze this process, but its hydrolysis
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rate is quite low for the wildtype and converges to zero after a period of 24 to 96 h so
that it only achieves a total weight loss of PET film of 5%.% Previous mutation studies only
considered structure or shape guided design, to enlarge the active site. In these mutants
large residues were replaced by smaller ones as reviewed by Chen et al.? and references cited
therein. This resulted in activity enhancement for high-molecular weight polyesters but not
for low-molecular monoesters. While structure guided design is based on the structure of the
protein, a rational design approach uses additional simulations, modelling, or statistics to
predict a promising mutant. Furthermore, the issue of activity loss over time has not been
addressed so far. It is important to fully understand the limitations of wildtype FsC and to
carve out a clear hypothesis about the requirements to the mutants.

Our study focuses the low and decreasing activity of wildtype F'sC during PET hydrol-
ysis. We assume that the increasing amount of the cleavage products plays a key role in
this context. The small polar water analogue EG appears to be a reasonable candidate
as it increases the viscosity and density of the solvent and may alter the hydration of the
protein.® ! TPA is unlikely because it is not soluble in water so that its concentration in
the solution is negligible. The effect of EG monomers on the structure and dynamics of
proteins has not yet been sufficiently studied. Thus, in our study we investigated the effect
of increasing concentrations of EG on the structure and the dynamics of FsC at a molecular
level by combination of multi-scale simulations.

In the first part of our study, we used all-atom MD simulations to analyze the influence
of different concentrations of EG on the enzyme dynamics. We chose MD to study the
allosteric effects of solvent molecules as a state-of-the art method to determine protein dy-
namics and its solvent interactions.'? In the second part, we used a coarse-grained model to
investigate possible conformational changes of FsC upon binding of a high-molecular weight
polyester within the active site. Coarse-graining matches experimental data of small proteins
or RNA structures (e.g. thermodynamics of the bovine trypsine inhibitor) up to huge bio-

logical complexes (e.g. assembly of the ribosomal subunits).*'® Furthermore, it overcomes
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the limitations of MD simulations regarding the required timescale, which means that less
computational effort is needed to simulate larger timescales.'? In particular, we used the
linear response theory!® (LRT) to simulate the substrate binding in the active site by an
external force vector to investigate possible structural changes. Based on our findings, we

point out changes in the protein structure that may lead to improved enzyme activity.

Material and Methods

Molecular Dynamics (MD) Simulations

MD simulations were performed using the native FsC structure (PDB-Code: 1CEX) with
a resolution of 1 A.7 The simulation box with dimensions of x = 59.90 A, y = b7.16 A,
and z = 66.83 A was filled with TIP3P water molecules and varying amounts of EG up to
final concentrations of 0% (0 molecules), 2% (41 molecules), 3% (61 molecules), 5% (103
molecules), 10% (210 molecules), and 20% (420 molecules). To neutralize the simulation
box, 9 Na®™ and 12 Cl~ ions were added to a final concentration of 0.9%. The simulations
were performed with the Yasara software suite!” and the AMBERO3 force field !® at constant
temperature of 313 K, constant pressure of 1 bar, and constant pH of 7.4.

We used a van der Waals cutoff of 10 A. Long range Coulomb interactions were calculated
using the Particle Mesh Ewald algorithm. Grid points for the PME evaluation were evenly
spaced in each dimension (27 grid points). For temperature control we used a velocity rescale
thermostat which keeps the time average macroscopic temperature at the requested value by
rescaling the atom velocities using a Berendsen thermostat.!® For pressure control we chose
the Manometer barostat in Yasara.!”

Prior to the simulations, the simulation box including the FsC structure was filled with
the defined number of EG molecules, then filled with water, and at the end with counter ions.
Possible clashes were removed via energy minimization using the steepest descent algorithm

with subsequent simulated annealing until convergence, i.e. energy improvement of less than
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0.01 J"fgol per atom over 200 steps. After 500 ps of solvent equilibration the simulation with
2 fs time-steps was run for an overall simulation time of 100 ns.
During the simulation we did not use rototranslational constraints, but prior to trajectory

20 in order

analysis we preprocessed the trajectory files using t r jconv function in gromacs
to correct drift and rotation of the proteins from their initial positions in the simulation

boxes.

Parametrization for EG

For the parametrization of EG we used GAFF (General AMBER Force Field)?! atom types
and force field parameters followed by a calculation of semi-empirical AM1 Mulliken point
charges?® and a geometry optimization with the COSMO solvation model.?® Furthermore
we improved the AM1 charges for EG with the ’AM1 Bond Charge Correction’.?* This

parametrization procedure is carried out by Yasara.!”

Tetrahedral Order Parameter

To account for the ability of water to form hydrogen bonds with adjacent water molecules

and thus, to establish a tetrahedral network, the tetrahedral order parameter is defined as

follows: 2727

w

a-1-3y % {coswﬁmér. 1)

j=1 k=j+1
The index ¢ denotes the considered oxygen atom and j,k the nearest oxygen neighbours
(not necessarily hydrogen bonded to the local atom). The time average <% > Q,—> of a
system with N water molecules is 0 for random configurations and 1 for perfect tetrahedral

orientation of all molecules. It can range form -3 to 1.
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Mean Square Displacement

The mean square displacement (MSD) is a measure for the quantification of the dynamics

of molecules.?®

P(7) = 3 S Ilr) — RO )

75(7) is the current position of particle i at timestep 7. 72(7) is the MSD at timestep 7 for
a system of N particles compared to the inital positions 7;(0). We used this measure to
indirectly determine the viscosity of the solvent, as high viscosity correlates with reduced

dynamics and vice versa. This antiproportional relation is given by the diffusion coefficient

kg T
6-7-n-Ro

in the approximation of a sphere D = according to the Einstein-Stokes equation:

n-kg-T- 7T

2 — 9D =_" -
r*(7) n T 3w Ry

(3)

with the Boltzmann constant kg, temperature 7', timestep 7, viscosity 1 and particle radius
Ry in a n-dimensional system. For our MD simulations we computed the MSD of the waters’

oxygen atoms in order to indirectly quantify the solvent viscosity.

Root Mean Square Deviation

In order to quantify structural differences and conformational changes of the overall protein
structure we used the root mean square deviation (RMSD). The RMSD can be computed as

follows:

N

1
RMSD = |+ > (vf - )+ (e — )’ + (20— 2b)° (4)

i=1
where N is the number of atoms and z{ is defined as the x coordinate of atom ¢ in conforma-
tion a. All coordinates of all atoms in one conformation are compared to all coordinates of
all atoms in another conformation. We used all Ca atoms and trjconv fit rot+trans
as well as pbc corrections using t r jconv function in gromacs?’ to process the trajectory.

For the RMSD computation we compared the initial structure of the production run to all
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remaining frames. For curve smoothing we used the locally weighted scatterplot smoothing

(LOESS) algorithm.?

Root Mean Square Fluctuation

The residual flexibility was analyzed by the root mean square fluctuation (RMSF). It repre-
sents the average movement per residue during the simulation of T frames by measuring the
deviation of the coordinates x;, y;, and z; of a specific residue ¢ from the average coordinates

T, Ui, and Z;.

T
RMSF; = %Z (ot = )"+ (=) + (s = %) (5)
t=1

RDF —Radial Distribution Function

The radial distribution function®® g(#) gives the probability of finding a particle R} within

a spherical shell of radius 7 from another particle B; within an infinitesimal thickness:
1% oL o
g(r) :m‘26(7'_(Ri—Rj)) (6)

with N particles in a system of volume V. For our analysis, we used the protein Ca atoms
and computed the radial distribution of EG O atoms within radii from 2-30 A and a thickness

of 2 A.

Surface Density Calculations

In our study we used 7 = 40,000 frames for each simulation. We denoted the number of
amino acids as Q and of EG mass centers as £. We defined V;; the volume between amino
acid i (represented by its Ca atom) and the maximum interaction distance d to the solvent

normalized by its Solvent Accessible Surface Area (SASA) at frame t:
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Vii=SASA; - d (7)

The SASA computations were carried out using the parameter optimized surface calcu-
lator (POPS).3! For each simulation frame a SASA, at amino acid level as well as for the
whole protein was calculated. This resulted in a time series of SASAs for each amino acid.
Local densities of solvent molecules could be quantified as the number of particles p; inside
a volume fraction V.

To define the number of molecules occupying V;; in a trajectory, we calculated the number
of particles within the volume of every backbone amino acid i for every frame ¢. This yielded
to the accumulation tensor M (Eq. 8) with the axis defined by simulation frame ¢, the
backbone amino acid a;, and the EG mass center e;. We denoted ||d;; — €;:|| as the Euclidean
norm of the Ca coordinates (a@;) and the mass center coordinates of an EG molecule (€}) at

frame ¢. The entries of an accumulation tensor M are defined as follows:

0 if || — &l > d
M = (8)
1 if ||(_iit — é}t” <d,

with d set to 7 A, which corresponds to the first coordination shell of an amino acid. Now we

could approximate the average local EG density p; at amino acid ¢ over a whole simulation

by:
1 T £
pi= 7 20D Mua Vi Q)
t

Furthermore we defined the time dependent density (p;) for the complete protein by:

%

Q &£
| ]
=g Zj My Vi (10)
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For density comparisons the mean density over a defined period of time was used:

1
P:,]——;Pt»
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Linear Response Theory (LRT)

The linear response theory (LRT) introduced by Ikeguchi et al.'® is a model to predict
the structural changes of a protein upon ligand-binding. It is based on the normal mode
analysis (NMA), which is a well suited method to study the collective motions in proteins.>?
To reduce computational effort, this method can also be applied on coarse-grained structures
where proteins are reduced to a network of beads and springs. The beads represent the amino
acids of the protein and the springs represent bonded or non-bonded interactions between
several amino acids when their spatial distances fulfill a given cutoff criteria. Such a network
is called an Elastic Network Model (ENM).33

Instead of treating the fluctuations as isoptropic, like a Gaussian Network Model (GNM)
does, the LRT is based on an Anisotropic Network Model (ANM) that considers anisotropic
fluctuations of amino acids.®* It could be shown that combinations of low frequency modes

correspond to the protein structural changes upon ligand-binding. Hence, using the LRT

the direction of a structural change of a protein can be predicted via the formula: !

AR~ B> (AR;-AR;)o - f; (12)
J

where Aﬁi represents the predicted translocation of atom ¢ after the perturbation and
<Aﬁi . A]%) denotes the covariance matrix of atomic fluctuations in the ligand free state.
ﬁ- represents the external force vector mimicking ligand-binding and ( is 1/kgT with the
Boltzmann factor kg. For the computation of the coordinate changes, the covariance matrix
derived from an ANM or extracted from a MD simulation can be used. The covariance
matrix can be computed as the Moore-Penrose pseudo-inverse3®3¢ of the 3N x 3N Hessian

Matrix 7 that describes the second derivatives of the harmonic potential of the ANM with

N residues:??
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Regarding F'sC, we used this model to predict the structural changes (induced fit) during
substrate binding to the active site serine (S120). We obtained the covariance matrix from
a heterogeneously parameterized ANM using the energy minimized structure of FsC with
spatial cutoffs of 7A and 13A, respectively for connected residues (see Figure 1). We used
the matrix for intra-chain interactions between amino acids by Miyazawa and Jernigan®” as

L 38

well as the matrix for inter-chain interactions of amino acids by Keskin et al.”® provided by

the R package BioPhysConnectoR.*°
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Figure 1: Illustration of the elastic network models with distance cutoffs of 7A and 13A for
connected residues in comparison with the all-atom model of FsC in cartoon representation.
The Ca atoms are reduced to gray spheres and the connections between atoms are shown as
red lines. The catalytic S120 is highlighted in green.

To mimic the substrate binding, the external force vector was directed towards S120 from
a possible position for the substrate’s carbonyl carbon upon formation of the tetrahedral
intermediate. This position was randomly chosen from a cluster of accessible positions in

the binding pocket. Note that no substrate or solvent is present in the ANM setup.

LRT Null Model

The implementation of a null model has proven beneficial to study the statistical significance
of a computational approach.*! To investigate the influences of the direction of the force
vector as well as the significance of the above chosen force direction, we used a reference
model of isotropic perturbation with 1,000 force vectors randomly originating from different
points on a sphere around S120, similar to a previous study. *> We chose spherical coordinates
¢ and 6 uniformly distributed with ¢ € [0, 27] and 6 € [0, 7] to generate 1,000 different force

vectors. The force vectors f; = (x;,y;, 2;) were parameterized as follows:
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fuwi = fo-sin(f) - cos(¢) (15)
fyi = Jfo-sin(0) -sin(¢) (16)
fj = fo-cos(0) (17)

with fp being an arbitrary scaling factor that eventually has no impact on our subsequent
results. The induced fit of the enzyme substrate complex was demonstrated by perturbing
S120 with 1,000 different external force vectors f; with repulsive and attractive forces in
comparison.

To check for clustering, we clustered the displacement vectors of selected residues after
perturbing S120 from each random direction. The selected residues for displacement calcula-
tion were residues 80-90, 179-187, and 42-45, as they are reported to participate in the func-
tional behavior of F'sC.*3 Force directions were clustered by applying the kmeans algorithm
from Hartigan and Wong®* on the 1,000x (3-24) matrix of the x-, y-, and z-displacements
of the Car atoms of the selected residues. The optimal number of clusters was investigated
by comparing the log values of maximal within-cluster sum of squares (maximum withinss)

from kmeans clustering as a function of number of clusters.

Software Contribution

R% is an environment for statistical analysis of data that offers many additional packages, es-
pecially for computational biology. We implemented the method of linear response upon sub-
strate binding ' in R using the BioPhysConnectoR*’ and bio3d* packages and enhanced
the model by further statistics in our null model. We included both in the LRTNullModel
package in R to make the applied methods accessible to the community. Software link:

http://www.cbs.tu-darmstadt.de/LRTNullModel.tar.gz
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Results

In order to investigate the influence of increasing concentrations of the cleavage product
EG in the reaction solution on the activity of FsC, we performed MD simulations with
different EG concentrations (0%, 2%, 3%, 5%, 10%, and 20%) in the solvent. The trajectories
were analyzed regarding two different aspects. First, we were interested in the influences of
increasing amounts of EG on the overall dynamics of FsC. Second, we analyzed the results

with respect to local accumulations of EG on the surface of FsC.

Increasing EG Concentrations Reduce the Overall Dynamics of FsC

As a measure for the overall dynamics of FsC during the simulation, we compared the RMSD
values of the different runs (Figure 2 A). It is noticeable that increasing concentrations of
EG in the solvent reduce the overall dynamics of FsC. Just the small change from 2% to 3%
EG in the solvent causes a remarkable drop of the RMSD values, restricting movements to
at least half of the range found in pure water. Furthermore, we analyzed the effect on the
residual fluctuations of FsC in terms of RMSF (Figure 2 B). With increasing concentrations

of EG the RMSF also declines for all residues.
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Figure 2: RMSD (in steps of 5 ns, i.e. 2000 frames) and RMSF of the MD simulations with
different concentrations of EG in comparison. A: The RMSD curves were smoothed using
the LOESS® algorithm. The grey area is the uncertainty of the fit, while the error bars
represent the standard deviation of 2000 frames each. The higher the EG concentration,
the lower the average RMSD (except for the simulation with 0%) - with a remarkable drop
in overall dynamics of FsC from 2% to 3% of EG. B: The residual flexibility also strongly
reduces with increasing concentrations of EG.
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Accumulation of EG near the Active Site

To find out if and where EG accumulates on the surface of FsC, we performed surface den-
sity calculations based on the MD trajectories. Figure 3 A shows the mean occurrence of
EG particles on the surface of F'sC for the trajectories with different EG concentrations.
Furthermore, we distinguished between surface residues in the active site region and remain-
ing surface residues. Residues with a SASA<1 A2 were not considered as surface residues. A
12.4-fold higher slope of particles per volume with rising EG concentration was observed for
the surface residues near the active site than for the remaining surface residues (Figure 3 B).
This indicates, that EG accumulates near the active site with increasing concentrations of
EG.

For visual analysis, the average EG densities on the FsC surface are depicted in Figure 4
via color-coded surface representations. With increasing EG concentrations, we observed
higher densities of EG on the surface of FsC. Furthermore it is noticeable that for increasing
concentrations EG accumulates near the active site, which agrees with the results taken of
Figure 3 B. These observations give a first indication why the activity of FisC decreases during

the hydrolysis of PET as increasing amounts of the cleavage product EG are generated.

EG Accumulations Reduce the local RMSF of catalytic H188

As EG accumulates near the active site, we focus on the catalytic triad and the oxyanion
hole of FsC (S120, D175, H188, Q121, S42, N84). We observed increasing EG densities on
cach catalytic residue when the EG concentrations of the solvents increased (Figure 5 A).
The effects on the residual flexibility are pointed out by the local RMSF values (Figure 5 B).
The accumulation of EG most effects the flexibility of H188 (drop from 5.5 A to 0.5 A),

while for low EG concentrations H188 hardly encounters any EG at all.
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Figure 3: A: Time dependent densities of EG particles p; for the simulations with different
concentrations of EG in the solvent. The curves were smoothed using the LOESS? algo-
rithm. The grey area is the uncertainty of the fit, while the error bars represent the standard
deviation of 2000 frames each. B: Linear regression of mean densities p of EG particles (60-
100 ns) as a function of the concentration of EG in the solvent distinguished for surface
residues near the active site (slope= 0.460, p-value= 0.0038) and the remaining surface
residues (slope= 0.037, p-value= 0.04).
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0.05

0.01

Figure 4: Accumulation of EG on the surface of FsC. Blue denotes low densities of EG
whereas red denotes high densities (in Particles/A%). From A to D increasing concentrations
(3%, 5%, 10%, and 20%) of EG were used for the density calculations. With increasing
concentrations we observe a movement of the regions of EG accumulation towards the active
site (red ellipsoid).
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Figure 5: Densities of EG (A) and RMSF (B) for the residues in the active site and oxyanion
hole based on the MD simulations of FsC with different concentrations of EG in water.
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Characterization of the FsC environment

To elucidate the influence of EG to the solvent properties, we investigated the mean square
displacement (MSD) of the water molecules as an indirect measure of the solvent viscosity
as well as the tetrahedral order parameter of water molecules to study the effects on the
hydrogen bonding network. The MSD with EG does not significantly differ from the MSD
without EG which indicates that the viscosity of the solvent is marginally influenced by EG
(Figure 6 A). Interestingly, the distribution of the tetrahedral oder parameter Q; is right
shifted in the simulations with EG compared to the simulation without EG (Figure 6 B).
The hydrogen bonding network is more structured, when EG is added to the solvent, no

matter at which concentration.
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Figure 6: Characterization of the solvent for different concentrations of EG. A: Double
logarithmic representation of MSD of the water molecules as indirect measure of the viscosity.
The constant increase of the MSD during the simulation describes normal diffusion. The
MSD for the different EG concentrations does not significantly differ, which means that
the viscosity of the solvent is not influenced by EG. B: Tetrahedral order parameter @); to
quantify the ability of water molecules to form hydrogen bonds to adjacent water molecules.
In all simulations with EG, the distribution of ); values is right shifted compared to the
simulation without EG. This indicates that with EG the hydrogen bonding network is in a
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LRT Reveals the Need for more Flexibility in the Active Site Region

The results above show that with increasing amounts of EG in the solvent EG accumulates
near the active site and decreases the flexibility of the catalytic residue H188 and causes a
reduction in overall protein structural dynamics. Whether these observations are sufficient as
explanations for the low activity of FisC with progressing cleavage product release, had to be
further evaluated. As QM /MM simulations®® are prohibitively expensive for the simulation
of enzymatic reactions in the bulk, a coarse-grained approach based on an ANM?? was chosen.
Using linear response theory (LRT), it is possible to investigate the structural response of
proteins to a mechanical stimulus, e.g. due to ligand-binding. We used this method to
predict the structural change of FsC upon substrate-binding in the active site (formation of
the tetrahedral intermediate) in order to investigate to what extent flexibility in the active
site is actually required.

We computed the LRT model for distance cutoffs of 7A and 13A, respectively. The model
with 7A only includes the connections with residues in the first coordination shell, whereas
larger cutoffs (e.g. 12-15A) better reproduce experimental observations.?® For the ENM
with a cutoff distance of 13A for connected residues, Figures 7 A and C show the structural
response of F'sC upon mechanical perturbation at S120 (gray sphere) with increasing forces.
Attractive force vectors with increasing forces were used to simulate the release of the cleavage
product (Figure 7 B and D).

It is remarkable that for both cases mainly the loop regions near the active site are
affected, while the a//[-core remains stable - although S120 is located at the interface of a
[-sheet to an a-helix within the «/S-core. In case of the repulsive forces (substrate binding)
the loops around the active site move closer to each other, leading to a closing of the binding
pocket. In contrast to that, the attractive forces cause movements of the loops away from
each other corresponding to an opening of the binding pocket. These observations confirm
the hypothesis of a "breath-like" movement of FsC during the hydrolysis reaction proposed

by Longhi et al.”
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binding active flap
Cc D loop site helix

Figure 7: LRT model with repulsive A + C and attractive B + D force vectors with
different forces between 0 (blue) and 3000 (red) in arbitrary units from top and side view
(right angle to each other). The repulsive forces represent substrate binding and formation
of the tetrahedral intermediate whereas the attractive forces represent the release of the
cleaved substrate. The observed motions strengthen the idea of a "breath-like" movement
as reported by Longhi et al.”
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Analysis of LRT Results based on a Null Model

To prove the significance of the above results with a randomly chosen force direction, we
used a reference model of isotropic perturbation. We clustered the 1,000 different force
directions regarding their resulting displacements of selected residues after perturbation of
S120 with the corresponding force vector (for more information see Methods Section). The
development of the log values of maximal cluster sum of squares (maximum withinss) after
clustering as a function of the number of clusters using the kmeans algorithm (Figure S1)
convergences within ten iterations and has the most obvious drop from three to four clusters.
Therefore, the use of four clusters is plausible.

The result of the clustering is shown in Figure 8. The 1,000 different force directions
represented as 1,000 different end points on a sphere around S120 (Ca atom) are colored
according to their assignment to a cluster. All force directions of a cluster result in the same
conformational change of the functionally relevant regions of FsC.

Interestingly, the force directions belonging to one cluster are located in four different
spatial areas. This means that functional clustering is linked with the spatial distribution
of the force directions. It is remarkable, that the possible force directions for the substrate
to bind to S120 from a sterical side of view, exclusively belong to the green cluster. This
proves the insensitivity of the obtained structural changes upon substrate-binding in our
LRT model towards small inaccuracies in the structural mechanical model.

To assess the robustness of the clusterings by our LRT reference model, we compared the
probability to be in cluster i by the Kullback-Leibler Divergence: 7
Dk (P||Q) = > pi - In(E), where p; denotes for the probability to be in i in one run of the
LRT protocol and ¢; is the probability to be assigned to i in an independent repetition. Our
999,000 comparisons showed a mean (maximum) Dy, of 0.14 nat (0.03 nat). These rather

small values suggest high robustness of the implied clusterings.
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Figure 8: LRT null model with 1,000 force directions for the external force vector represented
as small spheres colored according to the cluster. In this illustration, the spheres have a
distance of 3.9 A to the Car atom of S120 in order to visualize possible positions for the
substrate on the surface of the binding site. The realistic force directions from which the
substrate can perturb the S120 during the catalytic intermediate, all belong to one cluster
(green). The randomly selected force direction within the group of realistic ones, which was
used for the LRT model in the previous section, is highlighted in violet. A and C: surface
representation. B: cartoon representation with a sphere of 1,000 force directions. D: zoom
into the surface to see the non-realistic force directions of the other clusters.
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* only caused by external perturbation
** correspond to normal modes of the protein

Figure 9: Schematic representation of the loop displacements near the active site after per-
turbing S120 with repulsive forces from other clusters. The small representations are colored
regarding the respective clusters in Figure 8. Note: The parallel loop motions caused by
perturbation from directions in the yellow and blue clusters correspond to normal modes
of FsC, while the "breath-like" motions caused by perturbation from possible directions in
the active site pocket do not correspond to normal modes. They only occur by external
perturbation due to substrate binding or cleavage.

Figure 9 shows the representative movements of the two main loops near the active site
after perturbing S120 in a schematic manner. Here, the results for repulsive forces are shown
which mimic the binding of the substrate and formation of the tetrahedral intermediate. For
attractive forces, the opposite displacements occur.

To ensure that the observed "breath-like" motions are actually caused by substrate bind-
ing/cleavage, we compared them to the low frequency normal modes of FsC. Low frequency
normal modes (eigenvectors of the Hessian matrix) underlie equilibrium dynamics of a pro-
tein and represent intrinsically accessible motions (conformational changes) without external
forces acting on the protein.*® In fact, the normal modes only comprise motions of the loop
regions near the active site that either move parallel to the left or parallel to the right (Fig-
ure 52, Movie M1, Movie M2), similar to those observed by perturbations from the yellow or
blue cluster. Normal modes do not comprise "breath-like" motions that are similar to those

caused by the perturbation of S120 from possible directions in the active site pocket.
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Summary and Discussion

The aim of our study was to investigate the reasons for the low and decreasing activity of
wildtype FsC during hydrolysis of PET in order to find means of improving enzyme activity.
For this purpose, we focused on the influence of increasing concentrations of the cleavage
product EG on (1) the overall dynamics of FsC and (2) the accumulation of EG on the surface
of FsC via explicit all-atom MD simulations. We found, that increasing concentrations of
EG result in reduced flexibility of FsC caused by EG accumulation near the active site.
The local flexibility of the catalytic H188 is most affected by this accumulation. With
our simulations we can confirm important residual fluctuations measured in NMR studies
of FsC*5! (Figure S3). These NMR studies already pointed out the catalytic H188 to
be highly flexible, which also goes along with our RMSF and surface density calculations,
irrespective of the different timescales. As shown by Prompers et al.?° H188 actually requires
this flexibility to enable the enzymatic reactions.

The high RMSD values of the MD simulations with 0% and 2% EG in the solvent could
lead to the assumption that unfolding events could have occured. However, structural ana-
lysis of our protein (Figure S4) proves that our MD simulations are stable over time.

Based on the characterization of the protein environment during the MD simulations, we
sum up that the hydrogen bonding network of the water molecules in the solvent is more
orderly with EG than without. Interestingly, the dynamics of water molecules, which we
analyzed in terms of MSD, were only marginally reduced. At first glance these observations
do not match, but having a look at the radial distribution function of protein Ca to EG O,
we see that EG mainly accumulates near F'sC (Figure S5 A), which fits well with our surface
density computations. This means that there are not many EG molecules left in the bulk to
reduce the viscosity significantly. To make sure that the reduced flexibility of FsC is actually
caused by the accumulation of EG and not only by solvent mediated effects caused by the
hydroxy functionality of an alcohol in general, we additionally made MD simulations with the

same simulation setup and force field but with 5% methanol (MeOH) or 5% ethanol (EtOH)
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respectively, instead of EG (Figures S5-S7). MeOH strongly increases water dynamics and
thus strongly reduces the viscosity. Furthermore, it increases the protein RMSD as well as
RMSF. Interestingly, it shows the same effect on the hydrogen bonding network of the water
molecules as with 5% EG, but MeOH is mostly located in the bulk and does not accumulate
near FsC. For EtOH we observe hardly any effect compared to the simulation without any
alcohol added to the solvent. It seems that, at least at this concentration, EtOH behaves like
water in the solvent. We only see a slight accumulation of EtOH near FsC. This suggests that
few EtOH molecules alter the dynamics of the protein, which is evident from Figure S5 B.

To account for the preferred type of interaction between EG and the active site residues,
we determined the distribution of densities of EG near hydrophobic and hydrophilic surface
residues in the active site and for all remaining surface residues in comparison. We found that
EG densities are significantly higher for hydrophilic than for hydrophobic surface residues
in the active site (Figure S8). For the remaining surface, EG densities are quite similar
for both types with a slight tendency towards hydrophobic residues. This shows that the
accumulation of EG monomers within or near the active site is mainly based on hydrophilic
interactions, i.e. hydrogen-bonding interactions.

The importance of the flexibility of the region near the active site actually was also shown
via the LRT model simulating the induced fit upon substrate-binding. While all-atom sim-
ulations of enzymatic reactions are not possible with the available computational resources,
our coarse-grained model is a valid method to investigate the required flexibility during the
reaction and to demonstrate the induced fit. Contrary to previous X-ray studies®? predicting
a preformed oxyanion hole, Prompers et al.’® observed an induced fit during NMR experi-
ments, which was our motivation for using the LRT method to investigate the mechanical
principles behind the induced fit. We were able to demonstrate significant motions of the
loop regions near the active site that do not correspond to the intrinsically accessible normal
modes of FsC and thus confirm the "breath-like" movement proposed by Longhi et al.”

The significance of our LRT results was further validated via a LRT null model. We found
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four main conformational changes of the loop regions near the active site. Interestingly, the
random directions belonging to the same clusters are located in discrete spatial areas. By
using this null model we were able to demonstrate that (1) our model is realistic and (2) that
the presented results of the LRT model are reliable, as all physically possible force directions
on the active site surface belong to the same cluster so that small perturbations would yield
the same result in our modelling approach.

The observed movements of the loop regions near the active site appear straightforward
for the LRT model based on the cutoff distances of 13 A, as there are direct connections
(springs) between S120 and the loop regions (Figure 1, left). However, our model with the
smaller distance cutoff of 7A shows similar structural conformations of the loop regions near
the active site (Figure S9), although there is no direct connection (Figure 1, right). This
demonstrates that the mechanism of mechanical force transfer is highly complex and forces
can be transferred over a wide range of edges within the whole network. The corresponding
null model is shown in Figure S10. To account for long-range interactions Figure S11 shows
the displacements for 15, 17, and 21 A cutoff, which do not differ in their direction, only
in their magnitude. This demonstrates that the 13 A modell does not disregard possible
deviating long-range interactions.

We suppose that bigger substrates correspond to higher forces acting on S120 during
the formation of the tetrahedral intermediate. This means, that in the LRT model, the red
conformations (high forces) correspond to the induced fit caused by binding of high-molecular
weight polyesters, whereas the conformations near the blue one (low forces) correspond to
the induced fit caused by low-molecular weight substrate binding. Therefore, our results

underline the necessity for flexibility of the active site regions for lager substrates.
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Conclusion and Outlook

In our study we found that (1) with increasing concentrations EG accumulates near the
active site and reduces the overall flexibility of FsC and (2) that the loop regions near the
active site perform a "breath-like" motion during substrate binding and cleavage. From
this, we conclude that increasing accumulation of EG negatively affects the activity of FsC
which is based on the following mechanism: The arrangement of residues of the active site
and the residues stabilizing the tetrahedral intermediate via H-bonds within the oxyanion
hole is crucial for the success of the catalytic mechanism (Figure 10). In order to enable
the nucleophilic attack of S120 at the carbonyl carbon of the substrate’s ester bond, the
nucleophilicity of the hydroxy group of S120 has to be increased. This is achieved by the
hydrogen bond network within the catalytic triad (D175, H188, S120).° Due to the nucle-
ophilic attack, a covalent bond between S120 and the substrate is formed and the proton is
transferred to the adjacent H188. Residues S42 and Q121 stabilize the negatively charged
carbonyl oxygen of the tetrahedral intermediate via H-bonds, so that further steps of the
catalyic mechanism are facilitated.® N84 and Q121 further stabilize the position of S42.7
During the loop movements, especially upon opening of the active site to accomodate large
substrates, the respective residues are pulled appart from the perfect arrangement. A loss of
flexibility of these residues impairs their instantaneous self-rearrangement to the positions
required for the catalyic triad and oxyanion hole. This distortion is likely to reduce binding
and substrate conversion rates. With further accumulation of EG and increased rigidity,
even the loop motions may abate so that the binding of high-molecular substrates, like PET,

is completely prevented.

One intuitive solution of the problem of EG accumulation would be the improvement of
the industrial degradation process towards removing the cleavage products during the pro-
cess. A further solution is to improve the enzyme properties by means of rational design in

order to counteract this cleavage product mediated effect. For this purpose, mutants with
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Figure 10: Active site (D175, H188, S120) and oxyanion hole (542, Q121, N84) of FsC as
stick representation. Note that the residues are in close spatial proximity even though they
are located at remote positions in the protein sequence. In the catalytic triad, red arrows
demonstrate the hydrogen bond network, so that the more nucleophilic S120 can attack the
substrate (carbonyl group of the ester bond simplified as yellow sphere). The covalent bond
of the tetrahedral intermediate is shown as a black solid line. The stabilizing hydrogen bonds
in the oxyanion hole are shown as black dashed lines. To illustrate the orientation within
the protein its transparent surface is shown.

increased flexibility near the active site should be favored. Furthermore, mutants with an
increased hydrophobicity in the active site might be promising candidates as we found that
the accumulation of EG in the active site is mainly based on hydrogen-bonding interactions.
The initiation of EG accumulation could be prevented by reducing the number of possible
hydrogen-bonding partners. As our LRT model demonstrates that the mechanical correla-

tions are rather complex, more sophisticated methods than structure guided design should
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be considered.

Our conceptual results have to be complemented by experiments investigating the en-
zymatic activity in terms of K,, and k., e.g. colorimetric assays.?® In these experiments
standard 4-nitrophenyl esters (like pNPA, pNPB, pNPP, etc.) are commonly used to deter-
mine the activity of FsC towards the hydrolysis of low-molecular esters but not necessarily
towards the hydrolysis of PET. We propose to search for more complex model substrates for
4-nitrophenyl assays, that mimic PET more closely.

During the preparation of the current manuscript the discovery of bacteria that are
supposed to be able to digest PET has been published.?® The responsible enzymes may be
quite interesting for enzymatic PET degradation, but a lot of basic research has to be done

in order to reach the current state of knowledge that FsC has in its community.
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Figure S1: kmeans clustering of the 13A null model with maximal within-cluster sum of
squares (withinss) as a function of number of clusters with the red arrow highlighting the
drastic drop using four instead of three clusters.
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binding active flap
C D loop site helix

Figure S2: Lowest frequency normal mode of FsC in one direction A + C and in the opposite
direction B + D in top and side view (right angle to each other). In contrast to the "breath-
like" motions after perturbation of S120 by substrate binding/cleavage, the normal mode
loop motions are in a parallel manner (both loops move to the left or both loops move to
the right).
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Figure S3: Comparison of NMR data with RMSF values of the wildtype simulation with
Pearson’s r = 0.721, p-value= 0.00043. H188 is labeled in red. § shift values are obtained
from Prompers et al.S!
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For secondary structure quantification we used standardized secondary structure assign-
ment, Define Secondary Structure of Proteins (short: DSSP). DSSP begins by
identifying the intra-backbone hydrogen bonds of the protein using a purely electrostatic defi-
nition.%? We computed DSSP for each frame and computed the mean occurrence of secondary

stucture elements of the complete production run of the simulation using R and bio3d.5

We measured the following secondary structural states derived from DSSP (Figure S4 D):
B = residue in isolated S-bridge,
E = extended strand, participates in [ ladder,
G = 3-helix (310 helix),
H = a-helix,
I = 5 helix (7-helix),
S = bend,
T = hydrogen bonded turn,

U = loop region.

Furthermore, to see that the protein does not unfold during the simulation time, we

plotted the percentages of a-helices, residues in isolated S-bridges, and bends over time

(Figure S4 A-C).
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Figure S4: Secondary structure analysis for the MD simulations with 0% and 2% EG in the
solvent. (A-C) Main secondary structure elements over time. The curves were smoothed
using the LOESS®® algorithm. (D) Average percentages of all observed secondary structure
elements.
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with different concentrations of EG in the solvent. For all EG concentrations we see a peak
around 5-7 A which is the first coordination shell of an amino acid followed by a second
peak at around 10 A. With further distances the radial distribution strongly decreases.
These results indicate accumulation of EG near the FsC surface while the amount of EG
in the bulk is minor. (B) RDF of protein Ca to EtOH O or MeOH O, respectively, for the
simulations with other alcohols in the solvent. For both alcohols we see a tiny peak in the
first coordination shell but in contrast to EG most of the EtOH and MeOH molecules are
located in the bulk far away from the protein surface.
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Figure S7: Characterization of the solvent for the simulations with 5% EtOH, 5% MeOH,
and 5% EG in comparison to the simulation without any alcohol added to the solvent.
(A) Double logarithmic representation of MSD of the water molecules as indirect measure
of the viscosity. The constant increase of the MSD during the simulation describes normal
diffusion. While the MSD of the simulation with EG is slightly decreased compared to
the simulation with water only, the MSD for the simulation with MeOH is increased and
the MSD of the simulation with EtOH behaves as with water only. (B) Tetrahedral order
parameter (); to quantify the ability of water molecules to form hydrogen bonds to adjacent

water molecules. The distribution of (); is right shifted for EG and MeOH while EtOH does
not significantly influence the hydrogen bonding network of the water molecules.
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To determine whether the interactions between EG and the surface residues are of hydropho-
bic or hydrophilic nature, we made surface density calculations based on Equations 7-11 with

d set to 7 A. The subsets of surface residues were grouped as follows:

active site residues:

41 42 81 84 119 120 121 150 175 177 183 184 185 186 188

remaining surface residues:

1234567891011 121314 17 1824 27 28 29 30 31 32 33 34 35 36 37 38 44 45 46 47 48 49
50 51 52 53 59 60 61 62 63 64 65 66 67 68 69 70 71 72 7576 77 79 80 83 85 86 87 88 89 90 91 92
949596 97 105 114 115 116 117 118 122 123 124 126 127 128 134 135 136 137 138 139 140 141
142 143 144 145 146 147 148 149 151 152 153 154 156 157 158 159 160 162 163 164 165 166 167
168 169 170 171 172173 174 176 178 179 180 181 182 187 189 190 191 192 193 194 195 196 197
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Figure S8: Distributions of EG densities at surface residues in the ative site in comparison
to the EG densities at remaining surface residues. For both surface subsets the densities
are seperately plotted for hydrophilic (blue) and hydrophobic (transparent) residues. While
the EG densities at the remaining surface are quite similar for hydrophobic and hydrophilic
residues, the densities of EG in the active site are significantly higher at hydrophilic residues.
This indicates that the EG accumulation in the active site is mainly based on hydrogen-
bonding interactions.
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binding active flap
C D loop site helix

Figure S9: LRT model (cutoff 7A) with repulsive A + C and attractive B 4 D force vectors
with different forces analogous to the model with 13 A in Figure 7. Here forces from 0 (blue)
to 60 (red) in arbitrary units were applied.
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Figure S10: LRT null model (cutoff 7A) with 1000 force directions for the external force
vector analogous to the model with 13 A in Figure 8.
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13 A + long-range

Figure S11: Comparison of the displacements of anisotropic network models with different
cutoffs for connected residues to account for long-range interactions. The displacements only
differ in their magnitude, which shows that the 13 A modell does not disregard possible devi-
ating long-range interactions. The 13 A long-range model was computed with decreasing
interactions between residues with larger distances than 13 A. Nevertheless, the displacement
is the same as for the original 13 A model.
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5.2 Statistical Evaluation of HTS Assays for
Enzymatic Hydrolysis of 5-Keto Esters

The following manuscript:

e Buss, O.* Jager, S.* Dold, S.-M., Zimmermann, S., Hamacher, K.,
Schmitz, K., & Rudat, J. (2016). Statistical Evaluation of HTS Assays
for Enzymatic Hydrolysis of -Keto Esters. PloS One, 11(1), e0146104.

presents a new method for selecting high-throughput assays for the develop-
ment of drug precursors. The selection is based on a statistical evaluation
of positive and negative controls of the assays to be analyzed. For this pur-
pose, control reactions are carried out for the respective assay. These reactions
are evaluated with different statistical distance metrics. The tests described
above are performed before the actual experiment. Subsequently, each assay
approach is assigned a performance. The assay with the highest performance
will then be used for the screening. This straightforward procedure increases
the success rate for screenings. We were able to demonstrate this experimen-

tally using esterases as an example.

Contributions In this manuscript, I was responsible for creating the expres-
sion vectors for pPNB-Est13 as well as FsC (esterase, cutinase) and for devel-
oping the expression protocol. Furthermore, I developed one of the presented
assays and performed the statistical analysis of all involved assays. In ac-
cordance with the presented method I implemented a R library (Assayvis)
and published it. I was also involved in the writing and conception of the
manuscript. Furthermore, I was responsible for the content and the creation
of Figure 2,3 and SI 1, SI 3. Kay Hamacher and Katja Schmitz helped to write
the manuscript and improved it. Dold and Zimmerman helped to conduct the

experiments. In this contribution, Buss and I share the first authorship.
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Abstract

B-keto esters are used as precursors for the synthesis of f-amino acids, which are building
blocks for some classes of pharmaceuticals. Here we describe the comparison of screening
procedures for hydrolases to be used for the hydrolysis of B-keto esters, the first step in the
preparation of -amino acids. Two of the tested high throughput screening (HTS) assays
depend on coupled enzymatic reactions which detect the alcohol released during ester
hydrolysis by luminescence or absorption. The third assay detects the pH shift due to acid
formation using an indicator dye. To choose the most efficient approach for screening, we
assessed these assays with different statistical methods—namely, the classical Z'-factor,
standardized mean difference (SSMD), the Kolmogorov-Smirnov-test, and t-statistics. This
revealed that all three assays are suitable for HTS, the pH assay performing best. Based on
our data we discuss the explanatory power of different statistical measures. Finally, we suc-
cessfully employed the pH assay to identify a very fast hydrolase in an enzyme-substrate
screening.

Introduction

B-amino acids are intermediates in the synthesis of a great variety of pharmaceutically impor-
tant compounds [1, 2]. The objective of this study is to select an HT'S assay to screen for one
enzyme for a two-step reaction cascade for the synthesis of f-amino acids. These occur in a
number of biologically active compounds such as paclitaxel, bleomycin and the lipopeptide
YM-170320 [3, 4]. Paclitaxel is used as a drug in the treatment of certain types of cancers [5].
As the correct configuration of the stereocenters is essential for biological activity, synthesis
strategies with high enantioselectivity are desirable [2].

A variety of synthesis strategies have been established for the production of chiral f-amino
acids. However, the limitations of these strategies are unfavourable for industrial production
[6, 7]. In addition to the chemical approaches, enzymatic strategies have been established to
produce chiral f-amino acids. Since all enzymatic approaches established in a industrial scale
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are based on kinetic resolutions, their theoretical yield is limited to 50% at most [8]. Both the
enzymatic and chemical synthesis strategies are still a subject of research for the production of
B-amino acids [9]. In order to achieve higher yields than 50%, f-amino acids can also be
obtained with high enantiomeric excess by enzymatic conversion of -keto acids using trans-
aminase [9]. However, the substrates of this synthesis strategy, the -keto acids, are not stable
and decarboxylate. To avoid this side reaction -keto acids can be generated in situ by hydroly-
sis of a -keto ester catalyzed by a hydrolase. In the synthesis of natural and non-natural sub-
strates hydrolases are a beneficial and commonly used enzyme class [10] and a number of
lipases and esterases are commercially available [11]. Many enzymes are well characterized, but
often there is no perfect match between the requirements of an efficient catalysis reaction and
the properties of the biocatalyst. Besides being able to acquire hydrolases commercially, there is
the possibility to test hydrolases from different sources, such as biomolecular libraries contain-
ing purified enzymes, microorganisms from the environment or hydrolases variants from
directed evolution and from in silico gene data basis. The limiting factor is the fast and reliable
identification of the best fitting enzyme.

HTS-assays for hydrolases

While investment in both, experimental time and costs, can increase sample throughput in
large screenings with standard analytical hardware [12, 13], this route can quickly become pro-
hibitively expensive. High throughput assays permit simultaneous measurement of samples in
96- to 1536-well plates so that 10°to 10”samples may be screended per day [14-16]. This way,
large biomolecular libraries can be screened for optimal enzymes [16].

A wide variety of assays has been established for the detection of efficent hydrolases in vivo
or in vitro [17, 18]. HTS assays for lipases and esterases have been extensively reviewed [19,
20]. HTS assays may directly detect the reaction products or convert these products for indirect
detection. For example a simple indirect HTS-assay detects the pH-shift during a hydrolysis
reaction by a pH-indicator molecule [21].

Enzyme activity can be detected by a number of parameters such as microbial growth or
changes in spectral properties, temperature or electrochemical potential as well as by lumines-
cence [17]. Chromatography methods are well suited for medium-throughput screenings [13].
The assessment of temperature change due to exothermic reactions has been reported, as a
technically sophisticated measure requiring specialized infrared cameras, which are no stan-
dard laboratory equipment [22]. In direct HTS assays product formation is monitored by a
change in a physical quantity associated with the product.

For this purpose, chromogenic and fluorogenic substrates are frequently applied in these
assays [18]. Additional analytical reactions are also commonly used [18]. These mostly syn-
thetic substrates allow for an easy readout by changes in absorbance, fluorescence or by chemi-
luminescence [12]. However, when a substrate analog with an artificial chromophore or
chromogenic group is employed in the the optimization process instead of the substrate of
interest this may lead to an enzyme optimized processing the analog but not the substrate of
interest (“You get what you screen for” You and Arnold et al. 1996) [13, 19, 23, 24].

Disadvantages of assay based on non-natural fluorophores/
chromophores

A variety of hydrolase screening assays is based on non-natural substrates with chromophoric
groups. Well-known examples are umbelliferyl-, 4-nitrobenzofurazane- and 4-nitrophenyl-
assays [25-27]. The disadvantage of this assays is caused by the difference between the proper-
ties of the substrate to the non-natural substrate. The most active enzymes in this kind of
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screening do not have to be the most active enzyme for the natural substrate. As an example,
for screening hydrolases, 4-nitrophenyl esters are popular, because standard photometric plate
readers can easily monitor the reaction by detection of the colored product at 348 to 405 nm
[13]. However, 4-nitrophenyl esters per se are no substrate with industrial pertinence [28, 29].
Furthermore, the absorption of the liberated 4-nitrophenol at 405 nm depends on the pH-
value, so that the pH value needs to be controlled. Alternatively, absorbance may be measured
at the isosbestic point of 4-nitrophenol at 348 nm [30, 31]. Moreover, 4-nitrophenyl esters are
more readily hydrolyzed than esters comprising aliphatic alcohol residues like methanol or eth-
anol. When 4-nitrophenyl esters are used to in hydrolase screening, the hits may therefore
exhibit lower activity towards the actual substrate [19, 32]. In 2008, J. Cérdova et al. [33]
reported enzymatic activity of bovine serum albumin (BSA) showing high hydrolysis rates for
4-nitrophenyl esters at 80-160°C. Under these conditions, a spontaneous hydrolysis of 4-nitro-
phenyl esters is likely, so that the observed hydrolysis may not be necessarily due to an enzy-
matic activity of BSA. Another argument against the use of 4-nitrophenyl esters is the potential
reaction with nucleophilic amino acid side chains as it was shown for the reaction of 4-nitro-
phenyl acetate with L-tyrosine esters by B.S. Hartley et al. in 1953 and the acetylation of insulin
in the reaction with 4-nitrophenyl acetate [34]. Modification of the enzyme by acyl-group
transfer may lead to artifacts during screening. Taken together, 4-nitrophenyl esters are are
often not suitable as substrate analogues for screening. If possible, alternatives to the fluoro-
phoric and chromophoric non-natural substrates should be used.

Indirect assays as an alternative approach

If it is impossible to directly detect the conversion of the native substrate, the alternative
approach is to further convert the products for indirect detection. A simple approach are color-
imetric pH-assays, which can be employed if one of the products is an acid that subsequently
deprotonates or a base that lowers the proton concentration in the medium. This change in pH
value can be monitored by an indicator dye [35, 36]. Enzymatically coupled systems that trans-
form one of the products yielding a detectable compound are more complex. As more reaction
steps and compounds required for quantification more parameters need to be optimized and
the readout is more prone to errors. One of the first examples for a convenient indirect assay
was the NADH-dependent, coupled enzyme assay for urease by Kaltwasser et al.(1966) [37].
For the hydrolysis of S-keto esters, we compared three different indirect assays for the activ-
ity of hydrolases. One assay relies on the change of the pH-value, the second is based on enzy-
matic oxidation of the released ethanol to acetic acid and the third, which we expected to be
most sensitive, is based on the oxidation of ethanol to ethanal and hydrogen peroxide which is
then converted by horseradish peroxidase (HRP) in a luminescence reaction. The first assay is
the simplest one, because only a buffer- pH indicator system is needed and many examples are
established for enzyme screening with pH-indicators [21, 35, 38, 39]. The second assay is also
well-known and established for measurements of alcohol in food [40]. This assay was miniatur-
ized to microtiter plates. The third assay is a modification of a chromogenic alcohol-oxidase
(AOX)/peroxidase (HRP) ethanol assay for determination of ethanol in beverages, which nor-
mally based on 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS) as chromogenic
substrate [41]. This assay was modified to a luminometric assay by adding luminol instead of a
chromogenic substrate. The luminometric measurements should be more sensitive due to pho-
tons are released by the detection reaction. For the first time the system was established in a
flow system with separated bioreactors by Marschall and Gibson [42]. For the quantification of
ethanol, we adapted the luminol-AOX-HRP system to microtiter plates by using design of
experiments (DoE). The aim was to optimize the system for endpoint measurements of
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enzymatic hydrolysis reactions. Therefore, for the first time a luminometric AOX-HRP-system
was tested for quantification of ethanol in 96-well plates. In this study all assays were tested for
HTS compatibility.

Statistical evaluation methods

To compare the quality of high-throughput assays the Z’factor is frequently employed [14, 43].
In addition, the assessment of measurement procedures can be based on traditional statistic
parameters like signal-to-noise-ratio(S/N), signal to background ratio (S/B), and coefficient of
variation (CV) (Table 1). CV is the ratio of mean to variance and often used as quality control
for assays [44]. The S/B-ratio is a criterion that indicates whether the level of the signal is suffi-
ciently high above the background. The rule of thumb for a good HTS assay is S/B >3. How-
ever, fluctuations in both the signal and the background are not considered. In contrast, the S/
N-ratio takes into account the standard deviation of the background. The higher the S/N ratio,
the less do background fluctuation influence the desired signal. Both measures indicate
whether a sample could be distinguished from the background, however they don’t quantify to
what extent the positive and negative controls can be distinguished.

Therefore methods have been explicitly developed to evaluate high-throughput screenings,
like Z’-factor and the Strictly Standardized Mean Difference (SSMD) [45].

J-H. Zhang (1999) defined the Z’-factor based on the normal distribution and the 3-sigma
rule of thumb [43, 46], which implies that 99.7% of all samples lie within less than three stan-
dard deviations distance from the mean. The Z’-factor has become a common metric for HTS
quality control as it allows to decide whether an assay is suitable to just distinguish positive
samples from negative ones (Z'>>0,5) or whether it can distinguish well performing samples
from poor ones (2°>0,8) [14, 43, 47].

The strictly standardized mean difference (SSMD) takes the mean difference of negatives
and positives in proportion to the standard deviation. SSMD gained recognition in screening
e.g. for antiviral drugs [48]. In 2007, X.D. Zhang derived the SSMD under the condition of
independence of both distributions through maximum likelihood estimation (MLE) and
method of moment (MM). Finally, for increased robustness against outliers, the median of
absolute deviation (SSMDg) can be used.

In this work, we applied for the first time these different SSMDs for evaluation of a biocata-
lyst screening assay. SSMD have already been used in RNAi screening and cell-based systems

Table 1. Overview of statistical measures for evaluation of HTS assays. o= standard deviation; y =
mean; m = median; pos = data set of positive controls; neg = data set of negative controls; n = sample size; Fy
= cumulative density function for data set k; max; = maximum distance between two distributions; SSMD =
Strictly standardized mean difference; x; = ith value of the (ordered) data set x.

Measures Definition
Kolmogorov-Smirnov-test (KS-test) KS = max;(F1(x;) — Fa(x;))
t-statistic t — _Vpos e
2 2
pos _“neg.
Mipos~ neg.
Z'-factor Z —{ _ 3%ees0neg
Hpos —Hneg
SSMDy, (method of moment) _ _Mpos—Hneg
B V/%hos~7heg
SSMDy,, (maximum likelihood) Bue = ———toeties
52 Mpos—1, o Mneg—1
Pos Aipos ' “Nneg” fneg
SSMDr, (robust) MAD = 1.4826m(|x; — m)
ﬁR — Mpos —Mneg

\/MADZ,~MAD2,
doi:10.1371/journal.pone.0146104.t001
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or for quantification of enzyme inhibition [49, 50] but never for assays of enzyme catalysis. We
compared these measures to the Z'factor.

We also chose non-parametric methods like the KS-test and ¢-statistic. Non-parametric test
statistic differs from parametric statistic in that no explicit distribution is given, but the proce-
dure is solely based on the data without the need for any model. The ¢-statistic describes the
difference of two sample distributions measured in standard errors of both means. This is suit-
able for small sample sizes, especially when the underlying distribution is unknown or not
derivable [51].

In contrast to all other methods, the Kolmogorow-Smirnow-Test (KS-test) [52] calculates
the maximum distance between two cumulative density functions (CDF). The CDF can be
computed for finite number of data points as a cumulative sum of the frequency of occurrence
of the (sorted) data. The unique benefit of this kind of calculation is that no previous knowl-
edge about distribution or models is needed. We include the KS test here to contrast it with the
other measures that do not rely on any CDF.

Materials and Methods

All enzymes and chemicals used in the assays were purchased from Sigma-Aldrich (St. Louis,
USA) and Carl Roth (Karlsruhe, Germany). Reagents were dissolved in 40 mM potassium
phosphate buffer (pH 7.2) unless stated otherwise. For all buffers and solutions deionized
water was used.

Expression and purification of para-nitrobenzyl-esterase 13 (pNB-Est
13)

Expression was performed in E. coli BL 21 codonplus using a pET-22b vector system with a
pelB-leader sequence for export to the periplasm of E.coli. After transformation cells were culti-
vated at 180 rpm and 30°C in shaking flasks in 400 mL LB-medium. After the OD600 had
reached 0.4, expression was induced with isopropyl -D-1-thiogalactopyranoside (IPTG, Carl
Roth, final concentration 0.2 mM). The expression proceeded over 15 h at 20°C. The cells were
harvested by centrifugation at 4700 rpm for 20 min at 4°C (Heraeus Multifuge X3 FR). Protein
purification from the periplasm was carried out by osmotic shock in ddH,0O, using the protocol
by Petersen et al. [53]. The supernatant was frozen in liquid nitrogen and lyophilized overnight
(Lyophilizer, Beta 1-8 Martin Christ). The product was analyzed by SDS-polyacrylamide-gel
electrophoresis (SDS-PAGE, S2 Fig).

Oxidative luminescence assay

Using the standard conditions of the AOX-HRP-ABTS system (described in the protocol of
Sigma-Aldrich [54]) the luminescence signal was very weak for ethanol (2.0 mM) [55, 56]. To
gain a much longer and more intensive luminescence reaction a design of experiments with a
statistic based optimization program (Modde 10.1 Software (Umetrics, Sweden)) was carried
out (54 Fig and S5 Fig). For measuring luminescence, white 96-well plates (Greiner, Austria)
were used. The final reaction volume per well was 200 uL. Reaction mixtures were prepared on
a Tecan Freedom Evo 200 liquid handling station (LHS). The LHS is equipped with one eight-
port liquid handling arm (LiHa), a standard robotic plate handling arm (RoMa) equipped with
a centric gripper, a 96-channel liquid handling arm (MultiChannel ArmTM (MCA 96), Tecan)
with an eccentric gripper, and an integrated spectrophotometer (Infinite M200 Pro, Tecan).
Pipetting precision and accuracy of aqueous solutions was determined by pipetting on an ana-
lytical balance as described by Oelmeier et al., 2010 [57]. A variation coefficient of less than
1.6% was determined for volumes between 20 and 1,000 pL. The concentrations of luminol,
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HRP, AOX and ethanol were varied in DoE to search for the maximum of luminescence inten-
sity (slope). For quantification of ethanol in samples different dilutions of ethanol (0 to 2 mM)
were added to the assay mixture. Finally a 1:8330 dilution of AOX (10-40 U/mg, Sigma-
Aldrich) containing of 2 pug of HRP (150 U/mg, Sigma-Aldrich) were added to the assay mix-
ture, containing 0.5 mM luminol (Sigma-Aldrich) dissolved in 5% (v/v) DMSO (Carl Roth)
and 95% 40 mM sodium phosphate buffer, pH 8.0. For statistical evaluation, 2.0 mM ethanol
was used as a positive control without hydrolase and ester substrate (see also subsection statisti-
cal analysis).

All ingredients, except HRP, were mixed at room temperature and then incubated under
shaking at 150 rpm at 30°C for 15 min. The reaction was started by adding 15 uL of HRP solu-
tion (total activity 0.3 U) to the reaction mixture and mixing with a 96-tip automatic pipette of
the evo workstation. Afterwards the 96-well plates were placed in the Infinite M200 Pro reader
to measure luminescence. For each measure point luminescence intensity was integrated over
350 ms. Each well was repeatedly measured for up to 1 h. The working temperature was 30°C
+/- 2°C. The luminescence raw data was processed either as mean or as numeric integral over
the duration of the experiment.

Oxidative photometric assay

To determine the ethanol concentration the commercial ethanol kit from R-Biopharm AG
(Germany) was used. According to the manufacturer, this assay is carried out in a total volume
of 3 mL measured in cuvettes at 340 nm in an ordinary spectrophotometer. The manufacturer’s
instructions were adapted to the 96-well plate format using 100 pL per well maintaining the
ratio of compounds. The assay was started by addition of a 1:10 dilution of aldehyde dehydro-
genase solution. The plate was briefly centrifuged to eliminate bubbles. The ethanol concentra-
tion was determined by an ethanol calibration curve in the range from 0 to 3 mM (S3 Fig).
According to the other assays a positive control for the evaluation test contained only 2.0 mM
ethanol without ester and hydrolase (see also subsection statistical analysis).

pH indicator assay for endpoint measurements

The protocol from Moris-Varas et al. was adapted [38] for endpoint measurements. A weak
2.5 sodium phosphate buffer (pK,, = 7.2) was adjusted to pH 7.0. Bromothymol blue (pK, =
7.1) [58, 59] was dissolved under heating and stirring in this buffer to yield a 0.54 mM stock
solution. The assay system contained 10% (v/v) indicator stock solution. According to the
other assays a positive control for the evaluation contained only 2.0 mM HCI without ester and
hydrolase (see also subsection statistical analysis). Absorbance was measured at the absorption
maxima of bromothymol blue at 440 nm and 620 nm in transparent 96-well plates in a conven-
tional plate reader (Epoch, Biotek).

pH indicator assay for enzymatic activity

The hydrolytic activity was also determined based on -keto acid formation as an indicator of
product formation using the pH indicator bromothymol blue. For the determination of activity
of hydrolases substrate concentration was 2.0 mM. The calibrations were done by adding dif-
ferent concentrations of HCI (0 to 2 mM) to the buffer in the presence of each tested ester to
determine a calibration line (S3 Fig) [39]. During the experiment the pH range was between
pH 6.0 to pH 7.0. In this range, the 3-oxo-3-phenylpropanoic acid (3-keto acid) is almost
completely dissociated. The calculated pK,for 3-oxo-3-phenylpropanoic acid is 3.56 [60]. For
comparison of hydrolases equal masses of protein from 10 mg/mL stock solutions were used.
The enzyme concentration of the stock solution was tested by Bradford assay. For each enzyme
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the blank was determined in buffer with bromothymol blue and without substrate. The incuba-
tion temperature was 30°C and 2 mM (concentration in situ) ethyl benzoyl acetate was added
to the reaction mixture containing hyrolase (see Table 2). The specific activity [mol/(min - mg)]
was calculated by the slope at the beginning of the reaction at 620 nm. The specific activity was
converted by the number of active sites into the turnover number [1/s].

Statistical analysis

To evaluate the quality of all proposed assays, we used the equations shown in Table 1. For the
pH-assay and spectroscopic ethanol-assay f1,0; was the mean absorbance of the positive con-
trols and .., that of the negative controls. In case of the oxidative luminescence assay i, was
the mean intensity or integral of the positive controls and W, of the negative controls. For the
pH indicator assay the positive control contained 2 mM HCl in 5 mM sodium phosphate buffer
(pH 7.2), and the negative control was made from plain buffer. For the two different ethanol
based assays, the positive control consisted of assay buffer and 2 mM ethanol, while plain assay
buffer was used for the negative controls. Between 44 and 48 positives and negatives were mea-
sured for each assay. The measurements took place in 96-well plates. SSMD, student ¢-statistic
as well as the KS-statistic and other metrics were computed in R [69]For the ¢-statistic we used
the t.test function with Welch correction and for the KS test the ks.test function in R. All other
metrics were implemented in R. All plots were created using the ggplot2 library [70]. For ¢-
statistics the Welch correction has been designed to account for unequal variances of both
groups (positive and negative) [71]. The criteria for evaluation of the assays based on the statis-
tic measures are listed in Table 3.

Software contribution

R is an environment for interactive analysis of statistical data in bioinformatics offering many
additional software packages. We combined all approaches and implemented the Assay-
Toolbox package in R to make the applied methods accessible to a wide community. Software
link: http://www.cbs.tu-darmstadt.de/htsassay.zip

Results

Upon hydrolysis of B-keto ethylesters, ethanol is released and a -keto acid is formed. After-
wards the acids can decarboxylate to carbon dioxide and acetophenone. A small amount of

Table 2. Enzymes for screening. For comparison of enzyme activity equal protein concentrations (mg/mL) were used. The concentrations of all hydrolase
solutions were determined by Bradford assay. Stock solutions of hydrolases were 10 mg/mL. All enzymes but pNB-Est13 were were purchased comerially.
pNB-Est13 was hetrologous expressed in E. coli.

Abbreviation

PPL

TLL

RML

CRL

ALBC
ALPF

ALM
pNB-Est13*
HRP

AOX

doi:10.1371/journal.pone.0146104.t002

Hydrolase type Origin Molecular weigth
Lipase Porcine pancreas 50 kDa [61]
Lipase Thermomyces lanuginosus 30 kDa [62]
Lipase Rhizomucor miehei 29 kDa [63]
Lipase Candida rugosa 60 kDa [64]
Amano lipase PS Burkholderia cepacia 28 kDa [65]
Amano lipase Pseudomonas fluorescens 32 kDa [66]
Amano lipase M Mucor javanicus 21 kDa [67]
Esterase M Bacillus licheniformis 55 kDa [68]
Peroxidase Armoracia rusticana

Alcohol oxidase

Pichia pastoris
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Table 3. Criteria for performance evaluation of HTS-assays [43, 47, 51, 71, 86, 87].

Z’-factor t-statistic SSMD Performance
08<Z2<10 Null-hypothesis rejected SSMD > 3.0 excellent assay
05<2<08 good assay
05<2<00 weak assay
00<Z Null-hypothesis accepted SSMD < 3.0 “yes/no” type assay

doi:10.1371/journal.pone.0146104.t003

carbon dioxide forms carbonic acid in water, which lowers the pH-value as well [72] (Fig 1).
We used the pH shift (Fig 1(B)) visualized by the indicator bromothymol blue as a measure of
product formation. We choose this indicator due to its expected pH value of the enzyme cou-
pled system consisting of lipase and transaminase. In addition we created a new luminometric
assay (Fig 1(C)) for use in 96-well plates. This assays detects the formation of the product etha-
nol by an enzymatic reaction. Ethanol was oxidized by alcohol-oxidase to yield acetaldehyde
and hydrogen peroxide, which is used to oxidize luminol to 3-aminophthalate by horseradish
peroxidase (Fig 1(C)). This well-known chemiluminescent reaction is frequently used in
immunoassays such as Western Blot or ELISA [73]. For the luminescence-based assay we
expected a higher sensitivity as the emitted light can be accumulated (high signal) and there is
no stray light from excitation (low background) [74]. Other alcohols can also be oxidized by
alcohol oxidase [75] so that this assay would be applicable to the hydrolysis of different types of
esters. For comparison we used the commercial ethanol assay from r-Biopharm, based on the
oxidation of ethanol to acetic acid in a two-step oxidation by alcohol dehydrogenase and alde-
hyde dehydrogenase [40]. In this reaction cascade, two equivalents of NADH are generated,
which can be detected by UV/Vis spectroscopy at 340 nm. The aim was to identify the best
assay out of these three, i.e. the one with the highest dynamic range and most stable readout.
The system also has to be sensitive enough to operate reliably with small quantities of substrate
and enzymes to save costs in high-throughput screening.

. (8) 0 2H,0
spontaneous decarboxylation _ 4
+ €O, ;_>HCO3 +H0 | PH
R . .
+ pH indicator
C :
H,0" ‘o N o peroxidase
—— ) +2H,0, Trem 420 N 3H0 + N,
. [0}
e alcohol-oxidase [ m
o o o o
hydrolase R NH o’
YA e P A o : g
R R | pH
NH, O NH, O
. + pH indicator i 3-aminophalat
aromatic -keto ester aromatic B-keto acid ethanol ) tming| aminophaa
alcohol- aldehyde-
dehydrogenase o dehydrogenase
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L OH
NAD NADH NAD NADH acetic acid
1340 nm 1340 nm

Fig 1. Overview of assays for hydrolysis of B-keto esters. (A) Hydrolysis reaction of 8-keto ethylester catalyzed by hydrolase. (B) pH-assay: photometric
detection of pH change due to acid formation and deprotonation with bromothymol blue. Ethanol based assays: (C) Oxidative luminescence assay using
alcohol oxidase, horseradish peroxidase and ethanol (D) Photometric detection of ethanol by oxidation by dehydrogenases under conversion of NAD*to
NADH.

doi:10.1371/journal.pone.0146104.9001
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The first step was to optimize all assays by testing different enzyme and compound concen-
trations without hydrolases, with HCI or ethanol as signal inducing molecules, mostly for the
luminescence assay. For comparison of the three HTS assays, endpoint measurements were
done. The two step oxidative luminescence assay was optimized by design of experiments
(DoE) to maximize the duration of luminescence and the sensitivity for endpoint measure-
ments. The isochronic induction of luminescence in all wells was very important for the reliable
quantification of ethanol. The assay mixtures were automatically pipetted by the Tecan evo
pipetting robot that can simultaneously pipette 96 wells. It turned out that a pre-incubation
time of 15 min without peroxidase was necessary. Without pre-incubation, the resulting lumi-
nescence signal was too weak for the quantification of ethanol. Luminescence enhancers like
4-jodophenol [76], were added in order to maximize the luminescence output, however no suf-
ficient signal amplification was observed so that these additives were omitted. Due to the rela-
tively weak signal the luminescence assay was only suitable for endpoint determinations. For
quantification, we calculated both the numeric integral and the mean of luminescence over the
measured time. A clear luminescence signal was detectable for about 50 min.

Likewise, the commercial spectrometric ethanol assay was only suitable for endpoint deter-
minations when carried out in 96-well plates. The assay was tested for kinetic measurements
with the result that no correlation between substrate concentration and reaction rate of hydro-
lase was observed. The pre-assembled commercial assay might not be suitable for kinetics,
because the concentration of NAD and alcohol-dehydrogenase can not separately be varied. In
contrast to these two assays, the pH indicator assay has no additional enzymes. The pH indica-
tor, bromothymol blue, has two absorption maxima in the UV-Vis spectrum at 440 and 620
nm and a pK,at the desired pH value for the cascade reaction of a hydrolase in combination
with a w-transaminase. The extinction coefficient at both wavelengths depends on the pH-
value so that both were used for evaluation measurements.

To evaluate these assays, we performed simple tests with positive and negative controls
without the real substrate and hydrolases. One-half of each plate was filled with the positive
control and the other half with the negative control. For the pH-assay, we used 2 mM HCl as
positive control, which corresponds to the maximum product concentration, if all substrate
was converted. For evaluation of the oxidative luminescence and spectrometric ethanol assay,
we added 2.0 mM ethanol as positive control for the tested enzyme coupled assays. Reaction
buffer without substrate and hydrolase was used as the negative control for all assays. In Fig 2
the distribution of negative and positive controls for each assay is shown. For evaluation we
used the criteria for evaluation listed in Table 3.

The KS-statistic value was almost equal for all assays, because all distributions seem to have
a maximal distance. KS-statistic shows that all positives and negatives have a clearly separated
distribution, but it cannot answer the question whether the degree of separation is acceptable
for HTS. Consequently KS-statistic test is not necessarily helpful to compare the performance
of these types of assays. Z'-factor, t-statistic and SSMD allowed for a more detailed evaluation:
Due to the low performance in all statistical tests the Lum(int) and pH-based assay at 440 nm
were considered unsuitable and were rejected. The pH-based assay at 620 nm performed best,
because it has the largest dynamic range (Fig 2(b)) and thus is a reliable test for the applicability
of our statistical measures.

SSMD yielded similar results as the Z’-factor and student t-test, showing that this measure,
that was developed for RNAI screens, can be employed for the evaluation of enzymatic reac-
tions (Fig 3). Robust SSMDr, differs from all metrics for the pH-based assay at 440 nm which
indicates that outliers exist for this assay. The negative consequence of outliers can be avoided,
if at least triplicates are measured. In contrast to all other measures SSMDy, is suitable for selec-
tion of sensitive assays with more outliers. On the one hand, additional metrics like the
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Fig 2. Histogram of positive and negative controls of different HTS assays. For each control 44—48 values were measured a) pH-indicator assay at 440
nm b) pH-indicator assay at 620 nm c) luminescence ethanol assay (mean luminescence intensity) d) luminescence ethanol assay (integrated luminescence

intensity) e) photometric ethanol assay at 340 nm.

doi:10.1371/journal.pone.0146104.9002
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Lum,,, best

Ethanol .4
LumMean
UV/Vis
440 nm

pH based
620 nm worst

Fig 3. Matrix of different statistical parameters for evaluation of HTS assays. For each parameter the assays were ranked from the best (green) to the
worst assay (red). The assays were grouped by the kind of detection. Ethanol quantification: Lum(int), Lum(mean), UV/Vis (ethanol dehydrogenase assay).
pH-indicator assay at 440 and at 620 nm.

doi:10.1371/journal.pone.0146104.9003

mentioned SSMDy, are particular useful in case of assays with outliers, because in some screen-
ing approaches they have a minor influence on the evaluation. However on the other hand sta-
tistics depend on explanatory power of the experimental data. As a conclusion of this, it should
be carefully considered which metrics as well as processed raw data are suitable for a certain
HTS evaluation.

As the pH indicator assay at 620 nm obtained the highest statistical scores it was chosen for
a subsequent small scale screening of a set of different hydrolases with different derivates of
ethyl benzoyl acetate (EBA; Fig 4). First of all, we determined for each ester a calibration curve
with HCI concentrations between 0 and 2 mM at 620 nm (S3 Fig). The strong acid HCI (pK, =
-6) nearly dissociates to 100% in a wide range of the pH-scale. In contrast the weak S-keto acid
(pK, = 3.56) can only completely dissociate, when the pH is clearly above the pK,. A weak
sodium phosphate buffer (pH 7.0) was very important to of the pH change during the reaction.
The range of pH-values during the experiment was between pH 6 and pH 7. This was the pre-
requisite for the calculation of the enzyme activity at the beginning of an activity test by the
absorbance over the time. The concentrations were calculated by the different calibration
curves of each substrate.

We tested each hydrolase in combination with each ester to determine which hydrolases are
the most active ones and which substrates have the highest accessibility (Fig 4).

When adding the enzymes to the reaction buffer containing bromothymol blue we observed
a color change for Amano lipase. However, upon substrate addition we detected no change in
pH-value, so we assume that interactions between the enzyme and the pH-indicator, a polyaro-
matic molecule, may have interfered with the reaction or its colorimetric detection. Therefore,
it was not possible to screen the activity of Amano lipase of Pseudomonas fluorescens(ALFP).
Such interfering effects of indicator molecules and enzymes are well known, see for instance
Banyai [12, 77]. An alternative option in pH-indicator screening might be the use of 4-nitro-
phenol (pK, = 7.16) as an indicator molecule. It has only one aromatic ring and is therefore
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Fig 4. Screening of different B-keto esters against different hydrolases with pH-indicator assay. (for abbreviations see Table 3) The concentration of
substrates was 2.0 mM in 2.5 mM sodium phosphate buffer (pH 7.0). The reactions were carried out at 30°C for 30 min. The activities (umol/min) were
normalized to pmol actives sites per s. (grey: no measurement possible) Para-nitrobenzyl-esterase 13 (pNB-Est13) was purified by us (described in
methods). a) Structure of ethyl benzoylacetate with different substituents used as substrates in the screening. b) Activity matrix for 8 different enzymes
(ABCL, ALM, ALFP, CRL, pNB-Est13, PPL, RML and TLL) against the respective substrates. The turnover number is in [1/s], for illustration turnover values
were color coded from blue (low) to red (high).

doi:10.1371/journal.pone.0146104.9g004

less hydrophobic [77, 78]. None of the other hydrolases showed any change in absorbance with
only the pH indicator in the absence of substrate.

The experiment revealed that every substrate was converted by hydrolases. The lipase from
Rhizomucor miehei(RML) showed the highest activity of the tested enzymes while the porcine
pancreas lipase mix (PPL) showed the lowest hydrolysis activity towards aromatic S-keto
esters. The only esterase in the screening (pNB-Est13), showed the fourth highest activity for
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all substrates. This shows that esterases may be considered as alternatives to lipases. This is of
interest as the activity of lipases depends on hydrophobic surface interactions so that the sub-
strate spectrum is limited. Esterases could help to broaden the substrate range for enzymatic -
keto acid and B-amino acid synthesis towards more hydrophilic compounds. Taken together,
the assay results confirm, that the pH-assay at 620 nm can indeed be used for substrate-hydro-
lase screenings, albeit other indicator dyes may have to be tested to reduce non-specific
interactions.

To explain the high activity of RML against all substrates, we consider the previous work of
Rehm et al. [79]. Thus we compared the active site volumes and structural conformations like
the opened as well as closed state of RML,Candida rugosa lipase (CRL) and TLL [79]. For
example, in water, the lipase active site is covered by a mobile element, the lid, which opens
upon substrate binding due to the hydrophobic interface [63]. In contrast to RML and TLL,
CRL possesses a large and complex lid (residues 66-92), consisting of a short and a long a-
helix. A comparison of the closed and open crystal structure of CRL revealed that the lid has to
refold partially (S1b Fig). As expected for this reason, a slower opening and closing when com-
pared to RML and TLL could be shown using Molecular Dynamics [79]. In contrast to CRL, a
fast rigid body movement of the lid was suggested for RML and TLL. This opening event is sug-
gested to be the rate limiting step during catalysis [64]. In addition several studies proposed
that conformational rearrangement during the catalysis could have a much greater influence
on the activity than binding energy inside the substrate pocket [80-82]. The discussion on the
influence of the dynamic on the activity of the enzyme is still on going [83]. Although CRL pos-
sesses a even bigger lid than RML and TLL, the same approximated active site volume was cal-
culated for all three lipases (RML: 59.5 nm>; CRL 60.3 nm?; TLL 57.3 nm?, S1 Fig)

Beside this, the substrate properties of the ethyl benzoyl acetate substituents might have an
influence on the activity caused by polarization and steric differences.

Conclusion

We compared three different assays based on a set of positive and negative controls by end
point measurements. For this purpose we applied for the first time an alcohol oxidase-peroxi-
dase-luminescence assay for ethanol quantification in 96-well format. Additionally, we evalu-
ated a pH-indicator and a commercial ethanol assay for HTS. We applied several statistical
measures for biocatalysis assay evaluation and found that classical Z’-factor, SSMD and ¢-statis-
tic can indicate whether an assay is suitable for HTS. The pH-indicator assay based on color
change of bromothymol blue at 620 nm upon acid formation performed best. However, strictly
considered is the most accurate way to evaluate HTS assays to test the complete coupled assays
(consisting of: enzyme(s) of interest, substrate(s) and assay compounds), then all necessary
assay compounds, substrates and catalysts have to be tested in combination with each other.
Otherwise possible cross-interactions of all assay substances can not be excluded when not the
complete system is tested. But this approach is not suitable for a screening with the variation of
more than one compound, caused by the exponentially growing number of experiments when
two or more different compounds are tested. A further obstacle for evaluation of HTS assays
by the whole testing system is that the hydrolases have to be previously inactivated in presence
of the substrate for an end-point measurement. Moreover, the limiting factors for an evaluation
are often enzymes as well as substrates availability (e.g. environmental samples). Therefore, a
robust reduced evaluation approach might be suitable and weighed against potential benefits of
a complete coupled system. In addition the non-coupled evaluation system could be also
adapted for more complex screenings e.g. in case for enzymes from microbial lysates. To
accomplish this a standard lysate from the expression host could be included into the
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evaluation setup. Beside this, using the pH assay in a screen of a panel of mostly commercially
available lipases we identified the RML as the most efficient enzyme for the hydrolysis of the
tested set of aromatic -keto ethyl esters. We were able to explain those findings by structural
models of the enzymes’ binding pocket and lid as well as by comparison of our data with
descriptive literature on lipases dynamics, including MD.

Furthermore, we demonstrated that the esterase pNB-Est-13 is also suitable for aromatic -
keto ester hydrolysis. This may help to broaden the substrate spectrum since esterases may
accept more hydrophilic substrates than lipases.

Outlook

The pH-assay is a very useful method in the search for efficient hydrolases for a cascade reac-
tion as it is robust, inexpensive and allows to record reaction kinetics. Our best-performing
hydrolase, RML, could be used in combination with w-transaminase, in cascade reactions for
the synthesis of f-amino acids. All tested S-keto esters could be utilized for cascade reaction
with hydrolase and w-transaminase [84]. The newly proposed enzymatic oxidative lumines-
cence assay, still requires further optimization. However, it bears the potential for a more sensi-
tive assay, due to the cumulative measurement and the lower background compared to
fluorescence and absorption measurements [85].

Beside this, we want to extend our modelling efforts to validate our hypothesis for the activ-
ity of the RML and to make predictions for the activity lipases and esterases like the pNB-Est-
13, with a broad substrate tolerance.

Supporting Information

S1 Fig. Structural investigation of RML and CRL. a) Surface representation of CRL open
(grey, 1CRL) and closed (blue, ITHG) state. Structural alignment of CRL open (grey, 1CRL)
and closed (blue, 1ITHG). b) Surface representation of RML open (grey, 4TGL) and closed
(blue, 3TGL) state. Structural alignment of RML open (grey, 4TGL) and closed (blue, 3TGL).
¢) Cavity volume (blue) of CRL in profile and front view. d) Cavity volume (blue) of RML in
profile and front view.

(TIF)

S2 Fig. pNB-Est13 esterase compared by SDS-PAGE. Equal volumes with the same protein
concentration were analyzed. The separation was carried in in a 12.5% SDS- polyacrylamide-
gel at 200 V. Crude pNB-Est13 esterase was used after osmotic shock with TES-buffer and
ddH,O0.

(TIF)

$3 Fig. Calibration of HTS-assays. The error bars show standard deviation. (a) Spectrometric
ethanol assay (Pearson: 0.998, p-value = 1.64 - 107%) (b) pH-indicator assay at 620 nm (Pear-
son: -0.999, p-value = 2.47 - 107%). (c) Mean Luminescence ethanol assay (Pearson: 0.967, p-
value = 8.15 - 10°) a) and b) were measured in triplicate. The assays are describe in the methods
section.

(TIF)

S4 Fig. First step optimization of the luminescence assay, by varying the concentration of
luminol/ethanol (a) and luminol/hydrogen peroxide (b) against the average luminescence
intensity over the time. The surface model plot was created by Modde 10.1.

(TIF)
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S5 Fig. Contour plot to optimize the luminescence assay. The ethanol concentration (0 to
2.5 mM) was plotted against the HRP concentration (0 to 0.87 U/mL),AOX concentration
(0 to 18.5 mU/mL)and luminol concentration (0 uM;37.5 uM;75 puM). Was scaled Contrast-
ing the activity. A) luminescence slope per s: blue = high activity; red = low / no activity. (B)
averaged luminescence: red = high activity blue = low / no activity. The plot was created by
Modde 10.1.

(TIF)
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6.1 StreaM - a Stream-based Algorithm for
Counting Motifs in Dynamic Graphs

In the following publication:

o Schiller B.*, Jager, S., Hamacher K., Strufe T. (2015) StreaM - A
Stream-Based Algorithm for Counting Motifs in Dynamic Graphs. In:
Dediu AH., Hernandez-Quiroz F., Martin-Vide C., Rosenblueth D. (eds)
Algorithms for Computational Biology. AlCoB 2015. Lecture Notes in
Computer Science, vol 9199. Springer

the StreaM algorithm for motif (connectivity pattern) counting was developed
for use in MD trajectories of proteins. The algorithm specializes in counting
motifs (4-vertex) in high-resolution, dynamic graphs. As an example we used
simulations of the pNB-Est13 and converted them into CG dynamic unit sphere
graphs. In these graphs, StreaM counts all different 4-vertex motifs for each
time-step. This methodology was used to quantify fluctuations of the complete
protein as well as only secondary structural elements. We also achieved a

maximum speed-up of up to 2300-fold in direct comparison with related work.

Contributions For this publication, I created a 50 ns simulation of an esterase
(pNB-Est13). This simulation was the basis for the run-time evaluation and for
all subsequent evaluations. Furthermore, I implemented the interfaces between
the StreaM algorithm and the MD trajectories. For this purpose I implemented

a CG tool, which converts MD simulations into dynamic graphs. I used it to
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create the graphs for the evaluation. Further contributions are the statistical
analysis of simulations and graphs as well as the creation of Figure 7 and
help to write and motivate the paper. Benjamin Schiller performed run-time
benchmarks and defined the algorithm. Kay Hamacher and Thorsten Strufe

improved the manuscript. In this article I am the second author.
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StreaM - a Stream-based Algorithm for Counting
Motifs in Dynamic Graphs

Benjamin Schiller!, Sven Jager?, Kay Hamacher??, and Thorsten Strufe!

! Privacy and Data Security, Dept. of Computer Science, TU Dresden, Germany
2 Computational Biology and Simulation, Dept. of Biology, TU Darmstadt, Germany
3 Dept. of Physics, Dept. of Computer Science, TU Darmstadt, Germany

Abstract. Determining the occurrence of motifs yields profound insight
for many biological systems, like metabolic, protein-protein interaction,
and protein structure networks. Meaningful spatial protein-structure mo-
tifs include enzyme active sites and ligand-binding sites which are essen-
tial for function, shape, and performance of an enzyme. Analyzing their
dynamics over time leads to a better understanding of underlying prop-
erties and processes. In this work, we present StrealM, a stream-based
algorithm for counting undirected 4-vertex motifs in dynamic graphs.
We evaluate StreaM against the four predominant approaches from the
current state of the art on generated and real-world datasets, a simu-
lation of a highly dynamic enzyme. For this case, we show that StreaM
is capable to capture essential molecular protein dynamics and thereby
provides a powerful method for evaluating large molecular dynamics tra-
jectories. Compared to related work, our approach achieves speedups of
up to 2,300 times on real-world datasets.

1 Introduction

Motifs, the basic building blocks of any complex network, have been widely stud-
ied in the past [31]. They are often used in the analysis of biological networks,
most notably protein-protein interactions [27,2,9,36,10], DNA [40,18], cellular
networks [21], and protein structure networks [22]. Because of their general appli-
cability, they have also been studied and used in other fields, e.g., to understand
patterns in real and generated languages [6], to analyze and improve Peer-to-Peer
networks [15,26], and for the generation of Internet PoP maps [13,12]. Recently,
temporal motifs that describe how interactions between components change over
time have been investigated [23,17] as well as degree-based signatures [30].

The problem of counting motifs in a static graph has been widely stud-
ied. The first approaches like ProMotif [16], mfinder [20], MAVisto [39], and
NeMoFinder [8] provided tools to count motifs of small sizes but performed
rather poorly, especially on larger graphs. This changed with the development
of Fanmod [43], a very efficient algorithm that all recent approaches have been
compared to. New algorithms like Kavosh [19] improve the efficiency of enu-
merating all subgraphs. G-Tries [35] is based on the idea of creating dedicated
representations of sub graphs and ACC [28] uses combinatorial techniques to
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speed-up the computation. Furthermore, parallelized approaches [44,37] have
been developed as well as approximations [14,42].

While the analysis of static networks is important, dynamic or time-dependent
networks have recently gained a lot of attention. Analyzing dynamics of biologi-
cal processes and systems is important for synthetic as well as for computational
biology [3]|. For example, the analysis of enzyme dynamics helps to understand
how it works, and thus, reveals opportunities for improving its functionality.
Analyzing the dynamics of amino acids to identify spatial arrangements that
correspond to active sites or other functionally relevant features is important for
protein classification and structure prediction [22,7]. Due to spatial amino acid
arrangements, some motifs occur only in stable structure elements like a-helices
and f-sheets and some represent general interactions. Moreover counting such
motifs in dynamic graphs or motifs in any kind of biological network seems to
be a promising approach to gain insight into various biological systems [33,41,4]

A common way to analyze the protein dynamics is the solution of Newton’s
equation of motion, i.e., molecular dynamics (MD). This method is used to
quantify motions, mechanics, and spatial motifs within a single protein-structure
as well as different molecular interactions. The MD approach approximates the
time dependent behavior of a protein in its natural environment and results in
a trajectory of atoms. One efficient way to analyze this trajectory is the use of
graph-theoretic measures. Moreover, using dynamic graph measures like motif
frequencies opens new opportunities for MD analysis. To this end, the trajectory
has to be transformed into an amino acid contact map defined by distance cutoffs.
Afterwards one can apply methods from graph theory to analyze the networks
of transient contacts and identify flexible or rigid regions as well as important
motifs. So far, only rough metrics like root mean square deviation (RMSD)
of heavy atoms are utilized to capture protein dynamics. While the maximum
number of contacts of an amino acid is approximately 6 [32], functional motifs
are commonly considered on smaller sizes. For simplicity, we focus on 4-vertex
motifs in this work.

The dynamics of time-dependent graphs are commonly modeled as a stream
of updates that describe each change to the graph as an atomic operation [34].
Stream-based algorithms use these updates to continuously update graph-theoretic
properties of interest. While such an algorithm for counting triangles in dynamic,
undirected graphs has been developed [11], there is no approach for counting
undirected 4-vertex motifs in dynamic graphs. Using snapshot-based algorithms
like Fanmod, Kavosh, G-Tries, or ACC is expensive, especially when performing
an analysis with a high granularity. In this work, we close this gap by developing
a stream-based algorithm for updating the motif count in dynamic graphs.

The remainder of this paper is structured as follows: In Section 2, we intro-
duce our terminology and define the problem of counting motifs in a dynamic
graph. We introduce StrealM, a stream-based algorithm for counting undirected
4-vertex motifs in dynamic graphs, in Section 3. We present an evaluation of our
algorithm against existing approaches in Section 4 as well as an application sce-
nario were we showed a complete new approach of using the analytical power of



6.1 StreaM - a Stream-based Algorithm for Counting Motifs in Dynamic Graphs

StreaM to capture essential protein dynamics in a large MD trajectory. Finally,
we summarize and conclude our work in Section 5.

2 Background and terminology

In this Section, we introduce our terminology for graphs, dynamic graphs, and
motifs. Then, we define the problem of counting motifs in dynamic graphs and
discuss the general proceedings of analyzing dynamic graphs.

Graphs An undirected, unweighted graph G = (V, E) is described by a vertex set
V ={v1,vs,...} and an edge set E C {{v,w} : v,w € VAv # w}. We define the
neighborhood of v as n(v) := {w : {v,w} € E} and its degree as d(v) := |n(v)|.
Then, the maximum degree of a graph is defined by d,,4. := rglea‘ac d(v).

Dynamic graphs As a dynamic graph, we consider a graph whose vertex and
edge sets change over time. Each change of such a dynamic graph is then repre-
sented by an update of V' or E that adds or removes an element. Hence, there
are four different updates to a dynamic graph:

. adding a new vertex (add(v),v ¢ V),

. adding a new edge (add(e),e ¢ E),

. removing an existing vertex (rm(v),v € V), and
. removing an existing edge (rm(e),e € E).

=N

Then, a dynamic graph is represented by its initial state Gy = (Vo, Fp) and
an ordered list or stream of updates uy, us, us, . ... Their consecutive application
transforms the graph over time:

Go 5 G Gy 2 Gs. ..

Each state GG; can be seen as a separate snapshot at the respective point in time.
We refer to a consecutive list of updates as a batch B; ; := {t;41,...,u;} whose
application transforms the dynamic graph G; into Gy, i.e.,

B

Motifs In this work, we consider undirected 4-vertex motifs (cf. Figure 1). They
represent the 6 classes of isomorph, connected subgraphs of size 4. We denote
them as M = {my,ma,...,mg}.

Problem definition Counting the motifs in a given graph G means to deter-
mine the number of occurrences F(m;) of each motif m; € M. Assume a dynamic
graph described by its initial state G and a list of updates U = (u1,ug, ..., ujy)).
Further assume a subset S = (sg,81,...,5¢),0 < S0,8; < Si+1,5: < |U| of its
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Fig. 1: The 6 undirected 4-vertex motifs M = {my, ma, ms, my, ms, mes}

states which determines the granularity of the analysis. Then, the problem is to
generate the motif count Fy for each state s € S of interest. Hence, the result of
counting motifs in a dynamic graph is a list of motif frequencies Fs,, Fs,, .. ., Fs,
which describes how they change over time.

Analysis of dynamic graphs The properties of dynamic graphs can be an-
alyzed at different granularities. At the highest granularity, properties like de-
gree distribution, shortest-path lengths, or motif count are computed for each
change, i.e., each possible state Go,G1,Ga, ... is analyzed. Lowering this gran-
ularity means to only consider a subset of these states, e.g., every 10th state
Go, Glo, GQO7 ... Or an arbitrary subset GQ, G317G527 ey 8 < Sja1-

all data points — m— every 5th data point  m— every 15th data point every 30th data point  m—

39

F(m1) (times 1,000)

50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
Timestamp Timestamp Timestamp Timestamp

Fig.2: F(m1) in a random, dynamic graph analyzed with different granularities

As an example, take a random graph Gy, ..., Gago with 100 vertices and 500
edges where 20 random edge additions are always followed by 20 random edge
removals. Figure 2 shows F(my), the number of occurrences of m; over time
which fluctuates between 34,000 and 39,000. Performing an analysis at highest
granularity shows the impact of each update, i.e., 201 data points. In case the
granularity is lowered (only every 5% 15" or 30" state is considered), local
maxima are missed and the appearance of the development changes. Therefore, it
is desirable to determine the properties of a dynamic graph at a high granularity.

Snapshot-based algorithms are executed separately for each snapshot Ggcg
to obtain Fg. Hence, the total runtime grows roughly linearly with the number
of analyzed snaphots. In contrast, using stream-based analysis, the granularity
does not influence the runtime. After computing Fy for the initial graph G using
any snapshot-based algorithm, each count Fj, , is computed by taking Gy, , Fs,,

i1
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and B, ,,,, as input. Since each update is applied separately, an increase in
granularity only requires to output the results with a higher frequency. Therefore,
stream-based analysis should outperform snapshot-based approaches in case a
high granularity is desired and the cost of applying the updates between two
states is less than a complete re-evaluation.

3 Counting motifs in dynamic graphs

In this Secion, we describe basic insights regarding motifs in dynamic graphs.
Then, we describe StreaM, a new stream-based algorithm for counting undirected
4-vertex motifs in dynamic graphs, and discuss its runtime complexity.

Basic insights Whenever an edge e = {a, b} is added to a graph Gy, i.e., update
ut+1 = add(e), two things happen: existing motifs are changed and new motifs
are formed. First, consider an existing motif m; that consists of a, b, and 2 other
vertices. The addition of e causes the motif to change into a different motif m;
which contains one more edge. We denote this operation as (i — 7). Its execution
decreases the occurrences of m; and increases the occurrences of m;, i.e.,

(’i — _]) . ft+1(mi) = ft(ml) — ].7 ]:t+1(mj) = ]:t(mj) + 1

Second, consider vertices ¢ and d that do not form a connected component with
a and b without e’s existence. In case e connects the four vertices, a new motif
my, is formed. We denote this operation as +(k). Its execution increases the
occurrences of my, i.e.,

+(k) : Fre1(mg) == Fe(my) + 1

In case an existing edge is removed, i.e., us11 = rm(e), the inverse happens:
some motifs are changed and others are dissolved. We denote these operation as
(i — §)~! and +(i)~L.

(Z — j)_l : }'H_l(mi) = ft(ml) + 1, }'t_,_l(mj) = ]-'t(mj) -1
+(k) Fra1(my) = Fe(mg) — 1

Adding or removing a vertex with degree 0 has no effect on the motif count.

Each motif m; € M contains at least 3 and at most 6 edges. The addition and
removal of edges leads to transitions between them (cf. Figure 3). For example,
adding the missing edge to ms changes it to mg ((5 — 6)) while removing
any edge from mg changes it to ms ((5 — 6)!). Adding edge {b,d} to the
disconnected set of nodes x creates a new motif my (4+(1)) which is dissolved by
the removal of any of its 3 edges (+(1)71).

The main idea behind our new stream-based algorithm is to find and apply
these operations to correctly update F for each edge addition and removal.
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Fig. 3: Transitions between the motifs m; € M when adding and removing edges

StreaM Assume an update (addition or removal) of edge e = {a, b}. To correctly
adapt F, we need to consider all 2-vertex sets {c,d} € CD(a,b) such that a, b,
¢, and d form a motif if e exists. Either both vertices are connected to a or b
directly or d is a neighbor of ¢ which is connected to a or b. With

N(a,b) := (n(a) Un(b))\{a, b},
we can define C'D(a,b) as follows:
CD(a,b) = {{c,d} : (¢,d € N(a,b),c#d)V (c € N(a,b),d € n(c)\{a,b})}

Besides {a,b}, 5 edges are possible between a, b, ¢, and d. We denote their
existence as a quintuple S(a,b,c,d) = (ac,ad, be, bd, cd), called their signature.
At least two distinct edges must exist, the first connecting ¢ and the second
connecting d. Therefore, there are 2° — 2 - 22 = 24 possible signatures.

Table 1: Operation mapping O from signatures S(a, b, ¢,d) to operations

10001 11100 11101
810010 01001 11000 11001 10011 11010 10101 11110 11011 11111
01100 00101 00110 00111 01101 10110 01011 10111

00011 01110 01111

O +) +(1) +(2) +(4) (1—-3) (1—-4) (2—4) (3—5) (4—-5) (5—6)

Each signature corresponds to a specific operation that must be executed to
update F. We define a function O that maps a signature S on the correspond-
ing operation. The complete assignment of signatures to operations is given in
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Table 1. In case the edge {a,b} is removed instead of added, the inverse opera-
tion must be executed. As an example consider the signature (10010) which is
isomorph to (01100). The addition of {a,b} creates the motif m;. Its removal
dissolves the motif as a, b, ¢, and d are no longer weakly connected.

Based on § and O, we can now describe the stream-based algorithm StreaM
for updating the motif frequency in an undirected graph (cf. Algorithm 1). For
an edge {a,b} that is added or removed (described by type), we first determine
the set C'D(a,b) of all pairs of vertices connected to a and b. For each pair
{¢,d} € CD(a,b), the required operation o = O(S(a, b, ¢,d)) is determined from
the signature of a, b, ¢, and d. If {a,b} is added, the operation o is executed.
Otherwise, the inverse operation o~! is executed.

Data: G, {a, b}, type € {add,rm}

begin
for {c,d} € CD(a,b) do
0= 0(S(a,b,c,d)) ; /* operation */
if type = add then
| execute o ; /* add edge */
else if type = rm then
‘ execute 0~ ' ; /* remove edge */
end
end

Algorithm 1: StreaM for maintaining F in dynamic graphs

Complexity discussion StreaM iterates over the |C'D(a,b)| <5 (dmaz)? €l-
ements of CD(a,b). For each element {c,d}, it computes the signature which
can be done in 5 - O(1) time, assuming hash-based datastructures are used for
adjacency lists. In addition, F is incremented or decremented which has time
complexity of O(1) as well. Therefore, processing a single edge addition or re-
moval with StreaM has time complexity of

O((dmaz)?) - (0(1) + O(1)) = O((dmaz)?)

4 Evaluation

In this Section, we evaluate the runtime performance StreaM. First, we briefly
discuss our evaluation setup. Then, we evaluate the runtime dependence of the
algorithm to batch size as well as vertex degree. We compare the runtime of our
algorithms to related work in scenarios where the analysis is performed at high
granularity and on dynamic graphs obtained from MD simulations consisting
of 20,000 snapshots. Finally, we show that StreaM is a powerful and unique
approach to capture essential molecular dynamics and gain insights on secondary
structure focused amino acid interactions.
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Evaluation setup All measurements are executed on an HP ProLiant DL585
G7 server with 64 AMD OpteronTM 6282SE processors with 2.6GHz each run-
ning a Debian operating system. We implemented StreaM in the Java-based
framework DNA (Dynamic Network Analyzer) [38] for the analysis of dynamic
graphs. The framework including our implementation of StreaM is available
on the project’s GitHub page*. We compare our approach with four popular
snapshot-based approaches for counting motifs: Fanmod [43], Kavosh [19], G-
Tries [35], and ACC [28]. For all approaches, we use the original programs pro-
vided by their authors®®”®. The cmd-line version of Fanmod as well as G-Tries
and Kavosh are implemented in C++. We compiled them from the original
sources using GCC version 4.7.2. Like our approach, ACC is implemented in
Java and executed using a 64-bit JVM with version 1.7.0 _25.

Complexity of StreaM Now, we validate the runtime complexity of StreaM
discussed in Section 3. We generated undirected random graphs (R) as well as
power-law graphs (PL) using the Barabési-Albert model with 500 vertices and
5,000, 10,000, and 15,000 edges. First, we generated 200 batches for each graph
with a growing number of random edge exchanges. A random edge exchange
is performed by selecting two random edges e; = (a,b) and es = (¢,d) and
exchanging their end points, i.e., transforming the edges to ¢] = (a,d) and
€5, = (¢,b). This implies 4 updates which are added to the respective batch:
rm(er), rm(es), add(e}), and add(eh). The i** batch contains i edge exchanges,
denoted as E*(i). Second, we created 200 batches for each graph, each containing
250 random edge addition, denoted as ET(250). The application of each batch
leads to an increase of the average and maximum degree by 1, hence 200 over
all. For all graphs and batch types, we recorded the average per-batch runtime
of 20 repetitions while performing an analysis using StreaM. In the first case,
we expect the runtime to grow linearly with the number of updates | B| because
E*(i) does not change dy,q. significantly during the application of each batch B.
Furthermore, we expect the runtime of StreaM to grow quadratically with the
batches E1(250)) since the maximum degree is increased by 1 with each batch.

Figure 4a shows the per-batch runtimes for the analysis of random and power-
law graphs for E¥ (). For all graphs, the runtime grows linearly with each batch.
The per-batch runtimes of applying E+(250) to both graph types is shown in
Figure 4b. For all datasets, the runtime appears to grow quadratically with av-
erage and maximum degree which are increased by approximately 1 with each
batch. As expected, the runtime of StreaM increases linearly with the batch size
(cf. Figures 4a. Since the application of E*(i) does not alter the degree distri-
bution, average and maximum degree stay constant which results in this linear
increase of the runtime. Furthermore, the runtime of StreaM, in dependence of

4 https://github.com/BenjaminSchiller/DNA

® http://theinfl.informatik.uni-jena.de/ wernicke/motifs/
5 http://1bb.ut.ac.ir/Download/LBBsoft/Kavosh/

" http://www.dcc.fc.up.pt/gtries/

8 http://www.ft.unicamp.br/docentes/meira/accmotifs/
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Fig. 4: Per-batch runtime for random (R) and power-law (PL) graphs of size
|V | = 500 with different edge count |F| depending on batch type

the maximum vertex degree d,nq., is bounded from above by a quadratic func-
tion as its algorithmic complexity of O((dnqz)?) implies. These results validate
the complexity discussion. The runtime of StreaM grows linearly with the batch
size and depends quadratically on the maximum degree. Therefore, StreaM can
be executed without performance penalties for arbitrary granularity.

Analysis with high granularity Next, we show that StreaM outperforms
snapshot-based approaches for analyses with high granularities. As initial graphs,
we consider 12 different datasets that have already been used in the evaluation
of ACC [28] and other snapshot-based approaches. The datasets originate from a
wide range of areas including biological, social, and traffic networks (cf. Table2).
Their size ranges from 418 to 12,905 vertices with an average degree between
1.85 and 22.01. As dynamics, we created 1,000 batches each consisting of a single
random edge exchange E*(1), i.e., |B| = 4. We measure the total time it takes
each approach to determine the motif count of the resulting 1,001 states. In
some cases, the execution of the snapshot-based approach did not finish after a
whole week. We terminated these processes and extrapolated the runtime for the
analysis of the 1,001 snapshots from the number of completed ones. The values
for G-Tries on foldoc are excluded since it did not even process the first snapshot
during this time. Especially for larger graphs, the repeated re-computation of the
snapshot-based algorithms should perform much slower than the stream-based
application of small batches. Therefore, we expect StreaM to outperform the
snapshot-based approaches for all graphs.

Figure 5 depicts the resulting runtimes for each dynamic graph. For most
datasets and approaches, StreaM performs between 10 and 1,000 times faster
than the other approaches. The smallest speedup we observed was for the word-
senglish dataset, where StreaM is still 4.6 times faster than ACC, the best com-
petitor. These results comply with our expectations. Since StreaM only computes
the motif count of the complete graph once and then only updates the results for
4 updates between two states it performs much faster than all snapshot-based ap-
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4 |E|  davg V] |E|  davg
ecoli 418 519 2.48 odlis 2,900 16,377 11.29
yeast 688 1,078 3.13 epa 4,271 8,909 4.17
roget 1,010 3,648 7.22 pairsfsg 5,018 55,227 22.01
airport 1,574 17,215 21.87 california 6,175 15,969 5.17
csphd 1,882 1,740 1.85 wordsenglish 7,381 44,207 11.98
facebook 1,899 13,838 14.57 foldoc 12,905 83,101 12.88

Table 2: Properties of datasets used for evaluation with high granularity
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Fig. 5: Total runtime of analysis with high granularity (1,000 times E*(1))
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proaches. Therefore, it becomes clear that StreaM outperforms snapshot-based
algorithms in case an analysis with high granularity is desired.

MD-simulations case Motifs are essential for the structural classification of
proteins which can be observed from amino acid interactions during MD simula-
tions. In proteins, some motifs, like helices, occur only within structurally stable
elements while others occur more frequently. Counting such structural motifs
during an MD simulation of a dynamic enzyme is an interesting approach and
allows the evaluation of essential molecular dynamics. Therefore, we analyze an
MD simulation using StreaM as well as snapshot-based algorithms to investigate
their performance on such a realistic dynamic graph. In addition, we investigate
the general applicability of StreaM to gain new insights of capturing molecular
dynamics from amino acid interaction motifs.

We created a graph time series from a molecular dynamics simulation of an
enzyme, the para Nitro Butyrate Esterase-13 (pNB-Est13), a large carboxilic
esterase. It is used as an additive of cleansing agents and holds a big potential
towards plastic degradation [29]. PNB-Est13 monomer consists of 491 residues
with molecular weight of 35 to 40 kDa [29]. As a protein structure we used an
homology model of pNB-FEst13. We used 1C7J chain A, 1QFES chain B, and 1C71
chain A as templates for the homology model. MD simulations were performed
with the Yasara software suite [24] using the AMBERO0S force-field [1] with con-
stant temperature (313K), pressure (1 bar), and pH (7.4). At the beginning of the
simulation, the box is filled with Tip3 water and NaCl counter ions (0.9%). Af-
terwards, the protein was energy-minimized utilizing the AMBFERO0S force field
until convergence was reached (0.01 kJ/mol per atom during 200 steps) [25].
We equilibrated the solvent for 500 ps. Then we simulated for 50 ns and took
snapshots every 2.5 ps. From these 20,000 snapshots, we generated a dynamic
graph with 491 vertices, each modeling an amino acid C,. An undirected edge
is created between two vertices in case their Euclidean distance is shorter than
d = 7A.In addition, we generated dynamic graphs using d € 8, 12]A to create
denser graphs. All 6 dynamic graphs consist of 491 vertices connected by 1,904
to 7,398 edges on average, depending on the distance threshold d (cf. d (cf. Ta-
ble 3)). The average batch size ranges between 141.16 and 487.7 implying that
6.6% to 8.58% of all connections are changed between two snapshots. To compare
the performance of StreaM to existing approaches, we analyzed these dynamic
graphs consisting of an initial graph and 19,999 batches using our stream-based
implementation and measured the total runtime of the execution. For existing
approaches, we generated the 20,000 separate snapshots that represent the dy-
namic graph and analyzed each one separately. We added the execution times
of all steps to obtain a single runtime.

The averages of 20 repetitions for all approaches and distance thresholds d
are shown in Figure 6. For the standard distance threshold of 7A, our stream-
based approach takes 173 sec while Kavosh, the fastest competitor, takes 2,365
sec. The analysis using Fanmod and ACC takes around 10,000 sec while G-Tries
runs for 400,000 sec. Hence, the speedup of StreaM lies between 13.7 and 2,300

133



6 Graph-based Analysis of MD Simulations

7A 8A 9A 10A 11A 127

V| 491 491 491 491 491 491
|E| 1,904 2,413 3,248 4,370 5,877 7,398
dawvg 7.76 9.83 13.23 17.8 2394 30.13
|B| 141.16 176.54 278.92 366.02 422.32 487.70

% 7.42% 7.32% 8.58% 8.38% 7.18% 6.60%

Table 3: Properties of the dynamic graphs generated during MD simulations
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Fig. 6: Total runtime of MD graph analysis depending on distance threshold
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times when compared to snapshot-based approaches for the standard case of
d = 7A |5]. When increasing the distance threshold d, the runtimes of StrealM,
Kavosh, and Fanmod increase in a similar way. Interestingly, the runtimes of
ACC and G-Tries only increase slightly, indicating that they mainly depend on
the number of vertices in a graph and not the number of edges.

As expected and indicated by our complexity discussion and evaluation be-
fore, the runtime of StreaM increases as the batch size and maximum vertex
degree grows. Since the runtime of ACC does not increase as drastically with
the distance threshold, the runtimes of both approaches are very close for the
highest investigated threshold of 12A. Notably, a distance threshold of 12A is
not realistic for amino acid contact prediction.

This performance evaluation shows that StreaM outperforms snapshot-based
algorithms when analyzing realistic dynamic graphs, in our case from MD simula-
tions. Except for unrealistically dense graphs, obtained with a distance threshold
of 12A, StreaM performs considerably faster than all other approaches. Hence,
it allows a much faster analysis of dynamic biological networks such as the pro-
tein graphs obtained from MD simulations. For structural motifs during protein
dynamics, a high granularity is very important to count transient interactions.
Especially long term MD trajectories require fast and efficient algorithms to
analyze transient amino acid interactions. To avoid unstable or unrealistic long
term simulations, in case of protein unfolding or using incorrect force field pa-
rameter sets, StreaM indeed is powerful enough to monitor MD stability online
in parallel to the execution of the MD simulation.
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240 [ 1
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Fig. 7: Motif occurrences over time in the dynamic graph for d = 7A

Interpretation of analysis results For the quantification of pNB-FEst13’s dy-
namic behavior we now investigate two meaningful motifs: The structure of my
is typical for stabilizing effects between structure elements or loops. It is capable
to describe 3 amino acids which are covalently connected within the backbone
and interact with a flexible loop due to electrostatic or hydrophobic interactions.
In contrast, mg, a circle/loop containing 4 edges, can only be found in robust
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structure elements like a-helices and [-sheet. In case of our MD simulation, we
observe that the occurrences of my decreases over time (cf. Figure 7b). This
means that the protein structure enlarges during simulation. In relation to the
RMSD, we observe a Pearson correlation of -0.67 (p-value < 2.2 - 10716, 95%
conf. interval, -0.673 to -0.657). Similar for m4 we observe a Pearson correlation
of RMSD to mg with a value of -0.190 (p-value < 2.2-10716, 95% conf. interval:
-0.204 to -0.177). Clearly, the number of m3 motifs remain nearly constant over
time as shown in Figure 7a. This behavior agrees with the general assumption
that mg can only be found in stable structure elements, such as a-helices, which
is necessary for a constant RMSD. In case of MD graphs, a high granularity
is indispensable to capture all transient amino acid interactions. In contrast,
snapshot-based approaches do not allow for an analysis at such high granular-
ity and therefore cannot generate similar insights. From these results, we can
conclude that StreaM is capable of capturing essential molecular dynamics at
high granularity - in particular important structural features based on secondary
structure focused amino acid interactions. To this end, besides its outstanding
performance, we showed that StreaM is a powerful new algorithm for the analysis
of large MD trajectories.

5 Summary, Conclusion, & Future Work

As dynamic graphs have gained much attention in the recent past, not many
approaches exist to efficiently analyze the time-dependent properties of such net-
works. In this work, we developed StreaM, a stream-based algorithm for counting
undirected 4-vertex motifs in dynamic graphs. We evaluated the algorithm on
generated datasets as well as realistic graphs obtained from MD simulations of
pNB-FEst13. We showed that using motifs for protein dynamic analysis helps to
distinguish between structure elements and general interactions and might be
a valuable, additional analysis procedure to assess local stability of MD tra-
jectories whereas RMSD measures global stability. Our approach outperforms
state-of-the-art by up to 2,300 times on real-world datasets. Thereby, it enables
the fine-grained analysis required to understand highly dynamic graphs over
time.

Dynamic aspects are typically done on small motifs because the maximal
number of contacts of an amino acid is approximately six. In the future, we
will extend our work by generalizing the algorithm for arbitrary motif sizes
and developing rule sets for other motif types. Moreover we will dynamically
annotate individual amino acids and the respective motifs participate in, during
a simulation. This will open new possibilities for bimolecular engineering and in
particular enzyme engineering.
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6.2 Motif Based Analysis of MD Simulations

The following section will give an elaborate demonstration of a motif-based
analysis approach using four different examples. First, we analyze simulations
of water in a cubic box at different densities and temperatures.

We observe a high correlation between the frequencies of 3-vertex motifs
and the thermodynamic entropy — thus assessing conformational entropy to be
a driving force.

Second, we apply our method to MD simulations of confined water within
minerals. We extract structural and dynamic properties of water near the
surface of a pore wall based on the frequencies of 3-vertex motifs.

Third, we use a small a-helical peptide as a toy model. We monitor
the unfolding at 320K and compare 7-vertex motif counts with conventional
metrics like the RMSD.

In the last example, previously identified motifs are taken and used to describe
the formation of a molecular complex. This simulation consists of a complex
of Interleukin-8 (IL-8) and the synthetic inhibitor peptide ILSRPLoops.

While distance based metrics do not adequately describe the complex
formations, 7-vertex motif counts made it possible to monitor and describe
this process in detail. This part was done in collaboration with Benjamin
Schiller, Thorsten Strufe, Michael Vogel and Kay Hamacher. The following
parts are from a manuscript draft ﬂ All illustrations and computations were
made with the help of the following R librarys: ggsci, StreaMD, ggplot2 and
cowplot (153156)).

MD Simulation Protocols

Simulation of SPC/E Water in a quadratic Box We simulate extended
simple point charge water (SPC/E) which models the oxygen and the two hy-
drogen atoms of a water molecule as separate atoms. We use a bond length of
0.1 nm between oxygen and hydrogen atoms and an angle of 109.49 between
the oxygen-hydrogen atoms. This results in a default distance of 0.17 nm be-
tween the two hydrogen atoms of a water molecule as illustrated in Figure[6.1].
We perform 27 simulations with temperatures between 273.16 K and 647.29 K
as well as densities ranging from 0.9998 kg/m? to 0.00000485 kg/m3. A list of

I Motif Based Analysis of MD Simulations
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all 27 configurations is given in Table In all cases, we simulate 216 water
molecules at a constant volume and temperature. After a short energy mini-
mization, we perform an NVT equilibration for 2 ns using a weak Berendsen
temperature coupling to reach the target pressure. Afterward, we use
temperature coupling with a Nosé-Hoover thermostat . Bond lengths
were constrained using the LINCS algorithm. The Lennard-Jones non-
bonded interactions were evaluated using a cutoff distance of 1.4nm. We set
the van der Waals interaction cutoff to 0.95 nm and the integration step-size
to 1 fs and obtain a total of 10000 frames.

MD Simulation of SPC/E Water in mineral Confinement The MD simu-
lations of the small pore are done using the Gromacs simulation software pack-
age . We use the same simulation-setups at four different temperatures:
200K, 250K, 270K, 350K. The temperature was set using the Nosé-Hoover
thermostat (119, [121)). The radius of the silica pore amounts to 1.1 nm (159)).
The water density was set to p = 1kg/m? at all studied temperatures. Further
simulation details can be found in previous work , where the structure
and dynamics of the confined water were analyzed using conventional methods

for data analysis. To ensure an equilibrated system, we discard the initial 3000

wugol v

r=0.3nm re= 0.5nm 3.931nm
(a) Schematic space for dynamic graphs (b) Side view of simulated water

Figure 6.1: Model of water in mineral confinement with pore dimensions

frames and model dynamic graphs from the following 1000 frames. We create

32 dynamic graphs with increasing distance r to the pore wall r € [0.3,1.7] nm
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(cf. Figure as well as four different temperatures. Every graph has a
thickness of 0.2 nm. Basic statistics of all generated dynamic graphs are given
in Table The walls of the silica pores are rough so that Silicon atoms at
the pore surface are located at these distances from the pore axis. Only water
atoms within distance r and with a greater distance to the silica wall than to
the center of the box is considered. To model the dynamic graphs we use a
distance threshold d of 0.19 nm for the water molecules. Further details can
be found in Section [6.2]

Simulation of a Molecular Complex The [ISRPLoops peptide is a rationally
designed I1-8 capture agent. This peptide is formed of two helices linked with 6-
amino-hexanoic acid which is used as a linker (761]). The II8RPLoops peptide
has a high affinity for I1-8 and inhibits consequently its binding to CXCRI1.
We create the structure of the ILSRPLoops, consisting of 18 amino acids,
using modeller (162). We perform all simulations in Gromacs (158 using the
Gromos65atb force field with parameters for the synthetic 6-amino-hexanoic
acid linker (163)). At the beginning of the simulation, the box is filled with
TIP3P water, and sodium counter ions are placed until the cell is neutralized.
We equilibrate the solvent according to a short steepest descent energy mini-
mization and thus fix the protein-movement for 2 ns in the center. Afterwards,
the system was equilibrated for 2ns in the NVT-ensemble at a temperature of
300 K and for 5ns in the NpT-ensemble at a temperature of 300 K and a pres-
sure of 1bar. During the equilibration, temperature was controlled using the
velocity-rescale thermostat(164)) (7r = 0.1 ps) and pressure was controlled us-
ing the Parrinello-Rahman (120)) pressure coupling. (7p = 0.5 ps). Isothermal
compressibility was set to 4.5 x 1075 bar~!. Production runs were performed
for 100ns. The temperature was controlled using the Nosé-Hoover thermo-
stat (119, 121]) (v = 1ps) and pressure was controlled using the Parrinello-
Rahman barostat (120) (7p = 1ps) during the production runs. Bond lengths
were constrained using the LINCS ((718)) algorithm. An integration step size
of 1.5fs and a van der Waals interaction cutoff value of 0.95 nm0.95 nm. We

recorded a total of 66667 frames during the simulation.
Simulation of 1HU5 in SPC/E Water As the protein structure we used the

solution NMR of ovispirin-1 (61]). For water molecules, we used the SPC/E
model, while the protein interacts through the CHARMM27 (104|) force field.
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Additionally, we added 0.9 % NaCl solution to the simulation. The system
was first energy minimized by conjugate gradient and equilibrated for 2ns
in the NVT-ensemble at a temperature of 300 K and for 5ns in the NpT-
ensemble at a temperature of 300 K and a pressure of 1bar (for the second
simulation 320 K). During the equilibration, temperature was controlled using
the velocity-rescale thermostat(164)) (7r = 0.1 ps) and pressure was controlled
using the Parrinello-Rahman (720)) (7p = 0.5 ps) and the isothermal compress-
ibility was set to 4.5 x 107° bar~!. Production runs were perfomed for 100 ns.
The temperature was controlled using the Nosé-Hoover thermostat (119,121
(7t = 1ps) and pressure was controlled using the Parrinello-Rahman baro-
stat (120) (7p = 1ps) during the production runs. Bond lengths were con-
strained using the LINCS (718)) algorithm. The Lennard-Jones nonbonded
interactions were evaluated using a cutoff distance of 1.4nm. The electrostatic
interactions were evaluated using the particle mesh Ewald method with a real
space cutoff 1.4nm and a grid-spacing 0.12nm. The equations of motion were

integrated using a 2 fs time step.

Transforming MD Trajectories into Dynamic Graphs

In this section, we describe the process of transforming the trajectories ob-

tained from the MD simulations into dynamic graphs.

Transformation for SPC/ E Water in a Box

We transform all 27 MD trajectories from simulations with different tempera-
tures and water densities into dynamic graphs. All 648 hydrogen and oxygen
atoms that form the 216 water molecules are represented as vertices. We create
edges between atoms whose distance is below the threshold d of 0.19 nm. As a
result, hydrogen atoms should always be connected to their corresponding oxy-
gen atom. The existence of edges between hydrogen atoms of the same water
molecule depend on their current movement and can be dissolved in case their
distance increases significantly. The distances between all three atoms within
a individual water molecule are below the threshold of d = 0.19 nm most of
the time. Therefore, most water molecules form a motif of type mo, i.e., are
connected by three edges. In case the angle between the hydrogen atoms in-
creases significantly, the distance between them increases such that the atoms

form a motif of type m; instead. In addition, m; and ms also occur during the
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Figure 6.2: Spatial measures and visualizations of SPC/E water in a box

interaction of two or three water molecules. Therefore, we can quantify the
number of interactions between water molecules as the the sum of both motif
counts without the number of water molecules. Hence, we define the number

of interactions as

I:FMS(m1)+FM3(m2)—|—‘3/| (61)

and accordingly for each snapshot, we compute the average number of

interactions I,,4, defined as

V1) Faaslom) + P (o) = 5

4]
3

(6.2)

The average of these values for all snapshots of a dynamic graph is defined as

Loyg-
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6.2.1 Results

In this section, we analyze MD trajectories using the motif counts of their re-
sulting dynamic graphs. We analyze the thermodynamics of SPC/E water and
compare it with experimental entropy values in Section [6.2.1] In Section [6.2.2]
we compare the dynamics of water near a pore surface to the water (bulk) in

its center.

Thermodynamics of Water Molecules

In this section, we investigate the capability of graph-based analysis of MD
trajectories to reflect the properties of hydrogen bonding networks and their
complex rearrangements at different temperatures and densities — a necessary
first approach to obtain coarse-grained models of configuration based water
models. The importance stems from the fact that biological systems like cells,
proteins, or other macro molecules are immersed in water. Its thermodynamic
surface properties provide valuable insights into its role in various biological
processes, such as protein folding and ligand binding (165)). For this reason,
there has been increasing interest in the evaluation of the entropy of water (and
other solvents). Several methods have been proposed to determine it from the
results of MD simulations (166, |167)). Examples are approaches based on per-
turbation theory, Kirkwood-Zwanzig thermodynamic integration, and Widom
particle insertions ((168)). However, large computational demands render these
methods impractical for large systems.

We use the counts of 3-vertex motifs (cf. Figure to derive the num-
ber of interactions of water molecules and compare the results with experi-
mental entropy values. Therefore, we use MD trajectories from 27 simula-
tions of 216 water molecules in a cubic box with different temperatures and
densities. Temperature and volume remain constant during each simulation.
The temperatures range along the vapor-liquid saturation line from the triple
point at 273.16 K to the critical point at 647.29 K and the densities between
0.00000485 kg/m? and 0.9998 kg/m3. In experiments, entropy values between
61.21 J/mol K and 227.89 J/mol K have been observed for these configura-
tionf] A complete list for the values of all 27 simulations is given in For
most frames, the count of my is higher than 216 with an average around 225.

This indicates close interactions between water molecules (cf. Figure [6.2]). In

2Experimental data is taken from Fundamentals of classical thermodynamics (169)
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Figure 6.3: Comparison of thermodynamic entropy and motif-based interac-
tions (a) Temperature against number of interactions. (b) Density
against number of interactions. (c) p against raw motif count. (d)
Experimental entropy against number of interactions.

some cases, the counts drops below 216, which can be explained by hydrogen
atoms moving further away from each other such that their distance is above
the threshold of 0.19 nm.

In|6.3] we present the results of our analysis and show the relations between the
number of interactions and the physical properties temperature, density, and
entropy. Furthermore, we contrast the number of interactions measured using
our graph-based analysis to the entropy values measured during experiments.
All simulations result in a two-phase thermodynamic model (cf. Figure .
We observe that the number of interactions exhibits a high linear correlation
with experimental entropy values over the whole temperature range for the
liquid phase (p-value = 4.284 - 1071¢) Pearson 7=0.981). In the case of vapor,
experimental values differ a bit from the number of interactions. This can be

explained by the process of the distance-dependent graph transformation. At
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Figure 6.4: Convergence of the number of interactions for different p of water
simulations. Left higher resoultion (ps scale), right ns scale.

low densities, the distances between molecules are high, leading to a graph that
is not fully connected and resulting in a decrease of interactions and thereby
motif occurrences. These observations are reflected by the densities against the
number of interactions (cf. Figure . A particularly attractive feature of
the graph-based analysis is its fast convergence for the number of interactions
over time in case the system is well equilibrated. In Figure [6.4] we show the
mean values and standard deviations of the number of interactions for time
intervals of 100 ps for systems at six different temperatures. We observe that
the number of interactions of liquid water converges after 10 ps to 100 ps.

We observed a high correlation between the number of interactions, measured
using graph-based analysis, and the experimental entropy values of all 27 sim-
ulations of SPC/E water. With the rapid conversion of this property, we
have shown that our graph-based approach for the analysis of MD trajectories
originating from simulations of SPC/E water is applicable for studying the

thermodynamics of water, including order and dynamics.
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6.2.2 Dynamics of Water in Confinement of Minerals

In this section, we analyze the dynamics of water in mineral confinement.
We use trajectories from simulations of SPC/E water in a small silica pore
at four temperatures: 200 K, 250 K, 270 K, and 350 K. For each frame, we
model the atoms of water molecules as vertices that are located at distances
d € [r',r] of the pore wall. Vertices are interconnected with distance thresh-
olds d = 0.19 nm. We use nine different distance intervals from [0.0, 0.3] nm,
[0.3,0.5] nm, ..., [1.5,1.7] nm and obtain a total of 32 dynamic graphs. The
walls of the silica pore are rough such that the silicon atoms at its surface are
located at distances between 0.3 nm and 1.7 nm from its axis. With an increas-
ing distance to the pore wall, the number of vertices increases (cf. Table .
This implies that the density increases in the pore center. Figure |6.5al shows
T,0q, the mean average number of interactions of all snapshots for all 32 dy-
namic graphs. I,,, increases with the distance to the pore wall. I,,, is a value
which characterizes the motif connectivity of an average water molecule. A
high value indicates a higher order and thus a smaller entropy thermodynam-
ical S of all water molecules. The results obtained for the structure of water
near the pore wall reveals imposed disorder in terms of I, values. Figure m
shows the counts of F(,(m;) observed for the dynamic graphs modeled from
the MD trajectories at different temperatures. Figure m shows that I,,, de-
creases with increasing temperatures. This implies that the structural disorder
— expressed later as the entropy of motifs — grows with increasing tempera-
tures. These results are in good agreement with previous studies of the pore
by Harach et. al (160). Figure shows the raw motif counts as a histogram
for all dynamic graphs with increasing distances from the pore surface at a
specific temperature as a histogram. These results show that an increase in
temperature leads to a flatter distribution and a disappearance of distinctive
peaks. Hence, higher temperatures result in higher fluctuations of the absolute
motif counts.

Now, we examine how the water dynamics are affected by the pore wall. To
this end, we consider the structural order of the hydrogen bonding network
inside the silica pore, expressed by the average number of interactions. We
introduce the motif-based entropy H 4, of a dynamic graph as a measure of its
disorder. It quantifies the fluctuation of a time series and, thus, the dynamics

of structural changes. Let P,, denote the relative counts of motif m € M
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Figure 6.5: Motif-based properties depending on pore wall distance r and tem-
perature

among all motifs occurring for all snapshots of the dynamic graph. Then, we

define H, as follows:

Hpm, =— Y. Py -log, Py (6.3)
meM;,

In Figure [6.6a] the motif-based entropies for temperatures 200 K and 350 K
is shown depending on the pore wall distance r. It is computed for 1,000
snapshots only, a time interval that corresponds to 1 ns. The counts of motif
my over time is shown in Figure[6.6D] At the pore surface, expressed by small
entropy values, we observe water molecules with slow dynamics. The slowdown
of dynamics near the silica wall can be explained by its structural relaxation

which is hindered by an atomically rough and mainly static energy landscape
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Figure 6.6: Motif-based results for simulations of water in mineral confinement

imposed by the mostly fixed wall atoms (160)). All the results above are in

agreement with previous MD studies on confined water (160)).
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Structure of an Helical peptide in SPC/E Water

In Section [6.1], 4-vertex motif counts are used to quantify structural elements
(mainly a-helices) and their dynamics. However, as an example, dynamic
graphs from a large esterase (pNB-Est13) were used, which has a multitude of
structural elements. In order to investigate that motives are suitable for deter-
mining structural dynamics, a toy system consisting of exactly one structural
element was required (e.g.,a-helices). For this reason, a small peptide (the
solution NMR of ovispirin-1 (61))) has been selected which possesses a natural
a-helical configuration (cf. Section |6.2)).

Observations This peptide was simulated using MD with a temperature of
300 K (blue) and with 320 K (red). The peptide begins to unfold during the
simulation with 320 K and starts refolding in a sheet-like structure at the end fo
the simulation. This highly dynamic system exhibits three different secondary
structural configurations, namely the helical structure, the bent-helix and the
sheet-like structure. During the simulation with 300 K, the peptide remains

in the a-helical configuration.

Network Transformation The peptide consists of 18 amino acids, each of
which is combined to form a vertex. Therefore we are using each C-a as a
vertex and create undirected edges between two vertices’s in case their spatial
cut-off (d) is shorter than d € [0.6,0.8].

The resulting graphs are shown in Figure (cf. frames at: 5, 25, 50,
75 ns). For this example we examine whether 7-vertex motifs are suitable
for describing dynamic processes and structure transitions and compare this
approach with classical methods like RMSD (Equation (4.16])). We have chosen
7-vertex motifs because they can display more complex topologies due to the
additional vertices’s. Furthermore, there exist far more (Number of motifs:
853) 7-vertex than 4-vertex motifs (number of motifs: 6). A visualization of

all considered 7-vertex motifs are illustrated in Figure [10.1]

Evaluation For this "toy-model," we expect the 7-vertex motif counts, where
motif counts with a high number of edges increase, or remain constant for
stable structures (structure elements). Conversely, we expect the reverse for
motifs with a few edges. In addition, we also expect to find strongly connected

motifs which, due to their unique topology, are only found in helices.
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Figure 6.7: RMSD and graph-based representation of an helical molecule at
two different temperatures. Blue stands for the low temperature
simulation and red for the high temperature simulation.
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If we focus on Figure we can observe that the helix graph has a unique
pattern. In this pattern, only defined motifs appear or do not appear. The
lower graphs are sorted by increasing cut-off d, and the last one is the one from
the simulation with 320 K and obtained with a cut-off d = 0.8nm.

One observes that the network becomes denser and denser with increasing
d, but the graph of the helix remains constant over the whole simulation period.
However, the RMSD values show a completely different impression of these
simulations. The simulation at 300 K is more stable than the simulation
at 320 K. This means that the helix is retained from the beginning of the
simulation over the entire duration of the simulation at 300 K.

The simulation with the higher temperature shows that this helix changes
its conformation into at least one state with an average RMSD of 0.69 nm.
However, the course of the RMSD remains at this value showing only small
fluctuations. Only at 72 ns, it changes minimally for the duration of 8 ns
(cf. Figure . The fluctuations of the two straight lines indicate that the
simulation at 300 K(blue) as the RMSD fluctuates slightly more.

At first glance at the graphs (e.g., Figure , 5 ns to 75 ns), however, a
completely new picture emerges. One can observe the simulation process of
both peptides by just looking at the graphs. The graph at 320 K displays a
transformation into a completely different topology, while the other simulation
(blue, 300 K) does not change much from the initial pattern.

In the following part, all 7-vertex motifs were counted. Two dynamic
graphs were created for this purpose (300 K blue,320 K red; Figure .

However, out of total 853 motifs only 45 motifs with an average count
above ten could be found. Since the simulation with 300 K remains in helical
conformation for the duration of the whole simulation, this means that the
remaining mgps motif classes do not occur in a helical topology. Figure [6.§
depicts motifs which display a similar course over time.

Almost all motifs displayed in Figure (counts) show a stable course
during the MD simulation at 300 K. This result reinforces the hypothesis of
Section[6.1], that the course of special motif counts in stable structures remains
stable over time and these are only present in a helical secondary structure.
The only exception here is the motif with class ms4g, this motif is also very
strongly connected. Interestingly, the mean count for motif mgs; shows a
similar pattern as the rest of the motifs. If we focus on the topology of those

motifs, it is noticeable that motif msye differs only in one edge between vertex

152



6.2 Motif Based Analysis of MD Simulations

m305 m332 m333 m334 m335
2000 4 2000 4 2000 4 2000 4 2600 4
1500 1500 1500 1500 1500
1000 1000 1000 1000 1000
500 500 f 500 500 500
ol (TR ... ok ol o O Neoil™ 0 |tk AM
0 2550 75100 0 2550 75100 0 2550 75100 0 2550 75100 0 2550 75100
m342 m343 m344 m345 m346
2000 2000 4 2000 4 2000 4 2000
1500 1500 1500 1500 1500
1000 1000 1000 1000 1000
500-\ﬂ_/"’ 500-\/\//“ 500-\~f 500 - 5001 ]
o JMESERT_ o4 e 0 BEEENT_ 0\/\/v oI
0 2550 75100 0 2550 75100 0 2550 75100 0 2550 75100 0 2550 75100
_}g m523 m580 m581 m671 m672
2060 2000 2000 2000 4 2000 4
C 15001 1500 1500 1500 1500
3 1000- 1000 1000 1000 1000
O 500- Vo 500-\/_‘/_/"’ 500-\/\/_/"’ 500-\/\/_/"’ soo-u
O ol ol ) AT ] oA ] ot
0 2550 75100 0 2550 75100 0 2550 75100 0 2550 75100 0 2550 75100
m673 m675 m677 m678 m680
5000 5000 4 2000 2000 2000 4
1500 1500 1500 1500 1500
1000 1000 1000 A 10004 1000
soo-u 5004 500-\’_/\ 500-\’_-/~— 500 1
i Rl Rl R s L. il
0 2550 75100 0 2550 75100 0 2550 75100 0 2550 75100 0 2550 75100
m684 m686 m687 m691 m697
5000 4 2000 4 2000 4 2000 4 5000 4
1500 1500 ‘ 1500 150041 1500
1000 1000 ‘; 1000 1000-\/_/\/ 1000-M
500 500-\’/* 500 500 4 5004
0 SEREEVL R . o [ o4 2 04 ey
0 2550 75100 0 2550 75100 0 2550 75100 0 2550 75100 0 2550 75100

Figure 6.8: 7-vertex motif counts as a function of time for two 100 ns simulation
of 1hub (300 K, blue; 320 K red)

one and six (cf. Figure [10.1)). Inside an a-helix, these amino acids would not

interact so often (dependent on d) because of the helical twist.

Motif msyg is a perfect example of a motif, in which due to its topology, is
also found in other densely packed structural parts (e.g., helix-bends or junc-
tions). Nevertheless, exactly when the helix starts to unfold, the molecule also
starts to bend. At this location, the motifs are more frequent because the
amino acid contacts increase. Moreover, the observed fluctuations, in particu-
lar, give an additional indication of the increasing configuration dynamics at
this point.

Figure [6.9) shows the motif counts of the remaining motifs. Most of them
are strongly connected (cf. Figure . Motif class mgos, Msag, M703, Mss2,
Magag, Mgs3 and mgys shows a similar course here. It looks like there’s a huge

"peak" in the middle, which fluctuates very strong (320 K; red). The count of
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Figure 6.9: 7-vertex motif counts as a function of time for two 100ns simulation
of 1hu5 (300 K, blue; 320 K red)

the simulation at 300 K remains stable over time (300 K; red). The course is
also very similar to that of motif class ms4g, which indicates that these motifs
can also show the course of helix bending well.

In contrast to RMSD, motifs allow for a more detailed view of the struc-
tural process that an a-helix goes through at the two different temperatures.
This points to the fact that k-motif counts can record precisely this process of
folding (thermal) in the form of their increased counts as well as the under-
lying dynamics in the form of their fluctuations. A motif-based semantic to
determine the dynamic of structural elements is much more expressive than

distance-based metrics.
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6.2.3 Structural Dynamics of a Protein Complex

In this section, we analyze MD simulations of a complex consisting of the
Loops peptide and (Complez). We compare the counts of a 3-vertex motif
with the counts of three 7-vertex motifs. We contrast these results with com-
monly used distance-based measures to investigate the expressiveness of our
motif-based analysis approach. Visualizations of the simulates components at
different points in time are shown in Figure [6.10] We present distance-based
measures of the MD trajectory over time in Figure [6.11] Figure shows
the development of the euclidean distance between the centers of mass of both
proteins over time. Starting around 2.8 nm, this distance decreases to less than
1.5 nm at the end of the simulation. This can be explained by strong interac-
tions between both molecules. The RMSD, computed for the C,, atoms of I1-8

(a) Simulation time: 1 ns (b) Simulation time: 10 ns (¢) Simulation time: 20 ns

Figure 6.10: Visualization of the simulated complex over time

and the Loops peptide, is shown in Figure This basic measure is often
used to monitor structural changes of MD trajectories. It increases rapidly
during the second half of the simulation. This observation could potentially
lead to the false interpretation that both structures start to unfold or drift
away because they were enlarging their conformation (molecular unfolding).
However, both proteins merge and form a stable complex.

We perform a motif-based analysis of the dynamic graph modeled from
the MD trajectory using the unit-sphere model with a distance threshold of
d = 0.7 nm. This threshold is appropriate to measure conformational dynamics
in coarse grained models of proteins (63)). We investigate the occurrences of
the 3-vertex motif m; € Mj (cf. Figure with the counts of the three
selected T-vertex motifs mo1, myg1, maig € My (cf. Figure . The counts

of all four motifs over time, normalized by their maximum observed values,
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Figure 6.11: Distance-depended properties of the protein complex over time.

are shown in Figure [6.13] Each point represents the average counts of 600

snapshots while error bars show the respective standard deviation.

BB

) may (7 edges) ) mio1 (11 edges) ) maie (13 edges)

Figure 6.12: Selected 7-vertex motifs (My)

The relative counts of m; € M3 does not change significantly over time.
This implies that 3-vertex motifs are not well-suited to characterize biomolec-
ular structures even though they express the interactions of molecular solvents
well (cf. Sections [6.2.1] and [6.2.2). The counts of the three 7-vertex motifs
clearly differ from each other and change over time. The motif my; (cf. Fig-
ure [6.12a)), connected by 7 edges, nearly disappears after the initial 40 ns. The
more densely connected motif mqo; (cf. Figure does not occur dur-

ing the initial time frame while its counts increases afterward. The Counts
of my16, connected by 13 edges (cf. Figure [6.12¢]), increases over the whole

simulated time period. The disappearance of my; and the appearance of mjg;
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Figure 6.13: Counts of 3-vertex motif m; € M3 and 7-vertex motifs
Ma1, Mio1, Ma1e € M7 over time for Complex

around 40 ns indicate a significant merging event of the two components of
the complex. These results indicate that the increase of occurrences of densely
connected motifs goes hand in hand with structural density and complexity.
While the small 3-vertex motifs appear too simple to characterize structural
changes in protein networks, the larger 7-vertex motifs are well-suited to ana-
lyze structural events. Counting motifs with only a few edges provides means
to measure unfolding and structural enlargements. The occurrences of densely
connected motifs provide insights into small molecular structures and folding

processes.
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6.3 StreAM-Tg: algorithms for analyzing coarse
grained RNA dynamics based on Markov

models of connectivity-graphs.

In this work I have developed a new algorithm which calculates MSMs based
on any dynamic graph and a given selection of 4-vertex motifs. However, these
models could only be set up by expanding the motif space with the whole space
of the adjacent matrices. Based on these models, conclusions can be drawn
about the entropy of the stationary states of the system. The algorithm was
developed especially for the application on RNA simulations. After evaluation

of the simulations, design proposals for the riboswitch were derived.

Contributions For this publication, I have integrated my implementations,
the Tg algorithm and the Algorithm StreAM (Benjamin Schiller) into a Julia
Library. I was also responsible for the creation of all images and their contents.
Furthermore, I took over the writing of the evaluation and the discussion.
The Tg algorithm was formulated by me, Benjamin Schiller formulated the
StreAM algorithm and helped me with the evaluation. I was responsible for
the simulation of both trajectories and their evaluation and interpretation.
Furthermore, I have written and motivated large parts of the paper. In this

article, I am the first author.

« Jager, S.* Schiller B., Strufe T., Hamacher K. (2016) StreAM-Tg: Al-
gorithms for Analyzing Coarse Grained RNA Dynamics Based on Markov
Models of Connectivity-Graphs. In: Frith M., Storm Pedersen C. (eds)
Algorithms in Bioinformatics. WABI 2016. Lecture Notes in Computer
Science, vol 9838. Springer

After being published by LNCS (Lecture Notes in Computer Science), I was
invited to expand the paper and methodology for another publication in Algo-
rithms for Molecular Biology. Hence, the paper was extended with eight new
MD simulations and a formulation of the algorithm for up to 10-vertex motifs.
In this extension, I have optimized the algorithm by a factor of eight with re-
spect to run-time. Furthermore, I performed an analysis of the algorithm with
respect to robustness and accuracy and discussed it afterwards. The new MD

simulations were carried out by Phillipp Babel and Malte Blumenroth. For
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every new simulation, I did the evaluation and discussion at this point. Kay
Hamacher and Thorsten Strufe helped to write the manuscript and improved

it. In this article I am the first author.

159



6 Graph-based Analysis of MD Simulations

Algorithms for
Molecular Biology

StreAM-Tg

StreAM-Tg4: algorithms for analyzing coarse
grained RNA dynamics based on Markov models

of connectivity-graphs

Jageretal.

( ) BioMied Central Jager et al. Algorithms Mol Biol (2017) 12:15
DOI 10.1186/513015-017-0105-0

160



6.3 StreAM-Tg: algorithms for analyzing coarse grained RNA dynamics

Jager et al. Algorithms Mol Biol (2017) 12:15
DOI 10.1186/s13015-017-0105-0

Algorithms for
Molecular Biology

RESEARCH Open Access

StreAM-Tg: algorithms for analyzing @
coarse grained RNA dynamics based on Markov
models of connectivity-graphs

Sven Jager'"®, Benjamin Schiller?, Philipp Babel', Malte Blumenroth', Thorsten Strufe? and Kay Hamacher?

Abstract

Background: In this work, we present a new coarse grained representation of RNA dynamics. It is based on adja-
cency matrices and their interactions patterns obtained from molecular dynamics simulations. RNA molecules are
well-suited for this representation due to their composition which is mainly modular and assessable by the secondary
structure alone. These interactions can be represented as adjacency matrices of k nucleotides. Based on those, we
define transitions between states as changes in the adjacency matrices which form Markovian dynamics. The intense
computational demand for deriving the transition probability matrices prompted us to develop StreAM-Tg, a stream-
based algorithm for generating such Markov models of k-vertex adjacency matrices representing the RNA.

Results: We benchmark StreAM-T, (a) for random and RNA unit sphere dynamic graphs (b) for the robustness of our
method against different parameters. Moreover, we address a riboswitch design problem by applying StreAM-Tg on six
long term molecular dynamics simulation of a synthetic tetracycline dependent riboswitch (500 ns) in combination
with five different antibiotics.

Conclusions: The proposed algorithm performs well on large simulated as well as real world dynamic graphs. Addi-
tionally, StreAM-T4 provides insights into nucleotide based RNA dynamics in comparison to conventional metrics like
the root-mean square fluctuation. In the light of experimental data our results show important design opportunities
for the riboswitch.

Keywords: RNA, Markovian dynamics, Dynamic graphs, Molecular dynamics, Coarse graining, Synthetic biology

Background

The computational design of switchable and catalytic rib-
onucleic acids (RNA) becomes a major challenge for syn-
thetic biology [1]. So far, available models and simulation
tools to design and analyze functionally complex RNA
based devices are very limited [2]. Although several tools
are available to assess secondary as well as tertiary RNA
structure [3], current capabilities to simulate dynamics
are still underdeveloped [4] and rely heavily on atomistic
molecular dynamics (MD) techniques [5]. RNA structure
is largely modular and composed of repetitive motifs [4]
that form structural elements such as hairpins and stems
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Full list of author information is available at the end of the article

( BioMed Central

based on hydrogen-bonding patterns [6]. Such structural
modules play an important role for nano design [1, 7].

In order to understand RNA dynamics [8, 14] we
develop a new method to quantify all possible structural
transitions, based on a coarse grained, transferable repre-
sentation of different module sizes. The computation of
Markov State Models (MSM) have recently become prac-
tical to reproduce long-time conformational dynamics of
biomolecules using data from MD simulations [15].

To this end, we convert MD trajectories into dynamic
graphs and derive the Markovian dynamics in the space
of adjacency matrices. Aggregated matrices for each
nucleotide represent RNA coarse grained dynamics.
However, a full investigation of all transitions is compu-
tationally expensive.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,

and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

161



6 Graph-based Analysis of MD Simulations

Jager et al. Algorithms Mol Biol (2017) 12:15

To address this challenge we extend StreaM—a stream-
based algorithm for counting 4-vertex motifs in dynamic
graphs with an outstanding performance for analyzing
(bio)molecular trajectories [16]. The extension StreAM
computes one transition matrix for a single set of ver-
tices or a full set for combinatorial many matrices. To
gain insight into global folding and stability of an RNA
molecule, we propose StreAM-T,: It combines all adja-
cency-based Markov models for a nucleotide into one
global weighted stochastic transition matrix T, (a). How-
ever, deriving Markovian dynamics from MD simula-
tions of RNA is an emerging method to describe folding
pathways [13] or to elucidate the kinetics of stacking
interactions [11]. Especially MSM of atomistic aptamer
simulations like the theophylline [12] and thrombin
aptamer could help to understand structure-function
relationships as well as the folding process [18]. Nonethe-
less, all the methods mentioned above rely on Root Mean
Square Deviation (RMSD) computations in combination
with clustering in order to identify relevant transition
states. For StreAM-Tyg, the transition states are given by
small adjacency matrices representing structural motifs.

The remainder of this paper is structured as follows: In
“Our approach for coarse grained analysis’, we introduce
the concept of StreAM-T, as well as our biological test
setup. We describe details of the algorithm in “Algorithm”
We present runtime evaluations as well as application
scenario of our algorithm in “Evaluation” for a synthetic
tetracycline (TC) dependent riboswitch (TC-Aptamer).
Furthermore, we investigate the influence upon ligand
binding of four different TC derivates and compare them
with a conventional method. Finally, we summarize our
work in “Summary, conclusion, and future work”

Our approach for coarse grained analysis

Structural representation of RNA

Predicting the function of complex RNA molecules
depends critically on understanding both, their struc-
ture as well as their conformational dynamics [17, 19]. To
achieve the latter we propose a new coarse grained RNA
representation. For our approach, we start with an MD
simulation to obtain a trajectory of the RNA. We reduce
these simulated trajectories to nucleotides represented by
their (C3’) atoms. From there, we represent RNA struc-
ture as an undirected graph [20] using each C3' as a vertex
and distance dependent interactions as edges [3]. It is well
known that nucleotide-based molecular interactions take
place between more than one partner [21]. For this rea-
son interactions exist for several edges observable in the
adjacency matrix (obtained via a Euclidean distance cut-
off) of C3’ coordinates at a given time-step. The result-
ing edges represent, e.g., strong local interactions such as
Watson-Crick pairing, Hoogsteen, or w —m-stacking.
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Our algorithm estimates adjacency matrix transition
rates of a given set of vertices (nucleotides) and builds a
Markov model. Moreover, by deriving all Markov mod-
els of all possible combinations of vertices, we can reduce
them afterwards into a global weighted transition matrix
for each vertex representing the ensemble that the nucle-
otide modeled as a vertex is immersed in.

Dynamic graphs, their analysis, and Markovian dynamics

A graph G = (V,E) is an ordered pair of vertices
V = {v1,v2,...v|v|} and edges E. We refer to a single ver-
tex of V as a. Here, we only consider undirected graphs
without self-loops, ie, EC {{v,w}:v,we V,v#w}
We define a self-loop as an edge that connects a vertex
to itself. For a subset V' of the vertex set V, we refer to
GIV1=((V,E), E :={{yv,w}€E:v,we V'} as the V/
-induced subgraph of G. We refer to the powerset of V'
as P(V). The adjacency matrix A(G) = A;; (Eq. 1) of a
graph G is a|V| x |V|matrix, defined as follows:

0 :i<jn{vivi}¢E
1 ti<jn{viyv} €E 1
¢ : otherwise

Al',]‘ =

Here, the symbol ¢ denotes for an undefined matrix

entry. We denote the set of all adjacency matrices of

(k=1

size k as Ay, with |Ax| =22 . In our current imple-
mentation k can takes values in {2,3,4,5,6,7,8,9,10}.
With concat(A), we denote the row-by-row concatena-
tion of all defined values of an adjacency matrix A. We
define the adjacency id of a matrix A as the numeri-
cal value of the binary interpretation of its concat-
enation, i.e., id(A) = concat(A); € N. We refer to
id(V') := id(A(G[V'])) as the adjacency id of the V'
-induced subgraph of G. For example, the concatenation
of the adjacency matrix of graph G1[ V'] (shown in Fig. 1)
is concat(A(G1[V'])) = 011011 and its adjacency id is
id(V') = 0110115 = 271,

As a dynamic graph G; = (V, E;), we consider a graph
whose edge set changes over time. For each point in
time ¢ € [1, 7], we consider G; as the snapshot or state
of the dynamic graph at that time. The transition of a
dynamic graph G;_1 to the next state G; is described
by a pair of edge sets which contain the edges added to
and removed from G;_y, i.e., E;',Et_). We refer to these
changes as a batch, defined as follows: Et+ = EN\E
and E, :=E;_1\E;. The batch size is referred as
8¢ = |E} | + |E; | and the average batch size is refered as
Savg and is defined as %‘S‘

The analysis of dynamic graphs is commonly per-
formed using stream- or batch-based algorithms. Both
output the desired result for each snapshot G;. Stream-
based algorithms take a single update to the graph as
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E; ={{bc}}
E, ={{a,d} {cd}}

id(A(G,[V ]))=011011,=27,,

—-

id for the displayed subgraphs

id(A(G,[V]))=010110,=22,,
Fig. 1 Dynamic graph example. Example of a dynamic graph and induced subgraphs for v/ =
and the second the induced subgraph V’ with its respective adjacency matrix. At the bottom is a short example of how to compute the adjacency

G

'\)

—(@
ES = {{ce )}
E; = {(bd}, hc})

—»  d(A(G,[V]))=010000,=16,,
{a,b,c,d}). The first row shows the dynamic graph G;

input, ie., the addition or removal of an edge e. Batch-
based algorithms take a pair (Et+1’ E; ) as input. They
can always be implemented by executing a stream-
based algorithm for each edge addition e € E;_l and
removal e € E, ;. We refer to id¢ (V') as the adjacency id
of the V’-induced subgraph of each snapshot of G;. The
result of analyzing the adjacency id of V' for a dynamic
graph G; is a list (ide(V') : ¢ € [1, t]). We consider each
pair (idy(V'),idi+1(V')) as an adjacency transition of
V' and denote the set of all transitions as T (V). Then,
we define the local transition matrix T(V') of V' as a
| Ag| X | Ag| matrix, which contains the number of tran-
sitions between any two adjacency ids over time, i.e.,
T;j(V') == |(i + 1,j + 1) € T(V")|for an adjacency size k.
From T (V'), we can derive a Markov model to describe
these transitions.
By  combining

V' eP(V):
tion tensor C,(V). Thus C,(V) has the dimensions of
v
Al x 1Al x (k= 1)!<k'_'1>.
We define the weighting matrix W (V") with the dimen-
sions of |Ag| x (k — 1)!(klzll ) W (V') contains the

all TV

|[V/|=k and a € V', we derive a transi-

possible where

weighting for every subset V' € C,(V). It is defined as
N . SV

W)= 2vrecan) SV

taining the sum of every transition between adjacency

id(V’) and every other id(V’) of the same matrix T'(V")

Here, S(V') is a matrix con-

for all V' € C,(V). Hence S(V’) has the dimensions
| Al x (k — 1)!(k|K|1 ) Thus W (V') is considered as

the local distribution weighted by its global distribu-
tion of transitions matrices of V'. Finaly, we define a
global transition matrix, a vertex a is immeresd in, as
Te(@ = viec,(v) W (V') x T(V') with the dimensions
[Axl x | Akl

For a local or global transition matrix the respective
dominant eigenvector! is called 77 and represents the sta-
tionary distribution attained for infinite (or very long)
times. The corresponding conformational entropy of the
ensemble of motifs is H := — )", 7; - log ;. The change
in conformational entropy upon, e.g., binding a ligand is
then given as AH = Hy: — Heomplex-
MD simulation setup
We use a structure of a synthetic tetracycline bind-
ing riboswitch (PDB: 3EGZ, chain B, resolution: 2.2 A,
Fig. 2) [23] and perform six simulations: the TC-Aptamer
with five different tetracycline types in complex and
one without tetracycline. As tetracycline binding alters
the structural entropy of the molecule [24] our pro-
posed method should be able to detect changes in (local)
dynamics due the presence of tetracycline. All simula-
tions were performed using the GROMACS software
package (version 2016). For water molecules, we used the

! Guaranteed to exist due to the Perron-Frobenius theorem with an eigen-
value of A = 1.
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Tetracycline

Anhydrotetracycline

Doxycycline 6-deoxy-6- demethyl -Tc
;O WHE NH—
: H : o
Q0T QO
OH
OH O OH O NH, OH O OH o NH,

Fig. 2 TC-derivates. TC-derivates illustrated as chemical structures.
Here we show the structure of Tetracycline (left top), Anhydrotetra-
cycline (right top), Doxycycline (left bottom) and 6-deoxy-6-deme-
thyl-Tetracycline (right bottom). The illustrated derivates share the

characteristic 4-ring-structure and functional groups

TIP3P model, the RNA interact through the CHARMM
force field, while the tetracycline analogs interact through
a modified CHARMM force field from Aleksandrov and
Simonson [25, 26]. The systems were first energy mini-
mized and equilibrated for 1 ns in the NVT-ensemble at
a temperature of 300 K and for 5 ns in the NpT-ensemble
at a temperature of 300 K and a pressure of 1 bar. During
the equilibration, temperature was controlled using the
velocity-rescale thermostat [27] (zr = 0.1 ps) and pres-
sure was controlled using the Berendsen barostat [28]
(tp = 0.5 ps). Isothermal compressibility was set to
4.5 x 107> bar™, which is the corresponding value for
water. Production runs were performed for 500 ns. The
temperature was controlled using the Nosé-Hoover ther-
mostat [29, 30] (rr = 1 ps) and pressure was controlled
using the Parrinello-Rahman barostat [31] (tp = 1 ps)
during the production runs. Bond lengths were con-
strained using the LINCS [32] algorithm. The Lennard-
Jones nonbonded interactions were evaluated using a
cutoff distance of 1.2 nm. The electrostatic interactions
were evaluated using the particle mesh Ewald method
with a real space cutoff 1.2 nm and a grid-spacing
0.12 nm. Long-range corrections to energy and pressure
due to the truncation of Lennard-Jones potential were
accounted for. The equations of motion were integrated
using a 2 fs time step.

Tetracycline derivates

For the comparison of TC derivates we use tetracy-
cline (tc), doxycycline (dc), anhydrotetracycline (atc)
and 6-deoxy-6-demythyltetracycline (ddtc) in our
MD simulation. These four analogs share the charac-
teristic 4-ring-structure and functional groups of all
tetracyclines. Still, the possibility and the mode of inter-
action with the RNA is an open question. The first ring
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of tetracycline carries a dimethylamino group, while the
third ring carries a hydroxy and a methyl group facing
towards the same direction away from the 4-ring-system.
The detailed chemical structures are shown in Fig. 3. In
comparison to these two rings the fourth, aromatic ring
has an especially small steric volume on this side of the
molecule. From tc over dc and atc to ddtc this steric vol-
ume is further reduced by shifting the aforementioned
hydroxy and methyl group away from the fourth ring or
eliminating some of them entirely. Note, that our graph-
based approach is capable to easily distinguish between
different modes of interaction upon changes in the, e.g.,
the side-chains of the rings. The molecular data of tc,
dc, atc and ddtc was created using the Avogadro soft-
ware [33]. Structures were manually constructed and
moved into the extended conformation described to be 3
kcal/mol more stable than its twisted alternative by Alex-
androv et al. [24]. The molecules were then fitted to the
position of 7-chlorotetracycline (7-cl-tc) bound in the
TC-Aptamer structure used for simulation. Note, that
the geometry of 7-cl-tc was already present in the crys-
tal structure of the TC-Aptamer. All considered antibiot-
ics show different properties upon ligand binding. They
range from high activity (tc, 7-cl-tc) to weak activity (dc,
ddtc, atc) based on in vivo experiments [34].

Workflow

RNA trajectory and contact probability

An RNA trajectory X is represented as a list of T frames
X = (¥, %t,,...). Each frame % € R® contains the
three-dimensional coordinates of the simulated system of
the » atoms at the respective point in time £. We define a
binary contact matrix B(t) with dimensions |V| x |V Its
entries scan range between {0, 1}. A single contact B;;(t)
between one pair of atom coordinates 7;(¢) and 7;(¢) is
generated if their Euclidean distance [L2-norm, L2(...)]
is shorter than d. Thus B(¢) entries are defined as follows:

[0 id < LG — ()
J“”—{lzd>Lxmn—éu» @

The contact probability of one pair of atom coordinates 7;
and 7; is defined as:

P(X, 71, 7)) = T 1B”(t) 3)
T

Graph transformation

All considered MD simulations have a total length
of 500 ns using an integration stepsize of 2 fs. We cre-
ated snapshots every 250 ps resulting in 100,000 frames.
We generated dynamic graphs G; = (V,E;) contain-
ing | V| = 65 vertices (Table 1), each modelling a nucleic
3C’ (Fig. 2). This resolution is sufficient to represent
both small secondary structure elements as well as large
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® Tc binding

Coff 13A

Beads C3’

3 5 D
Fig. 3 Structural representation of TC-Aptamer. a Crystal structure of TC-Aptamer with a cut-off of 13 A and using €3’ atom for coarse graining
reveals edges for dominant WC base-pairings. Important structural parts are annotated according to [23]. b Secondary structure representation
of TC-Aptamer. Nucleotides are displayed as vertices and connections are based on hydrogen-bonding patterns. Nucleotides participating in TC-
binding are colored in red. Graphics were created using Pymo1 and R [39, 47]

Table 1 Details of the dynamic graphs obtained from MD simulation trajectories

10A 1A 12A 13A 14A 15A Randg, Rand,; Rand,;
19 65 65 65 65 65 65 500 500 500
£] 94 129 189 241 298 353 500 1000 1200
Savg 6.1 156 194 18 19.6 238 80 100 120

|V] is the number of vertices, |E| the number of edges and §; is the average batch size of a simulation. We convert simulations to unit sphere dynamic graphs with

d e[10,15]A

quaternary RNA complexes [35, 36]. We create undi-
rected edges between two vertices in case their Euclid-
ean cut-off (d) is shorter than {d € N|10 <d < 15} A
(cmp. Table 1).

Markov state models (MSM) of local adjacency and global
transition matrix

StreAM counts adjacency transitions (e.g. as a set
T (V") of an induced subgraph for a given adjacency
size. Now the transition matrix T(V’) can be derived
from 7 (V') but not all possible states are necessarily
visited in a given, finite simulation, although a “miss-
ing state” potentially might occur in longer simula-
tions. In order to allow for this, we introduce a minimal
pseudo-count [37] of Py = % All models that fullfill

Arl®
(V' eP(V):|V|=kaeV'} khave the same matrix

dimension and thus can be envisioned to be combined in
a tensor C,(V). Now, C, ;;,(V) is one entry of the ten-
sor of transitions between adjacency id i and j in the / th

transition matrix T(V’) with |I| = (lell) xk—1

Thus C,(V) contains all T(V’) a specific vertex is
immersed in and due to this it contains all possible infor-
mation of local markovian dynamics. To derive Ty (a)
every entry C,;;;(V) is normalized by the count of all
transitions of i in all matrices S(V);; = >_; Cqijs(V).
For a given set of / transition matrices T(V’) we can
combine them into a global model with respect to their
probability:

SV

Ty ij(a) = Z[: m Caiji(V). 4)
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Stationary distribution and entropy

As Tg(a) (Eq. 4) is a row stochastic matrix we can com-
pute its dominant eigenvector from a spectral decom-
position. It represents a basic quantity of interest: the
stationary probability 7 := (71,...,7;,...) of micro-
states i [37]. To this end we used the markovchain
library in R [38, 39]. For measuring the changes in con-
formational entropy H := — Zlﬁ’{‘ 7; - log r; upon bind-
ing a ligand, we define AH = Hy — Heompler, form a
stationary distribution.

Conventional analysis: root mean square fluctuation (RMSF)
The flexibility of an atom can be quantitatively assessed
by its Root-mean-square fluctuation (RMSF). This meas-
ure is the time average L2-norm L2(...) of one particular
atom’s position 7;(¢) to its time-averaged position %. The
RMSF of an nucleotide i (represented by its respective
C3’ atom) is defined as:

T
1 R =
RMSF(X,ri) i= | = - ;Lzmm, i) (5)
Algorithm
Overview

In this section, we introduce the required algorithms to
compute Tg(a). First, we describe StreAM, a stream-based
algorithm for computing the adjacency id(V"’) for a given
V'. Afterwards we describe, the batch-based computa-
tion using StreAMp to derive id;(V'). By computing the
adjacency id of a dynamic graph G;[V'] we derive a list
(id¢ (V') : t € [1,7]) where each pair [id;(V'),id+1(V)]
represents an adjacency transition. The respective transi-
tions are than stored in 7 (V). Now, a single T(V') can
be derived by counting the transitions in 7 (V’). At last

Data: V', id, {a,b}, type € {add,rem}

begin
ifacV' AbeV';
then
if type == add then
| A=Aq2e@bV)
else
| A=A—2e@bV)
end
end
return id ;
end

Page 7 of 16

we introduce StreAM-Tg, an algorithm for the computa-
tion of a global transition matrix Tg(a) for a given vertex
a from a dynamic graph G;[V]. To this end, StreAM-T,
computes the tensor C,(V) which includes every single
matrix 7 (V') where V' € P(V) and |V'| = k with vertex
a € V'. Finally, StreAM-T, computes Ty (a) from C, (V).

StreAM and StreAMg.

We compute the adjacency id id(V') for vertices
V' CV in the dynamic graph G; using the stream-
based algorithm StreAM, as described in Algorithm 1.
Here, id(V') € [0,]|Av|]) is the unique identifier of the
adjacency matrix of the subgraph G[V']. Each change to
G; consists of the edge {4, b} and a type to mark it as addi-
tion or removal (abbreviated to add,rem). In addition to
edge and type, StreAM takes as input the ordered list of
vertices V' and their current adjacency id.

An edge {a, b} is only processed by StreAM in case both
a and b are contained in V’. Otherwise, its addition or
removal has clearly no impact on id(V").

Assume pos(V',a),pos(V',b) € [1,k] to be the positions
of verticesaand binV’. Then,i = min(pos(V',a), pos(V', b))
and j = max(pos(V’,a),pos(V', b)) are the row and
column of adjacency matrix A(G[V']) that represent
the edge {a,b}. In the bit representation of its adja-
cency id id(V’), this edge is represented by the bit
(i—1)-k+j—i-(i+1)/2. When interpreting this bit
representation as a number, an addition or removal of
the respective edge corresponds to the addition or sub-
traction of 2% *—1/2=((=1)k+j=i-(+1)/2) This operation
is performed to update id(V”) for each edge removal or
addition. In the following, we refer to this position as
ea,b, V') = WLZED [ — 1) V) 4 — B,

/+ process only relevant edges =/

/* set corresponding bit to 1 x/

/* set corresponding bit to 0 */

Algorithm 1: StreAM: stream-based computation of the adjacency id
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Furthermore, in Algorithm 2 we show StreAMgp for the
batch-based computation of the adjacency id for vertices
V/

Data: V', id,_y, E;*, E;
begin
id (V') :=idi— (V') ;
for all {a,b} € E;* do
| idy:=StreAM(V', idy, {a,b}, add) ;
end
for all {a,b} € E; do
| idy :=StreAM(V', id;, {a,b}, rem) ;
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computation with StreAM-T, can be divided into the
following steps. The first step is the computation of all
possible Markov models that fulfill V/ € P(V) : |V'| = k
with StreAM for a given k with k € [2,10] This results

/* init id with previous one x/

/* process addition =/

/* process removal */

end
return id; ;
end
Algorithm 2: StreAMp: batch-based computation of the adjacency id
StreAM-T, % (
For the design or redesign of aptamers it is crucial to pro-  in ( k ) k! = % combinations. Afterwards,

vide experimental researchers informations about e.g.
dynamics at the nulceotide level. To this end, StreAM-T,
combines every adajcency-based transition matrix, one
nucleotide participates in, into a global model Tg(a).
This model can be derived for every nucleotide of the
regarded RNA structure and contains all the struc-
tural transition of a nuclotide between the complete
ensemble of remaining nucleotides. In order to do this,
we present StreAM-T,, an algorithm for the computa-
tion of global transition matrices, one particular ver-
tex is participating in, given in Algorithm 3. A full

Data: T',a,k
begin
Co(V):={V' eP(V): |V |=kacV'};
Tg(@) 1= 0jay oy
for all V' € C,(V) do
| Tela):=Ty(a)+W(V')- T(V') ;
end
return T, (a)
end

StreAM-T, sorts the matrices by vertex id into different
sets, each with the size of (kﬂ_/ll) - (k — 1)!. For each

vertex a, StreAM-T, combines the obtained T'(V”) that
fulfill z € V' in a transition tensor C,(V'), which is nor-
malized by W (V') the global distribution of transition
states a vertex is immersing in, taking the whole ensem-
ble into account. W(V’) can be directly computed from
C4(V) (e.g. “Dynamic graphs, their analysis, and Marko-
vian dynamics”)

/* C, vertex a immersed in =/

/% initialize Ty(a) /

/+ sum up Ty(a) =/

Algorithm 3: StreAM-T,(a) for computing the global transition matrix T, (a)
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StreAM-T, optimization using precomputed contact
probability
The large computational demands for a full computation

V] v
ofthe( k )-k!_

V=R transition matrices to derive

a set of T, (a), motivated us to implement an optimiza-
tion: The number of Markov models can be reduced by
considering only adjacencies including possible contacts
between at least two vertices of G; = (V/, E;). This can be
precomputed before the full computation by considering
the contact probability P(X,7;,7;) between vertices. To
this end we only compute transition matrices forming a
contact within the dynamic graph with P(X, 7, 7;) > 0.

Evaluation

Objectives

As StreAM-T, is intended to analyze large MD trajec-
tories we first measure the speed of StreAM for com-
puting a single 7 (V') to estimate overall computational
resources. With this in mind, we benchmark different G;
with increasing adjacency size k (Table 1). Furthermore,
we need to quantify the dependence of computational
speed with respect to §;. Note, §; represents changes in
conformations within G;. For the full computation of
T, (a), we want to measure computing time in order to
benchmark StreAM-T, by increasing network size |V|
and k for a given system due t?(kg)lc)[)onentially increas-
ing matrix dimensions |Ay| = 2 (k =38, k=464,
k =51,024, k = 6 32,768, k = 7 2,097,152 size of matrix
dimensions). We expect due to combinatorial complexity
of matrix computation a linear relation between | V] and
speed and an exponential relation between increasing k
and speed. To access robustness of influence of d robust-
ness regarding the computation of Ty () stationary distri-
bution 7. We expect a strong linear correlation between
derived stationary distributions. Details are shown in
“Robustness against threshold” We compare Marko-
vian dynamics between the native TC-Aptamer and the
structure in complex with 7-cl-tc with experimental
data. We discuss the details in “Workflow” and “Appli-
cation to molecular synthetic biology” Furthermore, we
want to illustrate the biological relevance by applying it
to a riboswitch design problem; this is shown in detail
in “Application to molecular synthetic biology” For the
last part, we investigate the ligand binding of four dif-
ferent TC derivates using StreAM-T,; and compare them
with a classical metric (e.g. RMSF) in “Comparison of tet-
racycline derivates”.

Evaluation setup

All benchmarks were performed on a machine with four
Intel(R) Xeon(R) CPU ES5-2687W v2 processors with
34GHz running a Debian operating system. We
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implemented StreAM in Java; all sources are available in a
GitHub repository.? The final implementation StreAM-T,
is integrated in a Julia repository.> We created plots
using the AssayToolbox library for R [39, 40]. We gen-
erate all random graphs using a generator for dynamic
graphs? derived for vertex combination.

Runtime dependencies of StreAM on adjacency size

For every dynamic graph G;(V,E;), we selected a total
number of 100,000 snapshots to measure StreAM runt-
ime performance. In order to perform benchmarks with
increasing k, we chose randomly nodes k € [3,10] and
repeated this 500 times for different numbers of snap-
shots (every 10,000 steps). We determined the slope
(speed %) of compute time vs. k for random and MD
graphs with different parameters (Table 1).

Runtime dependence of StreAM on batch size

We measured runtime performance of StreAM for the
computation of a set of all transitions 7 (V') with differ-
ent adjacency sizes k as well as dynamic networks with
increasing batch sizes. To test StreAM batch size depend-
encies, 35 random graphs were drawn with increasing
batch size and constant numbers of vertex and edges. All
graphs contained 100,000 snapshots and k is calculated
from 500 random combinations of vertices.

Runtime dependencies of StreAM-Tg on network size

We benchmarked the full computation of T, () with dif-
ferent k € [3,5] for increasing network sizes |V]. There-
fore we performed a full computation with StreAM.
StreAM-T, sorts the obtained transition list, converts
them into transition matrices and combines them into a
global Markov model for each vertex.

Runtime evaluation
Figure 4b shows computational speeds for each dynamic
graph. Speed decreases linearly with a small slope
(Fig. 4a). While this is encouraging the computation of
transition matrices for k > 5 is still prohibitively expen-
sive due to the exponential increase of the matrix dimen-
sions with 2k'(k{1>. For G; obtained from MD simulations,
we observe fast speeds due to small batch sizes (Table 1).
Figure 4b reveals that Ty, increases linearly with
increasing |V| and with k exponentially. We restrict
the Ty (a) full computation to k < 5. In Fig. 4c, speed
decreases linearly with ;. As §; represents the changes
between snapshots our observation has implications for

% https://github.com/BenjaminSchiller/Stream.
3 http://www.cbs.tu-darmstadt.de/streAM-Tg.tar.gz.
* https://github.com/BenjaminSchiller/DNA datasets



6.3 StreAM-Tg: algorithms for analyzing coarse grained RNA dynamics

Jager et al. Algorithms Mol Biol (2017) 12:15

Page 10 of 16

Graph
10A
1A
124
134
144
154

Randgs

2000

sele

Randg,

Randg,

Speed [ Frames / ms ]

1000 A

4 6 8 10
Adjacency Size

Fig. 4 Runtime performance of StreAM-T,. a Speed of computing a set of 7 (V') using StreAM. b Performance of Ty(a) full computation with
increasing network size |V] and different adjacency sizes k = 3,4, 5. ¢ Speed of StreAM with increasing batch size fork = 3,10

1065— T3 =
- L] ®
1OSE .
L]
— C ) Adj
" . s Js;cency
£ 10 .
— E_ A . .4
§_ : . r e 5
TSR I ot
E .
. |
T I II I T T T
100.8 100.9 101 101.1 101.2
Network Size
1072 T T T 771
5 10— —
£ Hl . .
% : ‘r - Adj
6.8 ° ljacency
E 101 45
[T f— ..-. — e 10
? 10°5 1 < .
[ .
@ N ot
L]
1064_ "'.:
[ B I B I N !
101.4 1016 101.8 102 102.2
Batch Size

the choice of MD integration step lengths as well as tra-
jectory granularity.

Performance enhancing by precomputed contact
probability

The exponential increase of transition matrix dimen-
sions with 2“5 is an obvious disadvantage of the pro-
posed method. However, there exist several T(V') where
every vertex is never in contact with another vertex from
the set. These adjacencies remain only in one state dur-
ing the whole simulation. To avoid the computation of the
respective Markov models we precomputed P(X,7;,7;) of
all vertices. Thus only combinations are considered with
P(X, 7,»,7’,) > 0. This procedure leads to a large reduction
of T¢py due to fewer number of matrices to be computed
to derive Tg(a). To illustrate this reduction, we com-
pute the number of adjacencies left after a precomputa-
tion of P(X,7;,7;) as a function of d for the TC-Aptamer
simulation without TC. The remaining number of transi-
tion matrices for adjacency sizes k = 3,4,5 are shown in

Fig. 5b. For further illustration we show the graph of the
RNA molecule obtained for a cut-off of d = 15 A in Fig. 5a.

We can observe that using a precomputation of
P(X, ?,-,?j) to a full computation of T, (a) hardly depends
on the Euclidean cut-off (d) for all considered adjacen-
cies. The reduced computational costs in case of a full
computation can be expressed by a significant smaller
number of transition matrices left to compute for all con-
sidered adjacency sizes k = 3,4, 5. For example if we use
k = 4 and d = 13 A we have to compute 16,248,960 tran-
sition matrices, if we use a precomputation of P(X,7;,7})
we can reduce this value to 2,063,100, this roughly eight-
fold. Furthermore, in case of new contact formation due
to an increased d the number of transition matrices can
increase.

Robustness against threshold

Here, we investigate the influence of threshold d for
the full computation of Tg(a). To this end, we created
dynamic graphs with different d € [11,15] A of the
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TC-Aptamer simulation without TC. Here, we focus on
a simple model with an adjacency size of k = 3, thus with
eight states. In particular, we focus on the local adjacency
matrix of combination 52, 54 and 51 because these nucle-
otides are important for TC binding and stabilization of
intermediates.

To access the overall robustness of a full computation
of Ty (a) we compute the stationary distribution for every
Ty (a) and afterwards we compare them with each other.
For the comparison we use the Pearson product moment
correlation (Pearson’s r). Figure 6 illustrates the compari-
son of stationary distributions obtained from 65 T (a) for
unit sphere dynamic graphs with different d.

The obtained Pearson correlations r are also shown
in Fig. 6 (a, upper triangle). We observed a high robust-
ness expressed by an overall high correlation (r = 0.938
to r = 0.98) of the dynamic graphs created with different
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d. However transient states disappear with increasing
threshold d (Fig. 6b). This observation stems from the
fact that the obtained graph becomes more and more
densely connected. One consequence of a high threshold
d is that the adjacency remain in the same state.

Accuracy of StreAM

In this section we discuss the accuracy of StreAM for the
computation of a set of all transitions 7 (V') on finite data
samples. Our approach estimates the transition probabil-
ities from a trajectory as frequencies of occurrences. It
could be shown that uncertainties derived from a transi-
tion matrix (e.g derived from a molecular dynamics sim-
ulation) decreases with increasing simulation time [22].
Thus the error and bias in our estimator are driven by
the available data set size to derive 7 (V’). Additionally,
there is an implicit influence of k on the accuracy since
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the number of k determines the transition matrix dimen-
sions. Consequently, the available trajectory (system)
data must be at least larger than the number of entries
in the transition matrix to be estimated in order to use
StreAM.

Application to molecular synthetic biology

This section is devoted to investigate possible changes in
Markovian dynamics of the TC-Aptamer upon binding
of 7-cl-tc. This particular antibiotic is part of the crystal
structure of the TC-Aptamer thus structure of 7-cl-tc
has the correct geometry and orientation of functional
groups.

For both simulations of “Workflow”, we computed
16,248,960 transition matrices and combined them into
65 global models (one for each vertex of the riboswitch).
To account for both the pair-interactions and poten-
tial stacking effects we focus on k = 4-vertex adjacen-
cies and use dynamic RNA graphs with d = 13 A. One
global transition matrix contains all the transitions a sin-
gle nucleotide participates in. The stationary distribution
and the implied entropy (changes) help to understand the
effects of ligand binding and potential improvements on
this (the design problem at hand). The AH obtained are
shown in Fig. 7.

A positive value of AH in Fig. 7 indicates a loss of
conformational entropy upon ligand binding. Interest-
ingly, the binding loop as well as complexing nucleotides
gain entropy. This is due to the fact of rearrangements
between the nucleotides in spatial proximity to the ligand
because 70% of the accessible surface area of TC is bur-
ied within the binding pocket L3 [23]. Experiments con-
firmed that local rearrangement of the binding pocket are
necessary to prevent a possible release of the ligand [41].
Furthermore crystallographic studies have revealed that
the largest changes occur in L3 upon TC binding [23].
Furthermore, we observe the highest entropy difference
for nucleotide G51. Experimental data reveals that G51
crosslinks to tetracycline when the complex is subjected
to UV irradiation [42]. These findings suggest a strong
interaction with TC and thus a dramatic, positive change
in AH. Nucleotides A52 and U54 show a positive entropy
difference inside L3. Interestingly, molecular probing
experiments show that G51, A52, and U54 of L3 are—in
the absence of the antibiotic—the most modified nucleo-
tides [23, 34]. Clearly, they change their conformational
flexibility upon ligand binding due they direct interaction
with the solvent. U54 further interacts with A51,A52,A53
and A55 building the core of the riboswitch [23]. Taken
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together, these observations reveal that U54 is neces-
sary for the stabilization of L3. A more flexible dynamics
(AH) will change the configuration of the binding pocket
and promotes TC release.

Comparison of tetracycline derivates

In this section, we want to investigate possible changes
in configuration entropy by binding of different TC deri-
vates. Moreover, we want to contrast StreAM-T, to con-
ventional metrics like RMSF (Eq. 5) using the entropy of
the stationary distributions obtained from Tg(a). There-
fore, we simulated a set consisting of four different anti-
biotics (atc, dc, ddtc, tc) in complex with the riboswitch
of “Workflow”. The structures of all derivates, each with
different functional groups and different chemical prop-
erties, are shown in Fig. 3. For this approach we use a
precomputation of P(X,7;,7j) to reduce the number of
transition matrices for a full computation of Tg (a). Hence
for all four simulations of TC derivates, we computed
1,763,208 (for tc), 1,534,488 (for atc), 2,685,816 (for dc)
and 2,699,280 (for ddtc) transition matrices and com-
bined them into 65 global models Ty (a) each. Similar to
“Application to molecular synthetic biology’, we compute

172

AH = Hy — Heomplex from the stationary distribution as
well as ARMSF = RMSF,y; — RMSF sopmpiex from individ-
ual RMSF computations. The results are shown in Fig. 8.
The ARMSF in Fig. 8b and in AH Fig. 8a shows a simi-
lar picture in terms of nucleotide dynamics. If we focus
on atc we can observe a loss of conformational entropy
upon ligand binding for almost every nucleotide. Con-
sidering this example the RMSF only detects a significant
loss of nucleotide-based dynamics ranging from nucleo-
tide 37—46. However, for dc, we observe the same effects
like for dc. Contrary to this observation we detect, for
ddtc, an increase in dynamic upon ligand binding as well
as negative ARMSF values. For tc, we observe a similar
picture as for 7-cl-tc (“Comparison of tetracycline deri-
vates”). In a next step, we want to compare the obtained
differences in stationary distribution with experimental
values. To this end,we use an experimental metric: xfold
values. A xfold value describes the efficiency of regula-
tion in vivo and is given as the ratio of fluorescence with-
out and with antibiotic in the experimental setup [43].
Unfortunately, atc reveals no experimental dynamics due
to growth inhibition caused by the toxicity of the respec-
tive tc derivative [43]. In contrast to atc, dc and ddtc
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show only a weak performance (xfold = 1.1) in compari-
son to tc (xfold = 5.8) and 7-cl-tc (xfold = 3.8) [43]. On
the one hand, atc and dc appear overall too rigid and on
the other hand ddtc too flexible to obtain a stable bound
structure, implying insufficient riboswitch performance.
For our design criterion of high xfold, we conclude that
only certain nucleotides are allowed to be affected upon
ligand binding. In particular, we need flexible nucleotides
for the process of induced ligand binding (like nucleotide
G51 Fig. 7) and stabilization of the complex intermedi-
ates (“Application to molecular synthetic biology”). Addi-
tionally, the switch needs rigidity for nucleotides building
the stem region of the TC-Aptamer upon ligand binding
(like nucleotides A51, A52 and A53 Fig. 7).

Summary, conclusion, and future work
Simulation tools to design and analyze functionally RNA
based devices are nowadays very limited. In this study, we
developed a new method StreAM-T, to analyze structural
transitions, based on a coarse grained representation
of RNA MD simulations, in order to gain insights into
RNA dynamics. We demonstrate that StreAM-Ty fulfills
our demands for a method to extract the coarse-grained
Markovian dynamics of motifs of a complex RNA mole-
cule. Moreover StreAM-T, provides valuable insights into
nucleotide based RNA dynamics in comparison to con-
ventional metrics like the RMSF.

The effects observed in a designable riboswitch
can be related to known experimental facts, such as
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conformational altering caused by ligand binding. Hence
StreAM-T, derived Markov models in an abstract space
of motif creation and destruction. This allows for the effi-
cient analysis of large MD trajectories.

Thus we hope to elucidate molecular relaxation time-
scales, spectral analysis in relation to single-molecule
studies, as well as transition path theory in the future. At
present, we use it for the design of switchable synthetic
RNA based circuits in living cells [2, 44].

To broaden the application areas of StreAM-T, we will
extend it to proteins as well as evolutionary graphs mim-
icking the dynamics of molecular evolution in sequence
space [45].
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6.4 StreaMD: Advanced analysis of Molecular
Dynamics using R

This manuscript deals with a software package which provides an interface for
the stream library and the Gromacs XDRfile as well as the tng library. Both
libraries contain compression and parser routines for MD trajectories. The

current manuscript is under revision:

o Dombrowsky, M.J.*, Jager, S.* Schiller, B., Mayer, B.E., Stammler,
S., Hamacher, K. (2017) StreaMD: Advanced analysis of Molecular Dy-

namics using R, Journal of Computational Chemistry JCC (in revision)

With this package, the above named motif-based methods in combination with
MD are made available to a wide range of users. The interface was evaluated in
terms of run-time and memory requirements. As an example of an application,
the 3D structure of the Tetracycline aptamer (cf. Section was used and
analyzed with the help of StreaM} as well as classical MD analysis like RMSD
and RDF.
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the MD simulations was carried out by Max Dombrowsky, the creation of the
dynamic graphs and the motif-based analysis was done by myself. Moreover,
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mented the package. Benjamin Mayer and Sebastian Stammler gave valuable
hints for the implementation and helped to write the paper. Kay Hamacher
helped to motivate it and improved it in its logical structure. Benjamin Schiller
implemented and helped to interface the stream library for motif counting in

dynamic graphs. In this article I am shared first author.
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StreaMD: Advanced analysis of Molecular Dynamics
using R

Maximilian J. Dombrowsky, Sven Jager, Benjamin Schiller, Benjamin E. Mayer,
Sebastian Stammler, Kay Hamacher

January 9, 2018

Abstract

Gromacs is one of the most popular molecular simulation suites currently available.
In this contribution we present streaMD, the first interface between Gromacs trajectory
files and the statistical language R.
The amount of data created due to ever increasing computational power renders fast
and efficient analysis of trajectories into a challenge. Especially as standard approaches
such as root-mean square fluctuations and the like provide only limited physical insight.
In our streaMD package integration of the Gromacs I/O libraries with advanced, graph-
based analysis methods as the java library Stream leads to both: improved speed and
analysis depth. We benchmark our results and highlight the applicability of the package
by an interesting problem in RNA design, namely the interaction of tetracycline with
an aptamer.

Keywords: Molecular Dynamics, Dynamic Graphs, R, Rcpp, rJava , Gromacs [
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1 Introduction

Understanding the structure and dynamics of (bio)molecular systems is a major challenge
for computational chemistry and synthetic biology!. Molecular dynamics (MD) simulation
is one strategy to investigate the behavior of biomolecules in their natural environment. MD
is applied extensively to study proteins, nucleic acids, and their interactions in different sol-
vents? . Insights into thermodynamics of conformational changes are especially important
for the rational design of proteins/enzymes®.

Due to the exponential increase of computational resources it is now possible to describe
large biochemical systems like channel proteins in cell membranes on an atomistic scale%7.
Protein interaction mechanisms as well as experimental quantities like transition energies
and other thermodynamic properties can be obtained®?. As computational power increases
even further, MD simulations will grow in size and reach longer timescales, possibly as much
as a million fold greater than they are today'?. However, the analysis of long(er) simulation
time series is expensive and time consuming, especially if performed at high resolutions.
Thus, the development of efficient methods to analyze extensive MD simulations becomes
more important.

Beyond the computational and storage demands, one question arises: Whether basic
analysis of spatial 3D coordinates of particles is the best semantic level to describe dynamics
of complex biomolecules or is a new paradigm to analyze trajectories more promising?

The derivation of (time-dependent) graph properties constitutes a possible solution. To
this end, biomolecular configurations and their dynamics can be represented as dynamic
graphs and evaluated using a motif-based analysis. Motifs, the basic building blocks of
most networks, help to understand their complexity and high-order organization!2. These
provide insight into the relations between the components on a more abstract semantic level
than spatial coordinates alone.

In previous work we were able to show that graphs can be formulated based on spatial
proximity of constituents, e.g., amino acids. It turned out that four-vertex motif counts
can be used to annotate secondary structures and determine essential dynamics for protein
simulations'®. Furthermore, the approach is applicable to other biomolecular systems as
well, e.g., nucleic acid based graphs in RNAs!#!5. In this context we devolped StreaM;, an
efficent algorithm that counts motifs as well as StreAM which creates motif based Markov
state models from dynamic graphs modelled from MD simulations.

At the same time, several MD simulation suites are available, where Gromacs!®!7 is one
of the most commonly used. It provides high performance and support for several spe-
cialized MD concepts?. Until now, Gromacs I/O integration in R'® is hindered by severe
technical difficulties as most libraries either are more specialized on sequence analysis (e.g.,
BioPhysConnector!?), characterization of topological knots regarding static molecular struc-
tures (Rkonts?®), visualization of Gromacs output files (MDplot?!') or focus on not compatible
file formats (e.g., bio3d*? can only parse CHARMM’s dcd files??).

Nevertheless, the R eco system provides a broad range of diverse packages, methods
(e.g., machine learning, network analysis, sequence annotation, ... ), and I/O capabilities to
augment MD analysis (e.g., fasta, pdb, fes, xlsx, ... ) rendering the use of R highly desirable.
At the moment, such advanced analysis and parsing programs are only available for Python
(e.g., MDtraj?) or Julia?2?6. Thus, our package streaMD, aims to provide all functions
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to directly parse Gromacs output files into the statistical language R, perform graph based
analysis, and employ popular analytical methods like root mean square deviation (RMSD)
and fluctuation (RMSF), as well as radial distribution function (RDF) calculations. To
ensure high performance we implemented these functions in C++ and Java. Additionally, we
provide functions to interface our methods and formats with already established R libraries
like bio3d?? and BioPhysConnectoR™.

2 Computational Methods

2.1 Implementation Details

In order to parse Gromacs'®!7 trajectory files we used the libxdrfile?” and libtngfile?®
APIs. Repp? has been employed to make C and C++ functionalities accessible to R'® while
RcppArmadillo®® provides the matrix data type for trajectory storage: trajectory files are
stored as lists of N x 3 matrices where each list element represents one time step and each
matrix row contains (z,y, z) coordinates of one particle n € [1,..., N] with N as the number
of particles. This approach enables straightforward parallelization using the parallel®®
package for R.

Gromacs gro structure files are read and written via C functions, enabling fast and format
specific I/O. Content of gro files is represented in R as a list of one data frame containing all
atom informations, and one matrix containing only the spatial coordinates.

RMSD, RMSF, and RDFs (see Secs. 2.6, 2.7, and 2.8, respectively) are implemented in
C++ using ReppArmadillo®’. While fast rmsd and fast_rmsf return a R vector, rdf returns
a RcppArmadillo matrix containing the calculated histogram. streaMD object manipulation
functions like trjselect (fig. 1) are R native and employ vector based functionalities in the
spirit of lapply®.

The package includes the implementation of the streAM algorithm for the construction
of Markov state models* as well as generic graph based analytics, e.g., the computation
of degree distributions. Additionally, streaMD provides a random generator for dynamic
graphs!3. This generator is usefull to explore streaMD functionalities by generating example
graphs.

Fig. 1 gives an overview of streaMD’s architecture. After input generation by Gromacs,
trajectories can be parsed into R using loadxtc/loadtng. This creates a streaMD trajec-
tory object. Subsequently, one can employ several trajectory manipulation functions like
trjselect or CoC (see below). Classic MD evaluation methods like RMSD or RDF calcu-
lations are available for the streaMD trajectory format. All these functions return R base
objects which can be analyzed further within the R eco system. Complementing these clas-
sic evaluation methods, time dependent graph analysis is available via an streaMD object.
Finally, the lightweighted stream trajectory format contains a reduced representation of
changes in graph composition for each time step and can be stored on the user’s hard drive.
It can be created from xtc files or streaMD style trajectories via the xtc_to_stream function.
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streaMD
BioPhysConnectoR /trjselect CoC \
-> list of matrices -> list of matrices
extractPDB 1 rdf
. -> matrix
-> bio3d pdb p | - \_-> matrix |
loadxtc / loadtng | § | fast_rmsd / fast_rmsfw
-> list of matrices -> R vector
( N\ N\ J ( \
Gromacs mdrun streAMGT
-> .xtc/.tng ( ) -> list of matrices R eco
> .pdb /.gro Xtc_to_stream graphstats -
\ 4 -> streamR obj -> matrix — C{Etem
-—
~—— streAM
p N\ ~ \ ->n x n matrix
-—
randgraph degree
-> streamR obj ->n x m matrix
\ Y, \ J ( p
streamk
->nxm matrix/
-—

Figure 1: Overview of streaMD components. Blue boxes describe R packages. Command
names are written in bold font and the corresponding output format is written in italic. We
mix several languages (green: C++; red: java; black: pure R).

2.2 Datasets
2.2.1 Benchmarks

All benchmarks were performed on a workstation containing two Intel Xeon CPUs X5482,
resulting in 8 physical cores with up to 3.2 GHz running an Arch Linux operating system.
We employed R version 3.3.2, Rcpp version 0.12.8 and RecppArmadillo version 0.7.500.0.0.
In order to evaluate the performance of our xtc file interface it was compared to several
other packages. Since no other xtc interface for R'® is available to the best of our knowledge,
we evaluated against the loadxtc() function for MatLab3! provided within the gro2mat 3
package. In contrast to our high level API approach the gro2mat interface strategy is based
on VMD’s33 xtc parser. In here, only the most basic 1ibxdrfile subroutines are used while
tasks like memory allocation and object creation are explicitly programmed.
Additionally, the read gmx() function published within the MolecularDynamics?® package
for julia?® was used in our benchmark. The MolecularDynamics approach is quite similar
to ours in that it is based on the libxdrfile high level API.
One up to 16,000 frames of a Gromacs %7 written xtc trajectory containing 6427 atoms were
each loaded 1,000 times while the runtime was measured using either built-in methods like
tic() (MatLab, julia) or the microbenchmark package3! for R.
To compare writing time and compression between streaMD’s writextc() function and the
R base function save () we prepared square matrices ranging from 1 x 1 up to 50000 x 50000
entries. These were filled with uniform distributed random 64 bit floats between 0 and 1.
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The computational time was measured using microbenchmark?*. The analysis was repeated
1,000 times. Additionally the used diskspace was determined using bash’s base function du.
Relative speed-up S is defined as S := eru/ig,,, in which t2py represents the computational
time of the already available function and t&p the computational time of the streaMD
function. Relative memory saving MS is defined as MS := P°/ps accordingly.

2.2.2 Usecase

We analyzed two tetracycline aptamer MD simulations, containing 160,000 frames of 1,000 ns
simulation time. While one simulation was performed in presence of 7-chlorotetracycline
(wtc) the other simulation was in absence of it (wotc). The analysis was conducted using
streaMD and bio3d 2.3-122. Graphics were plotted using ggplot2 2.2.03% and molecular
representations were visualized using PyMol 1.8.4.03¢. PDB files were parsed into R using
extractPDB distributed with BioPhysConnectoR™.

2.2.3 MD Simulation Setup

All simulations were executed in Gromacs using the CHARMMZ27 force field with parame-
ters for the synthetic tetracycline derivative 7-chlorotetracycline3” 3 from Aleksandrov and
Simonson. Water was represented via the TIP3P explicit water model*’. Both simulations
were performed at constant temperature (300 K) for a time frame of 1,000 ns of explicit all-
atom MD simulations. The systems were initially energy minimized and equilibrated for 1 ns
simulation time in the NVT-ensemble at a temperature of 300 K and for 10 ns in the NpT-
ensemble at a pressure of 1 bar. During the equilibration, temperature coupling was achieved
through the Berendsen thermostat*' while pressure was contained via the Berendsen baro-
stat?'. During the 1,000 ns production, temperature was controlled using the velocity-rescale
thermostat*? while pressure was preserved via the Parrinello-Rahman barostat*?. During all
simulations Lennard-Jones nonbonded interactions were evaluated with a cutoff distance of
1.2 nm and integration step-size was set to 1.5 fs. Both MD simulation production runs
resulted in 160,000 snapshots.

2.3 Maotifs, Graphs and Dynamic Graphs

A graph G = (V, E) is an ordered pair, consisting of a set of vertices V' = {vy,va, ... vy} and
a set set of edges F. In this work, we only consider undirected graphs without self-loops, i.e.,
E C {{v,w}:v,w € V,v# w}. Agraphis called connected in case any two vertices v,w € V'
are connected. Accordingly ,a dynamic graph Gy(V;, E;) can be defined as a list of graphs
(e.g., Gio, Gy1,Gya,...). Two graphs G = (V) E) and G' = (V' E’) are called isomorphic
if they contain the same number of vertices, i.e., |V| = |V’|, and there exists a so-called
edge-preserving bijection f: V — V' such that {v,w} € V < {f(v), f(w)} € V"

A motif m is a subset of a graph G with a defined numbers of vertices |V| and edges |E|.
Motifs are sorted in classes M, containing all motifs m of same the same |V/|.
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2.3.1 Network Transformation

We generated a dynamic graph of the 160,000 simulation snapshots (F;) with 65 vertices |V|,
each modeling a nucleic 8C". Such type of resolution has proven to be an efficient approach
for representing small secondary structure as well as large quarteric RNA complexes 44445,
We created two graphs with undirected edges F between two vertices V' in case their spatial
distance cut-off (d) is shorter than d € [1.1,...,1.5] nm. Statistics of the obtained graphs are
show in Tab. 1. |V| and |E| were defined to be the amount of vertices or edges respectively.
Here, add state refers to the average number of modification operations that occur in the
dynamic graph between one frame and the next. Accordingly, total removals depicts the
sum of all edge removals and total additions denotes for the sum of all edge additions in the
dynamic graph.

Table 1: graphstat statistics of obtained graphs.

Type d |V| |E| Fy1000 total additions total removals add state remove state
+ligand 1.1 65 118 160 1246 057 1245929 7 7
+ligand 1.2 65 189 160 1557759 1557581 9 9
+ligand 1.3 65 222 160 1440117 1439893 9 8
+ligand 1.4 65 282 160 1569 254 1568974 9 9
+ligand 1.5 65 332 160 1907673 1907 345 11 11
—ligand 1.1 65 116 160 1213819 1213695 7 7
—ligand 1.2 65 186 160 1458533 1458 350 9 9
—ligand 1.3 65 224 160 1371554 1371318 8 8
—ligand 1.4 65 279 160 1456476 1456 202 9 9
—ligand 1.5 65 327 160 1869136 1868 805 11 11

2.4 xtc and tng Compression Strategy

The xtc file format requires several processing steps: Initially, all floating point number
coordinates are mapped to an integer after multiplication with a precision factor. This
reduces the amount of bits necessary to store these numbers. Instead of writing each z,
y and z value, only the differences dx, dy and dz are written if these are small enough,
furthermore reducing the number of required bits. Subsequently, the differences dx, dy and
dz are combined into one integer by calculating (z - Ymaz + ¥) * Zmaz + 2 requiring less bits
then the three separated integers?’.

To cope with series of small differences, the number of coordinates in such a sequence is
stored, removing the need for storing every and each coordinate. If several sequences of equal
length are following each other, this will be indicated by one bit. This is especially useful for

water molecules which are represented by three coordinates with only small differences?”.

2.5 Stream Library

The Stream Library is a dynamic graph analysis library by Schiller et al.!? This library
includes several algorithms for dynamic graph based analysis. Furthermore, it provides a
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transferable analytic method with a light weight format (stream) which is perfectly suited
to work with large MD trajectories. One of its algorithms is StreaM, an extention to count
the occurrences of k-vertex motifs in dynamic graphs. Furthermore, streAM and streAM-T,
are included for the construction of motif based Markov models from dynamic graphs!4®.

2.6 RMSD

The Root Mean Square Deviation (RMSD) describes the average displacement of a structure
A = (2, ¥\, 2}}) with regard to a reference structure R = (z,y%, 2% ). Both structures
contain N particles with z, y and z constituting their spatial coordinates. It is defined as

the sum over the Euclidean distances of all particles N as stated in Eq. 1.

N
1
RMSD(AR) = || % Z vy = ) (W — k) + (2 — ) (1)

2.7 RMSF

The Root Mean Square Fluctuation (RMSF) describes the time averaged displacement of a
selected particle n at time 7 € [1, ..., T] with respect to its time mean value ((z,,),(yn),(zn)):

RMSF(n) = Zx (@) 4 (57— () + (2 — ()2 (2)

2.8 RDF

The Radial Distribution Function (RDF) g4z is a measure of density of particles B in the
distance interval § around particles A. Usually g4z is defined as weighted histogram H
over the set of distances D with D := {|la —b| : « € A,b € B}. One histogram value of
a ¢ wide bin around c is defined as hs(c) == [{d € D : (¢ — %) < d < (c+9/2)}| and
represents the particle distribution of B around A. After normalization to the shell volume
AV = 4/3.71[(c+9/2)3 — (c —9/2)3], the overall density p and the number of particles |A],
the radial distribution gs(c) at distance ¢ can be retrieved.

h(;(c)
(46¢2 +1/353%) m p | A| )

gan(c) =

2.9 Entropy derived from Motif Counts

Later on, our goal will be the assessment of ligand binding from our use case. To this end,
we compute the motif-based entropy (changes). However, to measure changes in motif based
conformational entropy we defined the frequency f(m|y) = C(m|am)/T as the count C of
a given motif m and its corresponding motif class M divided by the simulation Time 7.
For illustration we use five vertex motifs V' = 5. Using Shannon’s definition of entropy Hg
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in Eq. 4 with the number of motifs M, we determined the change of entropy upon ligand
binding to be AHS(m’M) = Hg, —ligand(m\M) — Hs, +lig¢md<m|/\/l)*

Hs(mla) = =Y f(m|a) - 1og f(m|am) (4)

3 Results & Discussion

3.1 Benchmarks

Figs. 2 A & B show the parsing time with regard to xtc size. Parsing time of streaMD’s
loadxtc () is in some cases higher for xtc sizes under 100 frames than gro2mat’s parseXtc ()
but performs better for xtc sizes over 1,000 frames in comparison to MolecularDynamics’s
read_gmx (). Thus our implementation is favorable in comparison to gro2mat’s. Since our
implementation is similar to the read gmx() function we can ascribe our speedup to the
Rcpp interface and RcppArmadillo’s fast matrix class.

Figure 2 C shows writing time with regard to matrix entries. Writing time of writextc ()
is 31 times higher than for R’s save () if more than 1,000 matrix entries are written. Memory
usage of written xtc files is up to 4 times smaller than for Rdata files that range nearer to
their corresponding RAM usage(fig.2 D).

In summary, our implementation of the libxdrfile API is advantageous towards all
compared algorithms. We provide easy to implement functions, enabling the user to save R
objects significantly faster while requiring 4 times less hard drive space. Additionally it is
now possible to write Gromacs trajectory files directly from R which allows straightforward
modification of xtc files. As our libtngfile implementation is the only in an interpreted
language we were not able to state conclusive comparisons.
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Figure 2: Performance comparison between streaMD xtc functionalities and R base or other
xte tools. A) Loading time of up to 16,000 frames xtc trajectory containing 6,427 atoms.
B) Relative speedup of loadxtc() vs. parseXtc(). C) Writing time of matrices with up
to 50,000 x 50,000 random values. C inlet) Relative speedup of writextc() vs. R base’s
save(). D) Memory usage of written random matrices with up to 50,000 x 50,000 entries.
D inlet) Relative memory saving of writextc() vs. R base’s save().

3.2 Usecase
3.2.1 Conventional Analysis

To demonstrate the efficiency of streaMD functions in non-graph based analysis we computed
the RMSD (eq. 1), the particle distribution (eq. 3) and the RMSF (eq. 2) of two molecular
dynamic simulations both containing only the tetracycline binding aptamer (wotc) and one
additionally containing tetracycline (wtc) in its binding pocket.

In order to compute RMSD and RMSF we applied a coarse-graining approach where each
nucleotide is represented by its C3” atom . To achieve this we first loaded the xtc-trajectory
file and its corresponding pdb file. We identified all C3’ atoms using bio3d?? and adjusted
our trajectory file accordingly. The resulting model is now storable as a xtc-file for later
usage.
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pdb <- extractPDB("structure.pdb")
trajectory <- loadxtc("trajectory.xtc", 1, 160000)

select <- atom.select(pdb, elety = "C3’")$atoms
cg.model <- trjselect( trajectory, select)
writextc("my_coarse-grained_trajectoy.xtc", cg.model)

Following the coarse-graining, we calculated the RMSD with regard to the first snapshot.
The trajectory organization as matrices in a large list enables us to use the R-base lapply()
method which can also be parallelized easily, using the parallel'® package (Supplementary
Material 2). The resulting RMSD is shown in figure 3 A.

RMSD <- lapply(cg.model, fast_rmsd)
RMSD <- unlist (RMSD)

Similar to the fast_rmsd () function, the radial distribution function can be computed using
lapply () from the parallel package. To study the distance distribution between tetracy-
cline and its aptamer we calculated the center of coordinates of all tetracycline atoms using
CoC and calculated the radial particle distribution via rdf (). Subsequently, the resulting
list of histograms was combined using post_rdf () that merges the histograms of rdf () into
one.

select.tetra <- atom.select(pdb, resno = 67)$atoms
cg.rdf <- CoC(cg.model,select.tetra)
RDF <- lapply(cg.rdf ,rdf,
n_bins = 200,
Box_size = c(,,),
atoms = c (1),
atoms_compare = c(2),
pbc = TRUE,
absolute = FALSE)
rdf.hist<-post_rdf (RDF,FALSE)

Finally, the RMSF was computed via bio3d. For simple transformations between streaMD
and bio3d format the streaMD to _bio3d procedure is available. The resulting fluctuations
are shown in figure 3 B.

trj.mat <- streaMD_to_bio3d(cg.model)
RMSF <- rmsf(trj.mat)

Figure 4 displays the absolute particle distribution of the tetracycline RNA complex. This
representation highlights that the complex inherits three major states in the analyzed MD
simulation. The first and most frequented state at a distance around 0.65 nm represents
the bound state. The second state inherits a distance around 1.46 nm representing a semi
bound state in which tetracycline is partially bound to the RNA but its binding pocket is not
fully formed. The last state at a distance between 4.9 and 6.0 nm represents the unbound
tetracycline. This distribution reveals a large under sampling in the simulation, as there
is no obvious reason why the free ligand remains around 5.4 nm. While no direct claims
regarding the thermodynamic properties of the system can be made, the sampling efficiency
of the simulation is evaluable, revealing e.g., distribution biases.

Assuming a completely converged system, it is possible to calculate the binding free energy
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Figure 3: A) RMSD in reference to the first coordinate setting of C3’ atoms of the complex
(red) and single (green) simulation. B) RMSF of C3’ atoms of the complex (red) and single
(green) simulation.

AG via Boltzmann inversion?%, allowing to link simulations to laboratory experiments and
therefore evaluate their validity. It is however necessary to stress, that multiple binding
events should occur in one’s simulation and several possible binding paths have to be sampled
to allow a meaningful energy computation.
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Figure 4: Particle distances between the center of coordinates of tetracycline and the center
of coordinates of the binding pocket in the complex simulation added up over all coordinate
settings. 1 - 3) Exemplary conformation at distance 0.65 nm (1), 1.46 nm (2) and 5.3 nm

(3).

3.2.2 Graph-based Analysis

Here, we introduce the-graph based analysis approach with a generic example: The compu-
tation of backbone dynamics using 5-vertex motif counts.

It is well known that nucleotide-based molecular interactions take place between more
than one partner®”. For this reason, interactions exist for several edges observable in the
dynamic graph (obtained via an Euclidean distance cut-off d) of C3' coordinates at a given
time-step. The resulting edges represent strong local interactions such as Watson-Crick
pairing, Hoogsteen base pairing, or m — m-stacking of the respective RNA. Thus, motifs
consisting of nucleotides as vertices, might be a better semantic to describe RNA structure
and dynamic rather than simple distance metrics.

Using streaMD, MD simulations are easily convertible to dynamic graphs. This takes
advantage of a smart analytical approach, transferring your simulation into a so-called “motif
space” and describing their respective time-dependent configuration. Initialization with a
random graph, or converting a xtc trajectory into stream file format are both possible.

The next example shows the creation of a random dynamic graph where both, the initial
layout and edge exchange are randomized (used for the frame computation). First, we
convert xtc trajectories of both simulations to a stream file. The dynamic graph contains

188



6.4 StreaMD: Advanced analysis of Molecular Dynamics using R

1,500 edges, 1,000 vertices and 10 frames. These graphs can easily be used for testing or
the creation of toy models. Additionally, streaMD provides a statistics module that analyzes
generated stream files. The graphstatistics() function returns characteristics from the
generated dynamic graph.

# creating a rTandom graph
set.seed (1)
opathl <- tempfile ()

random <- randgraph(opath=opathl,

layout = "Random",
len=10,
batchType = "RandomEdgeExchange",

vertices = 1000,
edges=1500)

graphstats (opathl,"StatsOnly")

#[,1] [,2]

#[1,] "nodes" "1000"
#[2,] "initial edges"” "1500"
#[3,] "states" ngqn
#[4,] "first timestamp” "O"
#[5,] "last timestamp" "io"
#[6,] "total additions” "1700"
#[7,] "total remowvals" "200"
#[8,] "add per state” "154 .55"
#[9,] "remove per state" "18.18"

One key feature of the package is the conversion of gromacs xtc trajectories to the stream
dynamic graph file format. This particular function can convert an xtc trajectory into an
unit-sphere model with a given cut-off radius d. To speed up computation xtc_to_stream()
conversion uses the parallel package in R. The dynamic graphs are afterwards stored in a
stream file. In the next example, we create unit-sphere graphs from a riboswitch trajectory.
The xtc file used here contains only the C'3’ atom coordinates of the riboswitch. Additionally,
we have the possibility to take other coarse-graining schemes, e.g., reduced tree representa-
tion (structure element as a vertex)®, use of SPQR - SPIlit and conQueR (one nucleotide as
two vertices)?? or even the use of entire structural segments as vertex®.

xtc.file <- "xtc.trajectory"
stream.ofile <- tempfile()

for (i in seq(1.1,1.5,0.1)){
stream.ofile <- tempfile()
xtc_to_stream(path=xtc.file,

opath = stream.ofile,
nframes = 160000,
cores = 4,

cutoff = i)
all.wo <- c(all.wo,stream.ofile)
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After a successful conversion, calculating the degree distribution for every vertex returns the
connecting distribution for every vertex. The result is a matrix where every row stands for
a timestep and the columns denote the respective degree. If the stream files are combined
in a vector or list you can easily compute several functions via lapply ().

# getting degree
wo_degree <- lapply(X = all.wo,FUN=degree)
w_degree <- lapply(X= all.tc,FUN=degree)

# simple lapply exec
wo_k <- lapply(X = all_wo,FUN=streamk ,mframes=160000,motif="5")
w_k <- lapply(X= all_tc,FUN=streamk, mframes=160000,motif="5")

Now, we start the motif-based analysis, using the streamk() algorithm'® of the dynamic
graph modeled from both MD trajectories (wotc, wtc). For this, we applied the unit-sphere
model with a distance cut-off d = 1.3 nm. This cut-off is appropriate to measure conforma-
tional dynamics in coarse-grained models of RNA'. The streamk() algorithm efficiently
counts motifs in a given dynamic graph.

M;5(9) is an excellent motif for this kind of analysis. In this motif all nodes are connected
to the next neighbor with one edge. This type of cross-linking can also be found in the
backbone of RNA. In addition, there are two cross-linked connections, each of which is
connected to the second closest neighbor of a node. Due to this topology, we expect M5(9)
to be found increasingly in a weak cross-linked structure.

If one derives the motif counts for the MD trajectory as a function of time, its fluctuations
with a motif-based entropy are obtained (eq. 4). These are interpreted as a configurational
dynamic inside the motif space.

Figure 5 A, displays the degree distribution of different dynamic graphs obtained with
increasing d. It can be observed, that the distributions start to shift right. This is caused
by a higher threshold d leading to more undirected edges per vertex. Figure 5 B, shows
the motif counts for both dynamic graphs obtained from MD simulations. In our case,
tetracycline triggers upon binding a slight change in configuration of the RNA. Here it can
be observed that both simulations are clearly different. More Motif Mj5(9) is counted in the
graph without, rather than with tetracycline. Since this motif, due to its topology, is found
increasingly in weakly cross-linked structures, it indicates that the presence of tetracycline
maximizes intramolecular interactions.

Moreover, we observe differences in motif dynamic obtained from their counts over time
expressed by a motif frequency. Employing a motif-based entropy computation, it is also
possible to extract certain dynamics of the atomic ensemble. Here we have used Shannon
entropy Hg in detail to investigate the distribution of motif count frequencies. In Fig. 5 C we
use the motif-based fluctuations from the time series of Figure 5 B. In case of our example,
we determined the fluctuations of different motif counts. In this case, the differences in
Shannon entropy AHg are nearly all positive. Thus, our motif-based approach detects
fluctuations rather than simple metrics like the RMSF. Additionally, these results suggest
that the increase of motif fluctuations is proportional with structural density and complexity.
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Figure 5: A) Degree Distribution for five different d of both simulations (wotc,wtc) B) Motif
counts C(mg|a,) of a five vertex motif with the motif id 9 as a function of time. The inset
shows the topology of this motif in circular layout. C) AHg motif-based Shannon entropy
derived from every time series counting a different five vertex motif C' (m|u,).

4 Summary & Outlook

The streaMD package provides powerful tools for analysing molecular dynamics and enables
researchers to use Gromacs output files directly in combination with R. Moreover, streaMD
enables the simple exchange between MD trajectory and dynamic graph format. Users are
enabled to write xtc files that can be used in combination with molecular viewers to visualize
coarse-grained models in MD trajectories. Furthermore, by using streaMD it is now possible
to combine different coarse graining methods in combination with a dynamic graph-based
analysis approach. Our implementation provides at least four times parsing time and 31
times writing time speedups towards competing software packages. Furthermore, abstract
graph-based analysis tools are implemented for the first time in R which are applicable to

obtain motif-based analysis or even Markovian dynamics in motif space!4.
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Project home page: http://www.cbs.tu-darmstadt.de/streaMD.tar.gz
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A Supplementary
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Figure 1: All motifs with five vertices. The Motif ID can be found below the circular layout

of the given motif.
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A.2 Parallelization Benchmark
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Figure 2: Runtime of fast_rmsd() against number of processor cores. The benchmark was
performed 500 times using 150,000 frames with 5232 atoms each. All runtimes were measured

on 4 AMD Opteron 627/ processors with 2.2 GHz.
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7 Graph-based Analysis of
HTS-SELEX

7.1 Riboswitching with ciprofloxacin -
Development and characterization of a novel
RNA regulator

This section deals with the contribution in the following work:

o Groher, F., Bofill-Bosch, C., Schneider, C., Braun, J., Jager, S., Geifiler,
K., Hamacher, K., Suess, B., (2018) Riboswitching with ciprofloxacin —
Development and characterization of a novel RNA regulator. Nucleic
Acids Research

The paper describes an successful HTS approach of an ciproflozacin (CFX)-
Riboswitch using SELEX in Combination with NGS. For this purpose, an
existing aptamer domain, which recognizes CFX as a building block for the
SELEX process, was employed. CFX is a well-known fluoroquinolone antibi-
otic, FDA approved and has a favorable toxicity profile for many organisms.

Furthermore, cellular uptake is granted in both, lower and higher eukaryotes.

Contributions The CFX-SELEX dataset was analyzed with support of Flo-
rian Groher. My task was to calculate the structural/sequential diversity of
the whole SELEX dataset. Especially the structure prediction provides a par-
ticularly meaningful example, since a small change in the sequence can cause
a significant change in the resulting MFE structure. Moreover, this informa-
tion is helpful since it shows in which round the structural diversity decreases.

Specially, in these rounds certain species (motifs, structural) have become
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prevalent and the success is high that these structural motifs can also be used
in riboswitches. Identifying these rounds helps to optimize the screening, be-
cause the further processing (e.g. measurements, cloning) is time and material
intensive.

On account of the very large datasets the LD was used in this work. The
upper triangle matrix was computed for all sequences and structures for each
SELEX round one respectively. The Kolomogrov Smirnov (KS) test was used
to determine how distant the distributions are from the initial randomized pool
during the SELEX process.
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ABSTRACT

RNA molecules play important and diverse regula-
tory roles in the cell. Inspired by this natural ver-
satility, RNA devices are increasingly important for
many synthetic biology applications, e.g. optimizing
engineered metabolic pathways, gene therapeutics
or building up complex logical units. A major advan-
tage of RNA is the possibility of de novo design of
RNA-based sensing domains via an in vitro selec-
tion process (SELEX). Here, we describe develop-
ment of a novel ciprofloxacin-responsive riboswitch
by in vitro selection and next-generation sequencing-
guided cellular screening. The riboswitch recognizes
the small molecule drug ciprofloxacin with a Kp in the
low nanomolar range and adopts a pseudoknot fold
stabilized by ligand binding. It efficiently interferes
with gene expression both in lower and higher eu-
karyotes. By controlling an auxotrophy marker and
aresistance gene, respectively, we demonstrate effi-
cient, scalable and programmable control of cellular
survival in yeast. The applied strategy for the de-
velopment of the ciprofloxacin riboswitch is easily
transferrable to any small molecule target of choice
and will thus broaden the spectrum of RNA regula-
tors considerably.

INTRODUCTION

RNA devices became a key focus of synthetic biology in re-
cent years. They have been used to implement genetic cir-
cuits and networks based on small regulatory RNAs, e.g.
toehold-switches (1) or STARs (2), synthetic riboswitches
(3) and allosterically controlled ribozymes (4-7). The fast
progression of this development resulted in the transition
from simple proof of concept to sophisticated and useful
applications targeting complex problems (8). RNA devices
are unique due to their modular nature that allows the sim-

ple and straightforward linkage of different domains, e.g.
between a sensor and an actuator. Thus, a whole range of
different functions may be united in one RNA molecule. Al-
though it is very common to select natural regulatory do-
mains and adapt them for different purposes, there is also
the option of de novo generation of RNA sensor domains. In
principle, the powerful in vitro selection method (SELEX)
(9,10) allows the selection of a suitable sensor RNA for any
desired target molecule. Sensor RNAs thus designed recog-
nize their target with great affinity and specificity. However,
despite the fact that several dozen small molecule-binding
aptamers have been generated to date (11), only a handful
of those are suitable for the design of RNA devices (12).
Theophylline- and tetracycline-binding aptamers have been
the most successful here (13). They allow the construction
of synthetic riboswitches that may be used for control of
transcription termination (14), or translation initiation (15),
mRNA splicing (16) or control of mRNA stability (17). In
contrast to natural riboswitches that are mainly found in
bacteria (18), synthetic riboswitches could be developed for
all three domains of life (3).

A wealth of adroit proof-of-concept studies demonstrat-
ing the application of synthetic riboswitches are available
nowadays. However, all studies to date are exclusively lim-
ited to the theophylline or tetracycline aptamer systems,
which effectively prevents a wider application of synthetic
riboswitches. To remedy this shortage of applications and to
stimulate and invigorate the field of synthetic riboswitch de-
velopment, the repertoire of aptamers suitable and available
for riboswitch design needs to be extended. First and fore-
most, methodology for the identification of such aptamer
domains is required.

The main reason for the limited suitability of most ap-
tamers is that both excellent binding properties and confor-
mational switching are essential, yet the latter is a feature
not addressed during the process of in vitro selection (3).
To find aptamers that combine superior binding properties
and the ability to undergo conformational switching, cellu-
lar screening after in vitro selection is required. Such screen-

*To whom correspondence should be addressed. Tel: +49 6151 1622000; Fax: +49 6151 1622003; Email: bsuess@bio.tu-darmstadt.de

© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
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ing systems have been established (19-21) and their func-
tionality has been successfully demonstrated, e.g. for the
neomycin aptamer (22). Now, we have extended the method
to include next-generation sequencing (NGS). NGS has
revolutionized not only aptamer selection, but proved the
proverbial game changer for research across most disci-
plines of the life sciences (23). The application of NGS al-
lows the collection of detailed information for the individ-
ual selection rounds. Thus, it was possible to choose selec-
tion rounds that showed a certain degree of enrichment,
yet maintained maximum diversity. We assume that this ap-
proach will allow a substantial acceleration of the transition
between in vitro and in vivo, while simultaneously reducing
screening efforts.

In the present study, we demonstrate the approach de-
scribed above for ciprofloxacin (CFX) as it is a well-known
fluoroquinolone antibiotic, FDA-approved (24) and with a
favorable toxicity profile for many organisms (25,26). Thus,
it guarantees portability and broad applicability. Further-
more, cellular uptake is granted in both lower and higher eu-
karyotes (27). We were able to generate a CFX-binding ap-
tamer with riboswitching properties. Structural probing re-
vealed a pseudoknot structure that enfolded and essentially
sealed the binding pocket. It showed functionality both in
yeast and a human cell line and is sufficiently efficient to
control cell fate by blocking pyrimidine metabolism or a re-
sistance gene.

In sum, we demonstrate here the de novo development of
a novel small molecule-dependent synthetic riboswitch. We
characterized a robust procedure for development that may
be used as a template for application with any other ligand.
Thus, our findings present an ideal basis and a springboard
to jumpstart the wide application of aptamer-based riboreg-
ulators.

MATERIALS AND METHODS
Pool preparation

For in vitro selection experiments, we used a 1:1 mixture of
a completely randomized and a partially-structured library
(28). In short, the completely randomized library consists
of 64 nucleotides (nt) whereas the partially structured li-
brary contained a 12-nt long fixed sequence (5'-CTG CTT
CGG CAG-3') flanked by 26 random nt on each side. Both
libraries are flanked by constant regions (5 constant: 5'-
GGG AGA CGC AAC TGA ATG AA-3'/3 constant: 5'-
TCC GTA ACT AGT CGC GTC AC-3) for amplifica-
tion using the oligonucleotides Pool_fwd 5-GTA TAA TAC
GAC TCA CTA TAG GGA GAC GCA ACT GAA TGA
A-3" and Pool_rev 5-GTG ACG CGA CTA GTT ACG
GA-3'). Both pools were amplified using the following PCR
conditions: 10 mM Tris—ClI (pH 9.0), 50 mM KCI, 1.5 mM
MgCl,, 0.1% Triton X-100, 0.2 mM dNTPs (each), 30 nM
pool template, 2 uM Pool_fwd, 2 wM Pool_rev, 50 U/ml
Taq DNA Polymerase (NEB). 10 pool template molecules
were amplified in a 60 mL PCR reaction for only 7 cycles
to reduce PCR-induced bias. PCR efficiency was calculated
according to Hall ez al. (29).

After large-scale amplification, DNA pool template was
ethanol-precipitated, dissolved in MQ-H,O [de-ionized wa-
ter purified with ion exchange resin and filtered through
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a Biofilter (ELGA) to remove possible RNase contamina-
tion] and subsequently phenol:chloroform extracted (30).
The purified DNA template was transcribed using T7 RNA
polymerase as described previously (31). Afterwards, the
transcribed RNA was ethanol-precipitated, dissolved in for-
mamide containing 25 mM EDTA and loaded on a 6% de-
naturing polyacrylamide gel (8 M urea). The RNA was vi-
sualized by UV shadowing, sliced out and eluted overnight
in 300 mM Na-acetate (pH 6.5). Hereafter, eluted RNA was
ethanol-precipitated, the pellet was redissolved in a suitable
amount of water and molarity was calculated.

CFX immobilization

CFX was immobilized on Profinity"™ Epoxide Resin (Bio-
Rad). For this, 2 g dry resin was swollen in MQ-H;O,
twice washed with MQ-H,0 and vacuum-filtered. After a
second wash with coupling buffer (50 mM KCI, 132 mM
NaOH, pH 13.0), the resin was mixed 1:2 with 5 mM
CFX solution in coupling buffer. The reaction was pro-
tected from light and incubated over night at room temper-
ature (RT) on an H5600 rotator (Labnet). Afterwards, the
resin was washed with MQ-H,O, vacuum-filtered and re-
maining active groups were blocked by incubation with 1
M ethanolamine (MEA) for 4 h. Finally, the CFX-coupled
resin was washed according to the supplier’s instructions
with alternating buffer change from pH 4.0 (100 mM ac-
etate, 500 mM NaCl) to pH 8.0 (100 mM phosphate, 500
mM NacCl). Lastly, the resin was washed with MQ-H,0O and
stored in 0.02% (w/v) NaNj at 4°C in the dark for up to 3
montbhs.

In vitro selection

For the first round of in vitro selection, 1.2 x 10> RNA
molecules from the initial pool (1:1 mixture of completely
randomized and pre-structured pool, see above) were spiked
with ~250 kCPM of 5’ 32P-labeled RNA pool in MQ-H,O.
RNA folding was performed by heating the mixture to 95°C
for 5 min and subsequently placed on ice water for addi-
tional 5 min. After the folding step, yeast tRNA was added
to a final concentration of 1 mg/ml and the volume was
adjusted to 1 column volume (CV, 500 wl) with 1x bind-
ing buffer (40 mM HEPES pH 7.4, 125 mM KCl, 5 mM
MgCl,, 5% DMSO), respectively. For depletion of RNAs
able to bind the affinity matrix, the RNA library was first in-
cubated for 30 min with 1 CV of a non-derivatized column
(mock). The mock column consisted of Profinity™ Epox-
ide Resin that had been treated only with MEA instead of
CFX. After negative selection, unbound RNAs were added
to 1 CV CFX-coupled resin and incubated for 30 min at RT.
Next, the column was washed with 10 CV binding buffer
and bound RNAs were eluted with either 4 CV 20 mM
EDTA (round 1-5) or 4 CV 1 mM CFX (round 6-10) in
1 x binding buffer.

Eluted RNA was ethanol-precipitated with Na-acetate in
the presence of 15 wg GlycoBlue™ Coprecipitant (Ambion)
and washed twice with 70% (v/v) ethanol. The air-dried
pellets were dissolved in a total volume of 50 nl MQ-H,O
and reverse-transcribed and amplified (RT-PCR). For RT-
PCR, 50 pl eluted RNA was mixed with 1x PCR buffer



(10 mM Tris—Cl pH 9.0, 50 mM KCl, 0.1% Triton X-100),
1 x first strand buffer (Invitrogen), 2 mM DTT (Roche), 1
wM Pool_fwd, 1 wM Pool_rev, 1.5 mM MgCl, and 0.3 mM
dNTPs (each). The reaction was heated to 65°C for 5 min
and then quickly placed on ice. After that, 5 U Tag DNA
Polymerase (NEB) and 200 U SuperScript™ II (Thermo
Fisher Scientific) were added to the reaction and RNA was
reverse-transcribed and amplified (54°C for 10 min followed
by 6-10 cycles of 95°C for 1 min, 58°C for 1 min and
72°C for 1 min). Product formation was monitored on a 3%
agarose gel.

For the following rounds, RNA was transcribed follow-
ing (31). In short, 10 pl of RT-PCR product was mixed with
40 mM Tris—Cl (pH 8.0), 5mM DTT, 2.5 mM NTPs (each),
15mM MgCl,, 100 U T7 RNA Polymerase (NEB), 40 U ri-
bonuclease inhibitor (moloX) and 33 nM *2P-a-UTP (Hart-
mann analytics) in a total volume of 100 wl. Transcription
was carried out at 37°C for 1 h. Afterwards, transcription
was precipitated with NHy-acetate/ethanol, washed twice
with 70% EtOH and the pellet was dissolved in a suitable
amount of water. Five hundred kCPM RNA was folded,
diluted in 1x binding buffer and subsequently loaded onto
the column for the next round of SELEX.

Plasmid cloning and doped pool generation

All plasmids and oligonucleotides used in this study are
listed in Supplementary Table S1 and Supplementary Ta-
ble S2, respectively. For cloning, two 30 bp overlappin
oligonucleotides were designed and amplified using Q5
High-Fidelity DNA polymerase (NEB) according to the
supplier’s instructions. The resulting PCR product was pu-
rified (QIAquick PCR Purification Kit, Qiagen), digested
with Agel-HF and Nhel-HF (NEB) and ligated into equally
digested pWHE601* with T4 DNA Ligase (NEB).

Doped pools were generated using the oligonucleotides
Agel doped fwd and Nhel [3.0/4.5/9.0/30.0]-doped_rev
(Supplementary Table S3, Microsynth AG), respectively,
with the construct AATG as template and amplified us-
ing Q5® High-Fidelity DNA polymerase (NEB) according
to the supplier’s instructions. Again, digestion and ligation
into pWHEG601* followed. Transformation of the ligation
mixture was done after butanol precipitation into NEB®
10-beta Competent Escherichia coli (High Efficiency) ac-
cording to the supplier’s protocol. This ensured that the
number of different plasmids yielded by this process were
>50,000.

Cultivation of yeast and GFP measurements

The Saccharomyces cerevisiae strain RS453a (M AT« ade2-
1 trpl-1 canl-100 leu2-3 his3-1 ura3-52) (32) was trans-
formed using Frozen-EZ Yeast Transformation II Kit
(Zymo Research). Transformed cells were plated on SCD-
ura plates [0.2% YNB w/o AA (Difco), 0.55% ammo-
nium sulfate (Roth), 2% glucose (Roth), 12 pg/ml adenine
(SIGMA), 1 x MEM amino acids (SIGMA), 2% Agar (Ox-
oid)] and incubated at 30°C for 3 days in a humidified in-
cubator. Single colonies were picked and cultured in 1.5 ml
SCD-ura for 24 h (450 rpm, 30°C, 24-well plates) before they
were diluted 1:1000 in fresh media with and without 1 mM
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CFX. Again, after 24 h incubation cells were washed twice
with 1x PBS and diluted to an ODg of ~0.4 for fluores-
cence measurements.

Fluorescence measurements were performed on a Fluo-
rolog FL3-22 (Horiba Jobin Yvon) with an excitation wave-
length set to 474 nm (slit 2 nm) and an emission wavelength
of 509 nm (slit 2 nm). The integration time was set to 0.5 sec
and temperature was adjusted to 28°C. Afterward, ODgg
for each culture was determined and fluorescence intensity
was normalized to it. As negative control, pWHEG601* (21)
was analyzed in parallel as a blank and its value was sub-
tracted from all data. Yeast cells containing pWHE601*
are referred to as GFP- cells, whereas cells expressing GFP
(transformed with pWHEG601 (33)) are referred to as GFP+
cells. Both controls are treated equally as the riboswitch-
controlled constructs. Each experiment was done in dupli-
cates and reproduced at least three times.

In vivo screening

Library preparation and in vivo screening was performed ac-
cording to the established protocol by Suess et al. (34) with
modifications described in Schneider ez al. (21). In short,
libraries for in vivo screening were cloned by homologues
recombination in yeast. For that, RT-PCR product of a
defined round was amplified with CFX_HR _fwd (5'-CAA
GCT ATA CCA AGC ATA CAA TCA ACT CCA AGC
TAG ATC TAC CGG TGG GAG ACG CAA CTG AAT
GAA-3) and CFX_HR_rev (5-CAA GAA TTG GGA
CAA CTC CAG TGA AAA GTT CTT CTC CTT TGC
TAG CGT GAC GCG ACT AGT TAC GGA-3) to attach
46 bp overhang for recombination into pWHEG601*. Target
vector pWHEG601* was digested using Agel-HF and Nhel-
HF (both NEB) and transformed into RS463a with a 10-
molar excess of insert using Frozen-EZ Yeast Transforma-
tion II Kit (Zymo Research). Transformed cells were spread
on several SCD-ura plates in a way that assures a moder-
ate colony density which simplifies picking clones. For the
first screening round, cells were selected under the fluores-
cence binocular and checked for GFP expression. Clones
with low and moderate fluorescence were picked and trans-
ferred to a 96-well plate with 200 wL SCD-ura. After seal-
ing the plates with BREATHseal™ (Greiner Bio-One), cells
were incubated for 24 h at 30°C on the plate shaker Titra-
max 1000 (Heidolph instruments) at 450 rpm. Next, cells
were split 1:10 in fresh SCD-ura containing no ligand (con-
trol) or 1 mM CFX [preliminary experiments showed no
influence on cell growth or GFP signal intensity with CFX
concentrations up to 10 mM (Supplementary Figure S1)].
Again, after 24 h incubation cells were diluted 1:10 with 1x
PBS and GFP fluorescence and ODygyy was measured. As
positive control pWHEG601 (GFP+) and as negative control
pWHEG601* (GFP-) were measured in parallel and used for
normalization (pWHEG601) and for subtracting autofluores-
cence of yeast and media (pWHEG601%*). Positive hits were
streaked out on SCD-ura plates and incubated. From this,
four independent colonies were picked and screened again
with the protocol above. Verified hits were taken for plasmid
preparation using QIAprep Spin Miniprep Kit (Qiagen)
and the user-developed protocol from Michael Jones (pro-
tocol PR04 ‘Isolation of plasmid DNA from yeast’). Plas-
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mids were passaged trough E. coli DH5a and sequenced
with GFP_rev (5-CCA CTG ACA GAA AAT TTG TGC-
3). Unique candidates were then transformed back into
yeast and GFP fluorescence was measured again.

NGS library preparation and data analysis

Barcodes were attached to all selection rounds by PCR us-
ing the oligonucleotides Seq_I1L_fwd and Seq_IL_rev[0-10]
(Supplementary Table S4). Forward and reverse oligonu-
cleotides hybridizes at the 5" and 3’ constant regions, re-
spectively, thus the sequence of the T7 polymerase promoter
was removed. The oligonucleotides Seq_IL_rev[0-10] intro-
duced a 4-mer barcode to assign each sequence to the spe-
cific round after sequencing. After amplification, the sam-
ples were Gel-purified (Zymoclean Gel DNA Recovery Kit,
Zymo Research) and mixed in equimolar amounts for Illu-
mina sequencing reaction (GenXPro GmbH).

To monitor the enrichment process of single sequences
and to characterize the SELEX process, we computed
for each round of selection a Levenshtein distance dis-
tribution from sequence and structural data. The Leven-
shtein distance measures the difference between two se-
quences by calculating the smallest number of insertions,
deletions, or substitutions necessary to transform one char-
acter string—such as a biomolecular sequence, or a RNA
secondary structure—into another (35). We computed the
Levenshtein distance between every sequence within each
selection round. To compare RNA structures, all sequences
were folded with RNAfold 2.3.4 (36) at 300 K with the
thermodynamic parameter set from Andronescu et al. (37).
Here, the Levenshtein distance was computed between the
respective dot-bracket annotations of the RNA molecules.
Afterward, the Levenshtein distance was normalized by
their respective reads per million (RPM) value for both se-
quences. For every round, a histogram was generated, fol-
lowed by calculating its cumulative frequency distribution
(CFD) followed by normalization by the number of data
to cumulative probabilities [P(x)]. To assess the distances
between these Levenshtein distance distribution, we com-
puted the Kolmogorov—Smirnoff statistic (38), CDF D : =
| F, — Fy| = supy |F,(x) — Fy(x)|, where F), is a cumulative
distribution function (CDF) derived from cumulative prob-
abilities of the respective Levenshtein distance distributions
obtained from the nth SELEX round. Accordingly, Fj is the
CDF obtained from the first round and sup is defined as the
supremum of the set of distances.

RNA synthesis for in vitro analysis

For in vitro analysis (in-line probing, fluorescence titra-
tion experiments and ITC measurements), RNA was tran-
scribed from PCR-generated templates, all containing at
least one 5'-terminal guanosyl residue to facilitate tran-
scription in vitro using T7 RNA polymerase. For this, two
oligonucleotides were designed with an overlap of 30 bp
(Supplementary Table S5) and amplified using Q5® High-
Fidelity DNA polymerase (NEB) according to the sup-
plier’s instructions. After ethanol precipitation, the DNA
template was used for in vitro transcription with T7 RNA
polymerase (NEB) as reported previously (31). The RNA
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was gel purified (39) and molarity was determined by spec-
trophotometric measurement using NanoDrop 1000 Spec-
trophotometer (Thermo Scientific).

In-line probing experiments

For in-line probing, RNA was dephosphorylated and 5 32P-
labeled as previously described (40). After PAGE purifica-
tion, 35 kepm of each 5’ 3?P-labeled RNA were incubated
for 68 h at 22°C in in-line reaction buffer (10 mM Tris—Cl
pH 8.3 @ 20°C, 10 mM MgCl,, 100 mM KCl). To gener-
ate a size marker, the 5’ 3*P-labeled RNAs were subjected
to alkaline hydroxylation by incubation for 3 min at 96°C
in 50 mM Na,COj; (pH 9.0), or incubated for 3 min at 55°C
with 20 U RNase T1 at denaturing conditions to identify
guanines (41). After in-line reaction, alkaline hydroxylation
or RNase T1 treatment, reactions were ethanol precipitated
and the pellet was dissolved in 5 M urea. All reactions were
separated by denaturing polyacrylamide gel electrophore-
sis. Afterward, gels were dried and analyzed using phospho-
imaging (GE Healthcare).

Fluorescence titration experiments

Dissociation constants (Kp) for RNA-CFX complexes were
determined by measuring the fluorescence quenching as a
function of RNA concentration in the presence of a fixed
CFX concentration. Fluorescence intensities were mea-
sured on a Fluorolog FL3-22 (Horiba Jobin Yvon) with an
excitation wavelength set to 335 nm (slit 5 nm) and an emis-
sion wavelength of 420 nm (slit 5 nm). The integration time
was set to 0.5 s and temperature was adjusted to 25°C. In
between, the addition of RNA, the reaction was stirred for
1 min and equilibrated for an extra minute. For the titra-
tion experiments, 50 nM CFX in 1x binding puffer (Fp)
was mixed with increasing amounts of gel-purified RNA
and fluorescence intensity was measured (F). Prior to the
titration experiment, RNA solutions were heated to 95°C
for 5 min and snap-cooled on ice for 5 min (RNA folding
step). After that, binding buffer was added to a final con-
centration of 40 mM HEPES, 125 mM KCl, 5 mM MgCl,,
pH 7.4.

Curve fitting was done using Prism (GraphPad Software)
and nonlinear regression analysis with following equation
by least squares fitting: ¥ = Bmax* X" /(Kp" + X1), with Bmax
= maximum binding, & = hill slope, X = concentration of
RNA.

Isothermal titration calorimetry

RNA folding and buffer compositions were chosen accord-
ing to the fluorescence titration experiments. 100 x 107 M
CFX solution were prepared in the same buffer. ITC ex-
periments were carried out with an MicroCal PEAQ-ITC
(Malvern Instruments) with the sample cell (200 pl) con-
taining 10 x 10~° M RNA and 100 x 10~ M CFX solu-
tion in the injector syringe (40 p.1). After thermal equilibra-
tion at 25°C, an initial 150 s delay and one initial 0.4 pl
injection, 12 serial injections of 3.0 wl at intervals of 150
s and at a stirring speed of 750 rpm were performed. Raw
data were recorded as power (cal s~!) over time (min). The



heat associated with each titration peak was integrated and
plotted against the corresponding molar ratio of CFX and
RNA. The dissociation constant (Kp) was extracted from a
curve fit of the corrected data by use of the one-site binding
model provided by MicroCal PEAQ-ITC Analysis Software
1.1.0.1262. Measurements were repeated at least twice.

Serial dilution growth assay

Overnight cultures were either grown in YPD [1% yeast ex-
tract (Oxoid), 2% peptone (BD), 2% glucose (Roth), 2%
Agar] supplemented with 0.5 mg/ml G418 or in SCD-ura.
Both YPD and SCD-ura were supplemented with CFX to
a final concentration of 1 mM to condition the cells to the
OFF-state. After overnight incubation, cultures were 1- to
S-fold diluted in fresh media and grown to an ODgg of 1—
2. Cells were washed with 1x PBS and diluted to an ODg
of 10.0 followed by 6-fold 1:10 serial dilution in 1x PBS
(denoted as 0.6 respectively). From the diluted cultures,
5l were spotted onto SCD-ura plates supplemented with
0.5 mg/ml G418 in the absence (control) or presence of
1 mM CFX. Growth differences were recorded following
incubation of the plates for 2-3 days at 30°C.

Dual luciferase assay

One day before transfection, HelLa cells were transferred
to a 24-well plate (40 000 cells/well in 1 ml DMEM). Ac-
cording to the manufacturer’s protocol, 1 pl Lipofectamine
2000 (Invitrogen) and 250 ng pDNA was used for trans-
fection. After 2 h, transfection medium (Opti-MEM) was
replaced by fresh medium supplemented with or without
100 puM CFX (Sigma-Aldrich). Luminescence was mea-
sured 24 h post transfection using the Dual-Glo Luciferase
Assay System according to the manufacturer’s instructions
(Promega). Luminescence was detected using an Infinite
M200 Microplate Reader (Tecan). The ratio between firefly
and Renilla luciferase activity was calculated for each well to
normalize for transfection efficiency. Mean values and stan-
dard deviations were calculated from triplicates and nor-
malized to the values of the corresponding vector with-
out riboswitch. Each experiment was repeated at least three
times.

RESULTS AND DISCUSSION

Identification of CFX-binding aptamers by in vitro selection
(SELEX)

To select aptamers that recognize CFX, we immobilized
CFX directly to an epoxy-activated, solid polyacrylamide
support (Figure 1A). The reaction conditions were adjusted
to a slight molar excess of CFX compared to accessible re-
active epoxy groups on the column. In consequence, we as-
sume that under these alkaline conditions, the epoxy group
mainly reacts with the secondary amino group of the piper-
azinyl residue, exposing CFX to the solvent (42).

The RNA library with a starting diversity of 1.2 x 10"
RNA molecules included a 64 nt-long random region with
half of it containing a small stem loop in the middle, a li-
brary composition already established (28). It was discussed
that preformed stem-loops provide favourable conditions
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Figure 1. Progress of in vitro selection. (A) Chemical structure of CFX. The
arrow indicates the most likely attachment site to the epoxy-activated PAA-
matrix. (B) Shown is the fraction of loaded RNA that could be eluted from
CFX-derivatized columns after each selection round. RNA was eluted by
either 20 mM EDTA (round 1-5) or I mM CFX (round 6-10). In the first
three rounds, a negative selection was performed (*). In round 5 and 10,
stringency was increased by doubling the number of column washes or a
decrease in the concentration of immobilized CFX to one-tenth, respec-
tively (f). Pre-elution steps were performed in round seven and eight (#)
(for further details see also Supplementary Table S6).

for aptamer selection by acting as nucleation sites for RNA
structure formation (43-45). We had no « priori knowledge
of the nature of the aptamer we were exploring, including
both a completely randomized region and a preformed stem
loop gave us the full scope to unrestrainedly select for the
best fit.

In the first five rounds, we eluted unspecifically with
EDTA to ensure elution of every RNA molecule, neglect-
ing their binding properties. This approach should guar-
antee that the first enrichment of the pool introduces no
bias toward low affinity aptamers because of the mild se-
lection conditions. Furthermore, in the first three rounds,
a negative selection step was carried out to remove RNA
molecules that recognize the solid support. The amount of
eluted RNA in these early rounds was as expected to be very
low (details in Supplementary Table S6) since most of the
RNA molecules of the randomized pools do not recognize
the ligand. After a first enrichment in round 4 (Figure 1B),
we increased stringency by increasing the number of wash-
ing steps (round 5) or switching to specific elution with CFX
in round 6. Despite increased stringency, more RNA was
eluted from the column. In consequence, we decided to im-
plement a pre-elution step in rounds 7 and 8 to eliminate
RNA species with fast K rates (11). Additionally, we re-
duced the amount of immobilized ligands to one-tenth in
the last round of selection. A detailed summary of the se-
lection process can be found in Supplementary Table S6.
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For a first glimpse of the selection progress, we sequenced
23 candidates of round 10. We found 13 different sequences,
eight of them were unique and about half of them con-
tained the predefined stem loop, but no shared motifs could
be found (Supplementary Table S7). Binding capacities of
all individual candidates were analyzed by their interaction
with the CFX-derivatized column (Supplementary Figure
S2A). Most of the aptamers showed a strong interaction
with the column and could be specifically eluted with CFX.
Some candidates included in the analysis did not perform
as expected, e.g. R1I0K3 showed a weak interaction and
R10K9 an interaction similar to the entire pool binding ca-
pacity in round 10. However, R10K6, R10K7 and R10K4
showed an elution profile up to 4-fold improved. Four can-
didates were selected for quantification of CFX binding by
fluorescence titration experiments. Here, the intrinsic fluo-
rescence of CFX and the respective quenching upon RNA-
binding were used to determine the dissociation constant
(Kp) of the respective aptamers. For all tested RNAs, the
Kp was below 100 nM (Supplementary Figure S2B). Our
analysis suggested that the enrichment process yielded ap-
tamers of the desired high binding affinity. However, we si-
multaneously managed to maintain a sufficient diversity of
candidates with adequate structural flexibility, i.e. ideal con-
ditions for a detailed examination of the sequence compo-
sition and subsequent riboswitch screening.

Deep sequencing of aptamer selection populations

Selection experiments aim to enrich aptamers with high
binding affinity and specificity for their respective ligands.
However, our practical experience in recent years clearly
demonstrates that superior binding affinity of aptamers
alone is insufficient for successful development into ri-
boswitches. On the contrary, a subsequent screening step
has proved indispensable (12,22,46). Implementing NGS
into our workflow was instrumental in the identification
of selection rounds that were best-suited for the laborious
screening for switching aptamers, which considered both se-
quence and structure diversity in conjunction with library
enrichment.

By Illumina sequencing, we obtained a total number of
4.2 million reads for all investigated rounds, of which 92%
could be sorted according to their corresponding barcoding
(Supplementary Table S4). Next, identical sequences were
summed up and the total read count was normalized for
each round to reads per million (RPM).

A statistical analysis was performed for the NGS data.
We determined the enrichment of the 100 most abundant
sequences (Top100, Figure 2A) and the proportion of the
background or so-called orphans (Figure 2B). For the most
abundant sequences, we see a clear exponential enrichment
throughout the SELEX process, which is in line with our ex-
pectations. On the other hand, the number of orphans drops
constantly up to round 6 and remains at a low level to the
end of selection. In addition to the sequence-based anal-
ysis, we also performed a structural evaluation. For this,
we predicted MFE structures of all sequences. We com-
pared similarities of the dot-bracket annotation by calculat-
ing the Levenshtein distance Lvpg (X, Y) (35) of all predic-
tions within each round with each other. In our experience,
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Figure 2. NGS analysis of CFX in vitro selection. (A) Over the course of
the SELEX experiment, the most abundant sequences (Top100 of each
round) were enriched in an exponential fashion. (B) Increased stringency
over time reduced the amount of background (‘Orphans’) continuously till
a plateau was reached (round 6-10). (C) The cumulative distribution func-
tion (CDF) for each round based on calculated Levenshtein distances on
MFE structures is plotted for each round, resulting in an increased P(x)
over the selection experiment. Shown are the results for the Top1000. ( D)
Based on CDF, D was derived and its logarithm is plotted against the selec-
tion rounds for the Top1000. Here, D is computed between the first round
and all remaining.

sequence-based motif search will only yield useful results if
the pool is enriched to a certain degree. Since we evaluated
all rounds of selection, structural similarity rather than mo-
tifs will allow a better estimation of pools diversity (47). The
histogram of the Lvps (X, Y) distribution was converted to
a cumulative distribution function (CDF), so that the diver-
sity of the pool of each round can be easily assessed (Fig-
ure 2C). As a distance measure between the obtained CDFs,
we used Kolmogorv—Smirnoff’s D (ks-test) which computes
the supremum (D : = | F, — Fy| =sup, |F,(x) — Fy(x)|)
between two CDFs (Figure 2D).

In contrast to the cumulative RPM of the Top100 en-
riched sequences, we observed neither a gradual nor an ex-
ponential increase in enrichment (compare Figure 2A with
D). Rather, we found a more uneven distribution of en-
richment. These findings can be correlated to the SELEX
procedure (Figure 1B). The differences between the rounds
can be assessed by looking at the distance measure D (Fig-
ure 2D). We observed the highest increase in enrichment
between rounds 5/6, 7/8 and 9/10. All of these large en-
richment steps can be correlated to the experimental con-
ditions applied in the corresponding rounds. In round 6,
we switched from EDTA to CFX elution, in round 8 we
applied the pre-elution step twice and drastically reduced
the amount of eluted RNA and in round 10 we reduced



the amount of immobilized CFX to one-tenth. Interestingly
and counterintuitively, in round 9 we found nearly the same
sequence and structure distribution compared to round 8
and the change in distance between 8 and 9 is almost zero.
Although we could elute the highest amount of RNA from
the column, the removal of the stringency (no pre-elution)
led to an amplification-only round, where no further selec-
tion took place. These results suggest that selection pressure
should be kept constant or increased over the experiment,
but not omitted. Otherwise other factors can influence pool
sequence distribution, such as RT-PCR or in vitro transcrip-
tion, which may introduce bias. In sum, NGS is able to
determine structural diversity and by doing so building a
foundation for selection the best-suited rounds for in vivo
screening. With respect to diversity, we have chosen round
6 and round 10 as the libraries to start screening. In round
6, we observed a prominent structural enrichment for the
first time, whereas we consider round 10 the most enriched
library.

NGS guided in vivo screening and riboswitch engineering

Aptamer sequences from round 6 and 10 were cloned into
the 5 UTR of a constitutively driven gfp+ gene. The pools
were integrated into S. cerevisiae by homologous recombi-
nation and analyzed for CFX-dependent changes in fluo-
rescence (21). We screened 6000 colonies in total for both
rounds and discarded candidates with a fluorescence signal
considered too low. Here, inserted aptamers were either al-
ready too structured or the insertion into the vector, which
by default lacks a start codon, failed. Based on empirical
knowledge, we also discarded candidates with very high flu-
orescence indicating the absence of a structured RNA. Af-
ter this initial elimination procedure, 17% of the total that
initially showed a GFP fluorescence in the desired range re-
mained. For 599 and 435 clones for round 6 and round 10,
respectively, fluorescence was measured in the absence and
presence of CFX and the regulatory activity was calculated
(Figure 3A). In round 6, no candidates showed any changes
in fluorescence. In round 10, two candidates were identified
with 1.7- and 1.5-fold decrease in GFP expression, respec-
tively.

We decided to continue with candidate 10A and partially
randomized each position of the 103-nt long sequence to
different degrees to identify aptamer mutants with an im-
proved phenotype. Before randomization, we deleted an up-
stream start codon within 10A (AAUG) to prevent prema-
ture translation initiation. We started with 30.0% and 9.0%
randomization and analyzed around 2000 clones. With
30.0% randomization, we completely lost any regulation,
whereas 13 clones with improved phenotype could be iden-
tified within the pool with 9.0% randomization (Figure 3A).
The detailed sequence analysis of these clones revealed a
maximum of only up to four nucleotide exchanges. Based
on this, we repeated the analysis with two new doped li-
braries with 4.5% and 3.0% randomization, respectively. We
screened about 1000 clones, out of which about 100 clones
fell into the gain-of-function (GOF) group. Sequencing 100
clones from both GOF and also from the loss-of-function
(LOF) group revealed that two regions are nearly invariant
(nts 2640 and 63-103), whereas two regions can acquire
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mutations (nts 1-25 and 41-62). Furthermore, we identified
seven mutation hot spots (Figure 3B). The hot spots were
defined not only based on the overall mutation rate, but also
on the fact that these point mutations were directed into
one specific base. By combining all directed GOF mutations
(G1U, A11C, A25C, U47C, C51U, A56C, U61G), we con-
siderably improved regulation. GFP measurements revealed
an increased in vivo activity of 7.5-fold (Figure 3C). For the
resulting construct, we chose the term CFX riboswitch. In-
vestigating the impact of each single mutation, U61G can
be highlighted as one of the mutations with the highest con-
tribution to the enhanced switching property (Figure 3D).
However, U61G alone is not fully responsible for the en-
hanced phenotype.

Taken together, initial screening, subsequent partial ran-
domization and the combination of beneficial mutations led
to the new synthetic CFX riboswitch. With 7.5-fold regula-
tory activity, the dynamic window is comparable to other
synthetic riboswitches, e.g. the tetracycline or neomycin ri-
boswitch (22,33) and other RNA-based devices that control
gene expression in eukaryotes (48,49).

Secondary structure analysis of the CFX riboswitch by struc-
tural probing and mutational analysis revealed a pseudoknot
structure

Next, we endeavoured to gain insight into the secondary
structure of the CFX riboswitch. The RNA was in vitro
transcribed, radiolabeled and subjected to an in-line prob-
ing analysis (41). The cleavage pattern is shown in Figure
4A. Interestingly, the riboswitch consists to a large extent of
non-cleaved nucleotides, implicating a high degree of struc-
tured regions. RNA folding prediction with programs based
on the Zuker algorithm (50), however, did not result in any
structure that fit to the observed probing data. On the other
hand, the assumption of a pseudoknot fold resolved all mis-
matches to the in-line probing pattern and resulted in a
secondary structure prediction illustrated in Figure 4B. To
prove the assumed pseudoknot, we mutated it and analyzed
respective rescue mutations (M2/M2R) (Figure 4B). In ad-
dition, we introduced a mutation and its respective rescue
into the closing stem P1 (M1/M1R) (Figure 4B). For both
regions, disrupted base paring completely diminished regu-
lation. Functionality could be restored by introduction of
compensatory mutations. Only two regions showed signifi-
cant flexibility, the first 25 nucleotides (nt 1-25) and the L2
region (nucleotides 44-59, blue in Figure 4B). Interestingly,
gain-of-function mutants that improved regulation were ex-
clusively found in these two regions (position 1, 11 and 25,
U61G removes a mismatch within P2, and U47C, C51U
and A56C located within the L2 region). There is no in-
dication that nts 1-25 were involved in the aptamer struc-
ture, the-gain of-function may be attributed to context de-
pendencies. The L2 region, however, seems to be important
for regulation since three gain-of-function mutants were lo-
cated in this region. In contrast, no gain-of-function mu-
tant was identified in the central part formed by the pseu-
doknot, P3 and P1. This region harboured the only two
positions with significant CFX-dependent changes in the
in-line probing pattern indicating a role of U37 and G72,
respectively, for ligand binding. We determined a dissoci-
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Figure 3. In vivo screening for CFX riboswitches and refinement of the aptamer domain. (A) The boxplot summarizes the in vivo screening in S. cerevisiae
for round 6 (R6) and round 10 (R10) and the screened doped pools with different degrees of randomization, starting with 30.0% (30.0) down to 3.0% (3.0).
For each investigated clone, the regulatory activity was calculated as ratio of GFP fluorescence with and without 1 mM CFX (x-fold). The two regulatory
active sequences 2B and 10A are highlighted. Based on 10A, a mutant was derived with a mutated AUG that was upstream of the original start codon
(AAUG) and used for synthesizing four doped libraries (30.0-3.0%). Clones that showed better switching properties than AAUG (dotted line) were sorted
into the gain-of-function group. The numbers written above the boxplot indicate the number of clones used for the particular box. (B) Heatmap based on
sequencing the gain- and loss-of-function group. For each group, mutation rate was normalized to 1.0 and plotted as a heatmap as per-nucleotide function.
Highlighted point mutations in the gain-of-function group are considered as directed mutations. All single data can be found in Supplementary Table
S8. (C) Fluorescence measurements of the originally found candidate 10A, the mutated one AAUG and the CFX riboswitch (CFX-RS). Shown are the
fluorescence values without (black bars) and with I mM CFX (white bars). Above each construct, the regulatory activity is written with standard deviation
(SD) in brackets. (D) Investigation of the impact of each single mutation. As in C, the fluorescence values without and with 1 mM CFX are plotted and

the regulatory activity and SD in brackets is shown on the right, respectively.

ation constant for the CFX riboswitch of 60 nM by fluo-
rescence titration spectroscopy and isothermal calorimetry
(ITC) (Figure 4C and D). The analysis of the binding affin-
ity of the mutants U37A and G72C, respectively, resulted
in a dramatically reduced binding affinity. Simultaneously,
both mutations lead to a complete loss of regulation in vivo
(Figure 4E). We speculate that this region (the pseudoknot,
P3 and the upper base pair of P1) may constitute the CFX
binding pocket. Interestingly, the binding constant of the
CFX riboswitch is similar to the initial candidates 10A and
10AAAUG, although considerably enhanced in in vivo ac-
tivity. It indicates that the improvement of regulation tar-
geted the switching potential of the riboswitch rather than
its ligand binding.

In sum, the CFX riboswitch presented here once more ex-
emplifies the essential requirement for tight ligand binding,
which is in line with previous work (3,22,33). Nucleotides
involved in ligand binding were clustered around the pseu-
doknot fold, which supports the idea of the formation of a
binding pocket that allows an initial binding of CFX to the
aptamer. During a second binding step, the binding pocket
is then closed through the P2/L2 region. We have demon-
strated a similar two-step binding model for the tetracycline
aptamer (51).

Ligand binding and recognition

We determined the binding affinities of seven different fluo-
roquinolones to further characterize the structure-function
relationship of the CFX riboswitch. We analyzed ligand
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binding by fluorescence titration spectroscopy and deter-
mined their switching potential (Figure 5). The titration
experiments revealed two side groups to be important for
CFX binding: the carboxyl group on C3 and the fluorine
group on C6. Here, decarboxy CFX (dCFX), pipedimic
acid (PA) and 6-hydroxy-6-defluoro CFX (hCFX) showed a
reduction in binding affinity of about 6- to 14-fold, respec-
tively. Less relevant for binding is the cyclopropyl residue on
N1, showing a 3-fold higher dissociation constant for nor-
floxacin (NFX) compared to CFX. Danofloxacin (DFX)
and enrofloxacin (EFX), which have modifications on the
piperazinyl residue, showed no significant change in affin-
ity to the CFX riboswitch. This supports the assumption
that immobilization of CFX for in vitro selection was most
probably achieved by coupling the secondary amine to the
activated epoxy group of the solid support (indicated by an
arrow in Figure 1A on CFX).

The in vivo activity is roughly related to the binding affin-
ity of each ligand to the riboswitch, with the exception of
EFX caused by its toxicity (reduction up to one tenth in
yeast growth [data not shown]) and hCFX. hCFX may be
directly converted into an intermediate of the CFX degra-
dation pathway which gives an explanation for the missing
in vivo activity (52,53).

Scalable and programmable control of cellular survival

The CFX riboswitch is capable to regulate GFP expression
up to 7.5-fold in a nearly binary fashion due to the low OFF
state. Taking this into account, we aimed to prove the po-



7.1 Riboswitching with ciprofloxacin
Nucleic Acids Research, 2018 9
A B C
1.0
- 0.8 10A ] AAUG ] CFX-RS
w06
G97/G99w & 04
G94» o 0.2
pohg . - 62.1nM 62.2 nM 64.2 nM
G82» f— 0.0
GHG/;;’: | G72 10 100 1000 10 100 1000 10 100 1000
RNA /nM RNA /nM RNA / nM
G67/68¢ A70 M2  M2R
Go1» C CiC—a@G 1.0 .
a7 U— AiU— A 0.8 Naive pool Ju37a 1G72C
& A—U{A—U < 06
A— UiA— U E» 04 >>1000 nM
G __GiG—-C d d
02 n.d. n.d.
10 45 00 .
(0.0) (0.3) C Lo evy ety —+ ooy NS
10 100 1000 10 100 1000 10 100 1000
—U37 RNA /nM RNA/nM RNA / nM
G34»
E
G32» ° 30
[}
oy
G28» 0.0 = g
v
G26r % 04 \ ag 20
5 z 3
g 08 3 T
. 5 1.2 -G
- X
J 010203040 0206 1014 U37A G72C
. 55— 1-25 <y Time/min  Molar ratio
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structure of the CFX riboswitch including three stems (P1, P2, P3), a loop-region (L2) and a pseudoknot fold (PS). Nucleotides with changes in the
probing pattern are encircled. Mutations introduced to study structure—function relationships are indicated. (C) Fluorescence titration experiment data
for the indicated RNAs. (D) Verification the binding constant of CFX-RS with ITC. Left panel: power required to maintain the temperature of the RNA
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ratio of ligand over RNA and fitted to a single binding site model (MicroCal PEAQ-ITC Analysis Software 1.1.0). (E) In vivo data for point-mutated

nucleotides U37 to A and G72 to C.

tential of the CFX riboswitch to control survival by regu-
lating genes necessary for cellular growth. For this purpose,
we exchanged gfp+ with either the kanR or the URA3 gene.
KanR codes for the aminoglycoside 3’-phosphotransferase
that allows growth in the presence of the toxic compound
geneticin (G418) (54). The URA3 gene encodes the oroti-
dine 5'-phosphate decarboxylase that allows growth on syn-
thetic drop-out media without uracil (55).

Both genes were cloned under the control the CFX ri-
boswitch and the precursor 10AAAUG. In addition, the
respective positive control without the insertion of the ri-
boswitch was analyzed (kanR+ or URA3+). As negative
control, the start codon of the respective genes (kanR- or
URA3-) was removed preventing gene expression and con-
sequently cell growth.

Yeast strains with the respective plasmids were grown in
the absence and in the presence of 1 mM CFX on appro-
priate plates and cell growth was analyzed by serial dilu-
tion growth assays. In the absence of CFX, no negative ef-
fect on cell growth could be detected upon riboswitch in-
sertion controlling kanR (Figure 6A). This is interesting,
since decreased expression level was observed in the GFP
reporter gene assay compared to the control without ri-
boswitch (Figure 3C). For controlling the URA3 gene, we
detected a slight reduction of cellular growth upon intro-

duction of the CFX riboswitch (Figure 6B). In the pres-
ence of 1 mM CFX, expression of both genes could be
significantly reduced. For kanR, growth was reduced over
three orders of magnitude and for URA3, hardly any growth
could be detected after two days on plate.

In sum, the growth of yeast carrying essential genes un-
der the control of the CFX riboswitch can be effectively and
quantitatively controlled through addition of CFX. Fur-
thermore, the effect of aptamer insertion on gene expres-
sion in a physiological context was absent or negligible, al-
though expression levels in reporter gene assays responded
to aptamer insertion.

The CFX riboswitch controls gene expression in HeLa cells

To prove CFX riboswitch functionality not only in yeast,
but also in higher eukaryotes we exploited a dual luciferase
system that expresses firefly and Renilla luciferase in HeLa
cells. We cloned the CFX riboswitch in front of the start
codon of the firefly luciferase in the pDLP vector system
(56), analogous to the GFP variants in yeast. Previous work
on tetracycline and neomycin riboswitches carried out in
our lab indicated that the transfer of a yeast-optimized vari-
ant to higher eukaryotes can be challenging (3). One con-
ceivable explanation could be the increased helicase activ-
ity of the ribosome in higher eukaryotes compared to yeast
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Figure 5. Specificity of molecular recognition of the CFX riboswitch and
their impact on riboswitching. Left: Chemical structure of ciprofloxacin
and seven selected fluoroquinolones that show binding to the CFX ri-
boswitch. Chemical changes relative to CFX are shaded in light grey. Mid-
dle: Plot of logjg Kp values of the different fluoroquinolones and their
activity in vivo (right), respectively (SD in brackets). Data shown in this
graphical overview are summarized in Supplementary Table S9.

(57,58). Consequently, the underlying strategy was to sta-
bilize the CFX riboswitch. Therefore, we exchanged loop
L2 into a stable GAAA tetraloop (59). This stabilization
of the riboswitch led to a nearly 2-fold regulation in HeLa
cells (Figure 7). By application of the same partial random-
ization strategy outlined above, further improvement may
be possible. Thus, we demonstrate for the first time to our
knowledge that a riboswitch controlling translation initi-
ation is portable between different species without major
changes in sequence composition.

CONCLUSION

Riboswitches are associated with a range of advantages.
These switches are often very simple as they consist of
only one genetic element, RNA. As such, they are inde-
pendent of transcription factors or other regulatory pro-

210

A 0 mM CFX 1 mM CFX
2 3 4 s 2 3 4 s
kanR-
kanR+
DAUG
CFX-RS
B 0 mM CFX 1 mM CFX
1 2 3 4
URA3-
URA3+
DAUG
CFX-RS

Figure 6. CFX riboswitch controls yeast growth. (A) Serial dilution growth
assay were performed for both, I0AAAUG (AAUG) and the engineered
CFX riboswitch (CFX-RS). Additionally, two controls expressing the
aminoglycoside 3’-phosphotransferase (kanR+) and a mutant without
start codon ATG (kanR-) were spotted on SCD-ura plates (supplemented
with G148) in the absence or presence of 1 mM CFX. Ten-fold serial dilu-
tions were spotted from left to right (numbering above). Cells were grown
for two days at 30°C. (B) Similar to the experiments with kanR, an analo-
gous approach was performed by exchanging the kanR gene with URA3.
Selection marker for plasmid maintenance were swapped.
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Figure 7. Application of the CFX riboswitch in a mammalian cell line.
Dual luciferase assay of the CFX riboswitch (CFX-RS) and the stabilized
GAAA mutant. The stabilized GAAA mutant, where the flexible L2 loop
region was exchanged with a stable GAAA tetraloop, showed a significant
reduction in firefly luciferase activity upon addition of 250 .M CFX. Black
bars = w/o ligand, White bars = 250 puM CFX. pDLP is the vector with-
out riboswitch. The experiments were repeated at least three times. SD are
reported in brackets.



teins. Leakiness, a phenomenon often described for tran-
scriptional regulation due to position effects, does not affect
riboswitches. Moreover, RNA-based sensor domains may
in theory be selected for any desired ligand. The riboswitch
field is presently on the cusp of the transition from proof-of-
concept studies to the development of robust and applicable
tools and switches (13).

The main obstacle limiting functional synthetic ri-
boswitch development may currently be found in the fact
that only a fraction of the selected aptamers are suitable
for riboswitch design. Fit-for-purpose aptamers require not
only excellent binding properties, but also the conforma-
tional flexibility essential for a switch. Only the first can
be addressed by SELEX; for the latter, however, laborious
screening is necessary.

Through the process of in vitro selection, subsequent
NGS-guided in vivo screening and further optimization, we
could identify and engineer a novel, CFX-responsive ri-
boswitch with a dynamic range sufficient to allow for com-
plete control of cellular behavior. Moreover, we created a
riboswitch that is active both in lower and higher eukary-
otes. Due to the digital behavior of the ON and OFF state,
we predict a high performance in biological circuits.

In essence, our findings present the first evidence for the
de novo design of a riboswitch in the last 10 years. We are
convinced that our optimized protocol will allow the dis-
covery of a multitude of new riboswitches. Further advance-
ment of our methodology, e.g. optimized selection proce-
dures that combine selection for binding performance and
conformational switching ability or the application of mi-
crofluidic high-throughput screening, is under way. These
developments open up novel and unforeseen perspectives,
e.g. for control of gene expression. However, riboswitches
could also find application as biosensors, e.g. for moni-
toring of cell metabolite concentrations and optimization
of metabolic pathways or measurements of metabolic flux
rates. Moreover, riboswitches would be effective as highly
sensitive sensors for detection of pollutants. Thus, this novel
RNA device has the potential to energize and inspire efforts
for synthetic riboswitch development.

In essence, synthetic riboswitches have received relatively
little attention so far, and they may have been slightly over-
looked due to the fact that they have yet to reach a criti-
cal mass. They are not entirely uncontroversial, mainly due
to the low number of functional switches available to date.
However, we take the opposite view and propose that the
novel CFX riboswitch and the associated tools developed in
our study will be a turning point for the synthetic riboswitch
field. In all likelihood, ongoing work in our group and other
laboratories will lead to a breakthrough and widespread use
of riboswitches in the near future.
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Supplementary Figure S1. Influence of CFX on yeast growth and GFP expression. A OD600 of yeast cultures
grown overnight in media supplemented with the respective CFX concentration. B Relative GFP fluorescence of

yeast cultures supplemented with the respective CFX concentration compared to untreated cells. Measurements

were repeated three times with technical replicates.
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Supplementary Figure S2. Analysis of single clone binding from round 10. A Ratios of bound vs. unbound RNA
for different clones from selection round 10 are displayed. As references, the naive pool and the pool from round 10
are depicted. According to the SELEX procedure, RNA was transcribed and 500 kcpm were loaded onto the CFX-
derivatized column. After 10 wash steps with 1 CV binding buffer each, the RNA was eluted by 4 wash steps with 1
mM CFX in solution. Afterwards each fraction was measured on a scintillation counter. Measured radioactivity in the
fractions flow through and wash steps were summed up (unbound) and also for elution fractions (bound). The ratio
of bound to unbound gives a direct qualitative feedback of the binding capacity of the tested clones. B Determination
of binding affinity of the selected aptamer candidates by fluorescence titration spectroscopy. Measurements were
repeated at least twice. Standard deviations and individual data points were omitted for clarity. Kp values are written
in brackets.
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Supplementary Figure S3. Next generation sequencing analysis Displayed are the cumulative distribution
function (CDF) and Kolmogorv Smirnoff's ks test (D) for Top100, Top1000 and all sequences. A Results based on
calculated minimal free energy (MFE) secondary structure. B Results based on sequence. The CDF for each round
based on calculated Levenshtein distances on MFE structures is plotted for each round (left in A and B), resulting in
an increased P(x) over the selection experiment. Based on CDF, D was derived and its logarithm is plotted against
the selection rounds for Top100, Top1000 and all sequences (right panel in A and B). Here, D is computed between
the first round and all remaining.

One mayor drawback is the computational time that it takes to compute a Lvy;,, (X,Y) distribution where we compare
every sequence with every other (often 1012 single computations). Due to this, advanced computational resources
as well as efficient software and memory management is required. However, the data suggests that calculating all
levenshtein distances for each sequence and each round is not necessary and it is sufficient to look at the Top1000
enriched sequences to draw conclusions (at least in this SELEX experiment). This fact reduced the calculation efforts
required by several orders of magnitude. We can conclude that comparing Top1000 vs all sequences by its
levenshtein distance can improve the process of SELEX round selection for future work. Additionally, using only the
Top1000 made the computation feasible on a desktop computer by reducing the computational time by several orders

of magnitude.
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Supplementary Table S1. Plasmids used in this study

Name Description

pWHEG01 2p plasmid with constitutively expression of gfp+ from an adh promoter

pWHEG601*  Derived from pWHE601 with deletion of AUG in gfp+ / Aflll --> Agel

10A
AAUG
GOF
G1U
A11C
A25C
u47C
C51U
A56C
U61G
A35G
U41G
A50G
u92G
A102G
M1
M1R
U37A
G72C
M2
M2R
M3
M3R

COMP

Active riboswitch found in initial in vivo screening
Deletion of AUG within the sequence of 10A
Introduction of 7 point mutations in AAUG
Investigation of the named point mutation within AAUG
Investigation of the named point mutation within AAUG
Investigation of the named point mutation within AAUG
Investigation of the named point mutation within AAUG
Investigation of the named point mutation within AAUG
Investigation of the named point mutation within AAUG
Investigation of the named point mutation within AAUG
Investigation of the named point mutation within AAUG
Investigation of the named point mutation within AAUG
Investigation of the named point mutation within AAUG
Investigation of the named point mutation within AAUG
Investigation of the named point mutation within AAUG

Mutation of the C31 and G32 to G and C within GOF, respectively

Compensatory point mutations for M1 to restore function
Investigation of the named point mutation within GOF
Investigation of the named point mutation within GOF

Mutation of GUU75 to CAA within GOF

Compensatory mutations for M2 to restore pseudoknot and function

Mutation of G75C and C79G within GOF

Compensatory mutations for M3 to restore pseudoknot and function
Complementary sequence of GOF for investigation of basal

expression

Reference

(1)

)
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work

This work

This work

Corresponding oligonucleotides for cloning are listed in Supplementary Table S2.
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Supplementary Table S2. Oligonucleotides used for cloning

Name

10A_fwd
10A_rev
AAUG_fwd
AAUG_rev
GOF_fwd
GOF_rev
G1U_fwd
G1U_rev
A11C_fwd
A11C_rev
A25C_fwd
A25C_rev
uU47C_fwd
U47C_rev
C51U_fwd
C51U_rev
A56C_fwd
A56C_rev
U61G_fwd
U61G_rev
A35G_fwd
A35G_rev
U41G_fwd
U41G_rev
A50G_fwd
A50G_rev
U92G_fwd
U92G_rev
A102G_fwd
A102G_rev
M1_fwd
M1_frev
M1R_fwd
M1R_rev
U37A_fwd
U37A_rev
G72C_fwd
G72C_rev
M2_fwd
M2_rev
M2R_fwd
M2R_rev
M3_fwd
M3_rev
M3R_fwd
M3R_rev
COMP_fwd
COMP_rev

Sequence (5'->3')

CGCGACCGGTGGGAGACGCAACTGAATGAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGCAC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAG
CGCGACCGGTGGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGCAC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAG
CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACTCTATCTCCCCAAATTAGGCGTCAGATAGCGGCACG
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATCTGACGCCTAATTTGGGGAG
CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGCAC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAG
CGCGACCGGTTGGAGACGCACCTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAG
CGCGACCGGTTGGAGACGCAACTGAATCAACATACGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAG
CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCCAAACTAGGAGTCATATAGCGGC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTGGGGAGATAG
CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAATTAGGAGTCATATAGCGGC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAATTTAGGGAGATAG
CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGCGTCATATAGCGGC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACGCCTAGTTTAGGGAGATAG
CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCAGATAGCGGC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATCTGACTCCTAGTTTAGGGAGATAG
CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGGCTCTATCTCCCTAAACTAGGAGTCATATAGCGGCAC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAG
CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTAGCTCCCTAAACTAGGAGTCATATAGCGGCAC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGCTAGAG
CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAGCTAGGAGTCATATAGCGGCAC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGCTTAGGGAGATAGAG
CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGCAC
GGCCGCTAGCCATTTTGTGACGCGACTCGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAG
CGCGACCGGTTGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGCAC
GGCCGCTAGCCATTTTGCGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAG
CGCGACCGGTGGGAGACGCAACTGAATCAACATAAGTGAAGCCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGG

- identical to M1_fwd -
GGCCGCTAGCCATTTTGTGAGCCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTTTAGGGAGATAGAGTCG
CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACACTATCTCCCCAAATTAGGCGTCAGATAGCGGC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATCTGACGCCTAATTTGGGGAGATAGTG
CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACTCTATCTCCCCAAATTAGGCGTCAGATAGCGGCACCG
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTAACTCGGTGCCGCTATCTGACGCCTAATTTGGGGAGATAGAGTC
CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACTCTATCTCCCCAAATTAGGCGTCAGATAGCGGC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTGTTTGTCCGTGCCGCTATCTGACGCCTAATTTGGGGAGATAG
CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACTCTATCTCCCCAAATTAGGCGTCAGATAGCGGCACGG
GGCCGCTAGCCATTTTGTGACGCGACTACAAACGGATCGTGTTTGTCCGTGCCGCTATCTGACGCCTAATTTGGGGAG
CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACTCTATCTCCCCAAATTAGGCGTCAGATAGCGGC
GGCCGCTAGCCATTTTGTGACGCGACTAGTTACGGATCGTCTAAGTCCGTGCCGCTATCTGACGCCTAATTTGGGGAGATAG
CGCGACCGGTTGGAGACGCACCTGAATCAACATACGTGAACGCGACTCTATCTCCCCAAATTAGGCGTCAGATAGCGGCACG
GGCCGCTAGCCATTTTGTGACGCGACTACTTAGGGATCGTCTAAGTCCGTGCCGCTATCTGACGCCTAATTTGGGGAGATAG
CGCGACCGGTACCTCTGCGTGGACTTAGTTGTATGCACTTGCGCTGAGATAGAGGGGTTTAATCCGCAGTCTATCGCCGTG
GGCCGCTAGCCATTTTCACTGCGCTGATCAATGCCTAGCACATTGAGGCACGGCGATAGACTGCGGATTAAACCCCTCTATCTC
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7.1 Riboswitching with ciprofloxacin

Supplementary Table S3. Oligonucleotides used for cloning of doped pools for in vivo screening

Name Sequence (5'->3')

Agel_doped_f

wd GCATACAATCAACTCCAAGCTAGATCTACCGGT

Nhel_[3.0/4.5/9 CGAGCTAGCCATTTT[GTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCT
.0/30.0]_doped AGTTTAGGGAGATAGAGTCGCGTTCACTTATGTTGATTCAGTTGCGTCTCCCJACCGGTAGATCTAG
_rev CTTGGAGTTGATTGTATGC

For all cloning steps Agel_doped_fwd was used for PCR. For generating different degrees of randomization,
the part in brackets of Nhel_ATG_Kozac_doped_rev was synthesized with mixed phosphoramidites for 3.0%,
4.5%, 9.0% and 30.0% incorporation of the other three bases.
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Supplementary Table S4. Oligonucleotides and barcodes used for lllumina
sequencing

Name Round Barcode Sequence (5'->3')
Seq_IL_fwd - - GGGAGACGCAACTGAATGAA
Seq_IL_rev0 0 GTGT ACACGTGACGCGACTAGTTACGGA
Seq_IL_rev1 1 ACAC GTGTGTGACGCGACTAGTTACGGA
Seq_IL_rev2 2 ATAT ATATGTGACGCGACTAGTTACGGA
Seq_IL_rev3 3 AGAG CTCTGTGACGCGACTAGTTACGGA
Seq_IL_rev4 4 TATA TATAGTGACGCGACTAGTTACGGA
Seq_IL_rev5 5 TCTC GAGAGTGACGCGACTAGTTACGGA
Seq_IL_rev6 6 TGTG CACAGTGACGCGACTAGTTACGGA
Seq_IL_rev7 7 CACA TGTGGTGACGCGACTAGTTACGGA
Seq_IL_rev8 8 CGCG CGCGGTGACGCGACTAGTTACGGA
Seq_IL_rev9 9 CTCT AGAGGTGACGCGACTAGTTACGGA
Seq_IL_rev10 10 GAGA TCTCGTGACGCGACTAGTTACGGA
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Supplementary Table S5. Oligonucleotides for template generation for in vitro transcription

Name

10A_T7_fwd

10A_T7_rev

AAUG_T7_fwd

AAUG_T7_rev

GOF_T7_fwd

GOF_T7_rev

U37A_T7_fwd

U37A_T7_rev

G72C_T7_fwd

G72C_T7_rev

GOF_CAA4_T7_fwd

GOF_CAA4_T7_rev

Sequence (5'->3')

CCAAGTAATACGACTCACTATAGGGAGACGCAACTGAATGAACATAAGTGAAC
GCGACTCTATCTCCCTAAACTAGG

GTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATATGACTCCTAGTT
TAGGGAGATAGAGTCGCGTTC

CCAAGTAATACGACTCACTATAGGGAGACGCAACTGAATCAACATAAGTGAACGC
GACTCTATCTCCCTAAACTAGG

- identical to 10A_T7 _rev -

CCAAGTAATACGACTCACTATAGGGAGACGCACCTGAATCAACATACGTGAACGC
GACTCTATCTCCCCAAATTAGGCGTCAG

GTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATCTGACGCCTAATT
TGGGGAGATAGAGTCGCGTTCACG

CCAAGTAATACGACTCACTATAGGGAGACGCACCTGAATCAACATACGTGAACGC
GACACTATCTCCCCAAATTAGGCG

GTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATCTGACGCCTAATT
TGGGGAGATAGTGTCGCGTTCACG

CCAAGTAATACGACTCACTATAGGGAGACGCACCTGAATCAACATACGTGAACGC
GACTCTATCTCCCCAAATTAGGCG

GTGACGCGACTAGTTACGGATCGTGTAACTCGGTGCCGCTATCTGACGCCTAATT
TGGGGAGATAGAGTCGCGTTCACG

- identical to GOF_T7_fwd -

TTGTTGTTGTTGTGACGCGACTAGTTACGGATCGTGTAACTCCGTGCCGCTATCT
GACGCCTAATTTGGGGAGATAGAGTCGCGTTCACG
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Supplementary Table S6. Detailed summary of the CFX selection process

. # Pre-  # Buffer - # Elution %

Round :;gz:;;z Cl[:r)rfl\:?l. elution washes S;ngg:f Eluent steps Input
[CcV] [cV] [CcV] eluted

1 yes 0.6 - 10 - 20 mM EDTA 4 0.2%
2 yes 0.6 - 10 - 20 mM EDTA 4 0.3%
3 yes 0.6 - 10 - 20 mM EDTA 4 0.3%
4 - 0.6 - 10 - 20 mM EDTA 4 4.2%
5 - 0.4 - 20 - 20 mM EDTA 4 2.9%
6 - 0.4 - 20 yes 1 mM CFX 4 8.1%
7 - 0.4 3 20 yes 1 mM CFX 4 45%*
8 - 0.4 4 20 yes 1 mM CFX 4 0.4% *
9 - 0.4 - 20 yes 1 mM CFX 4 18.1%
10 - 0.04 - 20 yes 1 mM CFX 4 6.0%

The amount of immobilized CFX was estimated by fluorescence measurement of the derivatized solid
support.
CV = column volume

* 23.3% and 4.7% of pre-eluted RNA were discarded in round 7 and 8, respectively

222




7.1 Riboswitching with ciprofloxacin

Supplementary Table S7. Randomized regions from clones round 10

Clone

R10K1
R10K2
R10K3
R10K4
R10K6
R10K7
R10K9
R10K11
R10K12
R10K13
R10K18
R10K19
R10K23

Frequency

1
3
2
5
4
1
1
1
1
1
1
1
1

Sequence (5'->3')

TCAGTGGCATTTCAAACACCAATTTGACGAAAAGAAGACTTAGTGAATACTAAGCGGAATTAAC
AACCAAACAGTTCCATCAAGACCTAGGTATCTAGAAACTAGCACGTCCGGATATGTCGGTA
ATCAGCATCCCTACAGAGGAAGTACCGCACACTATTGTGGAAAGGCCAGATTC
GAGGTTCCCTATCATTCACAGACGCTGCTTCGGCAGTAACTAGAATGTCCGGCCACTACGTG
AATGTCATTCAAGACTAGGTTGTGACTGCTTAGGCAGTTGTGGACGGCTAAGCCCACCAGAGG
TTGATTTCCCGTGATGAAAAGAAGACTGCTTCGGCAGCGGAAGGAAAGTTTTCGGACCCTCCA
TGCTGAGGACATTAGTAGCAAGTTCTCTGCTTCGGCAGGCAAATTTGGCAAGTCAGCT
CGCAATTCATTTTCACTAGGTCGTGCTTGAAAAAGTGTTGGAGCCAGACTAATTAGCATCAGGG
GTAGGTTCCCTATCATTCACAGACGCTGCTTCGGCAGTAACTAGAATGTCCGGCCACTACGTG
GAGGTTCCCTATCATTCACAGACGCTGCTTCGGCGGTAACTAGAATGTCCGGCCACTACGTG
CGTGGCCGAGCATACATCGTATCGGCCTGCTTCGACCAGGTCGGCCCTGGCG
GACCGTCATTCATGAGTTCTTACGTGCTGCTTCGGCAGGGGGAGAATGGCTCGGACTTAAATGG
CGAACTTCAACTAAACACTCCGATGTAATAACTAGCATCGTAGCCTGTCCCTGCGATAAAGGAG

Length*

104
101
93
102
103
103
98
104
103
102
92
104
104

Sequences found in SELEX round 10. Both, 5'- and 3'-regions are removed for clarity.

The reported stem loop (5'-CTGCTTCGGCAG-3') is underlined allowing for one mismatch/mutation.
* including constant regions.
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_Sunplementarv Table S8 A. Seauenced clones from GOF aroun

AATG 1 GGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGCACGGAGTTACACGATCCGTAACTAGTCGCGTCACAAAATG
GOF_D@2_F10 IT C C T |
GOF_C@9_D07_G05 T |
GOF_I14 IT |
GOF_H@5 1A G |
GOF_EQ1_EQ2 1A G |
GOF_Fo7 I C A |
GOF_Fo4 | |
GOF_I4 | |
GOF_F11 | |
GOF_E06 | |
GOF_I8 | |
GOF_G@1_Ho2 | |
GOF_C02 | |
GOF_B@4_D09 | |
GOF_C@1_D12 | |
GOF_C@3_G02 | |
GOF_A11 | |
GOF_Ho4 | |
GOF_F@3_F05 | |
GOF_I7 | |
GOF_D@5_EQ7 | G |
GOF_A@2 | |
GOF_I3 | |
GOF_F@8 | |
GOF_Go8 | |
GOF_I12 | |
GOF_AQ4_B03_D04_HO7 | |
GOF_G@3 | |
GOF_C10_D@3_E@8_H10 | |
GOF_I11 | |
GOF_F@1_H06 | |
GOF_C12 | G |
GOF_Go6 | |
GOF_B@7_F02_H0o1 | |
GOF_C@5_G612 | |
GOF_AQ1 | |
GOF_Co8 | |
GOF_D06 | |
GOF_E11 | |
GOF_A@5 | |
GOF_B0@8 | |
GOF_B10_H03 | |
GOF_I9 | |
GOF_I13 | |
GOF_F06 | |
GOF_A10 | |
GOF_AQ7_E@3 | |
GOF_I2 | |
GOF_G11 | |
GOF_B@9_C04_E12 | |
GOF_Go7 | |
GOF_H11_H12 | |
GOF_C@7_D08_G04_G09 | |
GOF_IS | |
GOF_I10 | |
GOF_I6 | |
GOF_I1 | |
Mutations 1522212022330120252351230400011010020000152232042224330051011 10 1 1001000000 I
Deletions 10000001111111 11111 |

ERE-S- - - A - - - - - - - - - - A - - - - - - - - - - A - - - - - - - - - - - - -

SR PR R RPRRERRERUURRERENNRRENERWWRRRRRWRENWRROODWUWNRNNNUWRRNWERRENNNUWNWRNRER P &

O U UDUD U DD UDO0UO00DU U000 0D U000 000U0U0UU0D0DU000D000 000000000000 00000 0o

© O OO OO OO OO OO OO DOO OO OCOSC OSSOSO RO OOOSO O OSSP R RPOOSOS OO OO S S
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_Sunnlementarv Table S8 B. Seauenced clones from | OF aroun

AATG
LOF_C06
LOF_D11
LOF_AQ2
LOF_B06_D09
LOF_A@9
LOF_C@3
LOF_B@3
LOF_Al0
LOF_H11
LOF_B04
LOF_B08_G08
LOF_F10
LOF_F@3_G06
LOF_A@5
LOF_B0O7
LOF_F@9
LOF_D@3
LOF_G02
LOF_F07_Go7
LOF_H10
LOF_AQ6
LOF_C10
LOF_E12_H09
LOF_F@2
LOF_D12
LOF_Do1
LOF_Fo4
LOF_D@4_H12
LOF_D02
LOF_Co1
LOF_Fo8
LOF_GO3
LOF_C@9
LOF_G0o4
LOF_AQ1_EQ7
LOF_A12
LOF_AQ4_Ho5
LOF_He3
LOF_F12
LOF_G11
LOF_E10
LOF_Ho2
LOF_C05
LOF_Co7
LOF_A@3
LOF_EQ6
LOF_G10
LOF_E01
LOF_D10_F01_G12
LOF_D06
LOF_E@5
LOF_D05
LOF_AQ@7_E@3
LOF_C11
LOF_C12
LOF_EQ4
LOF_D08
LOF_EQ@9
LOF_Co4
LOF_F06
LOF_F11
LOF_Ho4
LOF_E@2_H06
LOF_E11
LOF_F@5
LOF_Ho7
LOF_AQ8_E08
LOF_Ho8
LOF_B02_C02_G05
LOF_Ho1
Mutations
Deletions

| GGGAGACGCAACTGAATCAACATAAGTGAACGCGACTCTATCTCCCTAAACTAGGAGTCATATAGCGGCACGGAGTTACACGATCCGTAACTAGTCGCGTCACAAAATG

ITA
|

> > >0 N

-

> N
[N

C
C C6
ATG T C
T
C
G AG
T
TG A A
T
T
G A G
C
T A A
T
A G G A
G
C C A C
- A
C C
A C
G A
T
G
G
C
T [
T G
G C
C T C
G
A
T
C A
C A
C G
T A
cT
C
T
A A
A
A
A
G
C
C
C
G

C
AC

AC

T I M:5 | D:@
- I M:6 | D:1

C TA I M:7 | D:@
C A T G I M: 101 D: 0@
- I M:3 | D:1

C A- A I M:5 | D:1
G I M:3 | D:@

T G I M:3 | D:@

C I M:2 | D:@

A A I M:3 | D:@

- - I M:2 | D:2

I M: 4 | D:0

G A I M:4 | D:@
G I M:2 | D:@
T I M:5 | D:@

A G A I M:5 | D:@

G -T I M:4 | D:1

A I M:6 | D:@

I M:3 | D:@

--1 M: 4 | D:2

C G I M:3 | D:@

C I M:5 | D:@

- - - I M:2 | D:3

G I M: 4 | D:0

A T - I M:3 | D:1
C I M:5 | D:@

A C I M:3 | D:@

C I M:5 | D:@

C A I M:5 | D:1

T C GC- I M:7 | D:1

I M:4 | D:@

T I M:3 | D:@

c c I M:3 | D:1

cT I M:6 | D:0

A T - I M: 4 | D:3

C T I M: 4 | D:@

A I M: 4 | D:0

[« G I M:6 | D:@

I M:3 | D:@

C I M:6 | D:O
A G I M:3 | D:@

C G C GA - I M:8 | D:1

C A I M:3 | D:@
I M: 4 | D:@

A - A I M:5 | D:1

A I M:4 | D:@

I M:2 | D:@

C C I M:4 | D:@

C A -~ I M: 4 | D:2

C I M:2 | D:@

C C I M: 4 | D:0

A -- I M:3 | D:2

T I M:3 | D:@

T A I M:4 | D:@

C A C I M: 4 | D:0

I M:2 | D:@

C I M:3 | D:@

C -—- - I M:4 | D:3

C A C I M:5 | D:@

T - 1 Mi2 1 D1
T AG G A I M:6 | D:@
ATT I M:5 | D:@

A I M:2 | D:@

A I M:2 | D:0

I M:1 | D:@

AC I M:3 | D:@

G A A I M:3 | D:@
G - G A I M:3 | D:1

T -- I M:1 | D:2

C I M:1 | D:@

1162240012511530214204312136245623164272702032440035124657210132451232055137824230440132521213601112022000000 |

11112000101023027011 |

Comparison of the sequenced clones from GOF- and LOF-group. Depiceted are only the differences compared
to 10A with deleted AUG (AAUG). For each row and for each column, the number of mutations and deletions are

listed.
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Supplementary Table S9. Kp and regulatory activity of selected
fluoroquinolones

Fluoroquinolone Kp / nM Activity / x-fold

EFX* 61.3 (1.5) 3.1(0.1)
CFX 64.2 (1.8) 7.5(0.3)
DFX 137.1 (10.6) 4.2 (0.7)
NFX 182.6 (22.1) 2.7 (0.2)

EX 236.6 (52.9) 2.8(0.1)
hCFX 366.7 (67.2) 0.8 (0.0)
dCFX 829.8 (118.0) 1.7 (0.2)

PA 916.1 (195.9) 2.8(0.2)

For every fluoroquinolone, the dissociation constant (Kp) was
determined by fluorescence titration and activity in vivo was measured
by standard GFP fluorescence assay using the CFX-riboswitch. The
standard deviation (+ SD) is reported in brackets for the titration
experiments and regulatory activity, respectively.

* EFX reduced the growth rate of yeast approx. 10-fold [data not
shown].
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7.2 SICOR: Subgraph Isomorphism Comparison of
RNA Secondary Structures

The following article:

e Schmidt, M., Hamacher, K., Reinhardt, F., Lotz, T.S., Groher, F., Suess,
B. and Jager, S. (2017) SICOR: Subgraph Isomorphism Comparison of
RNA Secondary Structures, IEEE/ACM Transactions on Computational
Biology and Bioinformatics (Oct., 7th, 2017 submitted)

deals with a new algorithm for the comparison of RNA SS. The algorithm is
a probabilistic sub-graph isomorphism applied to compare RNA structures by
mapping the nodes of one graph to another. Such a comparison is extremely
important as it can help determine structural diversity in SELEX experiments.
This is of particular importance since such a permutation can be found in
aptamers/riboswitches. In addition, a new CG scheme was created which
displays RNA structures as directed graphs. The new CG scheme has the
advantage, in contrast to all previously published methods, that it also takes
into account the direction (5’ to 3’) of the RNA backbone. We were able to
show that SICOR shows a better performance in terms of accuracy compared

to related work.

Contributions Micahel Schmidt and myself had the idea for the publication.
Moreover, I created Figure 1,5 and 6 together with Michael Schmidt. The
definition of the algorithm, implementation and its run-time evaluation is con-
ducted by Michael Schmidt. Felix Reinhardt optimized the implementation
of Michael Schmidt. Furthermore, I created the toy-graphs for the run-time
evaluation experiment and the evaluation on a real SELEX data set. Fur-
thermore I helped to write the paper as well as to motivate it. I am the last
author in this work. Florian Groher, Thea Sabrina Lotz and Beatrix Suess
helped to write and motivate the paper and provided real NGS experiments
for the evaluation. Kay Hamacher helped to write and motivate the Paper and
supervised the definition of SICOR.
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SICOR: Subgraph Isomorphism Comparison of
RNA Secondary Structures

Michael Schmidt, Kay Hamacher, Felix Reinhardt, Thea S. Lotz,
Florian Groher, Beatrix Suess and Sven Jager

January 21, 2018

Abstract

RNA aptamer selection during SELEX experiments builds on sec-
ondary structural diversity. Advanced structural comparison methods can
focus this diversity.

We develop SICOR, which uses probabilistic subgraph isomorphisms
for graph distances between RNA secondary structure graphs. SICOR out-
performs other comparison methods and is applicable to many structural
comparisons in experimental design.

1 Introduction

RNA aptamers can form a multitude of structures to promote catalytic activity
or interaction with different partners such as proteins or small molecules whose
affinities and selectivities can rival those of antibodies [1,2]. Thus aptamers
are of ever-increasing interest in science, as they can be used for a variety of
applications, e.g. as diagnostic tools, therapeutic agents, or synthetic biosensors
in various applications [3,4].

Aptamers can be discovered with an experimental process called Systematic
Evolution of Ligands by Exponential enrichment (SELEX) [5,6]. This iterative
method isolates aptamers with the desired properties from highly diverse nucleic
acid libraries over the course of several rounds of enrichment. The analysis of
SELEX data is very time-consuming and labour-intensive, since it involves the
analysis of individual candidates in complex procedures. It would be a much
better approach to identify the rounds with the most enriched structural motifs
and analyze them afterwards.

SELEX in combination with Next Generation Sequencing (NGS) opens up
entirely new possibilities for computational analysis and data mining [7], iden-
tification and characterization of aptamers. This particular knowledge can be
crucial to optimize the SELEX process by identifying the SELEX iteration which
enriched aptamers, motifs or the sub-structure diversity. Most prominently such
structural patterns play important roles both in RNA folding and their respec-
tive biochemical function [8-10]. Thus, the need for the development of novel
computational approaches that address the characteristics specific to the SE-
LEX protocol has become highly relevant [11].

There exist several routes to analyze NGS data mainly using secondary
structure information. This is often done by Minimum Free Energy (MFE)
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approaches using dynamic programming algorithms [12]. The resulting MFE
structures are usually represented as dot-bracket (DB) strings (Fig. 1 ¢)). Based
on this simple representation of RNA structure, structural differences are com-
pared using string distance metrics (e.g. Levenshtein Distance [13]) followed by
a hierarchical clustering — thus relying on conceptual very different representa-
tions. A major shortcoming of such a string-based approach is the incapability
to match displaced or permuted motifs as illustrated in Figure 1 a). However,
permuted motifs are often found in SELEX experiments [14-16].

To address this problem, various graph-based representaions have been pro-
posed so far [17]. Here, RNA structures are often represented as trees [18,19] or
dual graphs [20] and compared with e.g., tree alignments (RNAforester) [21-23]
or general edit distances [24]. Further approaches are alignment free (e.g.,
GraphClust) [25] or use alignments in combination with a coarse graining scheme
for RNA secondary structures (e.g., BEAR: Brand nEw Alphabet for RNA in
combination with BEAM: BEAR Motif finder) [26, 27].

In our approach, RNA structures can be represented in an abstract manner
as directed graphs (e.g. adjacency matrices) to incorporate structural prop-
erties [28,29]. This graph-based representation makes promising methods like
e.g. Frequent Subgraph Mining feasible for RNA motif (pattern) discovery in
NGS experiments [30]. However, to our best knowledge, RNA-graphs have not
been used for direct structure comparison yet. In this paper, we introduce
SICOR (Subgraph Isomorphism Comparison Of Rna structure), an efficient
probabilistic subgraph isomorphism for RNA structure comparison.

The remainder of this paper is structured as follows: In Sec. 2, we introduce
the conceptual framework as well as our biological application scenario. We
introduce basic insights on the algorithm in Sec. 3. We present a run time
evaluation of our algorithm in Section 4 as well as an interpretation of applying
SICOR to a real world example. Accordingly, we compare SICOR with state
of the art RNA structure comparison algorithms. Finally, we summarize and
conclude our work in Sec. 5.

2 Background
2.1 Basic Idea

The DB notation represents aptamer structures on a semi-structural level; how-
ever, it assigns a large distance value although structurally two aptamer might
be closely related (e.g. having just two swapped hairpins). Computing structural
similarities based on the DB notation can thus lead to overestimation of the ob-
served structural diversity. However, quantifying the correct structural diversity
in NGS data derived from SELEX experiments can help to identify the deceiv-
ing SELEX iteration(s) and thus optimize and understand the process. For
example, imagine two RNA structures A and B (Fig. 1 ¢)). Both contain the
same structural motifs, they only differ slightly in size and distribution along
the respective RNA backbone. Here, the Levenshtein distance based on the
DB notation clearly overestimates the structural context. In our approach, the
probabilistic algorithm SICOR maps every nucleotide of substructure B based on
its graph representation to reference A and returns only a normalized distance
of 0.04.
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a)
S'ﬂy
5'> I
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C) Graph: A
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Subgraph: B
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I [ \ Distance = 0.04
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20|119(18(17(16|15|14|13|12| - | - | - (10| 9| 8 |7|6|5|4|3[2|1

Figure 1: Illustration of our application scenario: a) Example of two RNA
molecules which we aim to test for similarities. Both RNAs have the same
structural motifs, suggesting similar functional properties. However, a simple
string-based measure like Levenshtein distance based on DB annotation over-
estimates structural diversity due to a permutation and displacement of the
motifs. This shortcoming can be improved by graph-based representation of
the RNAs and comparison by subgraph isomorphism. b) Example of an RNA
adjacency matrix. The matrix is symmetric except for the first off-diagonal,
which corresponds to the backbone direction. ¢) Levenshtein vs. graph-based
comparison: The normalized Levenshtein distance is 0.41 while a probabilis-
tic subgraph isomorphism yields 0.04. Here, both distances were normalized:
SICOR by Eq. (8) and Levenshtein by the length of the larger string. In the
bottom we show the result for a subgraph-mapping of A onto B.

2.2 Data
2.2.1 Dataset from SELEX Experiments

The NGS data for the real world application scenario was derived from a RNA
SELEX ! against a small molecule ligand. The SELEX process reaches an en-
richment (percentual amount of RNA exceeding a certain threshold) of ligand-
binding aptamers, using a stringent experimental selection protocol. The re-
sulting aptamers will then be applied as small molecule-triggered switches to
control gene expression. We took a sample at the beginning and after applying
the stringent protocol.

RNA secondary structures were predicted by Zuker’s algorithm in RNAfold

ISynthetic Genetic Circuits, TU Darmstadt 2017, unpublished.
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2.3.4 (RNAfold) at 300K using thermodynamic parameters from Andronescu et
al. [31,32].

2.2.2 Structure Comparison and Coarse Graining

Structure comparison with our method was done by conversion from DB-annotation
into adjacency matrices and subsequent application of SICOR. In addition to
benchmarks on full graphs, we extended our approach by using coarse grained
representations of RNA secondary structures. Here, we converted the datasets to
tree graphs using the RNA Matrix Tool [19,20]. "Classical" structure compar-
ison was done using Levenshtein string distance algorithm [13] in combination
with the DB annotations (as strings). Afterwards, the distance was normalized
by the length of the longer string. We computed Levenshtein distance using
stringdist library [33]. In addition, we benchmarked structure-based align-
ment approaches as well as tree editing and forest alignments. For the classical
alignments RNA secondary structures were converted with BEAR [26] and aligned
using BEAM [27] with default parameters. Tree editing was performed using the
RNAdistance [31] programm (coarse grained, as well as full representation; us-
ing flag -f -c) The forest alignments were computed using the RNAforester
programm (flag -d) [34].

3 Algorithm

In this Section we describe the SICOR algorithm, our new approach for compari-
son of RNA structures. We start with two RNA sequences a with length n and b
with length m and m < n. The first part of our algorithm consists of predicting
secondary RNA structures via the well-known minimum-free-energy approach
(3.1), resulting in adjacency matrices A and B. Subsequent application of an
inexact subgraph isomorphism (3.2) gives a similarity score o for the sequences
and their respective secondary structures.

3.1 Conversion of Dot-Bracket Annotation to RNA Con-
nectivity Graphs

We define an RNA connectivity graph as G = (V, E). It can be represented as
an ordered pair of vertices V' = {v1,v2,... vy} and edges E. Here, we consider
undirected and directed graphs without loops, i.e., E C {{v,w} : v,w € V,v #
w}. Let §be a DB vector of the length [s| with 5 = {s1,s2,...5]5} where
si € {.,(,)} and |s| = |V|. The character ”.” denotes an unpaired nucleotide,
e.g. by hydrogen bonding. Vertex ¢ can participate in opening a base pair
(BP) s; =7 (” with a vertex j participating in closing the BP s; =”)”. A BP
corresponds to an edge between v; and v;. The primary structure of an RNA
sequence is accounted for by assuming edges between a nucleotide and its direct
neighbors along § within a distance of i — j = 1. The resulting adjacency matriz
A of a graph G is a |V| x |V| symmetric matrix, defined as follows:

Aij:{ 1 :i#jA{v,v}€E O

0 :else

The direction of an RNA strand is crucial (e.g. 5 to 3’) for its functionality.
Thus, to further improve our representation, we included this information in
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our RNA representation. This is done by setting every entry A;;_; = 0. For
simplicity, we will refer to the number of vertices |V| of the two graphs to be
compared as m and n respectively.

3.2 Subgraph isomorphism

Given an (n x n)-adjacency matrix A and an (m x m)-adjacency matrix B with
m < n, the (sub)graph isomorphism problem can be formulated: Obtain a (m
X m)-permutation matrix P such that

f(P) = HB—PAPTH; 2)

Minimizing f (P) over feasible P results in a mapping from vertices in A to
the ones in B. We call P a pseudo permutation matrix in the case of subgraph
isomorphisms, meaning that P;; € {0,1}, as well as Vj : >, P;; € {0,1} and
Zj P;; = 1. Eq. (2) would be zero for ezact matching of induced subgraph
isomorphisms. In the following we use a heuristic optimization method, leading
to a probabilistic subgraph isomorphism for two reasons:

1. The exact subgraph isomorphism problem is NP-complete, implying that
most likely no algorithm exists which finds solutions in polynomial time. In

fact the combinatorial complexity is O( (nf!m)!mz)7 resulting from ﬁ

possible pseudo permutation matrices which can be checked in O(m?) time
for isomorphism.

2. Given adjacency matrices A and B derived for two different RNA se-
quences, exact matching will be impossible in most cases. This is caused
by (i) edges in graph A which are not present in subgraph B and (ii)
edges in B which are not present in A.

For the probabilistic approach we use a similar scheme as described in [35]
for graph isomorphisms. We apply a convex relaxation onto P and relax it
to a (m x n)-pseudo bistochastic matrix S. The space of pseudo bistochastic
matrices €2 is the convex hull of pseudo permutation matrices and consists of
elements S;; € [0,1], >, S;; € [0,1] (pseudo left stochastic) and }_, Si; = 1
(right stochastic). This approach leads to a continuous optimization problem

2
. — _ T
win / (5) = iy | B - 5487 ®)
with partial derivatives
a(f; S(S ) . [SASTSAT + SATSTSA (4)
ij

—~BSA" - B"SA] (5)
which we solve by local gradient-based optimization methods. To obtain a
similarity score o for the RNA sequences, S, is projected back onto the space
of pseudo permutation matrices II via orthogonal projection [35]

ij’

P, = arglénnax tr (S’Zth) . (6)
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Eq. (6) can be formulated as the linear assignment problem (LAP)?

P, = argminz -8 Qi; (7
Q 7
with —S;; denoting the cost for assignment @);; of worker i to task j, fulfilling
Qij 20, >,Qi; =1and ), Q;; = 1. This can be solved in polynomial time
using the Hungarian method?® [36]. Similarity score is obtained by ¢ = 1 —§
with the normalized SICOR distance

HB — P, APT

opt 9
o min(|E|4,m2 — |E|g) + min(|E|g,n? — |E|4)’

(8)

with |E|a, |F|p denoting the number of edges and n = |V]4, m = |V|p the
number of vertices of the corresponding graph. The equation above represents
a normalized distance as in the worst case every edge of B is mapped onto a
non-edge of A and vice versa.

We implemented above optimization algorithm in the programming languages
julia and C using julia/C library NLopt for gradient-based optimization (al-
gorithm: augmented lagrangian method) and julia library Munkres for the
Hungarian method. The implementation is integrated in a repository hosted on
our webserver: http://www.cbs.tu-darmstadt.de/SICOR.tar.gz

Eq. (3) is non-convex and thus the results of a local minimization depends on ini-
tial values of S, meaning that we need to employ a second optimizer in a nested
fashion (meta-optimization) to infer solutions near to the global minimum. We
benchmarked different Monte-Carlo based approaches such as Metropolis sam-
pling [37] or simulated annealing [38] for the second optimizer. We observed
peculiar inefficiencies for this problem due to a "spiky" potential with many
local minima*. We found that a simple multistart algorithm (i.e. starting the
local optimizer of eq. (3) with n different values of S) yielded better results.
Note that initial inputs S for the subgraph isomorphism in eq. (3) must be
random pseudo bistochastic matrices. We achieve this by first constructing a
random matrix with i.i.d. elements drawn from a uniform distribution in the
interval [0, 1]. Pseudo bistochasticity is accomplished by an iterative procedure,
consisting of projection & (S) onto the space of right stochastic matrices (by
normalizing row sums to Vi : Y ;9 = 1), subsequently followed by projection
&2(£1(S)) onto pseudo left stochastic matrices (by normalizing column sums to
Vj: >, Sij < 1). Iterative application of & and &, is guaranteed to converge to
some point in the intersection of right- and pseudo left stochastic matrices as
they both form closed convex sets [39,40]. We show in Algorithm 1 our method
in pseudo-code form.

2To be formally correct, in order to map eq. 6 onto LAP, Sopt has to be filled up with
zeros (= "virtual" workers with no cost for each arbitrary task; this is necessary due to the
constraint Zj Qij = 1) to form a quadratic (n x n)-matrix Sy, also resulting in a quadratic
matrix Q. However, an optimal assignment of real workers (= minimizing the total cost of
eq. (7)) is also optimal in the presence of virtual workers, as the latter have equal cost for
every task and thus do not induce further constraints onto the problem.

3There is guaranteed to exist a solution @ with integer values due to total unimodularity
of the constraint matrix.

40ur scheme consisted of taking the locally optimized value S}, of the k-th run and mod-
ulating it with noise for the (k + 1)-th run.
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Data: RNA sequences a and b with length(a) > length(b)

Function SubGrIso(A,B,S)

minimize eq. (3) with gradient (5)

subject to constraints Vj : >, S;; <land Vi: > ;S =1
return S,

begin
compute adjacency matrices A and B e.g. with Zuker algorithm
initialize Res=Array(k) /* do k multistarts */

for i in 1 to k do

construct random pseudo bistochastic matrix S
Sopt=SubGrIso(A,B,S)

Res[i]=Hungarian(Sopt) /* Project Sopy acc. to Eq. (7) */

if f(S)==0 /* cmp. Eq. (3) */
then
‘ break /* Break if perfect match is found */
end
end
end
Algorithm 1: Summary of all SICOR-steps for comparing two RNA se-
quences.

Although we use above algorithm for planar graphs (due to restrictions of
omitting pseudo-knots in the Zuker algorithm), it should be noted that it is
valid for all kind of graphs. This implies, one could replace Zuker with a more
complex structure prediction algorithm (which might have pseudo-knots and
thus leads to non-planarity) or even some database-search/homology-modeling
approach. Still, the above implementation would be applicable. In the following
section, we benchmark this on different graphs.

4 Evaluation

In this section, we evaluate the run-time performance of SICOR. First, two bench-
marks were performed on synthetic data, namely Erd6s—Rényi graphs, where we
investigate the influence of graph and subgraph sizes and sparsities on the run
time performance. The last benchmark was carried out on realistic toy models
of RNA graphs to investigate the general applicability of our algorithm. For
the real world application, we analyzed a SELEX dataset and compared our
approach to state of the art analytics using Levenshtein distance on DB anno-
tation.

4.1 Benchmark on Erdds—Rényi graphs

The first benchmark was performed on random (n x n)-Erd6s—Rényi graphs A

with sparsity® s = 0.5, leading to > A = "'(2_1) as we set the diagonal to

5Sparsity s is defined as the percentage of nonzero elements in the strictly upper triangular
matrix.
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zero. Erdés—Rényi graphs were generated with julia package Erdos for different
number of vertices n € {25,50,75,100}. We randomly chose induced (m x m)-
subgraphs B out of A, meaning that exact matching is possible. Multistart
scheme as described in Alg. 1 with a maximum trial number of k& = 10° was
used for accuracy- and run time evaluation. We expected an increasing runtime
for growing subgraph sizes due to combinatorial complexity.

We observed the mismatch error according to Eq. (3) to vanish with a few
exceptions (2% of all runs). Results of runtime comparison® for different n and
m are summarized in Figure 2. Runtime consists of the average duration of a
SubGrIso run multiplied by the number of multistarts. Overall results can be
summarized into three different regimes:

1. For small subgraph sizes there is a high number of degenerated global
minima as many exact matchings are possible. Due to the multistart
scheme, SICOR finds a global minimum in short runtimes.

2. As subgraph size increases, the number of (degenerated) global optima
decreases. However, there is now a variety of steep local minima which
are close in depth to the global minimum. Landing of the gradient-descent
algorithm in such a potential well (but not in the local minimum) leads
to high gradients and big jumps on the potential landscape. We suggest
this to be the reason for longer convergence times.

3. For subgraphs larger than a threshold ¢ there exists one global minimum
and relative sizes of local minima decrease. We expect this to flatten the
potential landscape, leading to faster convergence times. Interestingly,
runtimes do not grow for subgraph sizes m > t, which makes SICOR
suitable for comparison of large RNA subgraphs.

In the second benchmark on Erdés—Rényi graphs, we evaluated the influence of
sparsity on the runtime performance. We expect high runtimes for sparse and
dense graphs as there exist many local minima which are close in depth to the
global minimum, leading to a high number of required multistarts. Runtimes
should decrease in the intermediate region as a higher number of constraints
transforms the potential landscape into a regime similar to the third one men-
tioned above. Results” are summarized in Figure 3. We do not observe a sig-
nificant influence of s on runtime except for a small increase for dense graphs.
Note that in our RNA application we have sparse graphs with s > 0.95.

4.2 Benchmark on realistic RNA toy graphs

In this section we benchmark SICOR on RNA toy graphs for which a perfect
matching exists. Toy graphs are generated in a two step procedure, consisting
of creating a random DB string § and subsequent transformation into graph-
based representation as described in Section 3. To create the random DB string

6Benchmark system was a Debian-operating server with two Intel(R) Xeon(R) CPU E5-
2687W v2 @ 3.4/0GHz and disabled hyperthreading. Every SICOR-evaluation was performed
on exactly one physical core.

"Benchmark system was a Debian-operating server with two Intel(R) Xeon(R) CPU X5660
@ 2.80GHz and disabled hyperthreading. Every SICOR-evaluation was performed on exactly
one physical core.
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Figure 2: Runtime comparison for different combinations of graph size n and
subgraph size m. Each box-and-whisker consists of 10 different samples and
whiskers were chosen to contain the [0, 100] percentile.
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Figure 3: Runtime comparison for different sparsities s. Each box-and-whisker
consists of 5 different samples and whiskers were chosen to contain the [0, 100]
percentile.

we use a Markov chain p;1 = T'p; with transition matrix

T = 9)

[«INIEENIE
W[l
== O

starting in the state py = (0,1,0)7. Afterwards string entries s; € {—1,0,1}
are drawn according to the corresponding probability vector p;. Here, -1 corre-
sponds to an opening bracket in DB ((), +1 a closing bracket in DB ()) and 0
a dot (.).

Only § with an equal number of open and closed parantheses are chosen
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for conversion into RNA toy graphs. We implemented this generator with
the markovchain library in R [41,42]. The resulting graphs are still random
while preserving the structural elements of RNA. We generated graphs of size
n € {50,100, 150,200} and drew randomly connected subgraphs of size m €
{5,10,...,30} from it®. Apart from toy model generation, benchmark setup was
the same as in previous section®. It should be noted that we used undirected
graphs for the purpose of simplicity.

We expect absolute runtimes to be higher than in previous section due to the
higher complexity of fully connected subgraphs. We observe a slightly increas-
ing error of the optimal SICOR-match for large subgraphs (up to 4 mismatched
edges for m = 30). Runtime benchmark is shown in Figure 4. Despite higher
absolute runtimes, behavior is similar to Erdés—Rényi graphs as we have short
runtimes for small subgraph sizes which saturate for large sizes. However, we
do not observe an increase in runtime for medium sizes. We assume this comes
due to a "friendlier" potential landscape of planar RNA graphs as compared to
Erdgs-Rényi graphs.
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Figure 4: Runtime comparison for different combinations of graph size n and
subgraph size m. Each box-and-whisker consists of 10 different samples and
whiskers were chosen to contain the [0, 100] percentile.

4.3 Application to Synthetic Biology: SELEX & Aptamers

As a real world example, we used the two datasets described in Section 2.2.1.
The datasets consist of a sample from the beginning of a SELEX process and
a sample after selection took place. For this setup, we want to benchmark the
previously introduced scoring of SICOR in Section 3 versus different "state of
the art" RNA sequence comparison methods. Here, we consider four different
kinds of approaches: Tree editing on full and coarse grained trees (implemented
in Vienna RNA e.g., RNAdistance [31]), classical alignments using a structural
alphabet for RNA secondary structures (e.g., BEAR [26]), Levenshtein distance

8This scheme represents a simplification of real RNA structures as they include slightly
d