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Abstract— This paper presents the velocity controllers of the
simple rigid-body individuals of a 2-D Lagrangian swarm model
that can take up a linear formation which could be used by
unmanned aerial dynamical systems for searching large areas.
The velocity controllers are derived from a Lyapunov function.
The Direct method of Lyapunov guarantees the stability of the
system. The velocity controllers are then applied to a swarm
of unmanned aerial vehicles. Simulation results are provided
to support the results obtained.

I. INTRODUCTION

It was evident after the disappearance of Malaysia Airlines
Flight MH 370 that there is no satisfactory solution for
searching large areas for a particular signal or feature [1].
Similarly, the surveillance of the Exclusive Economic Zones
(EEZs) of the Pacific Island Countries (PICs) is an extremely
difficult and expensive exercise. This is due primarily to the
vast area covered by the EEZs which is almost 20 million
square kilometres in total. With neither the technological
capability nor the financial resources to patrol their EEZ,
the PICs are victims of daily intrusions of unauthorized
marine vessels. Recognizing this major problem, PICs, with
the help of Australia and New Zealand, established a regional
monitoring body called the Pacific Islands Forum Fisheries
Agency (FFA) in 1979, with the primary aim to monitor
illegal tuna fishing. It coordinates surveillance exercises
using a fleet of patrol boats owned by several PICs and long-
range Marine Patrol Aircraft (MPA) owned by Australia,
New Zealand, the US and France. PICs depend on Australia
to provide patrol boat for maritime surveillance.

Currently, 12 PICs have 22 patrol boats donated by Aus-
tralia between the years 1987 and 1997. A new Pacific Patrol
Boat program was unveiled in June 2014 by Australia to
replace these aging boats. The regional surveillance program
by FFA oversees only occasional exercises which do not
cover large areas due to the limited number and operational
range of patrol boats. Even though FFA has several other
initiatives that monitor daily maritime traffic and illegal
fishing, the problem of illegal fishing has worsened to the
extent that Palau, for instance, in January 2014, declared its
EEZ a 100% marine sanctuary and banned all commercial
operations from it [2]. Table 1 provides an idea of the value
of the tuna industry in the Pacific and the extent of illegal
fishing [3].
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TABLE I
IN 2012, ONLY ABOUT 10% OF US$3.9B WORTH OF TUNA CAUGHT IN

THE EEZS OF FFA MEMBER COUNTRIES WENT TO MEMBER

COUNTRIES. ABOUT 9% OF POTENTIAL REVENUE WAS LOST TO

UNREGULATED FISHING.

US$3.9b First-hand value of tuna caught in FFA member country
waters in 2012.

US$7.3b First-hand value of tuna caught in the western and
central Pacific tuna fishery in 2012.

US$230m Value of access fees paid by foreign fishing vessel
operators for access to fish in FFA members waters in
2012.

US$380m Value of exports to the US, Japan, and the EU from FFA
members in 2012.

US$241m Contribution of the tuna sector to the combined GDP of
FFA members in 2011.

US$400m Revenue lost to illegal, unreported, and unregulated
fishing in the Pacific Ocean.

16,000 Pacific Islanders employed in the tuna sector in 2012.

The Unmanned Aerial Vehicle (UAV) based technology is
a feasible technology for the surveillance of an Economic
Exclusive Zone effectively [4]. The primary purpose of a
reusable UAV is data collection via aerial surveillance. Hence
UAVs are now increasingly used for border surveillance and
remote sensing, environment monitoring and aerial image
processing. However, the problem of searching a large area
remains.

In this paper, we present a Lagrangian swarm model that
has the capability of covering large areas effectively. The
swarm model is developed based on the assumption that
swarming is an interplay of long-range attraction and short-
range repulsion between individuals in a swarm. Attraction
and repulsion functions that would be part of a Lyapunov
function will be formed using artificial potentials fields
(APFs) method [5], [6], [7], [8], [9]. Velocity controllers for
each individual of the swarm are derived from the Lyapunov
function. The Direct Method of Lyapunov is used for stability
analysis [10]. It is a theoretical exposition wherein a simple
rigid-body model of individuals in a swarm is extended to
the kinematic equations governing the planar movement of a
swarm of UAVs. The results obtained are validated through
simulations.

If the controllers derived in this paper that generate
linear formation are applied to dynamical systems then
the dynamical systems will have the ability to search and
explore large areas effectively. Thus, there would be a very
good model for the surveillance of an Economic Exclusive
Zone effectively and as well as for search and rescue. The
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remainder of the paper is organized as follows: Section II
gives the description of the generic swarm model. In Section
III, the velocity control laws are derived for the swarm
model . Section IV elaborates on the the generation of linear
formation. The velocity control laws derived in Section III
are applied to unmanned aerial vehicles in Section V. In
Section VI, simulation studies are presented that show the
linear formation of the UAVs.

II. A TWO-DIMENSIONAL SWARM MODEL

Consider a swarm of n ∈ N individuals that we shall treat
as rigid bodies. In two-dimensional space, the positions of
the individuals of the swarm can be described by their trans-
lational components and their rotational component, yaw,
about the vertical axis of its body-frame reference. Let the
position of the ith individual at time t ≥ 0 be (xi(t), yi(t))
with yaw angle ψi = ψi(t), for all i ∈ {1, 2, 3, . . . , n},
with (xi(t0), yi(t0)) =: (xi0, yi0) and ψi(t0) = ψi0 as initial
conditions.

Definition 2.1: The ith individual is a rigid body residing
in a disk with center (xi, yi) and radius ri > 0. It is
described as the set

Bi := {(z1, z2) ∈ R2 : (z1 − xi)2 + (z2 − yi)2 ≤ r2i }. (1)
Let us define the centroid of the swarm as

(xC , yC) :=

(
1
n

n∑
k=1

xk,
1
n

n∑
k=1

yk

)
. (2)

At t ≥ 0, let (υi(t), ωi(t), φi(t)) := (x′i(t), y
′
i(t), ψ

′
i(t)) be

the instantaneous velocity of the ith individual. We have thus
a system of first-order ODEs for the ith individual:

x′i(t) = υi(t), y′i(t) = ωi(t), ψ′i(t) = φi(t), (3)

assuming the initial conditions at t = t0 ≥ 0 as xi0 :=
xi(t0), yi0 := yi(t0), ψi0 := ψi(t0). Suppressing t, we let
xi := (xi, yi, ψi) ∈ R3, and x := (x1,x2,x3, ...,xn) ∈
R3n be our state vectors. Also let x0 := x(t0) :=
(x10, y10, ψ10, x20, y20, ψ20, ..., xn0, yn0, ψn0) ∈ R3n. If the
instantaneous velocity (vi, wi, φi) has a state feedback law
of the form

υi(t) := −µifi(x(t)),
ωi(t) := −ϕigi(x(t)),
φi(t) := −χihi(x(t)),

for i ∈ {1, 2, 3, . . . , n}, for some scalars µi, ϕi, χi > 0
and some functions fi(x(t)), gi(x(t)) and hi(x(t)), to be
constructed appropriately later, and if we define gi(x) :=
(−µifi(x),−ϕigi(x),−χihi(x)) ∈ R3 and G(x) :=
(g1(x), . . . ,gn(x)) ∈ R3n, then the swarm of n individuals
is represented by

ẋ = G(x), x(t0) = x0. (4)

Definition 2.2: The target for the centroid of the swarm
of n ∈ N agents is a disk with center (a, b) and radius rτ .
It is described as the set

τ := {(z1, z2) ∈ R2 : (z1 − a)2 + (z2 − b)2 ≤ r2τ}. (5)

Let ψie be the final yaw angle of the ith individual at its
equilibrium point. Then the equilibrium point for the ith

agent is xie = (xie, yie, ψie) ∈ R3. If the system has an
equilibrium point, we shall denote it by

xe := (x1e,x2e, . . . ,xne) ∈ R3n.

The stability of xe will be analyzed using the Direct Method
of Lyapunov.

III. VELOCITY CONTROLLERS

Consider the configuration space of system (4) free of
stationary obstacles.

A. Lyapunov Function Components

We will assume that each individual in the swarm is
identical; hence ri = ra ∀ i ∈ {1, 2, 3, . . . , n} where ra
is the radius of the disk in which the agent is residing.

1) Attraction to the Centroid: The attractive potential
function that will ensure that the ith individual is attracted
towards the swarm centroid is proposed to be, for i ∈
{1, 2, 3, . . . , n}:

Ri(x) :=
1
2

[
(xi − xC)2 + ζ (yi − yC)2

]
. (6)

The control variable ζ ∈ R determines the ratio of the minor
axis (y-direction) to the major axis (x-direction) affecting the
eccentricity of the swarm.

2) Target of the Swarm of n ∈ N Agents: For target
attraction, the following function that measures the distance
between the centroid of the swarm and the target will be
used and will also be included as a component of Lyapunov
function for the system:

T (x) :=
1
2

[
(xC − a)2 + (yC − b)2

]
. (7)

3) Inter-agent Collision Avoidance: For short-range re-
pulsion between the ith and the jth individual, j 6= i,
i, j ∈ {1, 2, 3, ...n}, we consider the function

Qij(x) :=
1
2

[
(xi − xj)

2 + (yi − yj)
2 − (2ra)2

]
. (8)

4) Yaw Angle Convergence: It is desired that all yaw
angles converge eventually to a common value for alignment
purpose [11]. For all j 6= i, i, j ∈ {1, 2, 3, ..., n}, consider
the function

Eij(x) :=
1
2

(ψi − ψj)
2
. (9)

B. A Lyapunov Function

Let there be real numbers α > 0, γi > 0, ξij > 0 and
βij > 0, and define, for i, j ∈ {1, 2, 3, . . . , n}, a Lyapunov
function for system (4)

L(x) =
n∑

i=1

T (x)

γiRi(x) +
n∑

j=1,
j 6=i

βij

Qij(x)


+

n∑
i=1

n∑
j=1,
j 6=i

ξijT (x)Eij + αT (x). (10)
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It is positive over the domain

D(L) :=
{
x ∈ R3n : Qij(x) > 0 ∀ i, j = {1, 2, . . . , n},

i 6= j
}
.

The time-derivative of the Lyapunov function along the
trajectories of system (4) is

L̇(x) = αṪ (x) +
n∑

i=1

γi

(
Ri(x)Ṫ (x) + Ṙi(x)T (x)

)
+

n∑
i=1

n∑
j=1,
j 6=i

βij
Ṫ (x)Qij(x)− T (x)Q̇ij(x)

Q2
ij(x)

+
n∑

i=1

n∑
j=1,
j 6=i

ξij

(
Eij(x)Ṫ (x) + Ėij(x)T (x)

)

=
n∑

i=1

[
fi(x) · ẋi + gi(x) · ẏi + hi(x) · ψ̇i

]
=

n∑
i=1

[fi(x) · vi + gi(x) · wi + hi(x) · φi]

where

fi(x) =
1
n

α+ γiRi(x) +
n∑

j=1,
j 6=i

(
βij

Qij(x)
+ ξijEij

)
(xC − a) + γiT (x) (xi − xC)

−2
n∑

j=1,
j 6=i

βij
T (x)
Q2

ij(x)
(xi − xj) , (11)

gi(x) =
1
n

α+ γiRi(x) +
n∑

j=1,
j 6=i

(
βij

Qij(x)
+ ξijEij

)
(yC − b) + γiζT (x) (yi − yC)

−2
n∑

j=1,
j 6=i

βij
T (x)
Q2

ij(x)
(yi − yj) (12)

and

hi(x) = 2T (x)
n∑

j=1,
j 6=i

ξij (ψi − ψj) . (13)

Along a trajectory of system (4) we have

L̇(x) =
n∑

i=1

[fi(x) · υi + gi(x) · ωi + hi(x) · φi] .

Let there be scalars µi > 0, ϕi > 0 and χi > 0 and define
the instantaneous velocity components of system (4) as

υi = −µifi(x), ωi = −ϕigi(x), φi = −χihi(x). (14)

Then

L̇(x) = −
n∑

i=1

[
µifi

2(x) + ϕigi
2(x) + χihi

2(x)
]

= −
n∑

i=1

[
υ2

i

µi
+
ω2

i

ϕi
+
φ2

i

χi

]
≤ 0,

for all x ∈ D(L).

C. Stability Analysis

At the equilibrium point xe, the instantaneous velocities,
υi, ωi and φi, are zero because fi = 0, gi = 0 and
hi = 0. Thus, the agents assume a constant configuration
or arrangement about the target. Their stationary positions
therefore are components of an equilibrium point xe of
system (4). It is easy to see that L(xe) = 0, L(x) > 0 ∀ x 6=
xe and L̇(x) ≤ 0. Hence, we conclude that equation (10) is a
Lyapunov function that guarantees the stability of system (4).

IV. LINEAR FORMATION CONTROL

Generation of a linear formation which could be used by
unmanned aerial dynamical systems for exploring large areas
is one of the key pillars of this work. The linear formation
is formed using the control variable ζ given in equation (6).
If ζ is significantly small then it will put the individuals
of the swarm in a vertical linear formation. However, if ζ
is significantly large then it will put the individuals of the
swarm in a horizontal linear formation.

V. APPLICATION TO A SWARM OF AUTONOMOUS UAVS

The UAV that will be used is a miniature sized quadrotor
helicopter-type analyzed in [11].

A. Quadrotor UAV Model

Definition 5.1: The ith UAV is a disk with radius l and
is positioned at center (xi, yi). The ith UAV is precisely
described as the set

Vi = {(z1, z2) ∈ R2 : (z1 − xi)2 + (z2 − yi)2 ≤ l2}. (15)
A quadrotor aircraft usually has a rigid cross frame [12]. The
ith quadrotor UAV is shown in Fig. 1. It has four arms which
are typically 90 degrees apart. The length of each arm is l.
Thus, the kinematic model, adopted from ref. [11], of the ith

quadrotor UAV with respect to its center (xi, yi) ∈ R2 is

ẋi = υi cosψi − ωi sinψi − lΦi sin θi,
ẏi = υi sinψi + ωi cosψi + lΦi cos θi,

ψ̇i = µi,

θ̇i = Φi,

 (16)

where θi describes its orientation with respect to the line of
motion and the Earth-frame (xE − yE) reference. The linear
velocities are denoted by υi and ωi along the longitudinal and
lateral axes, respectively, while the rotational velocities are
denoted by µi (time derivative of ψi) and Φi (time derivative
of θi). The altitude and the pitch and roll angles are not con-
sidered as variables for the UAV in two-dimensional planar
space. The axis along which the quadrotor moves is denoted
the longitudinal axis and its perpendicular counterpart along
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Fig. 1. Kinematic model of a Quadrotor UAV.

which it moves sideways the lateral axis. The longitudinal
and lateral axes can be considered a transformation (rotation
of ψ degrees) of the Body-frame reference about zB . Thus,
the ith UAV is centered at (xi, yi), with yaw angle ψi. To
ensure that the ith UAV steers safely pass obstacles (either
moving or static obstacles), we enclose the UAV by the
smallest possible circle. As shown in Figure (1) the UAV is
enclosed by a protective circular region centered at (xi, yi),
with radius l. Therefore, the definition of our UAV is taken as
equation (1) and the system consists of the UAVs Bi as the
members of the swarm. The centroid of the swarm is given
by (2) and the target of the swarm centroid is given by (5).
Our aim is to design the translational velocities υi and ωi

and rotational velocities µi and Φi such that the UAVs are
attracted to the centroid of the swarm and get into a linear
formation. The centroid of the swarm is attracted to its target
so that UAVs are able cover to a large area.

The Lyapunov function given by equation (10) which was
derived for system (4) will be used for the system (16) with
an extension to the definition of the independent variable
from xi := (xi, yi, ψi) ∈ R3 to xi := (xi, yi, ψi, θi) ∈ R4.
Hence, the configuration vector for n vehicles become, x :=
(x1,x2,x3, ...,xn) ∈ R4n with the initial conditions vector
denoted as x0 := (x1(0),x2(0),x3(0), ...,xn(0)) ∈ R4n.

1) Equilibrium Point: Let θie be the final orientation angle
of the ith vehicle at its equilibrium point. Then the equilib-

rium point for the ith vehicle is xie = (xie, yie, ψie, θie) ∈
R4. If system (16) has an equilibrium point, we shall denote
it by

xe := (x1e,x2e, . . . ,xne) ∈ R4n.

B. Velocity Controllers of the UAVs

The system of ODEs (16) is substituted into the time
derivative of (10) as shown below:

L̇(x) =
n∑

i=1

[
fi(x) · ẋi + gi(x) · ẏi + hi(x) · ψ̇i

]
=

n∑
i=1

fi(x)
(
υi cosψi − ωi sinψi − lθ̇i sin θi

)
+

n∑
i=1

gi(x)
(
υi sinψi + ωi cosψi + lθ̇i cos θi

)
+

n∑
i=1

hi(x)φi

=
n∑

i=1

(fi(x) cosψi + gi(x) sinψi) υi

+
n∑

i=1

(gi(x) cosψi − fi(x) sinψi)ωi

+
n∑

i=1

[(gil cos θi − fil sin θi) Φi + hi(x)φi] ,

where fi(x), gi(x) and hi(x) are defined in (11), (12) and
(13) respectively. Let there be scalars µi, ϕi, χi, εi > 0 and
define the instantaneous velocity components of system (16)
as

υi := −µi (fi(x) cosψi + gi(x) sinψi) ,
ωi := −ϕi (gi(x) cosψi − fi(x) sinψi) ,
Φi := −εi (gil cos θi − fil sin θi) ,
φi := −χihi.

Then

L̇(x) = −
n∑

i=1

[
υ2

i

µi
+
ω2

i

ϕi
+

Φ2
i

εi
+
φ2

i

χi

]
≤ 0.

VI. SIMULATION RESULTS FOR THE UAV SYSTEM

Simulations were generated using Wolfram Mathemat-
ica 8 software. To achieve the desired results a number
of sequential Mathematica commands were executed. The
positions of the obstacles were randomly generated. The
target for the centroid of the swarm was also randomly
generated. The arm length l of all the UAVs in all the
simulations is 2.5. We numerically simulated system (16)
using RK4 method (Runge-Kutta Method). At t = 0, the
initial positions (xi0(0), yi0(0)) and orientations θi(0) were
randomly generated.

Via numerous simulations we have shown that the UAVs
from their initial positions are easily and consistently
switched into a linear formation oriented perpendicular to
the directions of flight as shown in Example 6.1.
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Example 6.1 (Linear Formation): In this example, a
swarm of 10 UAVs is considered. Their initial positions at
time t = 0 are shown in Fig. 2. They cluster around the
centroid as time evolves and then they move in a linear
formation to their equilibrium point as a well-spaced cohe-
sive group as shown in Fig. 3. The linear formation shown
in Fig. 3 is achieved by letting the control variable ζ = 60.
The UAVs have the same orientation angles eventually as
shown in Fig. 4 which indicates that they heading in the
same direction that is θi = θj . The yaw angles converge
to a common value as shown in Fig. 5 which indicates that
ψi = ψj .

Target

0 20 40 60 80 100
0

20

40

60

80

100

z1

z
2

Fig. 2. Example 6.1. Randomly generated initial positions and
orientations of UAVs.
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60

80

100

Z1

Z
2

Fig. 3. Example 6.1. Positions and orientations of UAVs at t =
11, 33, 63 and 131 respectively show the self-organization of the
UAVs having a linear formation.
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Time, t

θ
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Fig. 4. Example 6.1. The UAVs head in the same direction over
time.
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-6
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0

2

4

Time, t

ψ
i,
i=
1,
...
,1
0

Fig. 5. Example 6.1. The yaw angles converge to a common value.

VII. CONCLUSION

This paper presents the velocity controllers of the simple
rigid-body individuals of a Lagrangian swarm model that
can take up a linear formation. Via the Direct Method of
Lyapunov that establishes the stability of the swarm system,
we proposed the instantaneous velocity function for each
individual. The velocity controllers were applied to a swarm
of unmanned aerial vehicles successfully. Via computer sim-
ulations, we illustrated the linear formation. This formation
could be used by unmanned aerial dynamical systems for
monitoring EEZ and for search and rescue.
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